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Abstract—In this paper we propose to use a matrix-
variate Mellin transform in the statistical analysis of multi-
look polarimetric radar data. The domain of the transform
integral is the cone of complex positive definite matrices,
which allows for transformation of the covariance matrix
distributions used to model multilook polarimetric radar
data. Based on the matrix-variate Mellin transform, an
alternative characteristic function is defined, from which
we can retrieve a new kind of matrix log-moments and
log-cumulants. It is demonstrated that the matrix log-
cumulants are of great value to analysis of polarimetric
radar data, and that they can be used to derive estimators
for the distribution parameters with low bias and variance.

Index Terms—Radar polarimetry, synthetic aperture
radar, Mellin transform, matrix-variate statistics, parame-
ter estimation, method-of-log-cumulants, doubly stochastic
product model

I. INTRODUCTION

OLARIMETRIC radar has become an im-
portant remote sensing instrument due to its
ability to discriminate between different scattering
mechanisms. It can therefore characterise physical
properties of the target that cannot be determined
from single polarisation (mono-pol) radar measure-
ments. To fully utilise the polarimetric information
captured, it is necessary to analyse the complex
correlations between all polarimetric channels, in-
corporating all intensity and phase information. This
requires relatively complicated data models, that
together with the speckle phenomenon, inherent to
all types of coherent imaging, make analysis of
multiple polarization radar data a challenging task.
It was noted already by Epstein [1] that the
Mellin transform (MT) is a natural analytical tool to
use when studying the distribution of products and
quotients of independent random variables (RV).
Nicolas [2], [3] utilised this fact in the analysis
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of compounded distributions used to model syn-
thetic aperture radar (SAR) data. He introduced a
new theoretical framework by replacing the Fouriér
transform (FT) with the MT in the definition of the
characteristic function (CF) and cumulant generat-
ing function (CGF). This framework was originally
coined second kind statistics, but we shall refer to it
as Mellin kind statistics (MKS). From the resulting
Mellin kind CF and CGF one can retrieve the
statistics known as log-moments and log-cumulants.

The most important development under this
framework is the method of log-cumulants (MoLC)
for parameter estimation [2], [3], which Nicolas ap-
plied to a number of doubly stochastic distributions,
as well as the positive alpha-stable distribution [4],
and members of the generalised gamma distribution
(GyD) family (e.g., the Weibull and log-normal
distribution) [5]. The same method has earlier been
applied to GyDs [6], though without relating it
to the MT. The list of recently proposed SAR
image analysis and image processing algorithms that
employ the MoLC covers diverse applications such
as statistical modelling [7], [8], [9], speckle filtering
[10], [11], [12], classification [13], segmentation
[14], [15], change detection [16], [17], [18], in-
terferometric coherence estimation [19], and image
compression [20].

Being aware of the impact that MKS has had on
mono-pol SAR image analysis, we here extend the
theory to the matrix-variate case which describes
multilook polarimetric radar data. This is done by
introducing a matrix-variate version of the MT
[21], which is used to define a Mellin kind CF
and CGF of random matrices. We then show how
matrix log-moments and matrix log-cumulants can
be obtained from the Mellin kind matrix CF and
CGeF, respectively. For all the theoretical derivations,
we highlight the analogy with the univariate case
developed by Nicolas, and also the classical theory
where the FT is used instead of the MT.

The paper is organised as follows. In Section II
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we describe the data delivered by mono-pol and
polarimetric radars, together with the probability
density functions (PDFs) commonly used to model
the data. In Section III we review the classical
definition of moments and cumulants and give an
overview of univariate MKS, before presenting the
extension to complex matrix-variate MKS including
new definitions and derivations of key properties.
The application to parameter estimation for mul-
tilook polarimetric radar data distributions using
the method of matrix log-cumulants (MoMLC) is
presented in Section IV, accompanied by numer-
ical simulations that document the improvement
of estimator precision and accuracy. We give our
conclusions in Section V.

Our convention for notation is that scalar values
are denoted as lower or upper case standard weight
characters, vectors are lower case boldface charac-
ters, and matrices are upper case boldface charac-
ters. Except for scalar random variables, we do not
distinguish between random variables and instances
of random variables, as such can be ascertained
through context. A list of acronyms is provided for
convenience:

NOMENCLATURE
CF characteristic function
CGF cumulant generating function
FT Fourier transform
GHD generalised gamma distribution
MLC matrix log-cumulant
MLM matrix log-moment
MoLC method of log-cumulants
MoMLC method of matrix log-cumulants
MT Mellin transform
MKS Mellin kind statistics
PDF probability density function
RV random variable
SAR synthetic aperture radar

II. RADAR DATA MODELS

A full-polarimetric imaging radar separately
transmits orthogonally polarised microwave pulses,
and measures orthogonal polarisations of the re-
ceived signal. For each pixel, the measurements
result in a matrix of scattering coefficients. These
are complex-valued, dimensionless numbers that
describe the transformation of the transmitted elec-
tromagnetic field to the received electromagnetic

field for all combinations of transmit and receive
polarisation, and assuming no atmospheric distur-
bance (i.e. zero Faraday rotation).

The transformation can be expressed as

Ll [ Sw Sy ][ &L W

el | S Sw | &)
where k£ denotes wavenumber and r is the distance
between radar and target. The subscript of the elec-
tromagnetic field components &' and &!, i € {x,y},
refers to one of the orthogonal polarisations = and
y. The superscript indicates transmitted/incident ()
or received/backscattered (T) wave. SAR systems
normally use linear polarisations (horizontal and
vertical), while using circular polarisations (left and
right) is another choice. The scattering coefficients
S;; are subscripted with the associated receive and
transmit polarisation, in that order. Together, they
form the scattering matrix, denoted S =[S9;;] € C**2.
The scattering vector may be defined as

S =[Sy Suy Syr Sy’ =vec(ST) € € (2)
where (-)7 means transposition, vec(-) denotes vec-
torisation by column stacking, and d=dim(s)=4 is
the vector dimension. Other definitions are possible
[22], since the vector can be linearly transformed to
emphasise physical interpretations of the elements
(i.e., Pauli basis), or the dimension can be reduced
to d =3 by assuming reciprocity of the target (i.e,
Szy = Syz). A reduced version also results when
only a subset of S is measured, such as for mono-
pol SAR (d=1) and dual polarisation SAR (d=2).

Radar images are affected by an interference
phenomenon which is a characteristic of all co-
herent imaging systems. The noise-like effect of
interference, known as speckle, can be mitigated
by a processing step called multilooking. Multiple
measurements are obtained by splitting the Doppler
bandwidth into a number of subbands, each giving
rise to a separate image referred to as a look. All
looks are averaged in the power domain to produce
multilook data.

The matrix S and the vector s are single-
look complex format representations of polarimetric
radar data. The L looks extracted in the multilook-
ing process may be represented by the set {s,} ,,
or {S;}£, in the mono-pol case. The data formats
obtained in the multilook intensity domain are

L
1 .
C=7 ;:1 5,85, d=1 3)
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where (-)* denotes complex conjugation, and

L
1 H
C = 17 ;21 ses,, d>1 4)

where (-)# denotes the Hermitian (conjugate trans-
position) operator. We refer to C' € R*' as the
multilook intensity and C € Q, C C¥? as the
multilook polarimetric covariance matrix. Note that
C is a real positive RV, whereas C is a random
matrix defined on the cone' ), of positive definite
complex Hermitian matrices:

Q. ={X:X>0X=X{ecc™ (5

where X > 0 means that X is positive definite.

A. Gaussian Model

It is commonly assumed that the scattering vector
elements are jointly circular complex Gaussian. This
is strictly justified only for homogeneous regions of
the image characterised by fully developed speckle
and no texture. The notion of texture is here defined
as spatial variation in the backscatter that is due to
target variability, i.e., fluctuations in the radar cross
section. The Gaussian model only encompasses
variability due to the stochastic interference pattern,
that is, speckle.

Assume for the moment that s is zero mean and
circular complex multivariate Gaussian, denoted s ~
N$(0,X), where 0 is a column vector of zeros and
3 = E{ss’} is the covariance matrix of s. E{-}
denotes the expectation value. The PDF of s is
(6)

ps(s; X2) = exp(—sHE_ls)

1
4|2
where | - | is the determinant operator. It follows
that if . > d and the s, are independent, then
the scaled sample covariance matrix, defined as
Z = LC, follows the nonsingular complex Wishart
distribution [23]:

|Z|Lfd

S A

etr(=327'Z) (1)
where etr(-) = exp(tr(-)) is the exponential trace
operator and ¥ = E{C} = E{Z}/L. We write

this as Z ~ WY (L, X). The normalisation constant

'A cone is defined as a subset of a vector space that is closed
under multiplication by positive scalars.

['y(L) is the multivariate gamma function of the
complex case, defined as

rd(L)z/Q |Z|“ " etr(—Z) dZ

d-1 ()
_ 7_‘_d(d—l)/Z HF(L . ’L)
=0

where I'(L) is the standard Euler gamma function.
We further have pc(C) = pz(LC)|Jz_c|, where
|Jz—c| = L% is the Jacobian determinant of the
transformation 7 LC [21]. The PDF of C
becomes

Lk |

La(L) X[

In the one-dimensional case, the complex Wishart

distribution reduces to the gamma distribution with
LL CL—l

PDF:
L
D o P <—f) (10)

where o = E{C'}. This is denoted C' ~ y(L, o).

For the Gaussian model, we denote the scaled
covariance matrix Z by W, and C by W. We also
refer to the PDF in (7) as pw(W), to emphasise
that it is a complex Wishart distribution.

pc(C; L, %) = etr(—LXIC). (9)

pe(eL,o) =

B. Product Model

As described above, the randomness of a radar
image measurement is commonly attributed to two
unrelated factors, namely speckle and texture. The
latter represents the natural spatial variation of the
radar cross section, which is generally not per-
fectly homogeneous for pixels that are thematically
mapped as one class. While the Gaussian model
only accounts for speckle, several statistical models
exist that also incorporate texture, either by assum-
ing statistics that imply a non-Gaussian scattering
vector, or explicitly, by modelling texture as a sepa-
rate RV. The latter case leads to a doubly stochastic
model with a so-called compounded distribution.

The well known product model, described e.g.
in [26], [27], has been shown to be both math-
ematically tractable and successful for modelling
and prediction purposes in coherent imaging. In the
multilook polarimetric version, which is extensively
reviewed in [25], it decomposes Z as a product of
two independent stochastic variables,

Z=TW, (11)
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TABLE I
TEXTURE AND COVARIANCE MATRIX DISTRIBUTIONS UNDER THE DOUBLY STOCHASTIC PRODUCT MODEL

pr(t) of texture variable T’ pc(C) of covariance matrix C Ref.
Constant 5(t—1) WE(S, L) L L etr(—L51C) [23]
- a® ja—1 2)c|E =4 (La) 1 2522 =0
¥ (@) @t exp (—at) Ka(X, L, ) W(tr(x C)) Ko_r4 (2 Latr(X C)) [24]
_ 1\ _ Ld L—d 1\ _ —\—Ld
Y | GaiaErep (-7 | GUEL L) s R (Lr(3TIC) + A - 1) [25)
LYt ¢ Te+o) (¢
_ L) (D)= TET0 (ﬁ) I'(Ld+¢)
P(E+¢ = d
PO | SE £ (gﬂ)w U, 1,6,0) 0
x U(Ld+ ¢, Ld— &+ 1, Ltr(27'C)¢/(¢ — 1))

with individual distributions. The positive, scalar
and unit mean RV 7' generates texture, assuming
that its contribution is independent of polarisation
and common for all channels. The matrix variable
W ~ WS(L,X) models speckle. The PDF of Z
depends on the PDF of the multilook texture RV T'.

In [25], the family of generalised inverse Gaus-
sian distributions is proposed as a model for 7'. Ta-
ble I lists the gamma (y), inverse gamma (y~!), and
Fisher-Snedecor (F) distribution as possible choices
of pr(t), giving both notation and expression of
their PDF. We remark that the distributions have
been normalised to unit mean, indicated by the over-
bar in the given symbol, which fixes and obsoletes
one parameter of the unconstrained distribution. The
table also presents the resulting distributions for C,
calculated from

pe(C) = / par(LCIpe ()] T dt
0 (12)

= |Jz—»c!/ pw (tLC)pr(t) dt.
0

These covariance matrix distributions are the
matrix-variate /C distribution, the matrix-variate G°
distribution, and the U-distribution. The I distribu-
tion and the ¢/ distribution are named, respectively,
after the second kind modified Bessel function of
order v, denoted K, (-), and the second kind con-
fluent hypergeometric Kummer function, denoted
U(-,-,-). The complex Wishart distribution is also
presented and interpreted as a special case of the
product model, with a constant texture parameter,
whose PDF is written in terms of a Dirac delta
function, (¢).

We remark that the PDF of a product of random
variables is known as a Mellin convolution of the
factor densities. Thus, (12) can be viewed as a
Mellin convolution, as we shall return to later.

III. MELLIN KIND STATISTICS
A. Classical Statistics

A scalar statistical moment captures certain char-
acteristics of a statistical distribution by projecting
its PDF onto a scalar. In the univariate case, the
vth-order raw moment of a real RV X is defined as

m,{X} =E{X"} = /%o px(x)dx  (13)

and the vth-order central moment as
m,{X} =E{(X —m)"}

[ ety de

e}

(14)

where m; = E{X}. Let F{-}(w) and F'{-}(z)
be the forward and inverse FT, respectively. The
classical CF is defined as ®x(w) = E{e™*} =
F{px(z)}(w),* with w a real number and ; the
imaginary unit. The CF always exists. When all
moments exist, the CF can be written as

Dy (w) = /_:O

— (Jw)
vl

e px(x) dr
(15)

v

m, {X}
v=0
The exponential in the Fouriér transform may be defined with or

without a negative sign in the exponent. We have chosen the latter
version.
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using the Maclaurin series expansion of the expo-

nential function. The vth-order moment can in this
case be retrieved from

dV

(VY

mAXY = (<)

Dx(w) (16)

w=0

A statistical distribution is uniquely specified by its
CF if all of its moments are finite and the power
series expansion for its CF converges absolutely
near the origin [28]. Then

px(x) = F H{ox(w)}H()

1 +oo (17)

= — D dw .

o | e x(w) dw

The CGF of X is defined as Vx(w) = In®x(w).
When the moments m, { X} exist, so do the cumu-
lants ¢, { X'}, that are coefficients of the power series
expansion

o

Ux(w) =Y. (]j!)ycy{X 3 (18)

The cumulants can be retrieved from the CGF as
A X} = (=)
w=0

by analogy with the moments. Moments and cumu-
lants are related by a combinatorial version of Faa
di Bruno’s formula [29]:

c{X} =m{X}

(19)

v—1
- (Z: f)ci{X b gxy &Y
i=1
and reversely through
m{X} =B, (a{X},...,c.{X}) @D

where B, (-) is the vth complete Bell polynomial
[30]. All relations for classical univariate statistics
are summarised in the diagram of Figure 1.

Moments and cumulants can be generalised to
random vectors: X ~ px(x), x € R”, random matri-
ces: X~px(X), X€R™ ", and the corresponding
complex cases: z ~ p,(z), z € C" and Z ~ pz(Z),
Z € C"™*". The CF of a complex random vector z
is defined as [31], [32]

Dy(w) =E {eme{sz}} ’
and the CF of a complex random matrix Z as

D,() =E {eme{trmHzn} ,

wel" (22

QeC™" (23)

px ()
B{X¥} F(p)

F=H(®)

o 09 (x
mV{X} v=0 : { } @X(w)

(=2 x|
By(ci{X},...,c{X}) exp(W) In(®)
my — ;'/:711 (?:})Ci{X}my_i{X}

J 30:0 (]jg)v a{X}

CV{X} \IIX (w)

(=" x|

Fig. 1. Relations in univariate classical statistics.

where tr(-) is the trace operator and Re{-} extracts
the real part of a complex expression, while the
vector w and matrix €2 are transform variables. We
note that the CFs are defined in terms of the standard
complex vector inner product w!’z and complex
matrix inner product tr(Q27Z) [31].

The vth-order moments of z and Z are retrieved
from

oY
m{z} = (=1)" 5 = Ps(w) (24)
w=0
o
MAZ} = ()" 50 02(S) (5)
Q=0

where 0”/0w" and 07 /0" is multi-index notation
for sequential vth-order partial differentiation with
respect to all elements in w and €2, respectively.
Non-scalar moments and cumulants of real random
vectors and matrices are defined in [33], and the
theory can be extended to the complex case, but
this is outside the scope of our work.

B. Univariate Mellin Kind Statistics

The MT of the real valued function f(x) defined
on R" is given as [1], [34]

F(s) = M{f(2)}(s) = / T @) de 26)

0
where the transform variable s € C. Under certain
restrictions on f(z), F(s) is analytic in a strip
parallel to the imaginary axis. The inverse MT is

(@) =M"H{F(s)}(x)

1 a+1-00
= — x°F(s)ds.
271'] a—1-00

(27)
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TABLE 11
MELLIN KIND STATISTICS OF UNIVARIATE DISTRIBUTIONS FOR REAL POSITIVE TEXTURE VARIABLES

’ pr(t) ‘ Characteristic function ¢ (s)

Log-cumulants &, (T)

5 I(ats—1) w1 =9 (a) - In(a)
e e ko1 =" (a)
. _1ye- s =In(A—1) = @)
1 A—1 1A +1-5)
Y (>\) ( A ) NS Kus1 :( 1) w(u 1)(>\)

"l r(e4s—1) D(CH1-s)
€5-10(6) ¢L-s0(0)

F&o | ()

r1 =9 (&) =) +n (S
Kos1 =9 D(©) + (1) V()

')

px ()
E{(In X)"} M{p}
M- {¢}
oo (s—1)¥
v= v! #V{X}
A XY = ox(s)
57¢X(5)‘s:1
B, (k1 {X‘}7 oo ku{XY)) o) | | ()
iy — S (T R XY po—i{ X}
%o ok (X}
o { X R ox(s)

dv
e WX(S)Lzl
Fig. 2. Relations in univariate Mellin kind statistics.

The integration limits denote a line integral along
any line s =a € R parallel to the imaginary axis,
which must lie within the analytic strip of F'(s).

Nicolas [2] proposed to replace the FT with the
MT in the definition of the CF for the RV X, thus
defining the Mellin kind CF as

ox(s) = E{X*7'} = M{px(z)}(s).  (28)

The domain of the MT restricts this definition to
positive RVs X € RT. By expanding ¢x(s) as in
the classical case, we obtain

¢x(s) = / L(in ) s*l)px(iﬁ) dz
=0
with the vth-order Mellin kind moment defined as
mAX} = E{(InX)"}
= / (Inx)'px(z)dx.
0

(29)
NV{X}

(30)

The derivation of (29) reveals that ¢ x (s) is a power
series expansion of the terms y,,{ X }, appropriately
termed log-moments, when they exist. When pursu-
ing the analogy with the classical case, it is found
that

(X} = o ox(s) a1

s=1

The Mellin kind CGF is further defined as px(s)=
Inpx(s), from which the Mellin kind cumulants,
also known as log-cumulants, can be retrieved as

dl/

r{X} = @X(s) (32)

s=1

given that the corresponding log-moment exists.
When all log-cumulants exist, the Mellin kind CGF
can be expanded as

-y e

v=0

The relation between the Mellin kind CF and CGF

is the same as in the classical case, hence so

is the relation between the log-moments and log-

cumulants. Figure 2 summarises all relations for the
univariate MKS.

Nicolas derived the MKS for the gamma, the
inverse gamma, and the Fisher-Snedecor distribution
[2], [3], among others. These results are listed in
Table II for the unit mean version of these distribu-
tions.

ﬁu{X = (33)

C. Complex Matrix-Variate Mellin Kind Statistics

Mathai proposed a generalised transform (that he
named the M-transform) for matrix-valued functions
in [35], and referred to it in [36] as a generalised
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MT. The complex version relevant to our study was
presented in [21].

Definition 1 (Complex matrix-variate MT): Let
f(Z) be a real-valued scalar function defined on a
cone of d x d Hermitian matrices that are either
positive definite, negative definite, or null, and let f
be symmetric in the sense f(ZV) = f(VZ), where
V and Z belong to the same cone. The complex
matrix-variate MT is then defined as

M{F(Z)}(s) = / 2 (Z)dZ (34)

with transform variable s € C, whenever the integral
exists.

It is duly noted in [35] that since M{ f(Z)}(s) is
a function of the complex scalar transform variable
s, whereas f(Z) is defined on a matrix space,
the transform is not unique. This problem is not
associated with the multivariate MT defined in [37]
as

M{f(z)

81,.. )

[T

with z = [z1,..., 247 € €% and f defined on C¢,
which can in principle be extended to the matrix-
variate case. Nevertheless, we shall refer to (34) as
the matrix-variate MT.

The symmetry requirement in the definition of
the matrix-variate MT restricts in theory the range
of PDFs it can be applied to. In practice, however,
it does not pose any problems for the compound
Wishart type distributions used for multilook po-
larimetric radar data. In these functions (See Table
I), the matrix variable Z occurs inside determinant
and trace operators that are symmetric themselves,
hence the overall PDFs are also symmetric in the
required sense. We may therefore use the transform
to define MKS for the complex matrix-variate case.

Definition 2 (Mellin kind matrix-variate CF): The
Mellin kind CF of the complex random matrix Z is
defined as

¢z(s) = B{|Z|"™"} = M{pz(2)}(s)

when Z and pz(Z) satisfy all requirements of the
complex matrix-variate MT.

e (35)

(36)

Definition 3 (Mellin kind matrix moments): The
vth-order Mellin kind matrix moment of Z is defined

dl/
v 7} =

Az} To $z(s)

If all Mellin kind matrix moments exist, the Mellin

kind CF can be written as the power series expan-

sion

(37)

s=d

bals) = / elo= O 21y (7) 47

Z

=0

(38)

MV{Z}

in terms of the 1, {Z}. The derivation of (38) reveals
that

mAZ} = E{(In|Z|)"}
~ [ mizypa(2) iz
Q4
which justifies the denotation of 1, {Z} as a matrix
log-moment (MLM).

Definition 4 (Mellin kind matrix-variate CGF):
The Mellin kind CGF of the complex random matrix
7 is defined as

vz(s)

(39)

=Ingz(s). (40)

Definition 5 (Mellin kind matrix cumulants):
The vth-order Mellin kind matrix cumulant of Z is
defined as

dl/

K2} = 5 eals)

(41)

s=d
When all Mellin kind matrix moments exist, so do

the Mellin kind matrix cumulants, and the Mellin
kind CGF can be expanded as

(s —d)
:Z( V!)

v=0

pz(s) = Ingz(s)

kAZ}  (42)

in terms of the x,{Z}, that are also called matrix
log-cumulants (MLCs).

As we see, there is a complete analogy with the
MKS derived in Section III-B for the univariate
case, as summarised in Figure 3. The Mellin kind
matrix-variate CF and CGF are related by the same
logarithmic transformation as in the univariate case.
Thus, the conversion between MLMs and MLCs is
also given in terms of Faa di Bruno’s formula and
the complete Bell polynomial, by analogy with (20)
and (21).
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Example (Complex Wishart distribution): The
Mellin kind CF of a complex Wishart matrix W ~
WE(L,X) is derived in Appendix A as

ow(s) = M{pw(W)}(s)
_ Fd(L_‘_S_d)‘Z‘sfd. (43)
L4(L)
The MLCs are found to be
ki {W} = 9(L) +In || (44)
kAWY =00 (L), v>1  @45)

where we introduce the wvth-order multivariate
polygamma function as

d—1
L)y=3 v -
1=0

This is a convenient extension of the ordinary
polygamma functions, defined as the logarithmic
derivatives of the gamma function:

d" ' InT(L)
dLv+1 ’
Let W = W/L be the scaled Wishart matrix

whose PDF is given in (9). The MLCs of W are
derived as

Y (46)

p(L) = v>0. (47

ki {W} = (L) + In ||
K AWY =4 (L)

The MLMs of W and W can be found by inserting
the MLCs into the equivalent formula of (21).

Log-statistics of W and W were first derived
in [38] without utilising the Mellin transform, and
not for a general order v. They were also used
in [39], but interpreted as log-moments and log-
cumulants of the positive scalar RV |[W/| rather than
of the matrix W. A detailed derivation is given in
Appendix A.

—dInL
v>1.

(48)
(49)

D. Some Properties of the Matrix-Variate Product
Model

We shall now look at some fundamental proper-
ties of the MT which makes it a natural replacement
of the FT when working with a multiplicative signal
model, and extend this exposition to the complex
matrix-variate case.

pz(Z)

E{(In|Z])*} m
oo (s—rll)”

v= v! I’LV{Z}
1 AZ) -

bz(s)

Loon(s)| _,

ds?

BV(”I{Z‘} 7777 exp(p)

v (D RiAZY {2

In(¢)
Hy = 2 =1

oo
v=0

S aata]

ku{Z} ©z(s)

v
qsv PZ (s) —d

Fig. 3. Relations in matrix-variate Mellin kind statistics.

1) Univariate Additive Model: Let X, U and V
be real scalar RVs whose moments and cumulants
all exist, and assume that U and V are statisti-
cally independent. For the additive stochastic signal
model,

X=U+V (50)

we find that the CF, the CGF, and the cumulants of
X, as defined in the classical case using the FT, can
be written as

Oy (w) =Py(w) - Py (w) (51)
\Ifx(w) = \I’U((JJ) + \va(LU) (52)
cAXY=c{U}+c{V}. (53)

These relations also hold when the signal model
is generalised to the multivariate, matrix-variate,
and complex case. The PDF of X is given by the
convolution

(pv * pv)(z)

“+o00
/—OO
where * denotes the convolution operator, which
corresponds to a multiplication in the FT domain,
as seen in (51).

2) Univariate Product Model: Now consider the
stochastic product model:

px(z) =
(54)

pu(u)py (x — u) du

X=U-V, (55)

with the additional constraints that X, U, and V €
R*. Observe that the Mellin kind CF, CGF and
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cumulants defined with the MT take the form

dx(s) = du(s) - ov(s) (56)
px(s) = wu(s) + ev(s) (57)
HV{X} = K‘I/{U} + "iu{v} : (58)

The usual interpretation [2] is to view the MT as
a Laplace transform computed on a logarithmic
scale. The logarithmic transformation translates the
product model into an additive one, which explains
why the Mellin kind CF inherits the multiplicative
property of the classical CF, whereas the CGF and
the cumulants take over the additive property from
their classical counterparts.
The PDF of X can be found from

px(a) = / “pxw (a]0) py (v) dv
dv

/OOOPU(%)]?V(U) .

which is known as the Mellin convolution. The
operation is denoted px(x) = (py * pv)(z). The
product in (56) is the MT domain equivalent.

3) Matrix-variate Product Model: Before we
are ready to consider the matrix-variate product
model, we shall establish a matrix-variate Mellin
convolution theorem using the matrix-variate MT
of Definition 1. We also find it natural to include
some closely related correlation theorems. We start
by defining the matrix-variate Mellin convolution.

(39

Definition 6 (Matrix-variate Mellin convolution):
Let f(U) and g(U) be two functions defined on
the cone of positive definite (or negative definite)
complex Hermitian matrices. Further assume that
U and V both belong to the domain of f and g,
and that the functions are symmetric in the sense
that f(UV) = f(VU). We define the matrix-variate
Mellin convolution of f and g as

(f *9)(U)

— VI~ f(V2UV 2)g(V)dV
[ s uV)av o

= [ Vv oV vy av

which is an associative and commutative operation.

Theorem 1 (Matrix-variate Mellin convolution):
Under the assumptions presented in Definition 6,
then

M{(f * 9)(U)}(s)

= M{F(U)(s) - M{g(U)}(s). O

Proof: Introduce the substitution X = UV and
note that X must belong to the same matrix space as
U and V. Furthermore, we have U = V- iXV~:
and dU = dX/|V|¢ [21]. This yields

M{F(U)}(s) - M{g(V)}(5)
- / (XI/[V)* f(V XV 1) V] ax

X / VIFg(V)dV
Q4

= [ x| [ vy ixvigv) av]ix
2 F XN
(62)

where in the last transition, we identify the term in
the square brackets as the Mellin convolution. ®

We have shown that the MT provides a convo-
lution theorem for the product model, like the FT
does for the additive model, and that this extends
to matrix-variate theory. By further analogy with
the Fourier transform, the Mellin transform also
has a correlation theorem. The following operation
reduces in the univariate case to the Mellin correla-
tion, as Nicolas defines it in [2], [3].

Definition 7 (Type I matrix-variate Mellin corre-
lation): Under the assumptions presented in Defi-
nition 6, we define the type I matrix-variate Mellin
correlation of f and g as

(f @ g)(U)

— [ virviuvheviav. @Y
Q4

This operation is neither associative nor commuta-

tive.

Theorem 2 (Type I matrix-variate Mellin corre-
lation): Under the assumptions presented in Defini-
tion 6, then

M{(f @ g)(U)}s)
= M{F(U)}(s) - M{g(U)}(2d = s) .

The proof is given in [40].

We also present an alternative definition. It re-
duces in the univariate case to a relation often
referred to as a Mellin correlation (See e.g. [41]).

(64)
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Definition 8 (Type II matrix-variate Mellin cor-
relation): Under the assumptions presented in Defi-
nition 6, we define the type Il matrix-variate Mellin
correlation of f and g as

(f ® g)(U)

= [ viseviuvhvav. €
Q4

This is neither an associative nor commutative op-

eration.

Theorem 3 (Type II matrix-variate Mellin cor-
relation): Under the assumptions presented in Def-
inition 6, then

M{(f ® g)(U)}(s)
= M{f(U)}(s) - M{g(=U)}(s) .

The proof follows in the same manner as for the
Theorem 1, and is therefore omitted. A more general
theorem, which reduced to both Theorems 2 and 3
was presented in [21, Th. 6.2].

We will now explain the relevance to a matrix-
variate product model expressed by the (ordinary)
matrix product

(66)

X=UV (67)

where X, U, and V are complex and positive
definite Hermitian matrices. With the same approach
as in (59) we establish that the PDF of X is

px(X)

_ /Q + pxiv(X|V)pv (V) dV (68)

= [ VIV XV (V) av.
Q4

This is exactly (pu * pv)(X), as should be ex-
pected from (62), which justifies the definition of
the matrix-variate Mellin convolution. Assume that
all MLMs and MLCs of U, V and X exist, as given
in Definition 3 and 5. It follows from Theorem 1 that

Px(s) = du(s) - dv(s) (69)
px(s) = pu(s) + pv(s) (70)
ko {X} = 5, {U} + 5, {V}. (1)
in the matrix-variate case.
Example (Multilook polarimetric product
model): We now return to the multilook

polarimetric product model for the radar data
covariance matrix Z = LC. The model can be

10

written as: Z = TW, with T = T1,;, where T
is the texture RV and I; is the d x d identity
matrix. We note that the matrix T contains only
one functionally independent entry, namely 7T
Without entering the stringent argument in terms
of differential calculus, we state that an integral

Jo, F(IT])dT can be replaced with [. f(7)dT.
We thus have
on(s) = [T (1) dT
Q4
= / =D (t) dt
0 (72)
N ldGs = )
= T(d(S—d)+1>
This implies that
d
pATY = —2or(s)) =d'wAT}. (73)
s=d
Faa di Bruno’s formula is used to prove
k AT} = d"k,{T} (74)

and the matrix-variate version of the formula yields
the MLCs of Z as

kA2t = w2}

— (v—1 75
Y (0w
=1 g
The first MLCs are expressed as
ri{Z} = m{Z} (76)
ko{Z} = {2} — {2} (77)
kal{Z} = {2} — 3 {ZYpo{Z} + 2p7{Z} . (78)
We use Z = TW and (71) to prove that
kdZ} = kK, AW} + "k, {T} (79)

but, since the observable of multilook polarimetric
radar is C = Z/L = TW, we are more interested in
the x,{C}. With the x,{W} expanded, the MLCs
of C evaluate under the product model to

k1{C} = v (L) + n|Z| — d(In L — ,{T})
(80)
ko ACH =Y (L) + &k T}, v>1 (81)
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for a general texture variable with unspecified dis-
tribution. To obtain the MLCs of a specific distri-
bution, the texture variable log-cumulants «, {7},
such as those listed in Table II, must be inserted.

We finally note that sample MLMs, denoted
(u,{C}), are calculated with the simple sample
mean estimator

1 N
({C}) :NZ In|Cyl)” (82)

given a sample of /N covariance matrices: 4 =
{C;}Y . Sample MLCs (k,{C}) are obtained from
(75) by combining sample MLMs instead of theo-
retical MLMs.

IV. APPLICATIONS

In this section we discuss application of matrix-
variate MKS. Before presenting specific examples
of MoMLC algorithms for parameter estimation
and demonstrating their effectiveness, we introduce
the MLC diagram. The MLC diagram is not an
application in its own right, but serves as a visuali-
sation tool, which efficiently explains some uses of
MKS and provides intuition about the MoMLC. It
is a straight-forward extension of the log-cumulant
diagrams used by Nicolas [2], [3] for univariate
MKS.

A. Matrix Log-Cumulant Diagrams

The MLC diagram generally displays a g-
dimensional space where each dimension repre-
sents one particular MLC with unique order v. Let
v, -+, be the orders of the chosen MLCs. In
this MLC space, we plot: (i) The manifolds spanned
by the theoretical MLCs that can be attained under
given models, and (ii) points that represent the em-
pirical sample MLCs computed from data samples.

Define ¥ as the vector that contains all texture
parameters of a certain distribution model. Thus,
I = [a], 9g0 = [\ and 9y = [£,(]T are the
respective texture parameter vectors of the K, G°
and U/ distribution. Assume that the parameters L
and X are fixed, such that the theoretical MLCs only
vary through 9. The MLC space manifold spanned
by a general model is denoted

{(Hlﬂ(’ﬁ)’ HV2(19)7 T

M(9) = 9))} (83)

K,

11

7

<4C}

Fig. 4. Matrix log-cumulant diagram showing the manifolds of
theoretical MLCs for the complex Wishart, C, G° and U distribution,
as well as a collection of sample MLCs representing forest (green),
ocean (blue), urban area (red) and a wheat crop (black).

where we have changed the notation of the theoret-
ical vth-order MLC from k,{C} to k,(9) to em-
phasise that the points that constitute the manifold
are functions of 1. The dimension of the manifold
M(9) is the same as the dimension of the vector ¥,
that is, the number of texture parameters. We next
define the vector of sample MLCs as

(k(€)) = [{5, (€)), -+ (1, (€))]

and note that the sample MLCs have also been given
a new notation, (k,(%)), to stress that they are
computed from the data sample €.

Like Nicolas [2], [3], we concentrate on diagrams
that plot the third-order log-cumulant against the
second-order log-cumulant. We have shown that
under the polarimetric product model, MLCs of
order two and higher are independent of the scale
matrix 3. Assuming that the equivalent number of
looks, L, is a global constant for the data set, this
diagram is of particular interest since it displays the
solitary impact of the texture parameters upon the
models. Therefore, it also provides valuable insight
about how the texture parameters can be estimated.

As seen in Figure 4, the manifolds of our selected
distribution models have different dimensions. The
Wishart distribution has no texture parameters and
is therefore represented by a point (black circle),
which can be viewed as a zero-dimensional man-
ifold. The texture of the X and G distribution is
parametrised by one parameter, thus they are repre-
sented by a curve (red and blue, respectively), which

(84)
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is a one-dimensional manifold. The U/ distribution
has two texture parameters and is represented by a
surface (yellow area), which is a two-dimensional
manifold. This is valid also when plotting higher-
dimensional tuples of MLCs, that is, for MLC
spaces with dimension higher than two. The dashed
coordinates are centred at the point which represents
the Wishart distribution. The impact of nonzero
texture on the MLCs is measured relative to these
axes.

Given a sample ¢ = {C,}Y, of covariance ma-
trices, we can compute the sample MLCs of order
Vi, -+, and plot them as a point in MLC space.
This has been done in Figure 4 for one forest sample
(shown as green points) and one wheat crop sample
(black) taken from a polarimetric NASA/JPL AIR-
SAR C-band image of Flevoland, The Netherlands.
We have also plotted sample MLCs computed from
an ocean sample (blue) and an urban area sample
(red) extracted from an image of San Francisco,
United States, captured by the same sensor. Both
images are from 1989. Multiple points have been
obtained for each class by bootstrap sampling [42]
of ©.

MoMLC parameter estimation can now be visu-
alised as a projection of the sample MLCs onto the
manifolds representing the models. The manifolds
are functions of the texture parameters, and the
parameter values at the projection point is assigned
as an estimate. An estimator based on a single vth-
order MLC relies on a projection in the direction
normal to the vth-order coordinate. This is illus-
trated in Figure 5, displaying estimators for the K
distribution texture parameter o based on the point
((k3(F)), (k2(€))) in MLC space, which is shown
as the black symbol ’x’. The estimators denoted
&((k2)) and &((k3)) are based on the second-order
and third-order MLC equation, respectively. The
dashed arrows visualise their projection of the sam-
ple MLC point onto the red curve representing the K
distribution. Note that an estimator requires at least
as many sample MLCs as the number of texture
parameters to be estimated. For instance, the K and
Gy distribution require one, while the ¢/ distribution
requires two sample MLCs. The estimators &((r2))
and &((k3)) use exactly the required number.

As indicated, it is possible to design an estimator
which is based on more sample MLCs than there are
texture parameters, which implies that more infor-
mation about ¥ is extracted and % is utilised more

w

(C}

Fig. 5. MLC space interpretation of three estimators of the K
distribution texture parameter «. The first estimator is based on
(k2{C}), the other is based on (x3{C}), and the third is based
on both.

efficiently. One way to combine the information
contained in multiple sample MLCs is to derive
a squared Mahalanobis distance (d3,) between the
sample MLC point and the points on the model
manifold. The estimation problem then reduces to a
minimisation of the distance measure with respect to
9. To find an expression for d3,, we must derive the
(approximate) mean values and covariance matrix of
the sample MLCs.

The minimum of d3, defines a new projection of
the sample MLC point onto the model manifold, as
illustrated by the solid arrow in Figure 5. The sam-
ple MLC point is projected onto the point on the /C
distribution curve that minimises d3,, and the asso-
ciated value of « defines the estimate &((ks), (k3)).
We can see this estimate as a weighted mean of
&((k2)) and &((k3)). The information content of
an individual sample MLC is proportional to its
precision (i.e., inverse variance), and determines its
contribution to the overall estimate. The shape of
the sample MLC clusters in Figure 4 shows that
the sample variance increases with MLC order, as
expected.

A detailed derivation of the Mahalanobis distance
is given in [43], where we also discuss the cou-
pling of the estimation problem and the problem
of measuring goodness-of-fit (GoF) for distribution
models. The geometrical interpretation of distances
in MLC space in terms of model fit is intuitive.
We also find it much easier to observe deviations
between data and model in MLC space than by
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comparing data histograms with model densities,
which is the alternative normally resorted to in
the literature. This point is highlighted in [39]. In
[43] we derive the sample distribution of d3,, such
that formal GoF testing can be performed, which
conforms with visual inspection of model fit in the
MLC diagram.

B. Parameter Estimation

In this section, we discuss MKS-based estima-
tion algorithms for parameters of the distributions
presented in Table I.

1) Equivalent number of looks: The equivalent
number of looks, L, can be estimated from the
first-order MLC equation of the complex Wishart
distribution. This yields the maximum likelihood
solution proposed in [38], [44]:

(L) —dnL = (s {C}) —In|B|  (85)

where we must insert the first-order sample MLC
and an estimate of X before solving for L by
numerical methods. We use the maximum likelihood
estimate of X, defined as the sample mean of % .

In principle, we can also solve for L from the
MLC equations of the product model in (11) and
avoid the Wishart constraint. However, these MLC
equations contain texture parameters already from
the first order, and all unknown parameters must
therefore be estimated jointly from a system of
equations. Higher-order MLCs can also be used
to improve the estimator in (85). None of these
approaches have been attempted in practice.

In the following, we shall assume that an estimate
of L has been provided and treat it as a known
constant.

2) Matrix-variate KC Distribution: Under this dis-
tribution, the texture parameter « is related to the
second-order MLC through

k2 {C} = W (a) + V(L) (86)
and the estimate c 4, is obtained by solving
1)

2
Alternative estimators are proposed in Frery et

al. [45] and Doulgeris et al. [46], where the former

is just a mono-pol version of the latter. Doulgeris’

estimator is

d(Ld+1)

P IVar{r} —d

(88)

where 7 = tr <§AlilC>. The derivation is shown in
Appendix B. Another approach taken by Freitas and
Frery et al. [25], [45] is to derive estimators from
fractional moments of the mono-pol intensity C. By
combining the half- and quarter-order moments they
found that
MPar+3) TL+7)
T(ap)T(ap+ 1) T(L)T(L+3)

(C1)’

(C2)

(89)
which can be solved for &p. This method provides
one estimate per polarimetric channel. The final
estimate is an average of the mono-pol estimates.

Averaging over mono-pol estimates can also be
carried out for the mono-pol version of a4, (i.e.,
with d = 1), which is the estimator derived by
Nicolas from univariate MKS [2], [3]. We denote
this estimator as &y and include it in the com-
parison in order to quantify the gain of using the
full polarimetric information contained in C with
respect to the information contained in intensity
channels only. On a historic note, we remark that
the mono-pol MKS-based estimator of Nicolas was
proposed earlier by Kreithen and Hogan [47] and
Blacknell [48], although without relating it to Mellin
transform theory.

The final estimator we present is the one we
have proposed in [43] based on multiple MLCs, as
discussed in Section I'V-A. It is defined as

Gy, = arg {min {d?\/[ }} (90)
where the squared Mahalanobis distance
E, = (k) — ) K (k) —K) O

contains the sample MLC vector (k) = [{k2), (k3)]7,

its mean vector k = E{(k)} = [ky, n3]T, and the
covariance matrix
K = Cov{(k)}

KZ4+2:‘€% H5+6H2H3 (92)

Ks+0koKs Kg +9/~@2/<;4+9/@§ +6k3

The sample MLCs are fixed after a data sample
is collected, and the minimisation is performed by
varying k and K, that both depend on « through
the theoretical MLCs.

Figure 6 and 7 show bias and variance of all
estimators, obtained from Monte Carlo simulations
with L = 10 and o = 10. They clearly show that the
estimators based on the full polarimetric covariance
matrix (&4,, &p and & 49) outperform those based
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Fig. 6. Bias of estimators for the K distribution texture parameter

« as function of sample size N.
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Fig. 7. Variance of estimators for the /C distribution texture
parameter « as function of sample size V.

on intensities only (&y and &p), both in terms of
bias and variance. From the latter group, a ranks
slightly better than &y. For the truly polarimetric
estimators, we see that &4, has the superior bias
properties, while the bias of &4, and &p is very
similar. Estimator &4, is best also when it comes
to variance, but is approached by ¢ 4, as the sample
size increases.

3) Matrix-variate G° Distribution: For this dis-
tribution with texture parameter A, the second-order
MLC is

k2 {C} = YO\ + (L) 93)

14
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10 == :
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Fig. 8. Bias of estimators for the G° distribution texture parameter
A
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Fig. 9. Variance of estimators for the G° distribution texture

parameter A.

which leads to an estimator \ A, by solving

Ko _ M
Qp(l)(XAl):( {C}>d2 i (L)

that is identical to & 4,. The method of Doulgeris,
derived in Appendix B, yields

(94)

S 2LVar{r} + d(Ld — 1)
LVar{r} —d

while the fractional moment estimator is an average
of the mono-pol estimates defined as the solution of

POe-i) el
P (Ar—3) TOD (L) (C3)

(95)
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In addition, an estimator ;\N is obtained by aver-
aging the mono-pol estimates produced by A4, for
d =1, while )4, is defined in the same way as a4,
as given by (90).

We have performed Monte Carlo simulations
for the estimators of A with G° distributed data
parametrised by L = 10 and A = 10. The bias
and variance results in Figure 8 and 9 are very
similar to those reported for the estimators of «.
The main difference is that Ap, which does not use
MKS, is superseded in terms of variance by the
MKS estimators based on intensities only, Ay Aand
Ap, for N > 200. The preferred estimator is >i Ags
due to its superior bias and variance. Estimator A 4,
has a comparably low variance for N > 100, which
makes it a good alternative, due to a slightly lower
complexity.

4) U Distribution: This distribution has two tex-
ture parameters, ¢ and (. The estimation procedure
therefore requires two MLC equations:

ko {C} = & (v (&) + vV (Q)) + v (L) (97)
ks {C} = d* (V@ (€) — @) + v (L) (98)

from which we can jointly determine the estimates
&4, and (4, by solving the equation system:

(r2{C}) — v (L)

YW (€a) + M (Cay) = = (99)
. i e
VP (€a) — P (Ca) = <H3{C}>d3 (5 (100,

The alternative estimators are f ~ and fN, that is.,
the averaged mono-pol estimates obtained from & 4,
and 5 4, with d = 1. These have been implemented
by the authors of [49].

The results for the ¢/ distribution estimators are
similar to those reported for the K and G° distribu-
tions, and are therefore omitted.

V. CONCLUSIONS

We have used a matrix-variate Mellin transform
previously introduced by Mathai to extend the
framework that we call Mellin kind statistics from
the univariate to the matrix-variate case describing
multilook polarimetric radar data. We have further
defined the Mellin kind characteristic function and
cumulant generating function for the matrix-variate
case, and used them to define matrix log-moments
and matrix log-cumulants. We have then proven the

matrix-variate Mellin convolution theorem, and used
it to develop expressions for Mellin kind statistics of
the multilook polarimetric product model. Specific
expressions for important distributions, such as the
matrix-variate X distribution, G" distribution and U
distribution, have been given.

Mellin kind moments and cumulants are com-
puted on a logarithmic scale, and the impact of
speckle and texture therefore can be separated in
the matrix-variate log-cumulant domain, which pro-
vides a valuable analysis tool for the doubly stochas-
tic product model. Simulations have demonstrated
the superior bias and variance properties possessed
by estimators derived with the method of matrix log-
cumulants. We have also used matrix log-cumulant
space as a visualisation tool to provide intuition
about estimation algorithms and model assessment
that uses Mellin kind statistics. The mathematical
tractability and the simplicity of the obtained ex-
pressions show, together with the excellent estima-
tor properties documented, that the matrix-variate
Mellin transform is a natural tool for analysis of
multilook polarimetric radar data.

APPENDIX A
MELLIN KIND STATISTICS FOR THE COMPLEX
WISHART DISTRIBUTION

Let W ~ WS(L,X) have the complex Wishart
distribution given in (7). The matrix-valued Mellin
transform of pw(W; L,X), and hence the Mellin
kind CF of the random matrix W, is then

dw(s) = My {pw (W)} (5)
- /Q Wy (W) dW

_ Dy(L4s—d) x|

Lo(L) 2] (101)

X / pw(W;L+s—d,X)dW
Q4

Fd(L+S—d) _d

= —|%7 .
La(L) =
Accordingly, the Mellin kind CGF is
ow(s) = Inow(s)
=Inly(L+s—d) (102)

—InT4(L) + (s—d)In|X|.
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We shall use the result

d d -
Il - d(d—1)/2 o
rla(L) = -~ (71' HF(L z))

d—1 d—1
pdd=02 Y L—4i)]]T(E )
i=0 =0
j#i
d—1 d—1
= 7RI = 5) > v O i)
=0 i=0

= Tu(L) ¥ (L) 103)

which is obtained by straightforward application of
the product rule of differentiation. We have also
utilised the well-known relation

i I(L) $O(L)

—I'(L) =

7 1(L)

and the multivariate polygamma function introduced
in (46). Remark that (103) is a multivariate version
of (104). We also need the result

d 14 1%
(L) = v (L)
whose proof is trivial.

Equations (103) and (105) are used to deduce

the derivatives of ¢w(s), denoted as go( )( ) =
j;,, ow(s). The MLCs can then be written as

k{W} = gp(”) (d). By repeated differentiation of
(102) and induction we find that
m{W} = (L) + 1|2
v—1
rAWY = 0§ (L),
Let X be a d x d complex positive definite matrix

and A an equal size real constant matrix. The
scaling property of the matrix-variate MT,

M{f(AX)}(s) = [A["MLF(X)}(s),

is easily verified by evaluating the integral with
a simple substitution of variables. For A = al,
with a real and positive scalar constant a, we get
M{f(aX)}(s) = a=*M{f(X)}(s). This is used to
show that
M{pyw (W)} (s)
= LdzM{pw(LW)}( )

= LM {pw (W)} (s).

(104)

(105)

(106)

v>1. (107)

(108)

(109)

Recall the definition of W = W /L, which gives

dw(s) = L= Dgy(s)
_ Ty(L4s—d) (|3 s—d (110)
- Tu(L) (ﬁ) .

This is used to show that

d)dIn L (111)

pw(s) = pw(s) — (s —

and the MLCs of W follow immediately as given
in (48) and (49).

APPENDIX B
DOULGERIS’ PARAMETER ESTIMATORS

Doulgeris et al. [46] derived their estimator for
the texture parameter of the matrix-variate /C distri-
bution from moments of the Hotelling-Lawley trace.
This is an important test statistic in multivariate
statistics, defined as

T =tr(27'C). (112)

It is easily shown that E{7} = d, and the variance
of 7 is
2 2 d 2

Var{r} = E{T"} | d" + 7))~ d-. (113)
Given a choice of the texture RV 7', we may solve
for the texture parameter to obtain an estimator. For
instance, with 7' ~ J(«) we have E{T?} = (a +
1)/c, which yields the following estimator for the
IC distribution parameter «:

_ d(Ld+1)
LVar{r} —d

(114)

This estimator was given in [46]. The variance of
7 1S estimated with a standard variance estimator

from a population of Hotelling-Lawley traces, {7; =
tr(EilCi) fil

When T ~ 5 Y()\), we have E{T?} = (A —
1)/(A —2), which is used to derive
. 2LVar d(Ld — 1
[ Var{7} + d( ) (115)

LVar{r} —d

for the G distribution parameter \. The method is
not pursued for the U/ distribution, since it would
require derivation of higher moments of 7 to solve
for both texture parameters.
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