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Abstract

This PhD thesis focuses on the investigation of approximation properties of
Cesaro means of the Vilenkin-Fourier series. In particular, we obtain some new
inequalities related to the rate of LP approximation by Cesaro means of the
Vilenkin-Fourier series of functions from L?. These inequalities imply sufficient
conditions for the convergence of Cesaro means of the Vilenkin-Fourier series
in the LP—metric in terms of the modulus of continuity. Furthermore, we also
proved the sharpness of these conditions. In particular, we find a continuous
function under some condition of the modulus of continuity, for which Cesaro
means of the Vilenkin-Fourier series diverge in the LP— metric.

This PhD thesis consists of three main Chapters, based on five papers. At
first, we have an Introduction, where we give a general overview of fundamental
definitions and notations, followed by historical and new results, on which our
study is based and inspired. We also give a formulation of our main results in
this general frame and review some auxiliary results, that are significant for the
proofs of our new theorems in the next main chapters.

In Chapter[i] we investigate the approximation properties of Cesaro means
of negative order of the one-dimensional Vilenkin-Fourier Series. In particular,
we derive sufficient conditions for the convergence of the means o, “(f, z) to
f(x) in the LP— metric in terms of the modulus of continuity. Moreover, we
prove the sharpness of these conditions.

Chapter[]is focused on a new approach to investigate the rate of L” approx-
imation by Cesaro means of negative order of the two-dimensional Vilenkin-
Fourier Series of functions from LP. In particular, we derived a necessary and
sufficient condition for the convergence of Cesaro (C, —a, — ) means with «, 8
e (0,1) in terms of the modulus of continuity. Some corresponding sharpness
results are proved also in this case.

Chapter[glis devoted to deriving some new results concerning the behavior
of Cesaro (C,—«) means of the quadratic partial sums of double Vilenkin-
Fourier series. The new results are sharp also in this case.

Remark: All main results in this PhD thesis are also published in interna-
tional journals.






Preface

This PhD thesis is written as a monograph and is based on the following papers
(papers A-E):

A T.Tepnadze, On the approximation properties of Cesaro means of nega-
tive order of Vilenkin-Fourier series. Studia Sci. Math. Hung. 53 (2016), no
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sums of double Vilenkin-Fourier series. To appear in Nonlinear Studies in
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E T. Tepnadze, Cesaro means of negative order of the one-dimensional
Vilenkin-Fourier series. Bulletin of the L.N. Gumilyov Eurasian National
University. Mathematics. Computer science. Mechanics Series 135 (2021),
no. 2, 6-11.

The main results in these publications are put into a more general frame
in an Introduction. In particular, the Introduction contains a brief overview
of the necessary definitions and a formulation of the main results from all
five publications and related results. Furthermore, there are some applied
problems in the Introduction included, which are related to the research in this
PhD thesis.
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Chapter 0
Introduction

Definitions and Notations

Classical Fourier analysis is very important for various applications in engineer-
ing science. In this PhD thesis, we derive some new sharp results in a modern
form of Fourier analysis, where the classical orthonormal systems are replaced
by some orthonormal systems from the point of view of the structure of a topo-
logical group.

This PhD thesis in Engineering Science and Mathematics is mainly focused
on the investigation of the approximation properties of Cesaro means of the
Vilenkin-Fourier series. For this we need to give a brief introduction including
the most important definitions e.g. those of the Vilenkin system and the
Vilenkin group. The Vilenkin system was introduced by Vilenkin in 1947 (see

[1350).

If we denote N, as the set of positive integers, then N can be defined as
follows: N := N, U {0}.

Let m := (mg,m1,...) denote a sequence of positive integers not less then
2. By the set Z,,, := {0, 1,...,my — 1} the additive group of integers mod my,
can be denoted.

Define the group G/, as the complete direct product of the groups Z,,, with
the product of the discrete topologies of 7, 's.

The direct product i of the measures

i ({73)

is called the Haar measure on G,,, and i (G,,,) = 1.

The elements of G,,, can be represented by sequences z := (zg, z1, ..., Z;, ...)
(xj € ij) :

The group operation + in G,, is given by

1
= — | € L.
-~ (j v

x4y = ((xo + yo)mod mg, ..., (xx + yr ) mod my, ...) ,

forz := (zg, ..., 7k, ...) and y := (Yo, -, Yk, ---) € G-

The inverse of + will be denoted by —.

If the sequence m is bounded, then G,,, is called a bounded Vilenkin group.
In this PhD thesis we will consider only bounded Vilenkin groups.

It is easy to give a base for the neighborhoods of G, :

IO (Z‘) = Gm

11



Introduction

L, (LC) = {y € Gm|y0 =T,y Yn—1 = Tn-1 }»

where z € G, and n € N. We can define I,, := I,, (0) forn € N.

Sete, := (0,...,0,1,0,...) € G,,, where the n—th coordinate is equal to 1
and the rest are zeros (n € N).

If we define the so-called generalized number system based on m in the
following way: My := 1, M1 := mpMy, (k€ N).Then every n € N can be
uniquely expressed as

n = ZTL]‘MJ', with n; € Zm_,» (] S N+),
j=0

where only a finite number of n;'s differ from zero.

We use the following notation: Let |n| :=max{k € N : n, # 0} (thatis,
M, <n < My 41)-

In order to introduce an orthonormal system on G,,, at first we need to
define the complex-valued function r4 (z) : G,,, — C (see Paley [93]), which is
called the generalized Rademacher function, in the following way:

o
ri(z) == exp( :Zk>7 (1'2:—17 x € G, k € N).

Now based on the the generalized Rademacher function we define the
Vilenkin system v := (¢,, : n € N) on G, as follows:

Y, () ::Her(m), (neN).
k=0

In particular, we call the system the Walsh-Paley if m = 2. Each %, is a character
of G,,, and all characters of G,, are of this norm. Moreover, ¥, (—z) = ¥, (x).
The Vilenkin system is complete in L' (G,,) (see Vilenkin [135]).

If f € L' (G,,) we can establish the following definitions with respect to the
Vilenkin system:
Fourier coefficients:

Fk):= | fiwdp, (k €N),
GTN.
Partial sums:

Fejér means:

onfzzfj(l— ) Fm (e,

12



Dirichlet kernels:

n—1
Dn:=Y i, (n €Ny),
k=0
Fejér kernels:
1 n
=—) Dyi(2)
"=

Recall that (see Golubov, Efimov, and Skvortsov [70] or Schipp, Wade, Simon
and Pal[108])

M,, ifzel,,
D]\/fn (l‘) = { 0, if xx¢ I,. (0.1)

It is well known that o,, f can be rewritten as follows:
onf( /f o @ = 1) du (1),

The (C, —«) means of the Vilenkin-Fourier series are defined by

ZA;“f Ui () ,

0, (f, )

n

where

a—i—l)...(a—i—n).

ag=1,  aAz=!

n

n!
It is well known that (see Zygmund [159])
n
Ag =) Aph (0.2)
k=0
AY =AY = A2TL (0.3)
AL~ n®. (0.4)

The (C, —a)) means of the Vilenkin-Fourier series can be rewritten as follows:

o, (f,2)

ZAn ko1 (Skpa f (2) = Sif ()

TL

<ZA Skf X_:A;gk,yskf ($)>
k=1

13



Introduction

r— ( 3 (A;ixk —A;gk,l)skf (x) +Snf (1‘))

= Al_a (Z ALCTLSS (x) +Snf(x)>

k=1
iA a— 1Sk:f

k=
m) is defined by

The norm of the space L? (G

1/p
||f||p:=(C f(:v)lpdu(l‘)) , (I<p<oo).

Denote by C(G,,) the class of continuous functions on the group G,,,
endoved with the supremum norm.

For the sake of brevity in notation, we agree to write L*> (G,,) instead of
C(Gp).

Let f € LP (G1,),1 < p < o0. The expression

1
y (Mf) = s I (=0~ £,

is called the modulus of continuity.

Next, we give an overview of some historical results in this research area.

A number of significant results have been obtained regarding the approxi-
mate properties of Cesaro means. In the following, however, only the results
are presented that are the most essential for this PhD thesis.

In 1885, Weierstrass [143] proved that if f € C(T'), then

E.(f)c =0, asn— oo,

where E,,(f)c is the best uniform approximation of f by trigonometric polyno-
mial of degree < n.

Lebesgue [79] was the first, who applied this statement in 1906 to the theory
of trigonometric series. He proved that if f € C(T), then

15 (f) = fllc < AEn(f)clog(n+2), neN.
In 1910, he also showed that if f € Lip o with « €]0, 1], then
150 (f) = flle < A(f)n""log(n +2), forn € N.
We can easily verify that if f € Lip « with « €]0, 1], then, forany n € N

) A(f)n~*log(n+2) ifa€]0,1]
Ho-n(f)_fHCS {A(f)nalogQ(n+2) ifa=1 .

14



Later, Bernstein [6] improved these estimations. In particular, in 1912 he
showed that if f € Lip a with « €]0, 1], then, for any n € N,

: A(f)n—e if a €]0, 1]
Han(f) - f”c = {A(f)n“ log(n+2) ifa=1

)

where the order can not be improved.
In 1940, Nikolskii proved that if f € Lip a with a € [0, 1], then, for any
n>ng > 1,

2 logn + 7 ifa=1
1 ™m n
sup On, - = e . ar . s
feLip(yH () fHC {ﬂ(fi(&))nasm2+’yn(a) if a €]0, 1]

where n|v,| < Aand n® |y, (a)] < A(a).
Natanson in 1950 established that if f € C(T), then

Job(5) - Al < 30| 2B | fornen.

In 1954, lzumi proved that if f € Lip a with a €]0, 1], then
oo (f) = f}o < A(f,a)n*log(n+2), neN.

In 1956, Flett [17] investigated approximating properties of (C,a)-means
at single points and in the norm of C(T), with o € [0, +oc]. In particular, he
generalized some results of Bernstein and others.

In 1960, Taberski [19] proved the following theorems:
a)if f € C(T), then, foranyn € N,

A(f,0)w (n™2, f) if a €]0,1]

low(f) = Flle < {A(ﬁ dw [ntlog(n+2), f]  ifae[l,o00]

b)if f € Lip a with « €]0, 1], then for any n € N,

A(f, By~ if a €]0, 8]
oh(f) = fllo < S A(f. B)n log(n+2) ifa=p
A(f, B)n‘ﬁ if « €]8,1]

and

oB(F) — A(f, B)n~« if « €]0,1[, 8 € [1, +o0]
(5= fllo < {A(f,ﬁ)nllog(n+2) ifa=1,8 € [1,4+00]

In 1961, Stechkin [118] showed that if f € C(T), then

lon 1 (f) = fllo < A2 > En(f)e,  formeN.

k=1

15



Introduction

This inequality also holds for f € LP(T) withp € [1, 4+o0].
We should add that for p €]1, +oo[ we also have that

lon_s () = fll, < A@)n™" Y Ei(f)p, forneN.
k=1

Thus, the approximating properties of Cesaro means of positive orders in
detail were investigated.
In 1925, Zygmund proved that if f € Lip a with a €]0, 1], then for any
B €0, af
o2 (f) = fllo < Af, B~ for neN.

In 1928, Hardy and Littlewood [72] showed that if f € C(T") N Lip(«, p) with
a €]0,1]and p €]1,+c0 [, then f € Lip (a — %) . Moreover, in this case we have
the following estimation:

[1Sn(f) = flle < Alp, f)nt/P=*log(n+2), for neN.
Later, in 1955, Izumi [77] showed that a more precise estimate holds:
1S.(f) = fllc < A(p, f)n*/P=>,  for neN.
In 1955, Satd [102]-[103] proved that if f € C(T) and « €]0, 1], then

HU;a(f) - f”c

+n_1/ t2w(t, f)cdt}.
1/n

In his monography Zhizhiashvili investigated the behavior of Cesaro
means of negative order for trigonometric Fourier series in detail. In particular,
he proved the following estimate:

Theorem Zh1. [i56] Let f € LP(T) for some p € [1,00] and « € (0,1). Then

lowath) - 11,

gA(na){(n“H)w(?) <1,f) +n*1/ﬂ t2w(2>(t,f)pdt},
n P 1/n

forn e N.

Moreover, he also proved that

16



Corollary Zh2. Let f € LP(T) for some p € [1,00] and « € (0,1). Then

lon®(f) = fl, < Ap, )nw l,f ,
p n

p
forn e N.

Fine proved that if f € L', then the Walsh-Fourier series are almost
everywhere (C, «) summable to the function f for all a > 0.

In [104] Schipp agrees with the Carleson-Hunt point of view and shows that
the maximal function associated with a large class of summability methods is
of type (o0, 00) and of weak type (1, 1).

Pal and Simon considered the same approach for Vilenkin groups of
bounded type and showed the following:

If o, f represents the n-th partial Cesaro sum of S,, f and if o* f := sup,,~ o |on f],
then
plz o™ f(@)| >y} < Clflly /y, y > 0.

Therefore from f € L1(G) it follows that o* f is weakly integrable.
Using atomic H'(G), Nobuhiko proved that

/ o fdi < C |l -
G

Consequently, if f € H!(G), then we have that o* f € L'(G).
Baiarstanova [5] has investigated (C, 1) summability of subsequences of
Walsh-Fourier series. She showed that if

w(d, f) = O(1/+/1og(1/d)), as § — oo,

then the subsequence of Walsh-Fourier series is uniformly (C, 1) summable.
Schipp [105] proved that if f € L!, then

m—1

> {18k f — PP

k=0

1
m

converges to zero almost everywhere, as m — oo, forany 0 < p < 0.
Yano [154] studied the growth of (C, 5) sums of Walsh-Fourier series in the
L? space. He proved thatif 1 <p < 00,0 < a« < 1and f € Lip(a, LP), then

Haf(f) — f“p =0(n"%), asn — oo,

where 5 > a.

Skvortsov proved that this estimation also holds for 0 < f < o
Furthermore, he obtained an order estimation for the limiting case when o = 1:
if f € Lip(1, L?), then

||ag(f) - f”p = O(logn/n), asn — oco.

17
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In addition, he proved that there is an absolute constant C such that if n >
0,6 >0and f € LP, then

150 (f) = f|l, < C27™ > 2Fw, (275, ),

k=0

where ¢, (f) represents the partial (C, 3) sum of Walsh-Fourier series in any

piecewise linear rearrangement, while m is defined by 2™ < n < 2m+1,

More precisely, if f € L?,1 < p < oo, then the (C,3) sum of any piecewise

linear rearrangement of the Walsh-Fourier series converges to f in LP norm.
These results for Vilenkin groups of bounded type were generalized by

Skvortsov [116].

The first results concerning Cesaro means of negative order of the Walsh-
Fourier series have been studied by Tevzadze [133]. He proved convergence in
the norm. In his papers, approximate properties have not been investigated.

Goginava [51] studied the rate of convergence of Cesaro means of negative
order of Walsh-Fourier series. These results of Goginava are analogical of the
above-mentioned Zhizhiashvili's theorems in the case of the Walsh system. In
particular, the following theorem was proved:

Theorem G1. (See [57]) Let f belong to LP (G5) for some p € [1,00] and « € (0, 1).
Then, for any 2F < n < 2F+1 (k,n € N) the inequality

k—2
HO’;G (f) _ f”p < c(p, a) {Qkﬂ(w (1/2k_1’f)p + Z2T‘—k’w (1/2T’f)p}
r=0

holds.
Corollary G1. (See [57]) Let f(x) belong to LP[(0,1)] for some p € [1, 00| and let

2°%w (1/2571 f) =0, as k — oo, a € (0,1).

Then
lon® (f) — pr —0 as n— oco.

n

For p = oo the sharpness of this Corollary was proved by Tevzadze [133].
Moreover, Goginava in the following theorem showed that this Corollary can
not be improved in the case p = 1.

Theorem G2. (See [57]) For every o € (0, 1), there exists a function f, € L' (]0,1])
for which
w (9, fo) = O (6%),

and
lim sup o3 (fo) — fol|, > 0.
n—oo

18



The Summability of Cesaro means of negative order of the Vilenkin-Fourier
series has not been investigated yet. One main goal of this PhD thesis is
to study approximation properties of Cesaro means of negative order of the
Vilenkin-Fourier series. The rate of convergence will be estimated in terms of
the modulus of continuity. In particular, we investigate and two-dimensional
cases. More preconeisely, in Chapter[|we are going to establish approximation
properties of Cesaro (C, —a) means with a € (0, 1) for the one-dimensional
Vilenkin-Fourier series.

Theorem 1. (See Paper[A) Let f belong to L? (G,,) for some p € [1,00] and o €
(0,1). Then, forany My <n < My (k,n € N), the inequality

k—2
o () = £1l, < e () {M,?w (1M1, )y + Y 3 <1/MT,f>p}
r=0
holds.

This result allows us to obtain a condition which is sufficient for the conver-
gence of the means o,,“(f, x) to f(x) in the LP—metric.

Corollary 1. (See Paper[A) Let f belong to L* (Gy,) for some p € [1,00] and let

€ (0,1).1f
o(#37), = g

HJ;O‘ (f)fpr%O as n — oo.

then

Next, we investigate the sharpness of Corollary 1. In particular, the following
Theorem holds:

Theorem 2. (See PaperlE) For every o € (0,1) , there exists a function f € C (Gy,)
for which
1 1
w Yy A =0 — )
(f Mkl)c (Mk”-‘ )

lim sup ||01_V[(: (f) = le > 0.
k—r o0

and

Since for a continuous function we have proved divergence in the space L1,
we can conclude the following corollary:

Corollary 2. (See Paper[E) For every o € (0,1) , there exists a function f € C (Gy,)
for which

19
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and
lim sup o> (f)=f|| >0, forsomep € [1,00].
k—o0 ) p

Chapter [2] studies the rate of L? approximation by Cesaro means of nega-
tive order of rectangular partial sums of the two-dimensional Vilenkin-Fourier
Series of functions from LP. Before we present these results, we need to intro-
duce some notation concerning the theory of two-dimensional Vilenkin system.

Let 7 be a sequence like m. The relation between the sequences (1,,) and
(M,,) is the same as between sequences (m,,) and (M,,) .

The group G, x Gy, is called a two-dimensional Vilenkin group. We also
suppose that m = m and G,, x Gz = G2,.

he normalized Haar measure is denoted by x as in the one-dimensional
case.

The norm of the space L? (G

m

) is defined by

1/p

T /|f<x,y>|pdu<z,y> L (1<p<oo).
G2,

Denote by C (G?,) the class of continuous functions on the group G2,
endowed with the supremum norm.

For the sake of brevity in notation, we agree to write L> (G%n) instead of
C(G2).

The two-dimensional Fourier coefficients, the rectangular partial sums of
the Fourier series, the Dirichlet kernels with respect to the two-dimensional
Vilenkin system are respectively defined as follows:

f (n1,n2) /f 2, Y) Uny () Py (y) dps (2,9)

ny—1lno—1

thnz Y, f Z Z f klakQ ’(/}h( )wkz (y)’

k1=0 ko=0

Dy i, (z,y) := Dn, (v) Dn, (y),

Moreover, we define

n—1

SO (z,y, )= Fly)tn (=
1—0

SP (z,y, f) =D fla,r) v (y),
=0

20



where

fwwz/fwwmummm
G,
and

fmmz/fmmm@mww
G

The (C, —a, —f) means of the two-dimensional Vilenkin-Fourier series are
defined as

n—1lm-—1
oo @y, f) = QABZ A AL TG () (v),
0

mo =0 j=

The (C, —a, —f) means of the two-dimensional Vilenkin-Fourier series can
be rewritten as follows:

n—1m—1

0-7:,%’2 (l‘yf aAﬁZZAnzlAmﬁjl

=0 7=0

X(Si+1,j+1 (xayv f) - Sz‘+1,j (fUa Y, f) - Si.,j+1 (x,y, f) - Si,j (xvyv f))

AfalA—ﬁ (ZZATL it m— ] (I7y7f)

=1 5=1

m—1

_ZZAHQZ mﬂj 1 ,7(x,y,f)

=1 j=1

.

n—1

_ZZATL i—1 ’I’_nﬁj ('T’yaf)
Jj=

=1

i=1 j=1

n—1m—1
_ZZAn i— 1Ar_nﬂ] 1S7j(x?y7f))

n m—1
1 -«
eV (§ ( A AL = AR )8 (. f)
noAme =1\

n—1 m—1
- Z ( A;fi—l(A;lﬁ—j - A:nﬁ_j_l)si,j (,y, f)

21
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+ An i— 15 (m,y,f))
1 n
ey (Z (Z A2 A S (., f)
+ A% Sim (2,y, f))
n—1 [m—1
- Z Z A:Lfi—lA;nﬂ_;lSi,j (w,y, f)
+ A% 1 Sim (2,9, f))

- A A p—a 4B ZZAH zAmBJ Sij (2.9, f)

=1 j=1
n—1 m
DD AL AT S @y f)
i=1 j=1
n—1 m
= i | 2 A - A AT S @ f)
A =1 j=1

- A;ﬁ,;lsn,j (1‘7ya f))

n—1 m
= a [3 A iy lAmﬁleZJ(xv:%f)
A i=1 j=1
- A,;fi}lan ($7yaf))

m

= aABZZA“ YALPS (. ).

moi=1 j=1

The dyadic partial modulus of continuity w; and ws of a function f €
L? (G2,) inthe LP-norm are respectively defined by

uel,

o (f, A;) = sup IF (4w ) = £ (],
and

or (Figp ) = swp I Got0) = £l
n/p

vel,

while the dyadic mixed modulus of continuity is defined as follows:

e (P31 31,

22



= sup  [f(Hu-t+o) = flHu) = fF0)+ L0,

(u,w)EL, X I,
The dyadic total modulus of continuity is defined by

o(f3p) = s IFCrut0 =6,

(u,w)EIL, X1,

It is evident that

Since ) . .
)< .
w12<f’Mn’Mm> < 2w <f’Mn)’
and . ) .
I P _—
wi1,2 (f’ Mn’Mm> < 2w (f’ Mm>’

it is clear that

k) 2o (), o ).

and we also have that

1 1
—_ <2
w1,2 <f7 Mn’ M7n> w (f7 n) )

wl,2(f7M ]\4—1 ><2w<f7]\4—1)

and

It is easy to show that the dyadic total modulus of continuity can be

estimated by the dyadic partial modulus of continuity w; and ws:

(u,w)eln XTIy

o(f3p) = sw NfCruo)
n/p

_f('7'+v)+f('v'+v)_f('v')p

< sup Hf(ﬂ*’(,t,ﬁ*’l))*f(,#‘v)”p
(u,w)el, XI,

+  sup Hf('7'+v)_f(.’.)”p

(u,v)EIL, X I,

= Wh (fv&) + wa <f7]\;) .

(0.5)
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Suppose that w is a modulus of continuity. We define
HZ :={fecCI?:wif d)c=0w)),i=1,72}

and

HY :={f € LP(I?) : wi(f,6), = O(w(d)), i = 1,2}

The problems of summability of partial sums and Cesaro means of nega-
tive order for trigonometric Fourier series were investigated in detail by Zhizhi-

ashvili [156].

Moreover, Goginava in proved some new approximation properties of
Cesaro (C, —a, —f8) means with «, 5 € (0, 1) in the case of double Walsh-Fourier
series. In particular, the following theorem was proved:

Theorem G3. (See [55]) Let f belong to LP (G5 x G2) for some p € [1,00] and «, 3
€ (0,1). Then, for any 2k <n < 2k 2l <m < 2141 (k. n € N), the inequality
lowsi™® (1) = £, < e, B) (25w (£,1/257),

+2l5w2 (f7 1/2l—1)p + 2ka2lﬁUJ112 (Jc7 1/2/6—1’ 1/2l—1)p

+Z2T oy (f,1/27) +Zz“ f,1/25)>

s=0
holds.

This theorem implies the following convergence results:

Corollary G2. (See [55]) Let f belong to LP(I?) for some p € [1,00] . If

2k, (f,1/2k)p%0 ask - 00 (0<a<l),
2w, (f,1/2), =0 as I = o0 (0< B <1),

22 5 (f,1/2%,1/2") =0 as k01— oo,

then
lono?(f) - f||p —0 as n,m — .

Corollary G3. (See [55]) Let f belong to L? (I?) for some p € [1,00] and let «,3 €
0,1), a+B<LIf

w(f,8), =o0(6*7F),
then
lone =P (f) - fll, =0 as nm— oo

n,m
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The following theorem shows that this Corollary can not be improved.

Theorem GA4. (See [55]) For every o, 5 € (0,1), o + B < 1, there exists a function
f € C (I?) for which

w (f,0),=0(5""7),

and
lim sup HU;T’QZB (f) — le > 0.

n—oo

In Chapter[2the rate of convergence for Cesaro means of negative order of
rectangular partial sums of the two-dimensional Vilenkin-Fourier Series will be
proved in terms of the partial and mixed modulus of continuity. The following
theorems are analogous to the above-mentioned theorems of Goginava. We
have the following result:

Theorem 3. (See Paper@ Let f belong to L? (GZ,) for some p € [1,00] and o
€ (0,1). Then, forany My < n < Mpy1 M; < m < Mp1(k,n,m,l € N) the
inequality

o™ (1) = £, < (@, 8) (wr (/;1/My—1), M

Hws (f, 1/Mi—y), M+ wi (f,1/My—1,1/M,_1), MM

+Z

=2
1/M,) +;}le2 (f, 1/My) )

holds.
From this main result we can obtain the following convergence results:

Corollary 3. (See Paper Let f belong to LP for some p € [1,00]. If

Mw <f,Mk> —0ask—o00(0<a<l),

1
Mlﬁw2<f,zwl> —00sl—00 (0<p<1),
P

1

M;?Mlﬁwl,2<f,M M> —0 as k,l— oo,
then
|on P (f) - fll, =0 as n,m— oo

n,m
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Corollary 4. (See Paper Let f belong to L? for some p € [1,00| and let
a,fe(0,1),a+8<1.If

o), = ((G))

lone =P (f) - fll, =0 as n,m— oo

n,m

then

The next main result shows in particular that Corollary 4 cannot be im-
proved.

Theorem 4. (See Paper@ Foreverya, 8 € (0,1),a+f < 1, there exists a function
Jfo € C (G, x Gy,) for which

()=o) )

lim sup HO’M Mﬁ )—fH1 > 0.

n— oo

and

In Chapter[gJwe investigate the behavior of the Cesaro (C, —a) means of the
quadratic partial sums of double Vilenkin-Fourier series.

The (C, —a) means of the double Vilenkin-Fourier series are defined as
follows

2 ()

=== ZA o= 1S (f,z,y).

nljl

Next, we note that Zhizhiashvili also investigated the behavior of
Cesaro means of negative order for trigonometric Fourier series.

Theorem Zh3. (See [156]) Let o € (—1,0) U (0, +00). Let f belong to LP([—m, 7]?)
forsome p € [1,00]. Then
a) if a € (0,+00), then
log (f) = I, (0.6)

s ™

1
< A(p, o) o /51_2w1(517f)pd51+/52_2w2(527f)pd52 ;

1

b)if a € (0,1), then
o™ (F) = 1l (0.7)
< A(p,0) {m log(m +2) a1 )y + - ]}
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In fact, Zhizhiashvili also proved that inequality (0.6) holds forp = 1 orp = oo
for the whole space L,,.

Moreover, Goginava [53] proved that under the condition w(d)/d —
o0, as d — 0+, inequality (0.7) cannot be improved on the whole class H,;’ for
p = 1o0rp=oo. In particular, he proved that the following theorem is valid:

Theorem G5. (See [53]) Suppose that o € (0,1) and w(d)/6 — coasd — 0+ .
Then, for p = oo or p = 1 in the class H};, there exists a function f depending on p

such that -
i sap 172 =7l
n—s00 n“w( )logn

Inequality implies (see [i56])) an analog of Zygmund's theorem (see
[160]) for the means o, ¢. In particular, we have the following result:

Theorem Zh4. (See [156]) Suppose that f € Hg“ forsome o € (0,1). Then, for any
B € (0, ), the following convergence result holds:
o (f) = fIl, =0, asm — co.
It follows from Theorem G5 that for 5 = o Theorem Zh4 fails for p = +oco
and p = 1. Namely, Goginava proved the following result.

Theorem G6. (See [53]) Let « € (0,1). Then, for p = oo or p = 1 there exists a
function f in the class Hga depending on p such that

lim sup HU;ﬁ (f) - f“p =

n—>00

Moreover, he investigated the behavior of Cesaro (C, —a)—means with
a € (0,1) in the case of the quadratic partial sums of Walsh-Fourier series. In
particular, the following results are due to him:

Theorem G7. (See [56]) Let f belong to LP (G3) for some p € [1,00] and « € (0, 1).
Then, for any 2F < n < 281 (k,n € N), the inequality
los () = 11,

< ca) {25 (£,1/2571), + 25wy (£,1/257)

p

+ZQT Ry (f,1/27) +Z2S R f,l/Q)}

s=0
holds.

Theorem G8. (See [56]) Let f belong to LP (G2) for some p € [1,00] and « € (0, 1).
Then, for any 2F <n < 2+l (k n € N), the inequality

lowe (- 11|,
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< (o) {2"hwn (£,1/2571), + 2k (£,1/257Y),

+Z2” R (f,1/27) +225 Fuws (£,1/2°) }
holds.
Theorem G9. (See [56]) a) Let f belong to H} for some p € [1,00] and « € (0,1).

Then
oz (9 =71, =0 (2 (5 )

b) Let w(d)/6 — oo as & — 0+ . Then there exists function f € HY., for which

. Ha_ f“1
hmkSBOOW

Theorem G10. (See [56]) a) Let f € HZ and « € (0,1). Then

o (F)— fllo =0 (m (;) logn) .

b) Let w(d)/6 — oo as & — 0+ . Then there exists function g € HY, for which

I
lim sup oy (9) — gll;

n—oo NYW (%) logn =0

Theorem G11. (See [56]) a) Let f € HY and « € (0,1). Then

loze ()~ £]|, =0 (m (;) logn) |

b) Let w(d)/0 — oo as § — 0 + . Then there exists function h belong to f € HY, for
which o
i sup 1727 () = bl

n—oo NAW (%) logn > 0.

In Chapter [3] we state and prove the analogous results in the case of the
double Vilenkin-Fourier series. Our main results read:

Theorem 5. (See Paper@ Let f belong to L? (GZ,) for some p € [1,00] and o €
(0,1). Then, forany My <n < My (k,n € N), the inequality

loasy () =11,
< (@) (wr (£,1/Mior), M +wz (f,1/M-),, Mg
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k— k—2

M), + Y e 1/Ms>p>

:0 s=0
holds.

Theorem 6. (See Paper@ Let f belong to L¥ (G2,) for some p € [1,00] and « €
(0,1). Then, for any My <n < Myy1 (k,n € N), the inequality

lowe (-1,

< (@) (wi (£, 1/My1), Mgt logn +wa (f,1/ M), My logn

1/M)>

Theorem 5 and Theorem 6 imply the following sufficient conditions for the
convergence of Cesaro means of the quadratic partial sums of the double
Vilenkin-Fourier series in the norm in terms of the modulus of continuity.

g

k—2
+ZMkw1 (f.1/M,), Z
r=0
holds.

Corollary 5. (See Paper[D) Let f belongto L? for somep € [1,00] and leta € (0,1).

If
1 1
“(#50), = ()

||O']T4(: (f)—f||p—>0 as k — oo.

then

Corollary 6. (See Paper[D) Let f belongto L? for somep € [1,00] and leta € (0,1).

If
1
<f’ M. 1> 0<M,glong>’

o (f)=fl, =0 as n— oo

then
Moreover, we have also proved the sharpness of Corollary 5 and Corollary

6. In particular, the following Theorems hold:

Theorem 7. (See Paper D) For every o € (0,1), there exists a function f, €

C (GZ,) for which
1 1
“(rms). o ()

lim sup ||0;4?: (f)— le > 0.
k—oc0

and
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Since for a continuous function we have proved divergence in the space L1,
we can conclude the following corollary:

Corollary 7. (See Paper D) For every o € (0,1), there exists a function fo €
C (G2) C L, (G2,) for some p € [1, <], for which

1 1
“(rms), o)

limksggo Ha;[: (f) - pr > 0.

and

Theorem 8. (See Paper@) Forevery a € (0,1), there exists a function g € C (G2,)

for which
1 1
wlg—) =0,
(g Mk-—l)c (M;?‘ 10ng>

lim sup Ha;“ (9) — gHC > 0.
n—oo

and

Theorem 9. (See Paper D) For every oo € (0,1), p = 1, there exists a function
h € Ly (GZ) for which

1 1
w(h——) =0(—a—),
< Mkl)Ll (M;?IOng>

lim sup |0, (h) — h||1 > 0.
n—oo

and

The summability of the Walsh- and Vilenkin-Fourier series for one and two-
dimensional cases have been investigated by a lot of researchers. For instance,
we list researches conducted by the following authors: Alotaibi and Mursaleen
[3], Avdispahi¢ and Memic¢ [4], Blahota, G&t and Goginava [7] - [8], Blahota and
Goginava [9], Blahota and Nagy [10], Blahota, Nagy, Persson and Tephnadze
[7], Blahota, Persson and Tephnadze [i2], Blahota and Tephnadze - [14],
Chandra [15], Fridli - [19]l, Galoyan and Grigoryan [20], Gat [21] - [28], Gat and
Blahota [29], Gat and Goginava - [38], Gat and Nagy [39], Getsadze [Z0],
Ghodadra [41] - [43], Goginava [45] - [65], Goginava, and Gogoladze [66] - [67],
Goginava and Nagy [68], Goginava and Sahakian [69], Grigoryan and Sargsyan
[71, lofina and Volosivets - [751, Memi¢, Simon and Tephnadze [81], Méricz,
Schipp and Wade [82], Méricz and Schipp [83], Nadiradze [84], Nagy [85], Nagy
and Salim [86], Oniani [go], Oninani and Goginava - [92], Persson - 98],
Persson, Tephnadze and Weisz [97], Persson, Schipp, Tephnadze and Weisz
[98]l, Polyakov - [100], Sahoo [[io1], Simon - [, Simon and Weisz [112] -
[713], Schipp [05], Scheckter and Sukochev [[i07], Suetin [177], Tephnadze [120] -
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[130], Tephnadze and Tutberidze [131], Tevzadze [32], Tukhliev [13Z], Volosivets

- [137], Volosivets and Kuznetsova [138], Voronov [139] - [140], Wade [147] -
[142], Weisz [144] - [153], Zhang [155], Zhu [157], Zhu and Zheng [158].

Finally, | would like to mention that my work in this area has been inspired
by these researches in classical Fourier analysis.
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Chapter 1

Approximation Properties of Cesaro
Means of the one-dimensional
Vilenkin-Fourier Series

1.1 Formulation of the main results

In this Chapter we establish approximation properties of Cesaro (C, —«) means
with a € (0,1) in the case of the one-dimensional Vilenkin-Fourier Series. Our
first main result reads:

Theorem 1.1. (See Paper[A) Let f belong to L? (G.,) for some p € [1,00] and « €
(0,1). Then, forany My <n < My, (k,n € N), the inequality

k—2
o (f) = fIl, < c(p.a) {Msw (1/ M1, £), + ]]‘ézw (1/M,, f>p}
r=0

holds.

This result allows us to obtain a condition which is sufficient for the conver-
gence of the means o,,“(f, x) to f(x) in the LP—metric.

Corollary 1.2. (See Paper[A) Let f belong to L? (G.,) for some p € [1,00] and let

€ (0,1).If
o(f37), = g)

l|lon (f)—f“p—>0 as n — oo.

n

then

Next, we state the sharpness of Corollary[i.2} In particular, the following
Theorem holds:

Theorem 1.3. (See Paper [E) For every o € (0,1), there exists a function f &
C (G,) for which

and
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1. Approximation Properties of Cesaro Means of the one-dimensional
Vilenkin-Fourier Series

Since for a continuous function we have proved the divergence in the space
L4, we can conclude the following consequence of this result:

Corollary 1.4. (See Paper For every o € (0,1), there exists a function f €

C (Gy,) , for which
1 1
Yy A =0 — )
“(#50), =0 ()

lim sup |joy” (f) = f|| >0, forsomep e [1,00].
k—o00 p

and
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Auxiliary results

1.2 Auxiliary results

In order to prove Theorem[i.7jwe need the following results:

Lemma 1.1. (See [2])Let oy, ..., «up, be real numbers.Then

i/

G

n n 1/2
;aka(m) du(z) < 7 (; ak> ,

where cis an absolute constant.
Abel’s Transformation. (See 1) If a1, ...,an,b1,...,bn, are given complex num-
bers and we set
B, =Y b,
i<n
then the summation by parts is the identity

N N-1

Zakbk =anyBy — Z By(ag1 — ag).

k=1 k=1

Generalized Minkowski’s Inequality. (See [73]) Let f € LP (G,,) and 1 < p < 0.
Then the following inequality holds:

P 1/p
(G/ (c Sldu(e) | duy)

1/p
< |fIP dp (y)> dp () .
i,

Lemma 1.2. Let f € LP(G,,) for some p € [1,00]. Then, for every o € (0,1), the
following estimations holds:

My_1—1
| X AT @ e - O
n v=0

m P

=y
<c(p,a) Z:(:) ST (1/My, f), .
where My, <n < M.
Proof of Lemmal1.2] By applying Abel's transformation, from we get
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Approximation Properties of Cesaro Means of the one-dimensional

1.
Vilenkin-Fourier Series
1 Mp_1—1
— A2 e (W) [f (4 u) = F ()] dp (u) (1.1)
Ve L/ vz:% U 1 (u
g p
My _1
L/ Z Ay o1 (@) [f () — f ()] dp(u)
1 Mp_1—1
= —— Ay D, + A 0N D, (u)
An L{( M 1~ M ; 1

X [f(+u) = FOldp ()],

1 My _1—1
< L/ > ASID @ ()= Olda ()

: | [ A Dat s @1+ = 7 O )

=1+ Is.
From the generalized Minkowski's inequality, and by (0.1) and we obtain

that

I <n(n— Myt —1)"° / M i |lf(+u)— FOlldu(w), 02)

o) Miv1 / 1F () — £ O dp ()

k—

= O (OJ (1/Mk?717 f))p °
Moreover, we use the addition properly of equality and add and subtract
Sm,. (- +u, f)and Sy, (-, f) to I, so we get that

2 Myy1—1
[ amiow (13)

r=0 v=M,

< [f(+u) = fOldu (),
Myyq—1

QL/ Z A1 D, (u)
| v=M,

r=0

36



Auxiliary results

X () = Sar, (- 4w, ] dp (u)]],

1 k—2 Myy1—1
| [ X Ao
=0

X [Sm, (- +u, f) = Sm, (-, )l du (W),

L/ Z D, )

X [Sar, (5 f) = £ Oldp ()],

=111 + Lo + I13.
Since

1f = Sas, (F)ll, < w (/M. £),,

by using the generalized Minkowski's inequality, Lemmafi.]and for I;1, we
can estimate the following:

Myi1—1
I / > A%D, W) (14
n r= OG v=M,

<+ w) = Sa, -+ u, ), din (u)

- Z (1/M,, ),
A r=0
MT+1 1
X/ AnaullD ( ) d/'c(u)
Gm v=M,
k—2

Sc(a)no‘z_: (l/M,,f) M1
r=0

Myi1—1 1/2
X (n—v—1)"27
v=M,
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Vilenkin-Fourier Series

X Mr+1 (n - Mr+1)7a71 Mr+1

Z w(1/M,, ),
r=0
Analogously, we can prove that
=2
Lis <c(wo) Mkw (1/M;, f),- (1.5)

Il
o

T

/f (=) du(®),

and by using (o.1), it is evident that

Since

Myyq—1

/ Z Aol D, (u) (1.6)

Gm

x [SMr ( + uvf) - SMr ('a f)] d/.t (u)

- An%a/SM -+, £) Dy () dpa (u)

MT+1 1

- Z Anav 1ISJV17~ (7f)
v=M,

Myqi1—1

= D ASLS (58, ()
v=DM,
Myy1—1
- Z AnavllsMr('7f)
v=M,
M7v+1 1

= > A ()

v=M,

M,1—1

S A S, (4 f) = 0.

Hence,
Iz = 0. (1.7)
By combining (1.1)-(1.7) we receive the proof of Lemmai.2] [ ]
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Lemma 1.3. Let f € L”(G,,) for some p € [1,00]. Then, for every o € (0, 1), the

following estimations hold

1 / MZ ALC b () [f () = £ ()] dpa ()
EO A v ,
<c(pa)w(1/My_1, f), My
and
1 n
— A8 e (W) [f (4 u) = £ ()] dp (u)

<c(p,)w(1/Mg, f), My,
where My, <n < M.

Proof of Lemma[1.3] We have that

Il :=—
ATLa

M —1
L/ ST A () [F (4 u) — £ ()] dp ()

’U:Mk_l
0

M —1
L/ ST A, () £ (- + u) d ()
v=Mp_1

1
AR
P

X [f ( + u) = SMy_, ( +u, f)] dp (U)Hp

+

My—1
L/ Z A% Wy (W) Sy, (Fu, f) dp(u)

v=Mp_4
m

1
AnC
= IIl + IIQ
Since

M —1
/ Z A;ixqﬂbv (U) SMk—l (+u7f) d'u (u)
G

v=Mp_1
m

Mk—l_l/\ My —1
= > fUui@ > Al
j=0

v:Mk,1

(1.8)

(1.9)
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x / o () 5 () dps (u) =
Gm

for Il; we obtain that

I, =0. (1.10)

Moreover, by using the generalized Minkowski's inequality and the fact that
Hf - SMk—l (f)Hp <w (1/Mk—17 f)pa

we have that

M —1

i / Z A (1.11)

’U]\/fkl

I, <

><Hf “tu) — Sy, (- +u, f) deu u)

<c(a)nw(1/Mg-1,f),

My—1
></ D A (w)| dp(u).
Gm v= J\/[k 1

Lett € Ip_1\Ia, A=1,2,...k—1and M) =pM4 +q,where(0 < g < Mjy.
Then we find that

M —1
> A () (1.12)
v=Mp_1

pMa—1 M —1

SOA () + Y A (1)

v=Mj _1 v=pM 4

(T-‘rl)]\{A—l

= > S A ()

r=Mp_1/Ma v=rMy

qg—1

+ Z A;fv—p]\/IA wU‘FPMA (t)

v=0

—1 Ma—1

= Z Z An v— TA4A¢U+TMA (t)

r= ]\/f}c I/JV[A v=0
+2An v— pMA/(/)'U+pMA (t)
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p—2 Ma—1
= E wTMA § : An v— TMA ()
r=My_1/Ma v=0
Ma—1

+w(P*1)MA (t) Z Ar_Li.lU—(p—l)]\/IA’(/J'U (t)
v=0

.
Fhnrs (8D AT (1)
v=0

= A1 +A2—|—A3

Since Dy, (t) = 0, where t € I4_1\I4 and |Dy (t)|] < k, from Abel's
transformation and by using (0.4), it follows that

p—2 M4
|A1| = Z q/}7"1\/1;1 (t) Z Ar_zfu+1—rMAwU—1 (t) (1.13)
T:]\/fkfl/]\/[A v=1
p—2

- Z Yraa (t) (AT_L Mat1—rMaDMa (t)

T:Mkfl/MA

Ma—1
+ Z An v+1 rMA (t)>|

p—2 MA 2

= Z SV Z ALSL lrMA vt (1)

T:Mk_l/MA

p—2

Ma
c(a) Ma Z Z(n—rMA—v)fafl

r=My_1/Ms v=0

cla)Ma(n—(p—1)Ma)™*

<c(a) My®

Similarly, for A we have that

Ma—1
Aol <cla) Y (n—(p—1) My —v)"" (1.14)
v=0
Map—1
<cla) Y (Matq—v)"
v=0
< c(a) My°.
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Moreover, by using and the fact that ¢ < M4, we get that

q—1

[As[ <c(a)d (g—v)™" (1.15)

v=0
<c(a)g <cla) My ™
We can combine (1.12)-(.15) to obtain that

M —1

> Ay (w)| < ela) MY, (1.16)

v=Mp_1
wheret € Iy 1\Ia, A=1,.. k-1
From it follows that

M —1

/ Z AL by (w)| dp () (1.17)

v=Mj
Gm k=1

k—1 M —1

= > Ay ()| dp(w)

M
AU k—1

s L1 At

: G
11—« 11—
§7 — M}, M

<c(a).

By combining with we have that

Il < c(a)w(1/ Mg, ), My (1.18)
Combining (1), and we can conclude that

M —1

/Z A () [f (- +u) = £ ()] dpa ()

v=Mp_4

<c(a)w(1/My-1, f), My

Analogously, we can prove that
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—
n

L/ ST A0 () [f -+ ) — £ ()] dps ()

v=Mp

< c(a)w (1/My, ), M.

The proof is completed. |

43



1. Approximation Properties of Cesaro Means of the one-dimensional
Vilenkin-Fourier Series

1.3 Proofs of the main results

Proof of Theorem[1.4] In order to prove Theorem[i.] we need to estimate the
difference o, “(f,x) — f(x), which can be presented with three summands in
the following way:

7a(f7 ) f n—uv ( )7f()} dﬂ (u)
My —1—1
= o) [f (4 u) = f ()] dp(u)
m M —1
A {U % 1 8
oo (@) [f (4 u) = F ()] dp (u)
v=Mp
=1+ 1T+ 111
Since
low (£,) = £ O, < Il + 1221, + 12211,

and I, I1, and I1I were already estimated in Lemmas[i.2land[r.3] so the proof
is complete. |

Proof of Theorem[1.3] We define the function

=1
= Z ij (z)
j=1 J
where
2mix;
fi(x) = pj (z) = exp m

First, we prove that

1 1
n/ o n

|f3($—t)—fj(.’1?)|20, j:O>17"'7n_17 tej’ru

Since
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Proofs of the main results

we get that
[f (z—1t) = f (2)]

n—1
<Y @ -0 -5 @)
1= J

+Z M,a - ]\;a’

Jj=n
which means that holds.
Next, we shall prove that o (f) diverges in the L' metric. It is clear that

o, (H) = £l (1.20)

>L/ o (fr) — £ ()] Yag, (&) dps ()

> L/ onie (fs) o, (@) dpe(2)] — |F (M)
1m e
= g LA (Z)G{ i (@) g, (@) dpt ()
|| = 5= [Fom| - [F o).

By the definition of f(Mk), we have

Fan) = / £ (2) o (2) dpt () (1.21)
Gm

— 1 - 1
=35 [ 0@ s ) (o) = 7z
j=1 e
By combining with we find that

o (f) = f|l, = ¢(a) >0, (1.22)

so also the second statement in Theorem- 1.3|is proved. The proof is complete.
[ |
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Chapter 2

Approximation Properties of Cesaro
Means of the two-dimensional
Vilenkin-Fourier Series

2.1 Formulation of the main results

In this Chapter we investigate approximation properties of Cesaro (C, —«, —3)
means with «, 8 € (0, 1) in the case of the double Vilenkin-Fourier series. Our
first main result reads:

Theorem 2.1. (See Paper@ Let f belong to L? (G2,) for some p € [1,00] and «
€ (0,1). Then, forany M < n < Mgy My < m < Mj4q1(k,n,m,l € N), the
following inequality holds:

lows™ () = 11l
< (0, 8) (w1 (f;1/My-1), M + w2 (£,1/My-1), M{

twi2 (f, 1/ My—1,1/M—1), Mgy

-2

k-2 Mr . Ms
+>° A (/M) + > o e 1/Ms)p> :
r=0

s=0

As a consequence of Theorem we obtain the following convergence
results:

Corollary 2.2. (See Paper|B) Let f belong to LP for some p € [1,00] . If

1
M,‘jw1<f7jwk> —0ask—o00(0<a<l),
*/p

1

Mfm(f,Ml) —00sl—00 (0<p<1),
p

R

M?Mzﬁwl,z (fv M, M

> —0 as k,l — oo,
p

then
HJ—@,—B (f) — f”p — 0 as n,m — oo.

n,m
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2. Approximation Properties of Cesaro Means of the two-dimensional
Vilenkin-Fourier Series

Corollary 2.3. (See Paper[B) Let f belong to L? for some p € [1,00] and let
a,fe(0,1),a+p<1If

(), (Ge) ).

Hcr*a’fﬂ (f)— pr —0 as n,m — oo.

n,m

then

The following Theorem shows that Corollary[2.3]cannot be improved.

Theorem 2.4. (See Paper|[B) For every o, 3 € (0,1), a + 3 < 1, there exists a
function fo € C (G, x Gy,) for which

(). o))

lim sup H%Tf:;ﬁ (f) = le >0

n— oo

and
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Auxiliary results

2.2 Auxiliary results

In order to prove Theorem2.qwe need the following Lemmas of independent
interest:

Lemma 2.1. Let f € LP(G?,) for some p € [1, ] . Then, for every o, 3 € (0,1) , the
following estimations holds

—1

8 -
ocA,B / A Am] ()wj()

2
m

X[ (4w +0) = £ dp(u,0)],

k—1 -1
¢(a, ) (Z e (1), + 3 e (. 1/Ms>p> ,
r=0 s=0

l

where M <n< Mk+1,Ml <m< Ml+1.

My —1—1
Proof of Lemmal|2.1] By applying Abel's transformation on >~ A %4 (u),
=0

and by using we have that

My —1—1

S A% ()
1=0

My, 1

= > Alivier (u)

i=1

My _1—1
A; M, — 1+1DMk—1 (u)+ Z Anazle ( )

i=1

By using the same transformation on Z A _;¥j (v), for I we obtain

accordingly the following estimate:

My_1—1M;_1—1

ol WD LTI

<[fC+u-+0) = fC)dp(u )],
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2. Approximation Properties of Cesaro Means of the two-dimensional
Vilenkin-Fourier Series

Mp_1—1

+W /A:n My 1 Do, () D AN Di (u)

i=1
x [f ( +u,-+ U) - f ('7 )} d/J (uvv)”p

M;_1—1

1 i B
+7ﬂ / A’nka_lJrlAmB*]V[l_lJrlDMk—l ('LL) DMl—l (U)

X [f ( +ua'+v) - f(v)} d/‘ (uvv)”p

::Il+12+13+.[4.

From the generalized Minkowski's inequality, and by using and we
obtain that

AS QA /’ My 141 mﬁ My 1Py (W) D,y (U)‘ (2.2)
X Hf( —l—u,-—i—v) - f('f)”pd/f“(uﬂ))

< e, f) My Miy / 1F (4, +0) = £ (), die ()

T 1 xIi—y

= O (w1 (f, 1/My—1)p + w2 (f, 1/Mi—1)p) .

Hence, it is evident that by adding and subtracting Sas, ar, (- +u,- + v, f) and
Snr. v, (5 f) to I in (2.2), we get that

Myy1—1Mgi1—-1

Z_:O ZO / Z Z An aerllAmﬁ j<1‘r1 (u> Dj (U) (23)

G2 =My Jj=Ms,

m
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Auxiliary results

X [f('+uv'+v) —f(-,-)]d,u(u,v)Hp

—21-2 M1 —1 Mo, —1

ZZ [ XY iAo, )

=0 s=0 i=M,  j=DM,
G2, 7=

X [f(.+u"+v)_SMT,MS (-+u,-—|—1},f)] d”(uvv)Hp

Myy1—1 Myyq—1

k—21-2
ZZ [ Y Y arialiniwn
r=0 s=0

G2 i=M, Jj=Ms

X [S[L{T’MS ( + U, - + v, f) - SMT’]WS ('7 "y f)] dli (U,U)Hp

k—21-2 Mys1—1 Mos1—1

+ﬁ Z / Z Z AnazﬁlAmﬂailD (u) Dj (v)

r=0 s=0 G2 i=M, j=M;

X [SMT‘,]\/IS (" ’f) - f ('7 )} d:u (U7U)Hp

= Iy + Lo + 3.

Since

it is easy to prove that

Mg —1 M, -1

S ST A LAl Di(u) Dy (v)

a2 =M, j=DM;
m

X [SJWT,MS ( +u,- +’U,f) - SMryMs ('7 7f)} d:u’ ('LL,’U)
Myj1—1 Mop1—1
a—1 B—1
Z Z An z+1Am Jj+1

=M, j=M,

x / Sat.ar, (-4 + v, f) D; (w) D (0) dp ()
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2. Approximation Properties of Cesaro Means of the two-dimensional
Vilenkin-Fourier Series

My —1 Mo —1
—a—1 4—p-1
- Z Z Angi+1Am[ij+ISMnMs (s f)
i=M, j=M,
Myy1—1Msp1—1
—a—1 4—fB-1
= > ACTNA TS (o S, (F))
i=M, j=M,
Myy1—1 Myq—1
—a—1 4—fB-1
- Z Z Angi+1Am€j+ISMT,Ms ('7'7f)
i=M,  j=M,
Mypp1—1 Msypq—1
—a—1 4—fB-1
= Z Z Angi+1Am€j+ISMr,Ms (5 f)
i=M, j=M,
Mypi1—1Msy1—1
—a—1 4—fB-1
o Z Z Anfi+1Am[ij+IS]Wr,Ms () =0,
i=M, j=M,
and accordingly it follows that
I3 =0. (2.4)

Since
Hf ( +u, -+ U) - SM“]\/[S ( +u,-+ ’Uaf)Hp

< wl(fa 1/Mr)p + w2(f7 1/MS)P7

from the generalized Minkowski's inequality and by using Lemma .1 and
for I;; we can write
Iy (2.5)

k—21-2 Myg1—1 Mosq—1

Sy [ XY A0 D

r=0 s=0 a2 =M, j=M;

m

X Hf(+u,+’())*SMTMS (~+u,~+v,f)||pdu(u,v)

k—21-2
<cla,B)nm® > (wi(f, 1/My)p +walf,1/My)y)
r=0 s=0
M,y1—1
X > ACTND; (u)| dp (u)
G i=M,
M3+1—1
< [1Y A5LD )| du
G Jj=Ms
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Auxiliary results

k—21-2

(0% 5) no‘mB Z Z (Wl (f» 1/Mr)p + w2(f’ 1/MS>P)

r=0 s=0

i=M,

1/2
M, 1—1
x\/MTH( > (n—i+1)‘2"‘2)

1/2
M.g+1—1
X/ Mg11q ( Z (m—j+ 1)-%—2)

=M,

k
< c(a, B) n®m”

r

21-2

(wl(fa 1/MT)1? + w2(f7 1/Ms)p)

I
=)

S

I
=)

X/ MT+1 T+1 —ot V Mr+1
X/ Mgy1(n— Mgyq) ot vV My

k—21-2
—+1 s+1
< el By S5 M
a+1 B+1
r=0 s= OM M

X (@i (f,1/My)p + wa(f, 1/M;)p)

k—2 M, =2 My
<c(ap) (Z S (1.1/M), 3
r—0 s=0
= k—
Z s+1 f, l/M Z r+1>
= —0

2

aﬁ(ZM (f.1/M,), Z 1/M>>

Analogously, we can prove that

-2
Lis < ¢ < M 1/M,), Z 1/M,) ) (2.6)
s=0
By combining (2:3)-(2:6) for I; we obtain the estimate
k—2 1—2
M, M,
11§C(a,ﬁ) <ZM]€ 1/M +Zle2 f71/M)> (27)
r=0 s=0
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2. Approximation Properties of Cesaro Means of the two-dimensional
Vilenkin-Fourier Series

Next, we shell estimate I, and first we note that

My _1—1
I < W / A0 My +1Pnmi, Z A 7L Dy (u) (2.8)

X[fCFu+o) = fC+u)]du(u )],

My _1—1
aA T —a 4-B8 / m—M;_ 1+1D]\/1l—1 (U) Z AnazﬁlD ( )
i=1

X[ CFu) = £ dp (w0,

= Iy + Ioo.

From the generalized Minkowski's inequality, and by using and we
obtain that

Mk 1—1
m—M;_1+1 a
I21 < ( 2/11 B /DMI 1 (c/ n H—llD ( ) (29)

XSG 0) = f (o)l die () dia (0)

Mk 1—1
Ml 1 a
S / (4/ n z+11D ( )

< (e 0) = £ ()l di () dis (0)

¢(a, B)yn“wa (f,1/M;_1)

Mp_1—1
1Y D )| du(w)
Cm i=1

c (Ot, B) naw2 (fa 1/J\4l—1)

My -1 1/2
X Mk_l( > (ni+1)2“2)
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<c(a,B)n%ws (f,1/M;—1)
X/ Mj—1 (n — My_1) " /My,

<c(a,B)wa (f,1/Mi—1).

The estimation of Iy, is analogous to the estimation of I; and we have that

E

-2

M,
Iy < c(a,B) A (f.1/M;), . (2.10)

So, combining (2.9)-(2:10) for I, we find that

%
I
=)

k—2

I < (0, ) (Z %;wl (f,1/My), + w2 (f, 1/Ml_1>> e
r=0

The estimation I3 is analogous to the estimation of /> and we obtain that

-2

I3 <c (Oé,ﬁ) <Z %j w2 (fv 1/Ms)p + w1 (fa 1/Mk—1)> . (2-12)
s=0

By combining (2:2), 2:7). and we obtain for (2.7) that
k1 -1

I < c(a,ﬁ) (Z %]:wl (f’l/Mr)p+Z ﬁjw2 (f7 1/Ms)p> )

r=0 s=0

so the proof is complete. |

Lemma 2.2. Let f € LP(G,,) forsome p € [1,00] . Then, for every o, 5 € (0,1) , the
following estimations holds

n M;_1—-1

H=—rsl [ 3 A e 0)

2 i=Mp_1 j=0
X[ Au o) = ()] du (w,v)l,

< c(a,B)wa (f,1/M_1), M,

and
Mip_1—=1 m

1 o g—
T e

i=0  j=M;_,
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2. Approximation Properties of Cesaro Means of the two-dimensional
Vilenkin-Fourier Series

x [f ( +u7'+v) - f(7)} dp (u7v)||p

< C(Oé7ﬂ) w1 (f> 1/Mk—1)p Ml?a
where M;, < n < Mk+1,Ml <m< M[+1.

Proof of Lemma|2.2] From the generalized Minkowski's inequality we obtain
that

M;_1—-1
§31a17nj<>wxw (2.13)

n

II: / E
s A—a 1B

A 1= ]ka 1

Xf( —i—u,-—i—v)du(um)ﬂp

n M;_1—1

| [ YT Al s

a2 =My =0

X [f(~+u,~+v)fS](\271 (~+u,-+v,f)} dp (u,v)

><Hf(-+u,~+v)—51(w,) Lyt f)

P

JMk 1 Mp_1—

1
ZjAnzmj Wi (u)1; (v)

le1

dpt ()
p

an11

a A~ B8 .
yrore Lglﬂh > A % 0

<[ f et =S o

dp (u,v)
P

=11 + I1s.

In the previous Chapter we showed that the inequality

M, —1

/ > A ()| du(u) < c(e), (k=1,2.) (2.14)

Gm v=Mp_1

holds (see equation[1.17).
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Since
Hf(. +u,40)—SP (- +u,.+v,f)Hp <ws (f,1/Mio),
by using Lemmai.1} in view of (0.4) and we estimate 11, as follows:
11 Sc(a,ﬁ)n“mﬁwg (f,l/Ml_l)p (2.15)

</

G

My—1

Y A ()| du

i=Mp_1

(u)

<c(a, B)ynmPuwy (f,1/M;_1),,

i=1

My 1/2
x /M (Z <m—j+1)‘25>
S & (Oé, ﬂ) namBWQ (.fv l/Ml—l)p

X/ M;—1 (n— Mz—l)fﬁ My
< c(o, B)wa (f,1/Mi_1), M.
The estimation of 1[5 is analogous to the estimation of 17; and we have that

Ty < c(a, B)ws (f,1/My-1), M. (2.16)
By combining (2.13), (2.15) and (2.16) we conclude that

IT < (o, B)ws (f,1/Mi1), M. (2.17)

Analogously, we can prove that

Mp_1—-1 m

HI= s /Z > AL G 0) (@)
A =0 j=M;_1

X[fC+u-+0) = fC)dp(u, )],

< C<a75) w1 (f’ 1/Mk*1)p Ml?'
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2. Approximation Properties of Cesaro Means of the two-dimensional
Vilenkin-Fourier Series

Finally, we just combine with and the proof of Lemma [2.2] is
complete. |

Lemma 2.3. Let f € LP(G,,) for somep € [1, 0] . Then, for every o, B € (0, 1), the
following estimation holds:

Wi /Z S AL i () ()

Gz, = My j=M; 1
< Lf (- +v) = f ()] dp(u) dp ()],
< c (o, B)wra (f,1/My, 1/My), MM,

where M <n < Mk+1,Ml <m< Ml+1.

Proof of Lemma(2.3] From the generalized Minkowski's inequality, and by us-

ing and we obtain that

1V = A A i—a 4-B8 / Z Z An i m —j ( )%(U) (2.19)

G2 =My j=Mi
xf (- +u,-+v)dp(u,0)]],
- aA,B / Z ZAan] ()1/]](0)
Gz, i=My_1 j=M; 1

><|:SM’€*17]\4171(+’U’ +v,f) = A/lj)kl(+u,-+v,f)

—5% (-+u7-+v,f)+f(~+u,'+v)} dyu (u, )

1

§m/ > ZAnzmj ¥i (u) ¥; (v)

G2 |=Mg—1 j=M;

x HSA/kal’Ml*I ( +U,' +U7f) - SJ(V1[1)¢71 ( +u7 ! +Ua f)

=Sin, Cu o ) F ()

dp (u,v)
p
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<c(a, ) n*mPwis (f,1/My_1,1/Mi 1),

n

X ST AAL () (v)] dp(u,v)
a2 i=Myp_1j=M;_1
<, B)nmPuwis (f,1/My—1,1/M; ),

< [1Y A datw
e =My _1

<[] A @]
Gum =M1

<c(a,B) M?Mzﬂwlﬂ (f, 1/ My—1, 1/Ml—1)p-
The proof is complete. |
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2. Approximation Properties of Cesaro Means of the two-dimensional
Vilenkin-Fourier Series

2.3 Proofs of the main results

Proof of Theorem 2.1} It is evident that the difference o, %7 (f,z,y) — f (z,y)
can be written as follows

o P (foay) — f (z,y)

= =eap /ZZAMM ()5 (v)

2@0]0

X[f("i_u ~+U)—f(-,-)]d,u(u,v)

My _1—1M;_1—1

T AAl /Z ZAn ° AL i (w) 0 (0)

X[f A+ o) = )] dp (u,0)

aAﬁ/Z ZAanj ()%(U)

Z]\/Ikl :

><[f(-—i—u,-—l—v)—f(-,-)]d,u(u,v)

Mig_1—1 m

aA / Z Z Anzmg ()%(U)

=0 j=M;_1

><[f(-+u7~+v)—f(-,-)]d,u(um)

aAﬁ/Z ZA"ZMJ()wj@)

i=Mjy_1 j=M;_1

L

X [f A+ +o) = ()] dp (w) dp(v)

=1+ 1T+ 111+ 1V.
Since

|ons ™ (f,2) = f (@)

p

< ML, + I, + L, + [V,

and I, I1, II11 and IV we have already estimated in Lemmas .1}j2.3] the proof
will be complete by just combining these estimates. |
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Proofs of the main results

Proof of Corollary[2.3] In order to prove Corollary .3 we need to use some
properties of the modulus of continuity. Namely, since

w; (f, zé) <w <f7 ]é) , 1=1,2, (2.20)

and

1 1
(.4)172 <f, m, ]\47”) (2.21)

2o (r3))”

According to Corollary[.2]we have that if

o (), = () )
(), (7))
s (e a), () )

lowsi™ ()= f]|, =0 as n,m — oo,

then

Since in (2.21) we estimated the dyadic mixed modulus of continuity with
the dyadic total modulus of continuity, the validity of Corollary follows

immediately from Corollary .2} (2.20) and (2:21). [ |
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2. Approximation Properties of Cesaro Means of the two-dimensional
Vilenkin-Fourier Series

Proof of Theorem|[2.4] We set

2mix

@)= p; (1) =exp =

and define the function f (z,y) as follows:

JZ::IMOhLﬁ)fJ f]()

First, we prove that

a+p
w(f,&) :O<<J\; > ) (2.22)
n/C n

Since
[fj(@+t) = f (@) =0, tel,
we find that
|f(x+ty)— f(z,9)]
n—1
<Z (a+6) |fi (z +1) |+Z (a+B)
Jj=n .7
< C
— MT(LOH-B)’

and it follows that

a+p
w1 (ﬁj\;):O((]\; ) ) (2.23)

Analogously, we have that

a+f
wa <f, Ml) =0 ((Ml) ) : (2.24)

Now, by using (2.23]) and (2.24]), we obtain (2.22)) and thus the first part of

the theorem is proved.

Next, we shall prove that a;ﬁjﬁi (f) diverge in the metric of L. Itis clear

that

H M",M" fH / [U]_VI(Z:&?L (f;x,y) = f (37»?/)} (2.25)

2
m

xr, (@) Yar, (y) dp (2, )|
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> /oM o, (i y) o, (2) Y, (y) dp () dpe (y)
_‘f(MkaMk)‘

Mlk Mlk

QABZZAM,C Aty (0.7)

My i=0 j=0

x / i (2) 5 () bz, () Yane () dps ()

G,
_‘f(MkaMk)‘

" ‘f My, My) ’— ‘f MkaMk)‘
AMlk Mlk

Moreover,

F (M, M) = / £ (@) ar, (@) ag, () dp ()

Gh

7ZM(i+ﬁ) /PJ( x) p; (¥) Yar, () Yar, (y) dpe (2, y)

G2

- Z (i+g) / pj () Y, () dp ()

= M; @

X / pi (Y) ¥ar, (y) dp (y)

G’VYL
- 1
M]gaJrﬁ) ’

Hence, according to we have that

Ha;;“ 2 - f”l > c(a,f). (2.26)

We can conclude that

lim sup HO’M M, fH > 0.

n—roo

So also the second part of the Theorem is proved. The proofis complete. W
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Chapter 3

Approximation Properties of Cesaro
Means of the quadratic partial sums
of double Vilenkin-Fourier series

3.1 Formulation of the main results

In this Chapter, we discuss the rate of convergence for Cesaro (C, —«) means of
the quadratic partial sums of double Vilenkin-Fourier series. Our main results
read:

Theorem 3.1. (See Paper@ Let f belong to L? (G2,) for some p € [1,00] and «
€ (0,1). Then, for any My, <n < M1 (k,n € N), the inequality

loasy () =11,

< (@) (wn (£, 1/Mio), Mi* + oz (f1/Mia), M+

i

Theorem 3.2. (See Paper@ Let f belong to L? (G2,) for some p € [1,00] and «
€ (0,1). Then, for any My, <n < My41 (k,n € N), the inequality

k— 2Mr
+;]\/[kWI (f,1/M,) +Z

holds.

low () = |, <

c(@) <w1 (f,1/My—1), M logn + ws (f, 1/Mjy_1), My logn

k— 2]\/_{
+ZM;°"1 (f,1/M,) +ZM f,1/M)>
r=0

holds.

Theorem [3.1and Theorem [3.2]imply the following sufficient conditions for
the convergence in the norm of Cesaro means of the quadratic partial sums of
double Vilenkin-Fourier series in terms of the modulus of continuity.
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3. Approximation Properties of Cesaro Means of the quadratic partial sums of
double Vilenkin-Fourier series

Corollary 3.3. (See Paper Let f belong to L? for some p € [1,0c0] and let

€ (0,1).1f
(), = ()

o, (F) = fll, =0 as k— cc.

then

Corollary 3.4. (See Paper D) Let f belong to L? for some p € [1,00] and let

€ (0,1).1f
<f : ) O( : )
"My » M log My, )’

—Q
n

then

||O’ (f)—f”p—>0 as n — oo.

Next, we state some results which show the sharpness of Corollary[3.3]and
Corollary[3-4} In particular, the following Theorems hold:

Theorem 3.5. (See Paper D) For every o € (0,1), there exists a function f €

C (G2,) for which
1 1
Yy v = O Tra |
w<f Mkl)c (M;?)

lim sup ||O'IT/I?: f) ff||1 > 0.
k—o00

and

Since for a continuous function we have proved divergence in the space L1,
we can conclude the following:

Corollary 3.6. (See Paper D) For every o € (0,1), there exists a function f €

C (G2)) , for which
1 1
Yy aAr = O S ra |
“(r3z), o ()

lim sup |joy” (f) = f|| >0, forsomep e [1,00].
k—oo p

and

We also have the following sharpness result:

Theorem 3.7. (See Paper|D) For every o € (0,1), there exists a function g €

C (G2,) for which
1 1
¢ (g’ Mk—l)c -0 (Mz?long> 7
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and
lim sup Ha;a (9) — g||C > 0.

n— 00

Theorem 3.8. (See Paper|D) For every a € (0,1), there exists a function h €

Ly (G2,) for which
1 1
. (h Mk—1>c =9 (M;?IOng> ’

lim sup |lo,* (k) — h||1 > 0.

n—roo

and
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3.2 Auxiliary results

In order to make the proofs of these Theorems more clear, we formulate some
auxiliary Lemmas (see [44] and [30], respectively)

Lemma 3.1. Let a1, ava, ..., v, be real numbers. Then

2/

G2

n

n 1/2
dp (z,y) < % (Zai) .

k=1

oDy (z) Dy (y)
1

k=

Lemma 3.2. Let 0 < j < nsM,; and 0 < ng < mg. Then

Dy.rto—j = Dont, — Unonr,—1Dje
We also need the following new Lemmas of independent interest:

Lemma 3.3. Let f belong to L? (G2,) for some p € [1,00]. Then, for every o €
(0, 1), the following inequality holds:

My
1
= | [ X AT Di@ D @) [F (4 e 0) = ) diuso)
n ) i1
h p
k—2 M. o "
< 22 (f,l/MT)ﬁ; ar e (/M)

where My, <n < M.
Proof of Lemma[3.3] By applying Abel's transformation, from we get that

My _1—1

1 .
<o f S AT D) i) (3

m

X [fCHu+o) = £ dpu, v,

My _1
1 e
+A—a /An—Mi,1 Z D; (u) D; (v)
" i=1

m

X [fCHu-+o) = fC)]dpu, v,

= Il + IQ.

For I, we can estimate as follows:
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k—2 M, 1—1

JECE I ST 32

r=1 =M,

1

I < A0

m

X fCFuFv) =00

dpu(u,0)
p

k—2 Myry1—1

/ ?;OéMt 1 Z D
a M,

r=1 4=

1
<
S e

m

X [f(.—’_u?.—’_v)_SquMT ('+’LL,'+’U,f)] dﬂ(uvv)

P
1 k—2Mpp1—1
7a 1
+A—cx / n—Mj_ 12 Z D
n 2 r=1 =M,
X [SMT,MT ( +u, -+, f) - SMT,MT ('v K f)] d/‘(uvv)
P
1 k—2Mrp1—1
7a 1
+Afoz / n—Mj_ 12 Z D
n > r=1 =M,

m

X [SMT,MT ('7 *y f) - f ('7 )] dl“’(“””)

p

= I + Ioa + Ios.

Since

it is evident that

—
S
o
k>
=

o =M,

2
m

X [Sm,ma, (- +uy -+ 0, f) = Sar, o, G, )] dp(u, v)

M,«+1 1
/D 0) Saty o, (- + 1+ 0, ) dpu, )
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__SAL”AL~(W'7f))

M-,-Jrlfl

= > (SiC S, (F) = Sagea, (5 f))
=M,

= (Snapm, (5 f) = Smpona, (5 f)) = 0.

Hence,

I = 0. (3.3)

Moreover, according to the generalized Minkowski's inequality, Lemma|3.1

by (o-1) and we obtain that

1 k—2 Myi1—1
L >/ D; (u) D; (v) (3.4)
=172 i=M

Iy < T

—a—1
14"‘*A4k71

=M,

dp(u,v)
p

X[ f (4w, +v) = Swvm, (- +u,-+o, f)

)k—2

Z (w1 (f, 1/M7-)p + ws (f, I/Mr)p>

r=1

c(a

M,

IN

Myypi—1

1Y pi@Diw)|dutuw)

=M,

X

2
Grn

k—2

c(@) 3 (wl (f, 1/M;), + w2 (f, 1/Mr)p>

IN

M,

Myj1—1 1/2
x\/MT< Z 1)

i=M,

<)Y T (w0 (/M) + o (£,1/M,),)

The estimation of I53 is analogous to the estimation of I»; and we get that

k—2
I < () Y- 3 (w0 (5 1/M,), 2 (£,1/01), ) 3.5

=1

<
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Moreover, in a similar way, we can estimate [:

M+11

Ao ZDZ (3.6)

X [f('+ua'+v)7SMT,Mr (~+u,~+v,f)]d,u(u,v)

p
Af,«+1 1
A a— 2ZDZ
X [SMT,]W,. ( + u, + v, f) - SMT,MT ('7 N f)] d//L(UwU)
P
1 k—2 Myy1—-1 i
09 I IR SEIRETE
=1 2 =1
X [SM’V‘7A47‘ ('a Bl f) - f ('7 )] du(u7v)
P
1 k—2 Myy1—1
_A_QZ/ > AC“?ZDl
n r:ngn i=M,
('+U7'+’U) 7SMT,M7- ('+U,'+U,f) d/u‘(u7v)
P
1 k—2 Myqi1—1 i
T Z/ S A2 Dy () Dy (o
o= Lo i=M, =1
SMT,M,»<'7'7f) 7f('a') du(uvv)
p
1 k—2
< == > (i (1M, + e (£,1/0),)
noop=1
M7‘+171
X (n— ZDI v)| dp(u,v)
i=M, a2
k—2
<cl@)n® > (wi (£,1/My), +w2 (£,1/M,),)
r=1
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MT+171

k—2
<c (a) n® Z (wl (f7 1/MT)p + w2 (f7 1/Mr)p)

Myi1+1

x Z (n— M, —1)%i

M,

k—2
T

]\]\jk (on (f,1/M;), + w2 (f,l/M,.)p),

T:0

By combining (3.1)-(3.6) for I we find that

k—2

I<c@y Aj‘i (w1 (f1/My), +ws (f, 1/Mr)p) .

r=0
The proof of Lemma3.3]is complete.

Lemma 3.4. Lleta € (0,1) and p = My, My, + 1,.... Then

/ ZA 1D, (u) D; (v)

G2,

Proof of Lemma[3.4} It is evident that

Mp—1
II</

Z At D, —i (u) Dag,— (v)| dp(u, v)
G’V‘Vl

G2

m

‘AP My,

=11 + 1.
From and by the fact that ’A;f&i‘ < 1itfollows that
I, < 1.
Moreover, by Lemma[3.2lwe have that

M —1

Z Ap a]%iquD ( )Dl (U)
i=1

Il <

GQ

m

dp(u, v)
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M —1
[ Danc 0] 32 A1 ) )
c,

My —1 )
n / D ()| 32 455D 0 )
G2,
My —1

/ D, (u) Dy, (v) dia(us,0)

=11y + 1o + 113+ 11h4.
From and it follows that

Mk—l
Iy <c(a) Y (p—M+i)! (3.1)
i=1
c(a) Mp(p—1)"*"1 < 0.

Moreover, by Applying Abel's transformation, in view of Lemma[3.1and
we have that

Il < pf&iﬂ ZDZ v)| dp(u, v) (3.12)
cz,
M —1 B
+ [ 3 biw) Dy )] dusr)
e =
My —2 7 B
< 3 (o= M+ [ |32 Dy () Dy (v)] dpa(u, v)
i=1 G2, =1
M)c*] B _
+p-1)! > Di(u) Di (v)| dp(u,v)
G2 i=1

i=1
The estimations of 11,5, and 11,3 are analogous to the estimation of I1;;. By
Applying Abel's transformation, in view of Lemmaft.1and we find that
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M, —2

Z Ap ]\/[k+z Z‘Dl

M —1

A0S D (v)

i=1

)| dp(u, v) (3.13)

dp(u,v)

and

dp(u,v) (3.14)

< c(a) {ii_a_l —|—Mk_°‘} < o0.

i=1

The proof is complete by combining (3.8)-(3.14). |

74



Auxiliary results

Lemma 3.5. The inequality

n

S A% D; (w) Di (v)| duu,v) < ¢ (@) logn

i=1

11T =

2
th

holds.
Proof of Lemma[3.5] Let

n = nklel + ... —|—nksMk5, ki >..>ks>0.

Denote
TL(Z) = nkiMki + ...+ nkSMk,gy 1=1,2,...s.
Since (see [70])
Dj+nAMA = DnAMA +7/}nAMADj7 (315)
we find that
Ny Miy
nrs [|Y 400000 D) dutu.o) (316)
ng =1
n(®
D AT it wy, (1) Dy, sy, (0)] dpau, v)
G?’n i=1
gy My
g/ Z AL D; (w) Dy (v)| du(u, v)
G%,
(2
+ / > ALE D (u) D; (v)| dpa(u, v)
G2 =t

m

n(2
+ / anlel( ”kth ZAn(2) i d,u u, ’U)
2

n(2)

/anlel ZAng) lzD d'u(u’v)

n®

4 [ Duvyn, X AL801 )] i)

i=1
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= ITI, + 1Ty + ITI5 + IT1, + ITI5.
By using (0.1) and we have that
I3 < c(o) < 0.

Moreover, by Shavardenidze (see [174]) it was shown that

ole

O (Jul*™).

From and by using for I11, we get that

101, < / Doty (1) [0 dpa(u, v)

< / o] dpa (v) =
Gm

Analogously, we find that

111, < / Doty (0) |uldpa(us, v)
G2,

1
< / lul*tdp (v) = = < .
a

Gm
Forr e {0,..ms —1},0 < j < My, (see [70]), it holds that

r—1
Djirna = (Z %A> Dy + P, D

q=0

Thus, we have that

nklel —1

S AD; () D; (v) dp(u,v)

G i=1

m

Nk —1 M,

-1
<[ > AL g, Divens, (@) Doy, (v) dpa(u,v)
a2 r=0 1=0

m

g, —1 My, —1 r—1
<[ at, (S ) o @
G2 = q=0

m
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x (Z ¢M> Dy, (v) dpu(u, v)
q=0

ngy —1 My, —1

+ / > > A, <Z¢Mh>

r=0 i=0
Gz,

XDy, () ¥y, Di (v) dp(u, v)

nklfl I\/fklfl

13 D DD S =N

G2 r=0 1=0

m

x (Z %q\a,l) Dy, (v) dp(u,v)

q=0

TL)Cl —1 ]V[kl —1

1 1D SR SIS

G2 r=0 1=0

m

Di () ¥, Di (v) dpa(u, v).
Therefore, by using (0.1) and we obtain that

/ Anankllel anl My, (u) anlj\/fkl (’U) du(uﬂ}) < C(a) < 0.
G2

m

Consequently, for I11; we have the estimate

TL)Cl 1]VI}€1
IIIl S /DM" )DMkl Z ZAn i—1r M, dlu’(u7v) (3-21)
G2 r=0 =1
nkl—l Mkl
+ / Dar, (w) | 3 37 A7 0, Di(0)| dpa(u,v)
ng r=0 i=1
nkl—l Mkl
+/D]V[k1 (’U) Z ZAnaz 1er1 (’LL) dﬂ(“a“)
G2 r=0 =1
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’I’Lk1 —1 M"l

Z Z An az 17"Mk1 i (u) D; (U) d,UJ(U, U) +c (Oz)

r=0 i=1
G%L

= IIIll +Illl2 +I[Ilg +IIIl4 +C(Ot) .

From Lemma3.3]we have that

11Ny < c(a) < . (3.22)

The estimation of 111y, is analogous to the estimation of /773 and we find
that
I < c(a) < . (3-23)

The estimations of I11;5 and 1113 are analogous to the estimation of 171,
and we obtain that
ITls < c(a) < oo, (3.24)

and
113 < c(a) < . (3.25)

After substituting (3.17) and (3.19)- (3.25) into (3.16) we conclude that

IIT < I, + ¢ (o)

n(2
Z An& 11D D; ('U) dpu(u, U) +c (a>
i=1

G2
()
<oz [|X A0 D) dulu o) + () (s 1

a2 |i=t

m

<cla)+c(a)(s—1) <c(a)s.

Itis easy to see that
logn =~ log M}, > k1,

and since k; > s, for 111 we get the following estimation:
IIT < c¢(a)s < c(a)logn.

The proof is complete. |
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3.3 Proofs of the main results
Now we are ready to prove the main results.

Proof of Theorem[3.1] It is evident that

loas, (F) = £, (3.26)
- Lx /%AﬂiiiDz(U)Dz(v)
AMk o =1

My,

L / > ANTID; (u) D; (v)

—
AM;C—I o i=Mp_1+1

m

< [fC+uFv) = fC)lduu, )],

=14 11
From Lemma3.3]it follows that
k-2 Mr
I<c(a) 22:0 i (@ FUAL), e (71/M), ) (3:27)

Moreover, for I1 we have the estimate

1 W
T > AiDi(w) Di(v) (3.28)
M

k=1 i=Mp_1+1
ng k—1

171 <

X [f(-—l—u,-—l—v)—SI(\/IIL1 (-+u,~+v,f)} du(u,v)

P

1

+—=
A1

My,
/ > ATID; (u) D; (v)

G2 =M+l
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S, (o, f) = £ ()] dius0)

P
= IIl +IIQ

In view of generalized Minkowski's inequality, by and by using Lemma
[3-4lwe get that

My
Ih < A / Z AX&:%D,— (u) D; (v) (3.29)
My~ 1G2 =My _1+1
x| = S o, )| datuv)
p
wi (f, 1/My_1) My o
< [0S ARTD ) Do) du(uv)
Mi—1 a2 |I=Mi-a1+1

< C(Oé) M,?‘wl (f, I/Mk—l)p .

The estimation of 115 is analogous to the estimation of /7; and we find that

Iy < c(a) Miiws (f,1/My-1),, - (3.30)

After substituting (3.29)-(3.31) into (3.28), we have
IT < c(a) Mg (w1 (f, 1/My-1), + w2 (f, 1/Mk_1),). (3.31)
The proof is complete by just combining (3.26), (|3.27) and (3.31). |

Proof of Theorem[3.2 It is evident that

My

low e (f) = £, < A_ / Z A, %7 D; (u) Dy (v) (3.32)

X [fCHu-+o) = FC)]dpu,v),

M,

1
b | X D@D
n=1 |l i=My_1+1

m

X [f ( +u7'+v) _f(a)] dM(U,@Hp
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/ Z A7 D, (u) D; (v)

i=Mp+1

7n

X fCHu o) = £ du(u o),

=1+4+1I+ 111

From Lemma3.3]it follows that

k—2
I< c(@) Y 37t (o (R, +wa (£,1/M),). (3.33)

r=0

Next, we repeat the arguments just in the same way as in the proof of The-
orem[3.1and find that

IT < c(a) My (w1 (f,1/Mi-1), + w2 (f, 1/Mk—1)p) : (3:34)

Moreover, for I11 we have that

|/ S A D () D (o) (335

G2 i=Mp+1

IIT <

nfl

dp(u,v)
p

X [fCtu-+v) = f(50)]

> A7'Di(u) D (v)

i=Mp+1

1

<

[e3%

e

n

2
G‘Vﬂ.

X [f ( +u, -+ U) - SJWkJWk ( +u,-+v, f)] du(uvv)

p
1 n
< A7°7ID; (u) D;
< = _7; noi Di(u)D;(v)
Gz, M
X [SMk,JWk ( +u, -+, f) - SMk,Mk ('a ) f)] dU(uvv)
p

Z A°1D; (w) D; (v)

An® i=Mp+1

G2

X [SMk7Mk ('7 7f) - f(a )] d:u‘(uvv)

p
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=111 + 111, + I115.

Since
Su (- ,f)—/f(U»v)Dz( —u) D; (- — ) dp (u, 0)
G2,
we get that
> ATD; (u) D (v)
ng i=Mp+1
X [SMlka ( +u, -+ v, f) - SMkJ”k ('v *y f)] d:u(ua U)
=3 A /SMk s (- -+, £) Dy (w) Di (0) dua(u, o)
i=Mp+1

n

- Z AalSMkMk(a'vf)

i=Mp+1

S A8 S (1)

1=Mpr+1

Z A_a 1SMk;Mk ( v'vf)

1=Mp+1

n

= Z A & ISMk,Mk(v'af>

i=Mp+1

Z AT S, (5 f) = 0.

i=Mp+1

Consequently, we have that
I, = 0. (3.36)

According to the generalized Minkowski's inequality and by using Lemma
[3:5lfor 111, we obtain that

I < Z AT D; (u) Di (v) (3.37)
G2 1=Mpr+1
('+U,'+U)*SMT7MT ('+U,'+’U,f) du(u,v)
p
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< e(0) Mg (w1 (£.1/Mi-1),, + w2 (£,1/Mi1),)

dp(u,v)

Z ALTMD; (u) D; (v)

i=Mp+1

G

(@) Mitogn (w1 (£,1/My-1), + w2 (£,1/ M), )

The estimation of /713 is analogous to the estimation of I77; and we find
that

ITT3 < e(a) Mg logn (wn (£,1/Mi-r), + w2 (£,1/Mi-1),) . (338)
By combining (3.35)-(3.38), we get for 1] the following estimation:

11 < ¢(a) M2 logn (wl (f,1/My_1), + w2 (f, 1/Mk,1)p) . (3.39)

After substituting (3.33), (3.34) and (3.39) into (3.32), we receive the inequal-
ity stated in Theorem 3.2} so the proof is complete. [ ]

Proof of Theorem[3.5) We define the functions

f] (.1') = ,(/)Mj—l (l‘), Wlth] = 1a2a L)

and based on these functions we can define the following function:

=3 @5 ).
j=1""4
First, we prove that
(1), o i)
Since
|[fi(x—t)—f;(x)]=0, j=0,1,...,n—1, tel,,
we find that
f (x—ty) — f (2.9) <2ZMQ <
j=n "3
Consequently,

1 1
w1 <f7 i ) =0 (Ma> . (3.41)
n C n
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Analogously, we can prove

1 1
wo (f; M> =0 (W) . (3.42)
m C m

By (0.5) , (3.41) and (3.42)), we obtain (3.40), which implies that the first part

of the theorem is proved.

Next, we shall prove that o,* (f) diverge in the metric of L;. Indeed,

loa (F) = ], (3.43)

>

[ stz (i)~ f 0]

m

X ar -1 () Yar, -1 (y) dp (,y)]

> /UIT/ﬁ: (fiz,y) Ya—1 (@) g1 (y) dp (2, y)

2
m

_’]?(Mk_LMk_l)‘

1 My,
:/ A > AT (fiwy)

My—1 j=1

m

X ka—l (l‘) ka—l (y) dﬂ (I,y)|

_‘f(Mk_lyMk_l)‘

1
= TSM M, (f;xay)
/Albfk—l oo

2
m

X ng—1 (@) Yag,—1 (y) dp (x, )|

_‘f(Mk_l’Mk_1>‘

| MeZiMi1

o 2 2 Tk

My —1 k1=1 ko=1
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x / Wiy (2) iy (8) ot 1 (@) Dar, 1 () dpt (2, 9)
G2,
*‘J?(Mkfl,Mkfl)’
S Y AETS Y A
%’f( w— 1, M, — )‘

. ‘f(Mk. 1, My — 1)’.

Moreover, by the definition of the two-dimensional Fourier coefficients we

have that

~

f (M — 1, M, —1)

- / £ (@,9) Prre1 (2) s 1 () ds (2, )

G2

m

J

= Z % / Y1 () Yar;—1 (y)
=
X ag, -1 () Yar -1 (y) dp (@) dps (y)

- Z ﬁ / g, -1 (@) Yar—1 (z) dp (2)

Gm

1

= ) k= d = Vo
XG{ U -1 () Yar—1 (y) du () My

Combining and we get
o, (F) = £, > e (),

where ¢(«) is a strictly positive constant independent of .

(3.44)

Thus also the second statement of Theorem is proved. So the proof is

complete.
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Proof of Theorem[3.7] Let {n,, : k > 1} be a sequence of positive integers such
that My, < ny < My41 (k,n € N) and || D, ||, > clogn.
We define a function g (z,y) as follows

9(@y) = g; (@),
j=1

where )
gj (v, y) = wiﬂm—l (z) exp(—iarg (D, (y)))-
First, we prove that
1 1
. 0O —"1. .
(s M)C (51003 ) (3.45)
Since
|gj (fﬂ - tvy) —39j (xay)| = Oa

and

|gj (I,y - t) — 9y (xvy)| = Oa
forj=0,1,...,n—1, and t € I,,, we find that

lg(z —t,y) —g(z,y)

=13 gy Wt (= 0) = 1 () exp(—iarg (Dn, ()

og M;
> C
<2 < .
- J;l Me log M — M®log M,
Consequently,
1 1
— ) =0|———]). .46
w1 (!]7 Mn)c <M;{‘logMn) (3.46)
Analogously, we can prove that
1 1
,— ] =0 ——7+]. .
2 (g M., ) c (M% log Mm> 3-47)

By (0.5) , (3.46) and (3.47), we obtain (3.45) and thus we have proved the
first part of the theorem.
Next, we shall prove the divergence statement. It is evident that
|00 (950,0)] = |07 (gx:0,0)] (3.48)
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Proofs of the main results

- O-r:;:x Z gj;o’o - nk Zg]’o 0
j=k+1

=1 —II—1III.
We have that
1 | & e
I'= A~ A—a . Z ng— ]15 (gk;070) (3.49)
nE— j=1

1
== / 9 2.9) ZAnf - D; (@) D; (5) du (2.)
Nk — 1

/ > 4,0,

x (C/ g (2.9) D; () du (y) | dps ()

n

1 1 k o
B Melog My A-“ ZA’ﬂkfjl / Ynyp—1 (:ZJ) D; (.CC) dp (I)
§ G,

nep—1 |j=1

« / exp(—iarg (Dn, (¥)))D; (y) du (y)

Gm
1 1
D,
= St o, | 1Pl
G
> .
1Ognk/| D) du(y) > c ()

It is easy to prove that
II =0. (3-50)

From Theorem[3.2 we obtain that

k—1
1<y o, (9) - glle
j=1
k—1 1
O‘)Z (wl (9;‘7 Mkl) M logny
=1 r
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1
‘HJJQ <gJ, J\4,kl> Mka 1ognk
- p

k—2
M, 1
+ ; mwl (9]7 M)p

- k—1k—1 Mr ( 1 )
> w1 | 95,
r=0 j=r Mk MT p
k—1k—1
M 1
<
- ;}; My, M log M.
k-1 M 1
<c L
- = My M« log M,
¢ A pmG-e c
< — - < —
k= log M, }?‘

and
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Proofs of the main results

forj=0,1,....k—1.
From (3.51)) — (3.54) we get the following estimation of 111 :

IIT < c(a) Mi? (3.55)
Combining (3.49) , (3.50) and (3.55) we get that
limsup |o;,*(g;0,0) — g (0,0)| > 0.
k—o00
Hence, also the second statement of Theorem is proved. The proof is
complete. |

Proof of Theorem[3.8] Let {n, : k > 1} be a sequence of positive integers as
above (M}, < ni < My41 (k,n € N) and || D,, ||, > clogny).
We define a function & (x, y) as follows:

o) = 3 g (P @) = Dy 0] (D ) = D, ]

First we prove that

o) ¢
“\" My ) o = Mplog
Since
/ Dy, (2= £) = Doy ()] dp () = 0,
I

fori =0,1,....k — 1, t € I}, we have that

/ h(x — t,y) — b (z,9)| dp () (3.56)
G2

— 1

<2 _— D, —t)—D, d

< ;Mlabngﬁ (o= 1) = Dy, ()] dp (1)
. J

— 1
- ; Mi*log M, / | Dniy (& =) = Doy ()] dpt (@)
— J

=1 + Is.
By using (0.1]) we get that
s 1
I <4 _— .
= Zl:k M log M, (3:57)
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long ; 1ong

and

C

L<—
> = M log My

By combining ({3.56) — (3.58)) we have that
1 c
hy— | <—n——. .
w1< ’Mk>cM,§long (3.59)

Analogously, we can prove that

1 c
ho—) < 6
”2< ’Mk>c_ M Tog My, (3.60)

According to (0.5) , (3.59)) and (3.60) we get the desired first statement:

(3.58)

wln ) <«
’Mk CiMlglong‘

Now, we shall prove the divergence statement. It is evident that

lome (h) — bl (3.61)

gk

/ / * (hy 2, y) — b (2,9)] Yner (2) dpe ()| dpa (1)

Gm

> [ | [ o i) v @ (@) di )

G m m

_ / / B (@,y) -1 () dp ()| dp (y)

G’"L m
= IIl — IIQ
From the construction of the function h and by using (0.1]) we get that

1
Iy<e— - 6
2= “Molog My, (3.62)

Moreover, since

b (n—1.q) = / (&, ) o1 (2) g () ds (2, 9)

G2

m
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oo

1
= 2 Mo [ 1Pu @) = Do, @] 6141 (@) s (0

m

< [ 1Pu )= P ] e 0

G’NL

:]\M / [P (@) = Dy (0)] ¥ () s (4)

m

for 11, we find that

1 N j—145—-1
= [ S A S S R ) v (0 (3.63)
ng— 1Gm j=1 p=0g=0

X /wp () Yy —1 () dp ()| dp (y)
G

1 nk—lA
- = / S B (e — 1,0) g ()| dp ()
K 1Gm a=0
1
- AL M“long ’ ¥) = Doy ()] i (v)

Dy, ()| dpa (y) — 1

Since || Dy, ||, > clogng, by comblnmg [B-61) — we have that
lim sup |lo, (h) — hH1 >0,
k—o0

and also the divergence statement is proved. The proof is complete. |
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