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Abstract—The advent of polarimetric synthetic aperture
radar has spurred a growing interest in statistical models
for complex-valued covariance matrices, which is the
common representation of multilook polarimetric radar
images. In this paper, we respond to an emergent need
by proposing statistical tests for the simple and composite
goodness-of-fit problem for a class of compound matrix
distributions. The tests are based on Mellin kind matrix
cumulants. These are derived from a novel characteristic
function for positive definite Hermitian random matrices,
defined in terms of a matrix-variate Mellin transform
instead of the conventional Fouriér transform, and belong
to a new framework for statistical analysis of multilook po-
larimetric radar data recently introduced by the authors.
The cumulant-based tests are easy to compute and the
asymptotic sampling distribution of the test statistic is chi-
square distributed in the simple hypothesis case. Under the
composite hypothesis, the sampling distribution is obtained
by Monte Carlo simulations. We evaluate the power of the
proposed goodness-of-fit tests with simulated data. We also
use them to assess the fit of several matrix distributions to
real data acquired by Radarsat-2 in fine quad polarisation
mode.

Index Terms—Radar polarimetry, synthetic aper-
ture radar, probability density functions, goodness-of-
fit, parameter estimation, log-statistics, Mellin transform,
matrix-variate statistics

I. INTRODUCTION

STATISTICAL modelling of radar data in terms
of probability density functions (PDFs) is an

important exercise which forms the basis of many
radar image analysis techniques. Experience with
single polarisation radar data has shown that they
are well suited for parametric modelling, and a
number of distribution families have been proposed
for the purpose. Some are based on the simplistic
assumption that the scattering coefficient is com-
plex Gaussian random variable (RV), such as the
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Rayleigh distribution for single-look amplitude data,
the exponential distribution for single-look intensity
data, and the gamma distribution for multilook
intensity data. Other models, such as the Weibull
distribution and the log-normal distribution, provide
added flexibility and the ability to model data with
non-Gaussian characteristics (See [1] for a review
of all the mentioned models). One of the most
successful and accurate distribution models for radar
data is arguably the K distribution family [1], [2],
derived from the doubly stochastic product model,
and also described as a compound distribution. The
more recent G0 distribution family [3] is another
versatile model derived with the same approach.

The complex Wishart distribution [4] was the first
model proposed for multilook polarimetric radar
data, and is still the most common, largely due to
its mathematical tractability. It allows for a simpli-
fied analysis based on the assumption of Gaussian
statistics for the complex scattering coefficients,
which translates to complex Wishart statistics in
the domain of the polarimetric covariance matrix.
Its shortcomings has been amended with alternative
compound densities, such as the polarimetric K dis-
tribution [5], G0 distribution [6], and U distribution
[7]. These distributions account for non-Gaussianity
and thus provide a more realistic model for high
resolution radar images, whose scale increases the
presence of heterogeneous targets and partially de-
veloped speckle.

In most publications where new PDFs have been
proposed for the polarimetric covariance matrix,
they have been justified only by visual compar-
ison of fitted model densities against histograms
of data for a single polarimetric channel at the
time. One exception is [8], where the likelihood
function was used to assess model fit for a set of
different compound models. However, the use of
the likelihood function as a goodness-of-fit measure
is generally discouraged, since it does not carry
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much information as a test statistic [9]. None of the
standard goodness-of-fit tests (such as Pearson’s χ2

test, the Kolmogorov-Smirnov test, the Anderson-
Darling test or the Cramér-von Mises test) have
seemed applicable to the matrix distributions under
study. They require binning and ordering of data
points, or an expression for the cumulative distri-
bution function (CDF), which will in this case be
defined on the cone of positive definite Hermitian
random matrices. Although such a matrix CDF has
been defined in the complex Wishart case [10], it
is difficult to evaluate for a compound distribution.
No adequate alternative has, to the best of our
knowledge, been suggested in the literature, which
is what we try to remedy.

In [11], Li and Papodopoulos provide a gen-
eral framework for the design of moment-based
goodness-of-fit tests. Their simple idea is to com-
pare sample moments with population moments,
and to combine these in a test statistic which
is asymptotically normal or χ2 distributed, which
makes it easy to perform hypothesis testing or
to obtain a p-value for a given data sample. We
have applied their theory to a set of compound
distribution models for the polarimetric covariance
matrix, based on the matrix log-cumulants (MLCs)
introduced in [12], [13].

MLCs are matrix-variate generalisations of the
log-cumulants derived and successfully applied to
the analysis of single polarisation synthetic aperture
radar (SAR) data in a series of publications by
Nicolas et al. (See e.g. [14], [15], [16]). We give a
geometrical interpretation of the approach by using
a diagram of the space spanned by the MLCs
to illustrate the statistical distance between given
models and empirical data. This is a polarimetric
extension of the diagram introduced by Nicolas for
the univariate case [14], [15]. It provides intuition
about the capabilities of the different models, and
how they adapt to the non-Gaussian data found in
textured and heterogeneous areas.

The appropriateness of non-Gaussian models in-
crease as the spatial resolution improves. Thus, our
developments are highly relevant to high resolution
SAR instruments. However, the methods are in
principle applicable to data from any imaging radar,
and are therefore presented as general analysis tools
for radar image data.

Section II gives the necessary theoretical back-
ground. It presents the data format, the distribution

models and the Mellin kind statistics (MKS) used
in our derivations. Section III presents the proposed
goodness-of-fit tests, after an introductory definition
of the problem and review of the literature. In Sec-
tion IV we present the results of simulations with
random generated data, in also test the model fit to
some real data samples. We give our conclusions in
Section V.

Our convention for notation is that scalar values
are denoted as lower or upper case standard weight
characters, vectors are lower case boldface charac-
ters, and matrices are upper case boldface charac-
ters. Except for scalar random variables, we do not
distinguish between random variables and instances
of random variables, as such can be ascertained
through context. A list of acronyms is provided for
convenience:

NOMENCLATURE

CDF cumulative distribution function
CF characteristic function
EDF empirical distribution function
GoF goodness-of-fit
MAL maximum asymptotic likelihood
MLC matrix log-cumulant
MLM matrix log-moment
MoLC method of log-cumulants
MoMLC method of matrix log-cumulants
MT Mellin transform
MKS Mellin kind statistics
PDF probability density function
RV random variable
SAR synthetic aperture radar

II. POLARIMETRIC RADAR DATA

A. Data Format

The measurable of a polarimetric radar is the
Sinclair scattering matrix

S =

[
Sxx Sxy
Syx Syy

]
, (1)

or equivalently, the scattering vector s, which is
simply the vectorised version of S:

s = vec(ST ) =


Sxx
Sxy
Syx
Syy

 , (2)
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where (·)T and vec(·) denote the transposition and
vectorisation operator, respectively. The entries of
S and s are the scattering coefficients of the d
polarimetric channels. These are complex-valued,
dimensionless numbers that describe the transfor-
mation of incident to backscattered electromagnetic
field for all combinations of two orthogonal transmit
and receive polarisations, denoted by x and y.

In the following, we shall only be concerned
with multilook complex data. Multilooking is an
averaging process, applied either during or after
focusing of the radar image, which suppresses the
noise-like effect of speckle at the cost of reduced
spatial resolution. Assume that a set {s`}L`=1 of
scattering vectors are averaged. We refer to s` as a
look and L as the number of looks. Then, multilook
polarimetric radar data is represented in the intensity
domain by:

C =
1

L

L∑
`=1

s`s
H
` , (3)

or a linearly transformed version of C, where (·)H
is the Hermitian (conjugate transposition) operator.
We refer to C ∈ Ω+ ⊂ �d×d as the multilook
polarimetric covariance matrix, and note that C is a
random matrix defined on the cone Ω+ of positive
definite complex Hermitian matrices.

B. Distribution Models

We base our work upon the multilook polarimet-
ric product model [6], which decomposes C as

C = T W̃ . (4)

The strictly positive and unit mean scalar random
variable T models texture, which is here defined
as spatial variation in the mean backscatter due to
target variability. It represents natural variations in
the radar return for pixels that could be labelled as
one class, as opposed to variation attributed to the
inherent interference produced by coherent imaging.
The latter contribution, known as speckle or clutter,
is modelled by W̃ ∼ sW�d (L,Σ), a scaled complex
Wishart matrix1, which follows the distribution

ffW(W̃;L,Σ) =
LLd

Γd(L)

|W̃|L−d
|Σ|L etr(−LΣ−1W̃) (5)

1The matrix W = LfW follows a true complex Wishart distribu-
tion, denoted W ∼ W�

d (L,Σ) [4].

where Σ = E{W̃} is the scale matrix, | · | is
the determinant, etr(·) = exp(tr(·)) where tr(·) is
the trace operator, Γd(L) is the multivariate gamma
function of the complex kind [6], and L ≥ d assures
that C is nonsingular.

The simplest model for the PDF of C assumes
that the scattering coefficients are jointly circular
complex Gaussian. This is strictly justified only for
homogeneous regions of the image characterised by
fully developed speckle and no texture, which may
be expressed as the probability P (T = 1) = 1, or
fT (t) = δ(t − 1), where δ(·) is the Dirac delta
function. This results in C ∼ sW�d (L,Σ).

When the PDF of T is not degenerate, we obtain a
more complicated distribution for C, which depends
on the distribution of T through

fC(C) =

∫ ∞
0

fC|T (C|t)fT (t) dt (6)

where C|T ∼ sW�d (L,Σ). For instance, we obtain
the matrix-variate K distribution [6] for gamma
distributed texture (denoted T ∼ γ̄(α)), the matrix-
variate G0 distribution [6] for inverse gamma dis-
tributed texture (T ∼ γ̄−1(λ)), and the U distribu-
tion [7] for texture that follows a Fisher-Snedecor
distribution (T ∼F̄(α, λ)).

The distributions are shown in Table I. All have
been normalised to unit mean, indicated by the
bar over the distribution symbol. The normalisation
explains why the number of parameters is one less
than for the nominal distribution. The K distribution
and the U distribution have got their name from
special functions that occur within their PDF: re-
spectively Kν(·), the second kind modified Bessel
function of order ν, and U(·, ·, ·), the second kind
confluent hypergeometric Kummer function.

C. Mellin Kind Statistics
Mellin kind statistics for complex random ma-

trices were defined in [12], [13] and evaluated for
the distributions in Table I. We here repeat the
expressions needed in the rest of the paper.

Let C ∈ Ω+ be a d × d complex covariance
matrix whose PDF is fC(C). The complex matrix-
variate Mellin transform (MT) of a general real-
valued function g(C) : Ω+→� is

G(s) = M{g(C)}(s)
=

∫
Ω+

|C|s−dg(C) dC
(7)
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TABLE I
TEXTURE AND COVARIANCE MATRIX DISTRIBUTIONS UNDER THE DOUBLY STOCHASTIC PRODUCT MODEL

fT (t) of texture variable T fC(C) of covariance matrix C Ref.

Constant δ(t− 1) sW�
d (Σ, L) LLd

Γd(L)
|C|L−d
|Σ|L etr(−LΣ−1C) [4]

γ̄(α) αα

Γ(α)
tα−1 exp (−αt) Kd(Σ, L, α) 2|C|L−d(Lα)

α+Ld
2

|Σ|LΓd(L)Γ(α)

`
tr(Σ−1C)

´α−Ld
2 Kα−Ld

`
2
p
Lα tr(Σ−1C)

´
[5]

γ̄−1(λ) (λ−1)λ

Γ(λ)
1

tλ+1 exp
`−λ−1

t

´ G0
d(Σ, L, λ) LLd|C|L−d

Γd(L)|Σ|L
Γ(Ld+λ)(λ−1)λ

Γ(λ)

`
L tr(Σ−1C) + λ− 1

´−λ−Ld [6]

F̄(α, λ) Γ(α+λ)
Γ(α)Γ(λ)

α
λ−1

( α
λ−1 t)

α−1

( α
λ−1 t+1)α+λ Ud(Σ, L, α, λ)

LLd|C|L−d
Γd(L)|Σ|L

Γ(α+λ)
Γ(α)Γ(λ)

“
α
λ−1

”
Γ(Ld+ λ)

× U`Ld+ λ,Ld− α+ 1, L tr(Σ−1C)α/(λ− 1)
´ [7]

with transform variable s ∈ �, whenever the integral
exists. It generally does for the matrix distributions
we study. The MT of fC(C) is defined as the Mellin
kind characteristic function (CF) of the random
matrix C:

φC(s) = E{|C|s−d} = M{fC(C)}(s) . (8)

When it exists, the νth-order matrix log-moment
(MLM) is derived from

µν{C} = E{(ln |C|)ν} =
dν

dsν
φC(s)

∣∣∣∣
s=d

. (9)

The Mellin kind cumulant generating function is
defined as

ϕC(s) = lnφC(s) (10)

and the νth-order matrix log-cumulant (MLC) as

κν{C} =
dν

dsν
ϕC(s)

∣∣∣∣
s=d

. (11)

MLMs and MLCs are related by

κν{C} = µν{C}

−
ν−1∑
i=1

(
ν − 1

i− 1

)
κi{C}µν−i{C} .

(12)

For instance, the first three MLCs are

κ1 = µ1 (13)
κ2 = µ2 − µ2

1 (14)
κ3 = µ3 − 3µ1µ2 + 2µ3

1 (15)

where the argument of the MLMs and MLCs has
been suppressed for brevity. We continue this prac-
tice in the following, whenever there is no confusion

about what stochastic entity the statistic is computed
from. More relations between moments and cumu-
lants are given in Appendix A.2

The νth-order sample MLM of C, denoted
〈µν{C}〉, can be computed from a set of n indepen-
dent and identically distributed covariance matrices,
C = {Ci}ni=1, using the sample mean estimator:

〈µν{C}〉 =
1

n

n∑
i=1

(log |Ci|)ν . (16)

The sample MLCs 〈κν{C}〉 are computed from (12)
with the population MLMs and MLCs replaced by
〈µν{C}〉 and 〈κν{C}〉.

For the multilook polarimetric product model, the
Mellin kind CF is expressed as [13]

φC(s) = φT (d(s−d)+1)φfW (17)

where φT (s) is the univariate Mellin kind CF of
a general texture RV T . The Mellin kind CF of a
scaled complex Wishart matrix is [13]

φfW(s) = Lds
Γd(L+s+d)

Γd(L)
|Σ|(s−d) . (18)

This yields the population MLCs

κν{C} = κν{W̃}+ dνκν{T} . (19)

2Remark that (12) is valid for moments and cumulants of all kinds
(i.e., moments of scalars, vectors or matrices – logarithmic or not),
since the formula relies on the definition of the cumulant generating
function as the natural logarithm of the CF. It is easily derived using
Leibniz’ rule for differentiation of a product [17].
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TABLE II
MELLIN KIND STATISTICS OF UNIVARIATE DISTRIBUTIONS FOR REAL POSITIVE TEXTURE VARIABLES

fT (t) Characteristic function φT (s) Log-cumulants κν(T )

κ1 = ψ(0)(α)− ln(α)
γ̄(α) α1−s Γ(α+s−1)

Γ(α) κν>1 = ψ(ν−1)(α)

κ1 = −ψ(0)(λ) + ln(λ− 1)
γ̄−1(λ) (λ− 1)s−1 Γ(λ+1−s)

Γ(λ) κν>1 = (−1)νψ(ν−1)(λ)

κ1 = ψ(0)(α)− ψ(0)(λ) + ln
`
λ−1
α

´
F̄(α, λ)

`
λ−1
α

´s−1 Γ(α+s−1)
Γ(α)

Γ(λ+1−s)
Γ(λ) κν>1 = ψ(ν−1)(α) + (−1)νψ(ν−1)(λ)

We note that the speckle contribution

κ1{W̃} = ψ
(0)
d (L) + ln |Σ| − d lnL (20a)

κν>1{W̃} = ψ
(ν−1)
d (L) (20b)

is separated from the texture contribution (i.e., the
second term of (19)). The texture part is determined
by the distribution of the univariate RV T . Univari-
ate Mellin kind characteristic functions, φT (s), and
univariate log-cumulants, κν{T}, are listed in Table
II for the texture distributions presented in Table I.

Finally note the following key property of the
MLCs: They depend only on the texture parameters
and L for ν > 1, while the first-order MLC also
depends on Σ.

III. GOODNESS-OF-FIT TESTS

A. Theory and Literature Review

1) Definitions: A formal GoF test3 is a procedure
for testing the null hypothesis H0 that a set of
random variates follow a given PDF. The procedure
measures the conformity or the discrepancy of the
data sample with respect to the distribution model.
It provides a test statistic, which is used to decide
whether H0 should be accepted or rejected [18],
[19]. From the test statistic and its sampling dis-
tribution, we can also compute the p-value, defined
as the probability of obtaining a realisation of the
test statistic at least as extreme as the one observed.

When the model is fully specified, i.e., all param-
eters of the hypothesised PDF are known, we say
that H0 is a simple hypothesis. If some or all of

3We distinguish formal methods from informal methods by their
use of probabilistic decision theory, as opposed to e.g. graphical
methods that prepare for visual inspection and decisions that are more
or less subjective.

the parameters are unknown and must be estimated,
then H0 is a composite hypothesis and defines a
composite GoF problem [20], [21], [22]. In the latter
case, we measure the fit to a distribution family,
rather than a specific distribution. The alternative
hypothesis H1 is in the context of our work a
composite one. It simply states that H0 is wrong
and contains no other information about the data
distribution.4

We will discuss both simple and composite GoF
tests. The composite GoF problem describes most
practical applications, but represents a far more
difficult setting, since the sampling distribution of
the test statistic becomes much harder to derive.
It will generally depend on the functional form of
the distribution family under H0, the true values of
the unknown parameters and the estimator used to
determine them, as well as the available number of
samples [22]. For some distributions, it has been
possible to find modifications of known GoF tests
for the simple hypothesis, that allow us to use the
same formalism in the composite case. This be-
comes increasingly difficult as the complexity of the
distribution and the dimension of the data increase.
In many cases, the sampling distribution must be
simulated by computer intensive methods, such as
Monte Carlo methods and bootstrap sampling.

2) Types of GoF tests: There are many different
approaches to formal GoF testing [18]. Some of the
most important categories are:
• Pearson’s χ2 test and variations thereof
• Tests based on the empirical distribution func-

tion (EDF)

4What we describe here are one sample GoF tests. The two sample
test (or generally the k-sample test) assesses whether or not two (or
k) samples come from the same distribution.
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• Tests based on the empirical characteristic
function (ECF)

• Tests based on entropy
• Tests based on moments
• Tests based on regression and correlation

The χ2 tests [18], [23] require binning of the data
domain, which is not suitable for matrix distribu-
tions defined on Ω+. The EDF and the ECF are
estimates of the CDF and the CF, respectively.
Among the EDF-based tests, we find the pop-
ular Kolmogorov-Smirnov, Anderson-Darling, and
Cramér-von Mises tests [18]. These have been ap-
plied to distributions of radar intensity [24], but as
far as we know, not to matrix distributions. This
is possibly because matrix-variate CDFs are little
known, difficult to derive, and also since the relevant
CDFs contain a hypergeometric function of matrix
argument (or another special function), which is
difficult to implement and costly to compute.

Models can be represented equivalently by the
PDF, the CDF and the CF, as these functions can be
retrieved from each other. It is therefore logical that
tests based on the ECF [25], [26] or sample entropy
[27] (computed by integration over PDF estimates)
yield results comparable to those based on the EDF,
which is indeed the case. Scalar moments, on the
other hand, only capture certain aspects of a distri-
bution, and do not assemble the same amount of sta-
tistical information. Still, moment-based approaches
to GoF testing have been proposed [11], [28], and
these have inspired the tests that we present in the
next section.

Before algorithms are presented, we outline three
different problem settings that affect the design of
the GoF test, and discuss their relation to practical
applications:

Case I (All parameters specified): This is the simple
hypothesis case, where we want to test data against
a fully specified distribution. A potential application
could be within a model-based image analysis algo-
rithm, e.g. segmentation, classification or clustering.
The GoF test could be used to decide whether
separate segments, classes or clusters should be
splitted or merged, for cluster validation, or to
estimate the number of classes. The assumption that
the distribution of the segments/classes/clusters are
fully specified, is of course a simplification, which
may be accepted when the number of samples is
high, or in order to obtain an efficient algorithm.

Practical applications where the parameters are truly
known, are hard to exemplify.

Case II (Texture parameters unknown): The com-
posite hypothesis case with known scale matrix Σ
and unknown texture parameters is also not very
realistic in practice. However, in a setting where
we test a number of competing distribution models
derived from the multilook polarimetric product
model, it is possible to disregard the scale matrix.
Note that the maximum likelihood estimate of the
scale matrix is the same for all models. Further
recall from (19) and (20) that the MLCs of order
ν > 1 are independent of Σ, and depend only on
the texture parameters and L, which is assumed a
known constant. By using an MLC-based GoF test,
we only need to estimate the texture parameters, and
can thereby avoid the nuisance parameter Σ.

Case III (All parameters unknown): Finally assume
that all parameters are unknown and must be esti-
mated. This is the most difficult, and also the most
realistic setting, which is faced in the composite
hypothesis case by all other GoF tests than those
founded on MLCs, where the scale matrix cannot
be decoupled from the texture parameters.

B. Simple Hypothesis Tests

In this section we derive GoF tests for the
simple hypothesis case. The tests are based on
sample MLCs. We start by deriving the asymptotic
distribution of sample MLMs and sample MLCs.
Afterwards, we propose test statistics whose true
sampling distribution is approximated by the asymp-
totic sampling distribution.

1) Asymptotic Distribution of the Sample MLMs:
Let C = {C1, · · · ,Cn} be a size n sample of
independent and identically distributed covariance
matrices drawn from the PDF fC(C). The νth-order
sample matrix log-moment

〈µν〉 =
1

n

n∑
i=1

(log |Ci|)ν (21)

is a random variable with mean E{〈µν〉} = µν
and variance Var{〈µν〉} = σ2

µν/n, where σ2
µν =

Var{(log |C|)ν}. Note that the explicit reference
to the random matrix variable will be suppressed
hereafter in the notation of both MLMs and MLCs,
in writing µν instead of µν{C}. By the central limit
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theorem,
√
n(〈µν〉 − µν) D−→ N (0, σ2

µν ) (22)

denoting convergence in distribution to a univariate
Gaussian RV with zero mean and variance σ2

µν .
If the MLMs of C exist up to order ν, then all

sample MLMs up to this order have expectation.
If C has MLMs up to order 2ν, then all sample
MLMs have finite variance. More specifically, we
have according to [29]:

E{〈µν〉} =
1

n

n∑
i=1

E {(log |Ci|)ν} = µν (23)

and

Cov{〈µυ〉, 〈µν〉}

= E

{(
1

n

N∑
i=1

(log |Ci|)υ − µυ
)

×
(

1

n

N∑
j=1

(log |Cj|)ν − µν
)}

=
1

n

(
µυ+ν − µυµν

)
(24)

with
Var{〈µν〉} =

1

n

(
µ2ν − µ2

ν

)
(25)

as a special case of (24).
A multivariate version of the asymptotic distribu-

tion for the vector of joint sample log-moments can
be formulated. Let

〈µν〉 = [〈µ1〉, 〈µ2〉, · · · , 〈µν〉]T (26)

and
µν = [µ1, µ2, · · · , µν ]T , (27)

such that E{〈µν〉} = µν . The central limit theorem,
in conjunction with the Cramér-Wold theorem [30],
proves that

√
n(〈µν〉 − µν)

D−→ Nν(0,Mν) (28)

where Nν(·, ·) denotes a ν-variate normal distribu-
tion, the mean vector 0 is a length ν column of
zeros, and the ν × ν covariance matrix

Mν = nE{(〈µν〉 − µν)(〈µν〉 − µν)
T} (29)

has entries [Mν ]ij = nCov{〈µi〉, 〈µj〉} = µi+j −
µiµj , which can be verified from (24).

2) Asymptotic Distribution of the Sample MLCs:
From the asymptotic distribution of the sample
MLMs, we now derive the asymptotic distribution
of the sample MLCs. The MLCs can be written
as a combination of the MLMs up to the same
order, following (12), with the first six moment-to-
cumulant relations listed in Appendix A. In general,
we may write

κν = gν(µ1, µ2, · · · , µν) = gν(µν) (30)

with the family of moment-to-cumulant transfor-
mation functions, gν : Rν → R, determined by
(12). The same relations are valid when population
moments are replaced with sample moments.

We assume in the following that all MLMs of
C exist up to order 2ν. Hence, so do the MLCs
up to order ν, as defined by (30). Furthermore, we
know that gν(µν) is a polynomial in the MLMs, and
therefore continuously differentiable. The multivari-
ate delta method proposition [30] states that, given
the result in (28), then

√
n(〈κν〉 − κν) D−→ N (0, σ2

κν ) (31)

where we define

σ2
κν = Var{κν}

= nVar{〈κν〉} = ∇gTν Mν∇gν
(32)

using

∇gν =

[
∂gν(µν)

∂µ1

, · · · , ∂gν(µν)

∂µν

]T
. (33)

This is the asymptotic distribution of the sample
MLCs. In order to put this result into practical use,
we derive the variances

σ2
κ1

= κ2 (34a)
σ2
κ2

= κ4 + 2κ2
2 (34b)

σ2
κ3

= κ6 + 9κ4κ2 + 9κ2
3 + 6κ3

2 (34c)

by evaluating (32). We note that specification of
the asymptotic distribution for the νth-order sample
MLC requires knowledge of the population MLCs
up to order 2ν.

As for the sample MLMs, we can extend (31)
to the multivariate case to obtain the asymptotic
distribution of the vector of joint sample MLCs. We
introduce the notation

〈κν〉 = [〈κ1〉, 〈κ2〉, · · · , 〈κν〉]T (35)
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and
κν = [κ1, κ2, · · · , κν ]T , (36)

such that E{〈κν〉} = κν . Then, (31) together with
the Cramér-Wold theorem again asserts that

√
n(〈κν〉 − κν)

D−→ Nν(0,Kν) , (37)

where the scaled covariance matrix

Kν = nE{(〈κν〉 − κν)(〈κν〉 − κν)
T} (38)

has entries [Kν ]ij = nCov{〈κi〉, 〈κj〉}. Let Jν de-
note the Jacobian matrix of the moment-to-cumulant
transformations up to order ν. Thus Jν has entries
[Jν ]ij = ∂gi(µν)/∂µj and Jν = [∇g1, · · · ,∇gν ]T .
The asymptotic covariance matrix of the sample
MLCs can then be written as

Kν = JνMνJ
T
ν , (39)

where Mν is the asymptotic covariance matrix of
the sample MLMs, as defined in (29). The matrices
Mν , Jν and Kν are given in Appendix A for ν=4.

3) Normal Approximation: We are now ready
to test the simple null hypothesis H0 stating that
the sample C = {Ci}ni=1 is drawn from a PDF
fC(C; Σ0,θ0) with specified parameters, where
Σ0 ∈ Ω+ is the scale matrix, θ0 ∈ Θ is a vector
of q texture parameters, and the parameter space
Θ is generally a subset of Rq. We generalise the
approach by using p sample MLCs of selected
orders {ν1, ν2, · · · , νp} in the test. The test is thus
based on the vector

〈κ〉 = [〈κν1〉, 〈κν2〉, · · · , 〈κνp〉]T , (40)

with mean vector

E{〈κ〉} = κ = [κν1 , κν2 , · · · , κνp ]T (41)

and scaled covariance matrix

K = nE
{(〈κ〉 − κ

)(〈κ〉 − κ
)T}

. (42)

The sampling distribution of 〈κ〉 depends on Σ0

and θ0 through MLCs up to order

2 νmax = 2 ·max{ν1, · · · , νp} , (43)

and we assume that they all exist. Under the multi-
normal assumption on 〈κ〉, these MLCs determine
the mean vector κ and scaled covariance matrix K.

If we use only one MLC in the test (p=1), then
〈κ〉 = 〈κν〉, where ν is the selected order, and we
can define the test statistic

Tν =
〈κν〉 − κν√
σ2
κν/n

D−→ N (0, 1) (44)

whose asymptotic sampling distribution under H0

is standard normal, as indicated. A test with size
(significance level) αc is given by

|Tν |
ω1

≷
ω0

zαc/2 . (45)

Here ω0 and ω1 denote acceptance and rejection of
H0, respectively. The threshold zαc/2 is the upper
αc/2 percentile of a standardised normal distribu-
tion, which must be inverted from

P (|Tν | > zαc/2) = 1− erf

(
zαc/2√

2

)
= αc (46)

with the Gauss error function defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt . (47)

We remark that the test statistic Tν is indexed by
the order of the MLC it is based on, and refer to ν
as the order of the normal approximation test.

4) Chi-square Approximation: The normal ap-
proximation test utilises only a single MLC at the
time, thus the GoF is measured with respect to a
limited aspect of the model distribution. We now
construct a test that utilises multiple sample MLCs,
and thereby captures more statistical information
about the data.

Consider the test statistic

Qp = n(〈κ〉 − κ)TK−1(〈κ〉 − κ) (48)

which uses information from the p MLCs in κ. The
asymptotic distribution of Qp follows readily from
the assumption of

√
n(〈κ〉 − κ)

D−→ Np(0,K) as

Qp
D−→ χ2(p) (49)

where χ2(p) denotes a central χ2 distribution with
p degrees of freedom. Most importantly, note that
the sampling distribution is independent of Σ0 and
θ0. A test with significance level αc is given by

Qp

ω1

≷
ω0

zαc . (50)
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Algorithm 1 MLC-based GoF test of the simple
hypothesis using a χ2 approximation of the test
statistic sampling distribution

1) Determine the significance level αc.
2) Determine the orders {ν1, · · · , νp} of the

MLCs used in the test.
3) From the dataset C of n covariance matrices,

compute the sample MLMs of the data up to
the maximum MLC order: max{ν1, · · · , νq}
with the sample mean estimator.

4) Use the obtained sample MLMs to compute
the required sample MLCs by means of the
moment-to-cumulant transformations.

5) Compute the population MLCs of the hypoth-
esised model up to twice the maximum MLC
order: 2 · max{ν1, · · · , νq}, by plugging the
known parameters into the parametric expres-
sions.

6) Use the population MLCs to form the mean
vector κ and the scaled covariance matrix K.

7) Compute the test statistic Qp, the threshold
zα, and perform the hypothesis test.

The threshold zαc is the upper αc percentile of the
χ2(p) distribution, found by inversion of

P (Qp>zαc) =

∫ ∞
zαc

(1/2)p/2

Γ(p/2)
t
p
2
−1e−

p
2dt = αc . (51)

A stepwise description of the GoF test based on a
χ2(p) approximation of the test statistic Qp is given
in Algorithm 1.

C. Composite Hypothesis Test
We next consider a test of a the composite null

hypothesis H0, declaring that the sample C is drawn
from a parametric distribution family fC(C; Σ,θ),
where the true parameters Σ0 and θ0 are unknown
and must be replaced by the estimates Σ̂ and θ̂. We
omit the normal approximation, since more power-
ful tests using multiple MLCs will be preferred, and
go straight to tests built upon 〈κ〉 for p>1.

1) Quadratic Test Statistic: We can safely as-
sume that the MLCs in κ are continuous function
of Σ and θ. Further assume that we have estimators
Σ̂(C ) and θ̂(C ) that produce consistent estimates
of Σ0 and θ0. It follows that κ(Σ̂, θ̂) and K(θ̂) will
be consistent estimates of κ(Σ0,θ0) and K(θ0),
where we have written κ and K with the (estimated)

parameters as arguments in order to highlight the
dependencies. We remark that K is a function of
MLCs of order ν ≥ 2, and therefore depends only
on θ, while κ is generally a function of both Σ
(when 〈κ〉 contains 〈κ1〉) and θ.

Define the test statistic

Q′p = n
(〈κ〉 − κ(Σ̂, θ̂)

)T
K(θ̂)−1

× (〈κ〉 − κ(Σ̂, θ̂)
) (52)

where the mean vector and the covariance matrix
from (48) have been replaced by estimates. The
exact sampling distribution of Q′p generally depends
on the sample size n, the true parameters Σ0 and
θ0, the estimators producing Σ̂ and θ̂, and the func-
tional form of fC(C; Σ,θ) [22]. We have not been
able to find any approximation for the sampling
distribution that works over a sufficiently wide range
of n and θ̂ values, and have therefore resorted to
Monte Carlo simulation.

2) Monte Carlo Simulation: The advantage of
Monte Carlo simulation is that we obtain a sampling
distribution which is accurate for low values of
n, and not only as we approach the asymptotic
limit. The downside is obviously the computational
cost. Since we are interested in tail probabilities of
the sampling distribution, we must generate a large
number m of realisations of Q′p: {Q′p(i)}mi=1. This
involves random generation of determinants |Ci|
under H0, which is much easier than generating the
full matrix data. We then compute sample MLCs
from the simulated data, and calculate the estimates
Σ̂ and θ̂ from them. An alternative would be to
random generate the sample MLCs directly from
their asymptotic multinormal sampling distribution.
We discard this option, because it would abandon
the accuracy obtained for finite n.

The biggest practical problem is that the true
parameters Σ0 and θ0 are unknown, and we do
not have a specified distribution to random gener-
ate from. It would be possible to choose a prior
distribution for the true parameters, conditioned on
the estimated parameters, which could take into
account the covariance matrix of the estimated
parameters. Our solution is simpler, and keeps the
computational requirements at an acceptable level:
We use the parameter estimates directly as a best
guess of the true parameters. The departure of the
estimated parameter values from the true ones will
inevitably affect the Monte Carlo simulated sample
of test statistics. We assume, nevertheless, that the
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resulting p-value will on average equal the one
we would have obtained from the true sampling
distribution. The validity of this assumption is tested
by simulations.

3) Estimation of model parameters: The param-
eter estimators are vital elements in the composite
GoF test. The maximum likelihood (i.e., sample
mean) estimator can be used for the scale matrix Σ
for all distributions derived from the product model.
However, our experience is that Σ can be excluded
from the computations with good results. The reason
is: Unless L is very large, the variance of Σ̂ is so
high that there is little information to be gained from
the first-order sample MLC about GoF. Instead, we
use higher-order sample MLCs (i.e., 〈κν>1〉) that are
independent of Σ, and need only be concerned with
estimators of θ.

The estimators that we shall use are based on
minimisation of Qp. Numerical results recently ob-
tained by the authors [13] show that these esti-
mators are superior to all known alternatives, both
in terms of bias and variance. We follow in the
footsteps of Parr and Schucany [31] and Boos [32],
among others, who discuss the coupling of the GoF
problem and the estimation problem. Both refer-
ences propose minimum distance estimators that
produce their estimates by minimising popular GoF
test statistics interpreted as distances between data
and model. In cases when the test statistic has an
asymptotic χ2 distribution, the approach has been
termed minimum chi-square estimation.

The method can also be classified as maximum
asymptotic likelihood (MAL) estimation, since the
asymptotic log-likelihood function under the multi-
normal assumption for 〈κ〉 is

`(Σ,θ|C ) = −1

2
ln |K(θ)|− 1

2n
Qp(Σ,θ)+C (53)

with C is a constant. Minimisation of (50) and
maximisation of (53) yield asymptotically equiva-
lent estimates.

We formally write our texture parameter estima-
tor as

θ̂ = arg
{

min
θ
{Qp}

}
(54)

and refer to it as the MAL estimator.
4) Implementation: The complete MLC-based

test for the composite problem is described in
Algorithm 2. As described in the previous section,
the computation of the test statistic Q′p is performed

Algorithm 2 MLC-based GoF test of the composite
hypothesis with Monte Carlo simulation of the test
statistic sampling distribution

1) Determine the significance level αc.
2) Determine the orders {ν1, · · · , νp} of the

MLCs used in the test.
3) From the dataset C of n covariance matrices

(or the dataset D = {|Ci|}ni=1 of correspond-
ing matrix determinants), compute the sample
MLMs of the data up to the maximum MLC
order: max{ν1, · · · , νq} with the sample mean
estimators.

4) Use the obtained sample MLMs to compute
the required sample MLCs by means of the
moment-to-cumulant transformations.

5) Estimate the texture parameters θ of the hy-
pothesised distribution model from the sample
MLCs with the MAL estimator and, if nec-
essary, the scale matrix Σ from C with the
maximum likelihood estimator.

6) Store the value of Q′p obtained in the joint
estimation of θ and minimisation of Qp.

7) Random generate m matrix determinant sam-
ples of size n under the hypothesised model.
For each sample, repeat step 3-5 and store the
simulated test statistics as {Q∗p(i)}mi=1.

8) Count the number of simulated test statistics
that are larger than the test statistic Q′p ob-
tained in step 6 and compute the fraction with
the respect to the number of Monte Carlo
simulations. This yields the p-value.

9) Perform the hypothesis test by comparing the
p-value to the significance level.

jointly with the estimation of the texture parameters
θ in an iterative search procedure. We have imple-
mented this using Brent’s optimisation algorithm
[33], which combines quadratic interpolation with
the golden section algorithm to achieve a good
compromise of speed and robustness.

After obtaining Q′p and θ̂, we Monte Carlo sim-
ulate the sampling distribution of Q′p. With θ̂ in
place of the unknown θ0, we random generate a
set D = {|Ci|}mi=1 of size n matrix determinant
samples under H0. This can be done efficiently with
a standard random generator of gamma variates.
Using these samples, we repeat the minimisation
procedure to produce a set {Q∗p(i)}mi=1 of m Monte
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Carlo simulated test statistics. These are used to
determine the p-value empirically as

pmc =
1

m

m∑
i=1

I(Q∗p(i)>Q′p) , (55)

where I(·) is the indicator function subject to the
superscripted condition. That is, we compute the
fraction of simulated Q∗p(i) that are larger than Q′p.
The Monte Carlo simulated p-value, pmc, is then
evaluated against the chosen significance level, αc,
in the test:

pmc

ω0

≷
ω1

αc . (56)

D. Geometrical Interpretation

We now give a geometrical interpretation of the
MLC-based GoF tests. Figure 1 introduces the MLC
diagram, where we plot the third-order MLC against
the second-order MLC to show simultaneously: (i)
the manifolds spanned by the theoretical population
MLCs that can be attained under given distribution
models, and (ii) points that represent the empirical
sample MLCs computed from data samples. A more
general definition is given in [13], together with
a discussion of MLC space manifolds and their
dimension, corresponding to the number of texture
parameters associated with the model. The sW�d dis-
tribution, with no texture parameters, is represented
by a point (black circle in the MLC diagram); the Kd
and G0

d distributions, with one texture parameter, are
represented by curves (red and blue, respectively);
and the Ud distribution, with its two texture parame-
ters, is represented by a surface (yellow). This is an
extension of the univariate log-cumulant diagram,
introduced by Nicolas in [14], [15].

Equations (19) and (20) show that MLCs with
order higher than two are independent of the scale
matrix Σ under the polarimetric product model.
Assuming that L is a global constant for the dataset,
a diagram with the selected MLC orders shows the
solitary impact of the texture parameters upon the
models. It provides insight about how the texture
parameters are estimated from MLCs (see [13]
for details), and also how the proposed GoF test
procedure is executed.

A sample MLC vector 〈κ〉 = [〈κ3〉, 〈κ2〉]T com-
puted from data is shown in the figure as the
black ’×’ symbol. In the simple GoF problem,
we measure the distance between the sample MLC
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Fig. 1. MLC space geometrical interpretation of the goodness-
of-fit test proposed for simple and composite hypotheses. The test
statistics Qp and Q′p are interpreted as distance between data (sample
MLC vector) and model (point on the manifold of population MLC
vectors).

vector and a given distribution model in terms of
Qp with p=2, where the test statistic is interpreted
as a distance measure. For instance, we measure
the distance between 〈κ〉 and the Kd distribution
with specified texture parameter α, represented in
MLC space by κ = [κ2(α), κ3(α)]. This distance,
Qp, is pictured as the upper leftmost arrow in
Figure 1. Then consider the composite problem.
For a fixed 〈κ〉, the distance Q′p is a function
of the texture parameters of a given model, and
can be minimised with respect to these. For a Kd
distribution hypothesis, we minimise the distance
with respect to α. The parameter value providing
a minimum of Q′p is the MAL estimate of α, as
defined in (54). The resulting distance, Q′p, is shown
as the lower rightmost arrow in the figure. Note
that Q′p is always the shortest statistical distance
to the manifold of population MLCs, and therefore
consistently underestimates Qp.

Parameter estimation is visualised as a projection
of a sample MLC vector onto the manifold repre-
senting the model. To test the GoF, we measure the
distance between data and model, and then assess
the probability of obtaining the resulting distance
using the sampling distribution of Qp or Q′p. We
note that the number of MLCs required by the
described GoF test procedure is one more than
the number of texture parameters. For instance, the
distance to the surface representing the Ud distribu-
tion must be measured with respect to a point in
three-dimensional MLC space, thus requiring three
sample MLCs.
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IV. RESULTS

In this section we use experiments with simulated
and real data to demonstrate the capabilities of the
proposed procedures for GoF testing.

A. Assessment of the χ2 Assumption
We first test the departure of the test statistic

Qp from the χ2 distribution for finite n. We have
simulated data from the scaled Wishart distribution
with L=4 number of looks, polarimetric dimension
d=3 and scale matrix

Σ0 = 10−4×
 35.8
−8.40−6.31 16.9
−0.45+0.45 −0.17−0.13 4.17

,
where the upper triangle is the complex conjugate
of the given lower triangle. The same scale matrix,
and hence the same polarimetric dimension, is used
in all the simulations of Section IV. The data are
tested against the simple hypothesis

H0 :C ∼ sW�d (L=4,Σ=Σ0).

The test statistic, Q2, is based on the second and
third-order MLC, and is evaluated for the sample
sizes n={8, 64, 512, 4096}.

The results in the top and middle panel of Fig-
ure 2 compares the asymptotic PDF, which is a
χ2 distribution with two degrees of freedom, with
empirical PDFs computed by the kernel density
estimator [34] from m = 10, 000 Monte Carlo
simulations of Q2. The figure shows that there is a
large discrepancy for small sample sizes, but the true
sampling distribution converges quickly towards the
χ2 approximation for moderate sample sizes of
n > 100.

The top and middle panel show the PDFs on
linear and logarithmic scale, respectively. The log-
arithmic scale emphasises the behaviour at the tail
of the distribution, which is critical in GoF testing,
and confirms that the approximation is good here
also. The fluctuations of the empirical PDFs around
the χ2(2) approximation for n= 512 and n= 4096
can be explained by estimator variance.

In the bottom panel, we compare the specified
size of GoF test with the measured size. The size
of a statistical hypothesis test is the same as the
significance level αc, defined as the probability of
incorrectly rejecting H0. Again, we see that the
specified and the measured size differ greatly for
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Fig. 2. Assessing validity of χ2(2) distribution model for Q2

with finite sample sizes. The simulated data follow the distribution
specified under H0 : C ∼ sW�

d (L = 4,Σ = Σ0). The plots show
estimated sampling distributions of Q2 on linear scale (upper panel)
and logarithmic scale (middle), and a diagram of specified test size
against measured test size (bottom) for various sample sizes n.
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small sample sizes, but converge quickly as n grows
past some hundred samples.

B. Simple Test Applied to Simulated Data

1) Test datasets for the simple hypotheses: Fig-
ure 3 shows the data used to assess the MLC-based
GoF test of the simple hypothesis. The MLC dia-
grams display the second and third-order population
MLC for the null hypothesis, marked by the symbol
’×’, and for the simulated datasets used as input
to the tests, marked by symbol ’+’. The respective
panels represent tests of the hypotheses:

H0 : C ∼ sW�d (L=4,Σ=Σ0) (top)
H0 : C ∼ Kd(L=4,Σ=Σ0, α=8) (middle)
H0 : C ∼ G0

d(L=4,Σ=Σ0, λ=8) (bottom).

The input data applied to the tests are matrix-variate
K, G0, and U distributed with different choices
of texture parameters, as specified in the figure.
The same datasets are shown in Figures 4 and 5
as marginal PDFs of a single polarimetric chan-
nel on linear and logarithmic scale, respectively.
All datasets have the same scale matrix, and the
marginal PDF is displayed with unit mean intensity
for illustration purposes.

When compared to Figure 3, we clearly see the
strength of the MLC diagram as a visualisation
tool in its ability to discriminate between datasets
with equal mean intensity, but different texture. The
datasets applied to the test of the Wishart hypothesis
have very similar statistical properties, and it diffi-
cult to visually separate the PDFs on linear scale
(Figure 4, upper panel). The statistical distances
between the datasets in the Kd and G0

d hypothesis
tests are larger, but it is still difficult to distinguish
well between many of the datasets, especially on
linear scale. On logarithmic, the distinct behaviour
at the tail becomes more visible. Nevertheless, the
MLC diagram is far superior to the marginal PDFs
in terms of ability to discriminate between datasets.

2) Performance results: The results of the simple
hypothesis GoF tests are shown in Figure 6, which
displays the power of the tests as function of the
sample size. The power of a statistical test is defined
as the probability of correctly rejecting H0. The test
of the sW�d hypothesis (shown in the upper panel)
performs best for the Kd distributed dataset with
texture parameter α=16 (hereafter denoted Kd(16))
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Fig. 3. Data applied to the χ2(2) tests of H0 : C ∼ W�
d (L =

4,Σ = Σ0) (top), H0 : C ∼ K(L = 4,Σ = Σ0, α = 8) (middle),
and H0 : C ∼ G0(L= 4,Σ = Σ0, λ= 8) (bottom), with population
MLCs of the datasets represented by symbols ’+’.

and worst for theKd(64) dataset. The ranking of the
datasets in terms of detectability, i.e. test power, cor-
responds well at first eye-cast with their statistical
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Fig. 4. Data applied to the χ2(2) tests of the simple hypotheses H0 :
C ∼ W�

d (L=4,Σ=Σ0) (top), H0 : C ∼ K(L=4,Σ=Σ0, α=8)
(middle), and H0 : C ∼ G0(L=4,Σ=Σ0, λ=8) (bottom), shown
as marginal PDFs with unit mean intensity on linear scale.

distance from H0, as perceived in the MLC diagram
of Figure 3; The further away from H0 in the MLC
diagram, the more easily a dataset is rejected by the
test. The same observation is made for the test of the
Kd hypothesis (middle panel) and the G0

d hypothesis
(bottom panel).

Upon closer examination of the Kd(8) and G0
d(8)

hypothesis tests, we note that its seems more diffi-
cult to distinguish datasets that are separated along
the κ3 axis than along the κ2 axis. For instance,
the test of H0 : C ∼ Kd(8) has problems with
the G0

d(8) distributed dataset, just like the test of
H0 : C ∼ G0

d(8) has with Kd(8) data. Both tests
struggle most of all with the dataset Ud(14, 14),
whose separation from the null hypotheses is very
small along κ2. This is logical, as the detectability
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Fig. 5. Data applied to the χ2(2) tests of the simple hypotheses H0 :
C ∼ W�

d (L=4,Σ=Σ0) (top), H0 : C ∼ K(L=4,Σ=Σ0, α=8)
(middle), and H0 : C ∼ G0(L=4,Σ=Σ0, λ=8) (bottom), shown
as marginal PDFs with unit mean intensity on logarithmic scale.

of the first two cases will rely completely on 〈κ3〉,
and the latter mainly on 〈κ3〉. Furthermore, the
higher order of 〈κ3〉 with respect to 〈κ2〉 implies that
it has larger variance, and therefore less discrimi-
native power. The difference in estimability of κ2

and κ3 also explains why several curves in Figure 6
cross each other, indicating that the internal ranking
of detectability changes with sample size.

3) Interpretation in terms of equiprobability
curves: The reasoning above is supported by the
numerical results of Figure 7, which shows curves of
equiprobable sample MLCs under different models.
In the upper panel, we see equiprobability curves of
a sW�d model, a Kd(16) model and a G0

d(16) model
for a sample size of n=1024. The multiple ellipses
represent the set of significance levels:
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Fig. 6. Power of the Qp test of the simple hypotheses H0 : C ∼
W�
d (L = 4,Σ = Σ0) (top), H0 : C ∼ K(L = 4,Σ = Σ0, α = 8)

(middle), and H0 : C ∼ G0(L = 4,Σ = Σ0, λ = 8) (bottom) at
the αc = 5% significance level with ν = {2, 3} for various data
distributions, as function of sample size n.
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Fig. 7. Top panel: Equiprobability curves defining the
{10, 20, 30, · · · , 90}th percentiles of the models: C ∼ W�

d (L =
4,Σ = Σ0) (black ellipses), C ∼ W�

d (L = 4,Σ = Σ0, α = 16)
(red) and C ∼ W�

d (L= 4,Σ = Σ0, λ= 16) (blue) for N = 1024
samples based on Q2 ∼ χ2(2) with ν = {2, 3}. Middle panel:
Equiprobability curves defining the 50th percentile of the model
K(L= 4,Σ = Σ0, α= 16) based on Q ∼ χ2(2) with ν = {2, 3}
as a function of sample size N . Bottom panel: 95th percentile
equiprobability curves for sample size N = 1024 of the datasets
used to test the χ2 test of H0 : C ∼ K(L=4,Σ=Σ0, α = 8).
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αc={10, 20, · · · , 90}%. We see that the equiprob-
ability ellipses extend much further along the κ3

axis than along the κ2, as explained in the pre-
vious. The orientation of the ellipses depends on
the covariance between 〈κ2〉 and 〈κ3〉, which is a
function of L and the texture parameters, as seen
from the expression given in Appendix A. However,
the covariance value is dominated by L, and the
orientation of the equiprobability ellipses therefore
appears nearly constant. We also observe a large
overlap between the ellipses of the Kd(16) model
and the G0

d(16) model, which means that there will
be much confusion when testing either model using
input data drawn from the other. This is exactly what
we have experienced.

The middle panel of Figure 7 shows the evolution
of the equiprobability ellipses for the Kd(16) model
at the αc=50% significance level as a function of n.
It explicates the difficulty of GoF testing for small
sample sizes due to the large statistical variation of
the sample MLCs. The bottom panel again displays
the datasets applied to the test of the Kd(8) hypothe-
ses, but this time as equiprobability ellipses in the
MLC diagram for n=1024. The null hypothesis is
shown as a ’×’ symbol, surrounded by an ellipse
(filled with pink), which delimits its acceptance
region at the αc = 0.05 level. The other ellipses
are the 95th percentile equiprobability curves of all
datasets applied to the test of the Kd(8) hypothesis,
with colours and line styles corresponding to those
used and defined in Figure 4 and 6. The intersection
areas between the H0 ellipse and the dataset ellipses
can be approximately related to the probability of
falsely accepting H0 with the respective dataset
as input, which is equal to one minus the test
power. This interpretation corresponds with the test
powers measured in the middle panel of Figure 6
for n=1024.

C. Composite Test Applied to Simulated Data

1) Test datasets for the composite hypotheses:
For the tests of the composite GoF hypothesis, we
assume that the number of looks, L, is known or can
be estimated for the dataset as a whole (See [35] for
a review of estimation procedures). The scale matrix
and the texture parameters are unspecified. We avoid
the problem of estimating Σ by using tests based on
the second and third order MLC only. The texture
parameters are estimated with the MAL estimator
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Fig. 8. Rejection rate of the Q′p test of the composite hypotheses:
H0 : C ∼ K(L,Σ, α) (top) and H0 : C ∼ G0(L,Σ, λ) (bottom)
at the αc = 5% significance level with ν = {2, 3} for various data
distributions, as function of sample size n.

described in Section III-C3 and evaluated in [13].
The test statistic Q′p is applied to two composite
hypotheses:

H0 : C ∼ Kd(L=4,Σ, α)

H0 : C ∼ G0
d(L=4,Σ, λ)

No dedicated test for the sW�d distribution is per-
formed in the composite hypothesis case. Because
the sW�d distribution has no texture parameters that
need to be estimated, the composite test of a sW�d
hypothesis reduces to the simple test when it is
based on MLCs of order ν = 2 and higher.

The datasets applied to the composite tests are
the same that we applied to the simple tests. These
are presented in Figure 3-5. For the test of the Kd
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hypothesis, we limit the testing to one Kd distributed
dataset, in addition to the sW�d distributed dataset,
noting that the sW�d distribution is a special case
of the Kd distribution obtained as a limiting case
when α → ∞. These datasets are used to check
whether we meet the specified test size with the
algorithm based on Monte Carlo simulation of the
sampling distribution for the test statistic Q′p. The
same approach is taken for the test of the G0

d

hypothesis, and we equivalently note that the G0
d

converges in distribution to the sW�d distribution as
λ→∞.

2) Performance results: Figure 8 shows the re-
sults of the composite GoF test of the Kd hypothesis
(upper panel) and the G0

d hypothesis (bottom panel).
Note that the figures present rejection rate, instead
of test power. The explanation is: When the input
dataset belongs to the distribution family under
H0, the rejection rate is the probability of falsely
rejecting H0, which is the same as the test size.
When the input dataset belongs to a different family,
the rejection rate is the probability of correctly
rejecting H0, previously defined as the test power.
The tests are performed at the αc=0.05 significance
level.

Because we have used the same input data and the
same test sizes, the performance of the composite
tests can be directly compared to the simple tests
in Figure 6. For the test datasets that belong to
another distribution family than H0, the test power
increases with n as expected, but at a slower rate
than for the simple tests. The ranking of the datasets
in terms of detectability has changed, and we do not
observe any crossing of the rejection rate curves,
as we did in Figure 6. This may reflect that the
sampling distributions of Q′p and Qp are different,
but also that the Monte Carlo simulation method
yields the true sampling distribution, while the χ2

approximation used for the simple tests is an ap-
proximation, whose validity increases with n. The
approximately flat curves at the 0.05 rejection rate
level depict the measured test size when the input
dataset satisfy H0. If we disregard fluctuations that
can be attributed to expected statistical variations of
the Monte Carlo simulations, the measured test size
seems to meet the specified test size. The exception
is for sW�d distributed input data with small sample
sizes, where the measured size exceeds the specified
size.

D. Composite Test Applied to Real Data

It remains to test the GoF tests against real data.
We have selected three datasets acquired by the
Radarsat-2 C-band SAR instrument in fine quad po-
larisation mode. The scenes are from: 1) Flevoland,
The Netherlands, 2) San Francisco, USA and 3)
Oberpfaffenhofen, Germany. From the full scenes,
we have extracted the subsets shown in the upper
row of Figures 9-11. From each subset, we have
cropped four image samples, selected to be as
homogeneous as possible. The size of each image
sample is n = 16 × 16 = 256 pixels. We make
the simplifying assumption that the pixel represent
independent measurements, even though they are in
reality correlated.

The image samples are outlined by the small
coloured squares in the upper row images, and
enlarged versions are shown in the middle row of
the figures. The bottom row of each figure shows
an MLC diagram, where sample MLCs of each
homogeneous image sample has been plotted on
top of the population MLC manifolds of the sW�d ,
Kd and G0

d distribution. Multiple sample MLCs are
obtained from each image sample by collecting 64
bootstrap samples of size nbs = 128 from the total
n = 256 covariance matrix samples. This way, we
can visualise the statistical spread of the sample
MLC distribution, which differs a lot between the
image samples. The equivalent number of looks was
estimated to L=8.0.

From the Flevoland subset in Figure 9, we have
extracted a water sample (magenta coloured square),
an urban sample (cyan square), and two vegeta-
tion samples, labelled A and B (orange and in-
digo squares). The false colour RGB images are
composites made from intensity channels of the
Pauli decomposition [36]. The well-known colour
interpretation of so-called Pauli images in terms
of scattering mechanisms tells us that the blue
water sample is dominated by surface scattering, the
pinkish urban sample by double bounce scattering,
and the green vegetation A sample by volume scat-
tering. The turquoise appearance of the vegetation
B sample reveals a mixture of volume and surface
scattering.

In the MLC diagram, the collection of sample
MLCs for the water, vegetation A and the vegetation
B sample (shown as magenta, orange and indigo
dots, respectively) are all well clustered. The clus-
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Fig. 9. Top: Subset of Radarsat-2 fine quad polarisation mode image
of Flevoland, The Netherlands, acquired on 2 March 2008. Middle:
Homogeneous samples of a water body, urban area, and two vegetated
areas (labelled A and B). Bottom: MLC diagram with sample MLCs
computed from the image samples.
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Fig. 10. Top: Subset of Radarsat-2 fine quad polarisation mode
image of San Francisco, United States, acquired on 9 March 2008.
Middle: Homogeneous samples of a water body, a vegetated area,
and two urban areas (labelled A and B). Bottom: MLC diagram with
sample MLCs computed from the image samples.
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Fig. 11. Top: Subset of Radarsat-2 fine quad polarisation mode
image of Oberpfaffenhofen, Germany, acquired on 6 March 2008.
Middle: Homogeneous samples of a vegetated area (labelled A), an
urban area, a vegetated area (labelled B), and a water body. Bottom:
MLC diagram with sample MLCs computed from the image samples.

TABLE III
p-VALUES OF GOF TESTS FOR FLEVOLAND DATASET

Water Urban Veget. A Veget. B

sW�
d (L,Σ) 2.7% 0% 0% 0.1%

Kd(L,Σ, α) 7.1% 10.8% 10.0% 5.7%

G0
d(L,Σ, λ) 7.2% 11.4% 12.3% 5.1%

TABLE IV
p-VALUES OF GOF TESTS FOR SAN FRANCISCO DATASET

Water Veget. Urban A Urban B

sW�
d (L,Σ) 0% 0% 0% 0%

Kd(L,Σ, α) 6.5% 3.5% 13.0% 12.1%

G0
d(L,Σ, λ) 5.5% 8.4% 7.6% 7.3%

TABLE V
p-VALUES OF GOF TESTS FOR OBERPFAFFENHOFEN DATASET

Veget. A Urban Veget. B Water

sW�
d (L,Σ) 0% 0% 0% 6.3%

Kd(L,Σ, α) 2.3% 13.9% 5.9% 7.6%

G0
d(L,Σ, λ) 3.8% 7.7% 11.9% 7.7%
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ters may seem to fall close the black square, rep-
resenting the sW�d distribution, and also the red
and blue line, corresponding to the Kd and G0

d

distribution, respectively. The sample MLCs for the
urban sample have a wide spread, and fall into the
region between the Kd and G0

d distribution curves,
occupied by the Ud distribution. The p-values of
the composite GoF tests, computed from the com-
plete image samples and presented in Figure III,
show that neither model is a very good fit to the
image samples. All image samples fail the sW�d
distribution test on the 5% level. They all pass the
Kd distribution test and the G0

d distribution test on
the 5% level, the urban sample and the vegetation
A sample also pass on the 10% level by a small
margin, but the highest p-value recorded is a modest
12.3%.

From the San Francisco subset in Figure 10, we
have extracted a water sample (magenta square),
a vegetation sample (cyan square), and two urban
samples, labelled A and B (orange and indigo
squares). The urban samples are distinguished by
their respective pink and green tinged tone. The
green appearance of the urban B sample occurs
because the city blocks are aligned at an angle
to the radar, inducing a strong cross-polarised re-
turn [37], which may be mistakenly interpreted
as volume scattering. The MLC diagram reveals
that both urban samples have the same statistical
texture properties. Their sample MLCs have a large
variance, and are located in the Ud distribution
region, characteristic of scattering from a mixture of
urban objects. The vegetation sample has moderate,
but pronounced texture, while the water sample is
closer to the sW�d distribution. The p-values in
Table IV gives the judgement of the GoF tests: The
sW�d distribution in a bad fit. The Kd distribution
hypothesis is passed by the water sample on the
5% level, and by the urban samples on the 10%
level. The G0

d distribution hypothesis is passed by
all samples, but only at the 5% level.

The image samples selected from the Oberpfaf-
fenhofen subset in Figure 11 are two vegetation
samples, labelled A and B (magenta and orange
squares), an urban sample (indigo square) and a
water sample (cyan square). In the Pauli images, the
vegetation samples seem to be distinguished mainly
by their intensity. The MLC diagram shows that the
vegetation B sample has more texture than the vege-
tation A sample, and that both are located relatively

close to the Kd distribution curve. The water sample
appears to be close to the sW�d distribution, while
the urban sample MLCs lies in the Ud distribution
region. The p-values in Table V show that only the
water sample passes the sW�d distribution test at the
5% level. The vegetation B sample and the water
sample pass the Kd distribution test at the 5% level,
and the urban sample at the 10% level. The urban
sample and the water sample pass the G0

d distribution
test at the 5% level, and the vegetation B sample
pass at the 10% level.

V. CONCLUSIONS

We have proposed goodness-of-fit tests for com-
posite matrix distributions derived under the multi-
look polarimetric product model. These are based
on a newly developed framework for statistical
analysis of polarimetric radar data, called matrix-
variate Mellin kind statistics. The test procedure can
be applied to both simple and composite hypotheses.
We have tested them on simulated data for the
scaled Wishart distribution, the Kd distribution and
the G0

d distribution. The simulations prove that the
sampling distribution of the test statistic in the
simple hypothesis case is well approximated by
the χ2 distribution for moderate sample sizes and
upwards. In the composite hypothesis case, we must
resort to Monte Carlo simulations to find the sam-
pling distribution for the test statistic. This approach
has a higher computational cost, but produces the
true sampling distribution regardless of the sample
size. Assessment of the test power proves that the
tests are useful contributions that provide a hitherto
missing formal procedure for model selection. Ex-
periments with real data from the Radarsat-2 C-band
instrument demonstrate the utility of the tests.

APPENDIX A
MOMENT AND CUMULANT RELATIONS

This appendix provides explicit expressions for
conversion between moments and cumulants, which
is needed in the computations of the MLC-based
GoF tests. It also presents covariance matrices of
the sample moments and sample cumulants, and
relations between them. The transformation are
valid for all kinds of moments and cumulants, only
requiring that the cumulant generating function is
the logarithm of the moment generating function.
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The first six moment to cumulant transformations
are:

κ1 = µ1 , (57)
κ2 = µ2 − µ2

1 , (58)
κ3 = µ3 − 3µ1µ2 + 2µ3

1 , (59)
κ4 = µ4 − 4µ1µ3 − 3µ2

2 + 12µ2
1µ2 − 6µ4

1 , (60)
κ5 = µ5 − 5µ1µ4 − 10µ2µ3 + 20µ2

1µ3

+ 30µ1µ
2
2 − 60µ3

1µ2 + 24µ5
1 ,

(61)

κ6 = µ6 − 6µ1µ5 − 15µ2µ4 + 30µ2
1µ4

− 10µ2
3 + 120µ1µ2µ3 − 120µ3

1µ3

+ 30µ3
2 − 270µ2

1µ
2
2 + 360µ4

1µ2

− 120µ6
1 .

(62)

The first eight cumulant to moment transformations
are:

µ1 = κ1 , (63)
µ2 = κ2 + κ2

1 , (64)
µ3 = κ3 + 3κ2κ1 + κ3

1 , (65)
µ4 = κ4 + 4κ3κ1 + 3κ2

2 + 6κ2κ
2
1 + κ4

1 , (66)
µ5 = κ5 + 5κ4κ1 + 10κ3κ2 + 10κ3κ

2
1

+ 15κ2
2κ1 + 10κ2κ

3
1 + κ5

1 ,
(67)

µ6 = κ6 + 6κ5κ1 + 15κ4κ2 + 15κ4κ
2
1

+ 10κ2
3 + 60κ3κ2κ1 + 20κ3κ

3
1 + 15κ3

2

+ 45κ2
2κ

2
1 + 15κ2κ

4
1 + κ6

1 ,

(68)

µ7 = κ7 + 7κ6κ1 + 21κ5κ2 + 21κ5κ
2
1

+ 35κ4κ3 + 105κ4κ2κ1 + 35κ4κ
3
1

+ 70κ2
3κ1 + 105κ3κ

2
2 + 210κ3κ2κ

2
1

+ 35κ3κ
4
1 + 105κ3

2κ1 + 105κ2
2κ

3
1

+ 21κ2κ
5
1 + κ7

1 ,

(69)

µ8 = κ8 + 8κ7κ1 + 28κ6κ2 + 28κ6κ
2
1

+ 56κ5κ3 + 168κ5κ2κ1 + 56κ5κ
3
1

+ 35κ2
4 + 280κ4κ3κ1 + 210κ4κ

2
2

+ 420κ4κ2κ
2
1 + 70κ4κ

4
1 + 280κ2

3κ2

+ 280κ2
3κ

2
1 + 840κ3κ

2
2κ1

+ 560κ3κ2κ
3
1 + 56κ3κ

5
1 + 105κ4

2

+ 420κ3
2κ

2
1 + 210κ2

2κ
4
1 + 28κ2κ

6
1 + κ8

1 .

(70)

Recall that M4 and K4 was defined as the
covariance matrices of the sample moment vector
〈µ4〉 = [〈µ1〉, 〈µ2〉, 〈µ3〉, 〈µ4〉]T and the sample
cumulant vector 〈κ4〉 = [〈κ1〉, 〈κ2〉, 〈κ3〉, 〈κ4〉]T ,

respectively. These are related by

K4 = J4M4J
T
4 (71)

with the fourth-order Jacobian matrix of the moment
to cumulant transformations given by

J4 =


1 0 0 0
−2µ1 1 0 0

−3(µ2 − 2µ2
1) −3µ1 1 0

J41 J42 −4µ1 1

 (72)

where

J41 = −4(µ3 − 6µ1µ2 + 6µ3
1) , (73)

J42 = −6(µ2 − 2µ2
1) . (74)

Explicit expressions for the elements of the sam-
ple moment covariance matrix are given as

[M]11 = κ2 (75)
[M]12 = κ3 + 2κ1κ2 (76)
[M]13 = κ4 + 3κ1κ3 + 3κ2

2 + 3κ2
1κ2 (77)

[M]14 = κ5 + 4κ1κ4 + 10κ2κ3 + 6κ2
1κ3

+ 12κ1κ
2
2 + 4κ3

1κ2

(78)

[M]22 = κ4 + 4κ1κ3 + 2κ2
2 + 4κ2

1κ2 (79)
[M]23 = κ5 + 5κ1κ4 + 9κ2κ3 + 9κ2

1κ3

+ 12κ1κ
2
2 + 6κ3

1κ2

(80)

[M]24 = κ6 + 6κ1κ5 + 14κ2κ4 + 14κ2
1κ4

+ 10κ2
3 + 56κ1κ2κ3 + 16κ3

1κ3 + 12κ3
2

+ 36κ2
1κ

2
2 + 8κ4

1κ2

(81)

[M]33 = κ6 + 6κ1κ5 + 15κ2κ4 + 15κ2
1κ4

+ 9κ2
3 + 54κ1κ2κ3 + 18κ3

1κ3 + 15κ3
2

+ 36κ2
1κ

2
2 + 9κ4

1κ2

(82)

[M]34 = κ7 + 7κ1κ6 + 21κ2κ5 + 21κ2
1κ6

+ 34κ3κ4 + 102κ1κ2κ4 + 34κ3
1κ4

+ 66κ1κ
2
3 + 102κ2

2κ3 + 192κ2
1κ2κ3

+ 30κ4
1κ3 + 96κ1κ

3
2 + 84κ3

1κ
2
2 + 12κ5

1κ2

+ κ7
1

(83)

[M]44 = κ8 + 8κ1κ7 + 28κ2κ6 + 28κ2
1κ6

+ 56κ3κ5 + 168κ1κ2κ5 + 56κ3
1κ5 + 34κ2

4

+ 272κ1κ3κ4 + 204κ2
2κ4 + 408κ2

1κ2κ4

+ 68κ4
1κ4 + 280κ2κ

2
3 + 264κ2

1κ
2
3

+ 816κ1κ
2
2κ3 + 512κ3

1κ2κ3 + 48κ5
1κ3

+ 96κ4
2 + 384κ2

1κ
3
2 + 168κ4

1κ
2
2 + 16κ6

1κ2

+ κ8
1

(84)
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The sample cumulant covariance matrix becomes

K4 =


κ2 κ3 κ4 κ5

κ3 κ4 + 2κ2
2 κ5 + 6κ2κ3 K24

κ4 κ5 + 6κ2κ3 K33 K34

κ5 K42 K43 K44

 (85)

where

K24 = K42 = κ6 + 8κ2κ4 + 6κ2
3 , (86)

K33 = κ6 + 9κ2κ4 + 9κ2
3 + 6κ3

2 , (87)
K34 = K43 = κ7 + 12κ2κ5 + 30κ3κ4

+ 36κ2
2κ3 ,

(88)

K44 = κ8 + 16κ2κ6 + 48κ3κ5 + 34κ2
4

+ 72κ2
2κ4 + 144κ2κ

2
3 + 24κ4

2 .
(89)
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