o.)

Check for
updates

On Optimizing Transaction Fees in Bitcoin using Al:
Investigation on Miners Inclusion Pattern

ENRICO TEDESCHI, TOR-ARNE S. NORDMO, DAG JOHANSEN, and
HAVARD D. JOHANSEN, UiT The Arctic University of Norway

The transaction-rate bottleneck built into popular proof-of-work (PoW)-based cryptocurrencies, like Bitcoin
and Ethereum, leads to fee markets where transactions are included according to a first-price auction for block
space. Many attempts have been made to adjust and predict the fee volatility, but even well-formed transac-
tions sometimes experience unexpected delays and evictions unless a substantial fee is offered. In this article,
we propose a novel transaction inclusion model that describes the mechanisms and patterns governing min-
ers decisions to include individual transactions in the Bitcoin system. Using this model we devise a Machine
Learning (ML) approach to predict transaction inclusion. We evaluate our predictions method using historical
observations of the Bitcoin network from a five month period that includes more than 30 million transactions
and 120 million entries. We find that our ML model can predict fee volatility with an accuracy of up to 91%.
Our findings enable Bitcoin users to improve their fee expenses and the approval time for their transactions.

CCS Concepts: + Computing methodologies — Neural networks; Feature selection; « Informa-
tion systems — Specialized information retrieval; « Computer systems organization — Peer-to-peer

architectures;

Additional Key Words and Phrases: Bitcoin, blockchain, fee market, first price auction, transaction inclusion,
cryptocurrencies, proof-of-work, machine learning

ACM Reference format:

Enrico Tedeschi, Tor-Arne S. Nordmo, Dag Johansen, and Havard D. Johansen. 2022. On Optimizing Trans-
action Fees in Bitcoin using Al: Investigation on Miners Inclusion Pattern. ACM Trans. Internet Technol. 22, 3,
Article 77 (July 2022), 28 pages.

https://doi.org/10.1145/3528669

1 INTRODUCTION

Blockchain protocols, like Bitcoin and Ethereum, secured in mid-2020 about 80% of the cryptocur-
rency market cap [55]. Most of the current blockchain implementations that use a permissionless
Proof-of-Work (PoW)-based chain, come with some non-negligible side effects. Besides their
substantial environmental impact [39], they suffer from a non-trivial scalability problem: the low
throughput (transactions approved per second) [11, 30, 41, 43]. The substrate consensus protocol
(Proof-of-Work (PoW)) limits the throughput upper bound with two important parameters: the
block size (time constraint), and the interblock interval time (frequency constraint). Changes to

This research was funded in part by The Research Council of Norway under grant numbers 270053 and 263248.

Authors’ addresses: E. Tedeschi, T.-A. S. Nordmo, D. Johansen, and H. D. Johansen, Institutt for Informatikk, Fakultet for
Naturvitenskap og Teknologi, UiT Norges Arktiske Universitet, Postboks 6050 Langnes, N-9037 TROMS@ (NO); emails:
enrico.tedeschi@uit.no, tor-arne.s.nordmo@uit.no, dag.johansen@uit.no, havard.johansen@uit.no.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).
1533-5399/2022/07-ART77
https://doi.org/10.1145/3528669

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

https://orcid.org/0000-0003-3856-4568
https://doi.org/10.1145/3528669
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3528669
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3528669&domain=pdf&date_stamp=2022-07-25

77:2 E. Tedeschi et al.

either of those two parameters to improve throughput demand proportional improvement in the
block-propagation time, which is limited by the current P2P network substrate [3, 30].

The Bitcoin system was intended to provide users with a low-cost payment scheme, with trans-
action fees close to or equal to zero [37]. In a tragedy of the commons, the cryptocurrency’s rising
popularity made the physical throughput limitations of the underlying PoW scheme a key scala-
bility bottleneck [13, 42]. The high cost of mining has led to an increased usage of transaction fees
as a means for miners to make a profit.

Transaction fees and the behavior of miners became a relevant subject of study after the af-
firmation of Bitcoin as the primary cryptocurrency. The trend of a long-established PoW-based
blockchain started to move towards a fee-oriented market [36], where a rational (or greedy) miner
aims at optimizing its profits by following a certain norm while selecting new incoming transac-
tions from its mempool. This is known as the fee-per-bytes dequeuing policy, where transactions
are being scheduled for inclusion according to their feerate. While fee predictors still adopt the
notorious fee-per-bytes dequeuing policy, miners somehow deviate from the norm [35]. This has
some serious economic implications for users, fee-overpaying is rather the norm and first-price
auction markets have failed to provide users with stable prices [7].

Deciding on a common static fee is impossible in practice [27, 36], and users are instead forced
to either choose an appropriate payment dynamically or rely on current fee estimators when sub-
mitting their transactions, with no exact formula to optimize expenditure or to control the time it
takes for a transaction to be confirmed [54]. Most users end up using their own estimator based on
their own intuition [40]. This turns out to be a very difficult task, and in most cases expensive for
users [6]. Furthermore, many existing estimators have the notorious problem of aggregate over-
paying, while adopting a higher fee than necessary [19]. In 2017, poorly designed fee estimators
contributed to driving up average Bitcoin fees to over $ 20 per transaction [40, 47].

The strategic behavior of miners and users over time made the role of transaction fees in Bitcoin
change from a mining-based structure to a market-based ecology [16]. This makes PoW-based
blockchain systems unpredictable at scale. Thus, their non-deterministic outcome for transaction
fees induces blockchain-based cryptocurrencies to not be suited in the near future, as a global,
shared, and decentralized currency. The outcome of such systems must be predictable, and the
risk of overpaying should be reduced to zero.

Enhancing our knowledge of how Bitcoin’s first-price auction and transaction fee mechanisms
work in practice is important to make such systems more useful and predictable under various
network congestion circumstances or independently of the fees paid by other users. In this article,
we, therefore, propose a novel transaction inclusion model that describes the fee-market mecha-
nisms of the Bitcoin system. We show how the overpaying problem is a consequence of miners’
rational (and unexpected) behaviors, define the concept of fee market, and outline its main side
effects. Using our transaction inclusion model we devise a Machine Learning (ML) approach
based on Deep Neural Networks (DNNs) that can predict miners’ behavior while selecting new
transactions for inclusion. We evaluate our prediction method using historical observations of the
Bitcoin blockchain from a five month period that includes more than 30 million transactions and
120 million entries. Our findings enable Bitcoin users to improve their fee expenses and approval
time for their transactions.

The main contributions of this article are as follows:

— A formal definition of a transaction inclusion model (or pattern).

— A dataset containing Bitcoin transactions sampled every month, from January 2021, until
May 2021 [46].

— A multi-layer Neural Network (NN) model to predict the pattern we formalize in this
article.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

On Optimizing Transaction Fees in Bitcoin using Al 77:3

The remainder of the article is organized as follows. In Section 2, we describe related works,
including studies on transaction fees and miners’ behavior. We also analyze relevant works on ML
models for pattern prediction. In Section 3, we describe the Bitcoin fee market, its purpose for the
users, and how miners’ rational behavior relates to overpayment. Next, our transaction inclusion
model is described in Section 4, its implementation is explained in Section 5, and the evaluation is
presented in Section 6. Section 7 discusses our findings and Section 8 concludes.

2 RELATED WORKS

The high fee issue in Bitcoin is well known. Already in 2014 the study of Kaskaloglu [29] claims
that an increase in transaction fees of Bitcoin is inevitable, and they identify the reasons to be: (1)
cost of mining, (2) risk of 51% attack. The study also discusses the parameters affecting the problem
of determining the right fee for Bitcoin, and it considers how these parameters are changing in a
dynamic ecosystem of miners, investors, and users of the Bitcoin network. Later studies started to
analyze miners’ behavior with respect to transaction fees. In 2015 Moser and Bohme [36] acknowl-
edge the role of fees as a key aspect of the system’s stability. They provide empirical evidence of
agents’ behavior concerning their payment of transaction fees, together with several regime shifts,
caused by changes in the default client software. The study shows the trend of a long-established
PoW-based blockchain, moving towards a fee-oriented market.

As fees increase, miner behavior become an interesting subject of study and research. In 2019,
the study of Basu et al. [7] outlines that first-price auction markets have failed to provide users
with stable prices for their services, and historical analysis shows that Bitcoin users could have
saved $ 272,528,000 in transaction fees, while miners could have reduced the variance of fee in-
come by an average factor of 7.4 times. Furthermore, the study of Messias et al. [35] shows that
miners somehow deviate from the first-price auction norm, while fee predictors still adopt the no-
torious fee-per-bytes dequeuing policy. This has some serious economic implications for users;
fee-overpaying is rather the norm, and Messias et al. [35] show that in June 2019 more than
30% of transactions were offering a feerate two orders of magnitude higher than the minimum
recommended.

Improving on the current first-price auction in the Bitcoin environment is neither a simple nor
straightforward matter, and the study of Basu et al. [7] outlines how the design of such a mecha-
nism is challenging. As a matter of fact, miners can use any criteria for including transactions and
can manipulate the results of the auction after seeing the proposed fees. Basu et al. [7] introduce a
mechanism inspired by a generalized second-price (GSP) auction which identifies a bidder will-
ing to pay only more than the (K + 1)-th highest bid, where K is the number of transactions included
in a block. Another version of the GSP auction model is presented by Li et al. [31, 32], where they
use a novel rank-by-cost rule to order transactions. The cost is calculated by the user-submitted
fee and the waiting time. With this approach, they show that the daily saved fees for users are
up to B8 24.5985 on average. Our study will take the Generalized Second Price (GSP) approach into
account since we include a relative time-bound notion of transaction, based on block-epoch, which
tells how much a transaction is waiting to be approved.

Easley et al. [16] investigate the role that transaction fees play in the Bitcoin blockchain, chang-
ing from a mining-based structure, to a market-based ecology. They examine exogenous and en-
dogenous features of Bitcoin. They show how waiting times arise and how they are influenced
both by endogenous transactions fees and by exogenous dynamic constraints imposed by the Bit-
coin protocol. Furthermore, they highlight how exogenous structural constraints influence the
dynamics of user participation on the blockchain. Such features make a PoW-based blockchain sys-
tem unpredictable at scale, the uncertainty of non-inclusion for transactions makes their issuers
insecure, potentially causing overpaying. In their work, they argue that increasing transaction fees

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

77:4 E. Tedeschi et al.

will increase the number of miners, but this, in turn, will trigger increases in the difficulty level
to control the creation rate of new blocks, thereby raising the costs to miners. More revenue does
not necessarily mean more profit, and in a competitive market, this would not lead to an overall
increase in compensation. Finally, they argue that transaction fees alone are unlikely to solve the
challenges facing the Bitcoin blockchain. This is the reason why our approach offers an alternative
by considering fees as one of the means for transaction inclusion.

The use of ML models to predict patterns from large sets of data has been already adopted. From
hydrology [14] to network attacks [38], and finally the work of Yazdinejad et al. [52] utilizes a large
amount of data for hunting cryptocurrencies malware threats. When we analyze the pattern for
transaction inclusion we deal with an enormous amount of heterogeneous data, and we need to
establish an order out of it. A ML-based approach enables us to make predictions and decisions
using sample data (training data). They are widely used by enterprises in different sectors, i.e.,
education [5, 33], business and marketing [8, 12], healthcare [9, 15], financial services [44, 49], and
transportation [34, 53]. An important prerequisite to train an ML model is to have a large and
diverse dataset. The public and well-established Bitcoin blockchain fits perfectly for this purpose.

3 THE FEE MARKET IN BITCOIN

Bitcoin can transition from its current operational mode where transactions fees are, in practice, no
more than a complementary tip to the miners, to a situation where a fee market effectively regulates
all traffic. With such a fee market, low-fee transactions might potentially remain pending for hours,
days, or even weeks waiting for approval and inclusion by a miner. As the energy demands of the
Bitcoin network increase and mining becomes more expensive, a transition to such a fee market
becomes more evident.

Bitcoin is highly energy inefficient by design. Its PoW scheme secures records in the blockchain
only after a certain amount of computational work has been carried out by the prover (or miner).
This mechanism is however essential as it prevents double-spending and Sybil attacks. This work
must be hard—yet feasible—on the miner side, but easy to check for the verifier as a form of a
nondeterministic polynomial time (NP) decision problem. In Bitcoin, the prospect of making
profit via mining has built up the common interest in joining the PoW protocol. However, a set by-
design parameter such as the interblock time interval,' made any speed up in the mining process—
which would cause more revenue—impossible, despite the network hashing power increasing. As
a consequence, mining became more expensive and miners needed to reshape their way of making
profits.

Each mined block has an expected profit (II) (Equation (1)), where (V) is the expected revenue
for mining (Equation (2)), and (C) (Equation (3)) are the expenses, or cost of mining [42].

(IT) = (V) = (C), (1)
(V) =(R+ M)%(l - Porphan)s (2
(C) = nhT. (3)

Miners’ revenue (V') is inversely proportional to the total hashing power of the Bitcoin network H,
but directly related to three main factors: the reward and transaction fees (R + M), the individual
hashing power (h), and the probability of not orphaning? the block just mined (1 — Porphan). The
reward R for mining a block is, as of writing, B 6.25. The value M represents the sum of all the

The average time required for the system to mine a new block.
’Detached or Orphaned blocks are valid blocks that are not part of the main chain. They can occur when two miners
produce blocks at similar times, and one block gets discarded because of a higher propagation delay.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

On Optimizing Transaction Fees in Bitcoin using Al 77:5

transaction fees included in the mined block. Increasing the number of miners will substantially
increase H, and consequently it will reduce (V). Miners’ expenses (C) are directly proportional to
the individual hashing rate (h), the cost per hash (1), and the expected time to mine a block (7). It is
evident that the system becomes more expensive for miners as the number of them scales up, and
the inherent throughput limitation of the system causes new incoming transactions to compete for
space in the blocks, as the number of transactions scales up. Because of that, miners can change
their behavior for transaction inclusion, in a profit-oriented manner.

The nontrivial scalability problem in Bitcoin, and its scalability bottleneck, resides in the low
throughput?® Tt depends directly on two factors: (1) the block size Q, and (2) the interblock inter-
val time 7, which allows approximately from three to seven transactions per second. This upper
bound is hindered by an exogenous property known as difficulty (Equation (4)). The difficulty
raises or drops in order to maintain a target block creation time of 7 =~ 600 sec, and it is nor-
malized according to 7/, which is selected as the mean value of the past 2,016 block creation
times. Equation (4) defines difficulty d at block height x. Because 7 is fixed, in order to avoid this
throughput bottleneck one remedy is to increase the block size Q. Unfortunately, the blockchain’s
distributed nature does not allow to arbitrarily change either of these parameters [30], and miners
have the hallowed power to unilaterally order and select transactions [28]. Furthermore, because
the network is congested most of the time [35], this creates a competition for transaction inclusion,
that escalates in a first-price auction market.

1 ifx=0
dy = 4
* {dx_l‘f/fr' if x > 0. @

In Equation (2) we see that a miner’s profit depends on R and M. The block reward R is halved
every 210,000 blocks, leaving M—the sum of transaction fees—the only reliable source of profit
left in the long term. In a first-price auction market, a bidder tries to raise his bet in order to beat
any other competitor. In absence of any other source of profit, transaction fees are competing
with each other as bidders in a first-price auction market. The well-known adopted strategy by
miners to choose a bidder, is the fee-per-bytes dequeuing policy, and it is widely considered to
be the norm for prioritizing transactions [35]. In this policy, transactions are ordered by their
feerate—transaction fee divided by its size in bytes (Equation (6))—and then included accordingly.
However, Eyal and Sirer [18] show that the Bitcoin mining protocol is not incentive-compatible.
Greedy miners can benefit from a first-price auction scheme while the burden is being borne by
users. The individual competition of a first-price auction scheme is harmful for Bitcoin, where
its market design engages K identical items to be sold—K number of transactions included in the
next mined block—to bidders who each want one item at most. The study outlines how a GSP
auction market could benefit user expenditures. In this scheme, the K highest bids each win an
item (inclusion in a block) and bidders all pay the (K + 1)-th highest bid. If fee estimators use the
first-price auction mechanism to calculate transaction fee then overpaying is likely to occur.

A first-price auction market is demonstrably unsuitable for large-scale blockchains based on
PoW. The market does not provide a stable coin price, so transaction fees are unpredictable and
their variance is enormous, capacity and demand do not always meet, forcing users to overpay
for their space in the block, to avoid being left out. We consider two main issues coming from
the fee market legacy: fees unpredictability, and users overpaying. Our purpose is to build a model
which defines a transaction inclusion pattern, based on ML techniques such as multi-layer Neural
Network (NN). The model wants to track both the block size and the mempool size, therefore it

3Transactions committed per second (t/s).

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

77:6 E. Tedeschi et al.

lies outside the group of first-price auction predictors. Furthermore, we include features which are
not fee-based, so that the model does not rely its knowledge on a second-price auction scheme
alone.

Our previous study shows that it is possible, using ML techniques, to analyze and define pat-
terns in big data [48], and the public and well-established Bitcoin blockchain fits perfectly for our
purpose. The new proposed model is able to make a binary decision on transaction inclusion—will
a transaction be included in the next mined block?—thanks to some carefully chosen engineered
features, based on assumptions we make in Section 4.

4 TRANSACTION INCLUSION MODEL

Here we analyze, define and present our model for transaction inclusion. In Section 4.1, we ex-
plain how transaction data is treated, and why we base our observations on a time-series-like
approach. Consequently, we analyze two main factors that can alter inclusion. We call them rev-
enue (Section 4.2) and fairness (Section 4.3), and they serve to ensure an equilibrium of user’s and
miner’s participation. These two definitions are complementary for an accurate study and pre-
diction, therefore the holistic view for transaction inclusion is to be sought in both fairness and
revenue concepts.

4.1 Observational Approach

Time-series data analyses have proven to be useful for predicting future trends [20-22, 24, 45,
51]. Our observational approach follows a methodology that strongly depends on time-series data
collection, since we sample Bitcoin transactions monthly with a fixed interval, although we add
a notion of relative time to it: the block creation. The idea is that a transaction carries different
information throughout the time that it is pending, and therefore our approach follows a block-
epoch-based collection, where a transaction changes part of its carried information every time
there is a block creation. The relative time interval is then defined between two block creation
epochs. Each record ¢ (or transaction), at time x, is uniquely identified with the pair (ha;, bey), as
the hash of ¢ and the block time epoch at height x. We refer to a transaction t at height x as t*),
and this represents an instance of the transaction ¢ during the time slot [bey, bey1]. For this study,
we want to track transactions over time to have information about network saturation and waiting
time at each block epoch. In order to delineate the time slots used for the analysis, we define the
timeline-set T, which contains all the block time epochs. We consider a transaction lifespan L(t)
as the time in seconds that goes from the moment the first node sees ¢ (ep;), until ¢ is included
in a mined block. If the mined block is at height x, then we define L(t) as L. A transaction t,
therefore, has as many occurrences in our local dataset as the number of blocks it sees before being
included. We define T, £}, and the number of ¢ occurrences in a dataset (y) in Equation (5).

T = {be;|0 < i < &}, where ¢ = max(block height),
L} =[eps, bey], iftisincluded at height x, (5)

y = [{belbe € TN L}}|, number of t occurrences.

4.2 Revenue for Miners

Difficulty is an exogenous property of Bitcoin. It grows in relation with the total network hashing
power H, and it makes scaling of miners extremely expensive.* The blockchain is secure if a set
of malicious miners has less computational power than the honest nodes together, putting Bitcoin

“Difficulty increases/decreases because the pool of miners solves the PoW puzzle faster/slower. So if the number of miners
increases, they are consuming more while producing the same amount of blocks.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

On Optimizing Transaction Fees in Bitcoin using Al 777

security directly proportional to the growth of H. A high degree of security then hinders a low and
cheap maintenance scheme for miners, low transaction fees, and therefore a deterministic outcome
of the system. Consequently, we conjecture that a miner’s main purpose is its revenue.

Referring to Equations (2)-(3), revenues get lower as H increases. A miner then could either:
(1) reduce its costs, (2) increase its hashing power h, (3) reduce chances of orphaning Py, phan,
(4) increase the amount of fee it gets (M + R). In order to reduce the miner’s costs, the exogenous
properties 7~ and 7 cannot be changed,” so that a miner should decrease its hashing power, which
would conflict with point 2. The probability of block orphaning depends on the block propagation
delay, which is affected by the block size [11]. A rational miner could make its blocks lighter in
order to spread faster to reduce orphaning rate. However, this only partially increases the rev-
enue, since fewer transactions means less fee as reward, besides decreasing the overall network
throughput. Furthermore, orphaning rate has been calculated to occur only three times every 1,000
blocks,® so it has little impact on miner revenue. If we now consider that R is halved every 210,000
blocks, then M is the only source of profit left. Most miners are assumed to behave rationally [2],
implementing individualized and unknown policies for transaction inclusion that aim at maximiz-
ing their profit. Because miners can arbitrarily select transactions, revenue is their purpose and
the sum of transaction fees is their main endogenous source of profit, we assume that a transaction
is selected rationally, and its inclusion strongly depends on its fee.

Although we consider transaction fees to play a key role in inclusion, the concept of revenue
does not refer exclusively to that. While inserting transactions into a block, every miner increases
its possible revenue, but it also decreases his block propagation rate, which undermines the proba-
bility to earn any reward at all. In fact, the time needed for propagation in order to reach consensus
among participants depends on block size [26]. If the block size Q is fixed to 1 MB, then a rational
miner might attempt to optimize the number of transactions paying more fee within Q, by calcu-
lating the ratio between transaction fee ¢ and transaction size g, called feerate (p) (Equation (6)).
Dequeuing feerate policy is generally considered to be the norm [35] among miners, and we as-
sume that feerate is the bedrock of miners’ revenue.

p=9/q. (6)

Despite many fee estimators include feerate in their evaluations,’ they still fail to avoid overpaying.
Analyses show [35] that on average, 50%-70% of transactions offer feerates two orders of magni-
tude higher than the recommended minimum,® and that 88% of all Bitcoin transaction inputs pay
higher fees than necessary [17]. Because of this, we conjecture that revenue is not the only met-
ric to study and analyze. We assume that a miner also needs to be fair and give space to those
transactions that are waiting for a longer time, in order to maintain system sustainability.

4.3 Fairness for Users

The concept of fairness considers those transactions that, upon payment of a fee, are waiting
unfairly long because some newer, higher-fee transactions joined the network. To explain this
view we define the set (Definition 4.2) as the set of relapsed pending transaction (RPT). We
define the block-before-inclusion (f;) in respect of a transaction ¢, as the epoch of the last block,
mined before ¢’s inclusion. If the latest block epoch is represented as bes, where ¢ is the last block

>Normally distributed with a fixed known mean (600 seconds in Bitcoin).

60.31% is the probability of orphaning on data collected from blockchain.com for every block occurred from 184 March
2014 to 14" June 2016, and stored at https://cutt.ly/YvUvMz5.

7E.g., bitcoin fees https://bitcoinfees.earn.com.

8Recommended minimum feerate is 107> BTC/kB = 1, 000 sat/kB = 1 sat/byte, according to Bitcoin Core.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

https://cutt.ly/YvUvMz5
https://bitcoinfees.earn.com

77:8 E. Tedeschi et al.

height, this results in:

bey,_q, iftisincluded in block at epoch be,.,
ﬁt — { 1 p (7)

bey, if t is yet to be included.

We also extend the block-before-inclusion concept to the block-epoch approach, and the f; at
height x for a transaction t™) is §,*) = be,, where for height x we always refer to the time slot
[bey, bexi1]. It is important to define in our model the principle of fairness since a transaction
cannot wait forever for approval, upon payment of a rightful expected fee.

Definition 4.1 (E[f]). The expected fee value is the amount of fee a transaction should pay ac-
cording to its size g, if we consider the minimum feerate requirements of 1 sat/byte.

E[f] = p’q, where p’ > 1sat/byte. (8)

We now assume that if a rational miner is fair, it does not only include transactions with a high
feerate, but it also considers those in the set P.

Definition 4.2 (P). We identify P¥) as the set of relapsed pending transaction (RPT) at height
y. The set contains transactions that in their lifespan (included at be,), have seen at least one
block creation, have not been included up until height y, and have a fee equal or greater than the
expected one, such that:

PO = {tlep) <0 A
be, < bey, it L(t) =L} A %)
¢r 2 E[fil}.

We say t is an RPT transaction at height x, if t*) € P&,

We consider a more generic definition of # as the union of all the block-epoch-based P-sets:

Uio P Following this concept, we assume that, when a transaction appears multiple times in
%, it will have more chances of being included in the next mined block.

4.4 Model Formalization

An efficient transaction inclusion model should consider the aforementioned concepts and it
should monitor, at the time of training and testing, the current network state. For this purpose,
it is important to keep track, of each transaction analyzed, its moment of inclusion in a new block.
The set A contains temporarily approved transactions (TATs) (Definition 4.3). The latter is
useful in phases of training and testing, in order to have knowledge of when a transaction is about
to be included, monitoring at the same time any other type of information carried by such a trans-
action.

Definition 4.3 (A). We identify AY as the set of TAT at height y. The set contains all the yet-
to-be-included transactions that are selected for inclusion at height y, during [bey, bey+1] time slot,
and included then at height y + 1. We say ¢ is a temporarily approved transaction (TAT) at height
yif 1) € AW,

AY =Lt L) = L (10)

Figure 1 shows two instances of a block-epoch-based transaction, ¢; and t,, initiated by User 1
and User 2, respectively. Transaction t; carries different information according to where it is lo-

(x-2) (x=1) o4 ()
1 b

cated, and we name it differently, e.g., t - The belonging of t; and ¢, to sets A

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

On Optimizing Transaction Fees in Bitcoin using Al 779

b@m_ 1 b@m b6$+1

& o})
@ ® ® Time
t 1 (—) :

A
Y

A
Y

User 1

€Pty

Fig. 1. Two different transactions, t; and t,, issued at time ep;, and ep;,, having different lifespan. t; will be
included in the third block after its inception, at height x + 1, while ¢, will be immediately included at height
x. The number of t; occurrences we represent is then y = 3, while t; has y = 1 occurrence.

and P changes over time, and we formalize it in Equations (11) and (12). Considering that lifespan
for t; is L(t;) = .[,;‘1“, then:

tix—z) ¢ p(X*Z)/\ ¢ ﬂ(xfz)’
tix—l) c P(x—l)/\ ¢ ﬂ(X—l)’ (11)
19 e PO e AW,

Similarly, since lifespan for t; is L(t;) = L;‘Z , we have:
70 ¢ PETIA e ALK, (12)

As can be observed in Section 4.2, each miner tries to optimize their profit by including transac-
tions with a higher feerate first, and this is also widely accepted to be the norm. A rational miner
will then order pending transactions by feerate (p). Our transaction inclusion model must take that
into account, so we define the ordered set of pending transactions S, formalized in Definition 4.4.

Definition 4.4 (S). We define S at block height x as the set of ordered pending transactions, S*).
The set includes all non-approved transactions at time be,, ordered by their feerate in ascending
order, formally:

NEY :{t|£(t) = L;’ Nep; < bexﬂ}, Yy > x,
S =[t, tp,...ty] is an ordered set, (13)

where p;, < py, <+ < py,.

Our model uses information about sets £, A, and S to make decisions on transactions inclu-
sion. Knowledge on revenue and fairness (Sections 4.2-4.3) from sets and S is fundamental to
determine whether or not a transaction belongs to the set A over time. The model uses informa-
tion from the aforementioned sets, to obtain new features through a process of feature extraction
(Section 5.2). Figure 2 shows how the # A S ecosystem changes during time, and it considers
five different transactions carrying contrasting feerate values. In the next section, we explain data
retrieval, elaboration, and features engineering, and we finally build and test the model for trans-
action inclusion.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

77:10 E. Tedeschi et al.

~
3
|
e

Q,) §> ﬁ Mempool

L
s | | I I
15} | |
o | |
= T |
beg_o bezi be., beyt1 beg
Fig. 2. We consider a subset of transactions, {t1,...,ts5}, from time bex_3 to be§, to graphically show their

path towards inclusion and their belonging in #, A, and S sets. Transactions are inserted in the mempool
upon their inception, they carry information about their feerate, and in different time-epochs they can belong
or not to the sets we have defined. In S, transactions are ordered by feerate, ¥ gives a relative time-view of
how long they are waiting, and finally, they belong to A if they are about to be included.

5 METHODOLOGY

We store data locally to have an instance of the Bitcoin blockchain always accessible and save
on average up to 68%° of the disk space required, by removing redundancies, keeping the es-
sential information for predictions, and adding newly extracted features. We collect data using
third-party APIs'’ and gather information about money exchange prices with forex-python'! li-
braries. Furthermore, we collect information to verify data correctness by setting up our own
node using Bitcoin Core.!? Once data is retrieved and relevant information based on revenue
and fairness is stored, we extract new features, and we perform supervised classification using
a Deep Neural Network (DNN) model, making it possible to analyze a considerable part of the
blockchain with little up-front investment in computational resources. We divide this Section into
Data Acquisition (Section 5.1), Feature Selection and Extraction (Section 5.2), and Prediction Model
(Section 5.3).

5.1 Data Acquisition

Retrieving data from Bitcoin Core can often be cumbersome and time-consuming. The process
of calculating transaction fees, for instance, is intricate and it requires checking all the spent out-
puts in different transactions, due to Bitcoin being based on the Unspent Transaction Outputs
(UTXO0) model. Using the procedure listed in Algorithm 1, it takes on average 30 seconds to fetch

9For instance, we manage to store 1.3 GB of information from the actual Bitcoin blockchain, in only 0.4 GB. See Table 1
and 2 for more information.

Ohttps://www.blockchain.com.

Uhttps://pypi.python.org/pypi/forex-python.

2https://bitcoin.org/en/bitcoin-core/.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

https://www.blockchain.com
https://pypi.python.org/pypi/forex-python
https://bitcoin.org/en/bitcoin-core/

On Optimizing Transaction Fees in Bitcoin using Al 77:11

Data Sources . Ingestion Engine : Pre-processing : ML Model

Feature Selection ! Feature Extraction
/

BTC Core Node
Blockchain API

Multi-Layer NN

Data Pfocessing) C :

\J
. Data Storage R X 4l pandas :

Blockchain

Fig. 3. Data flow in BAS, from the blockchain to the ML framework. R, C, and X represent different datasets.
The first indicates raw data extracted from the blockchain, the second represents a complete, run-time only
dataset, while the third one includes all training data.

information about fees contained in a single block. We have developed our own system for data re-
trieval, Blockchain Analytics System (BAS), built over a Python back-end. In BAS, transaction
fees are obtained using APIs from blockchain.com, which is faster than using Bitcoin Core'® and
more convenient for our purpose. Blockchain Analytics System (BAS) fetches and stores only tar-
geted data, which makes it faster than retrieving or querying the entire blockchain. Furthermore,
it saves resources up-front, making data more accessible for future queries.

ALGORITHM 1: Our approach to get information on a single transaction fee using Bitcoin Core.

1: procedure GETTXFEE(t) > in: json from getrawtransaction query of Bitcoin Core
2 sin, sou « 0 > initialized sum of transaction input and output
3 for all in € t['vin’] do > for each input in ¢
4 txin « getrawtransaction(in['txid’]) > call using bitcoin-cli and local blockchain
5: vin « txin['vout’][in['vout’]]['value’] > in[’txid’] is the index of the spent output in in
6 sin « sin + vin > update transaction input
7 for all ou € t['vout’] do > for each output in ¢
8 vou « ou[’value’]

9 Sou «— sou + vou > update transaction output
10: ¢; « sin - sou > calculate transaction fee
11: return ¢,

Figure 3 shows the data process in BAS from the blockchain to the ML model. Data is re-
trieved using third-party APIs!® and our Bitcoin Core node running on Azure. JSON messages
compose most of the data exchange from data sources to the ingestion engine, and whenever
data is missing, raw HTML data is fetched and parsed. Data are then processed in the ingestion
engine and saved locally in the data storage using Pandas [4]. While data are being processed,
the ingestion engine/pre-processing is selecting/extracting features which are eventually stored
locally as NumPy text files [50], and used as training sets for the ML model, which uses a Tensor-
Flow [1] back-end with Keras [10] modules. We will discuss which features are selected and why in
Section 5.2.

BMore than 10x faster. In 30 seconds, using APIs from blockchain.com, we fetch information on transactions included in
10 blocks.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

blockchain.com
blockchain.com

77:12 E. Tedeschi et al.

Our local data view separates blocks and transactions, such that their information is stored in
different datasets. This is to avoid redundancies and to save disk space, since some block informa-
tion is deep-seated in every transaction, and therefore, repeated thousands of times in one single
block. Hence, we consider Dt and Dy as datasets containing, respectively, raw transactions and
raw blocks, meaning that information is stored as it was fetched, before being elaborated or engi-
neered. Every transaction is linked to a block with a many-to-one relation using block hash (ha)
as unique key, r : Dy — Dp where Yha’ € Dr3ha”’ € Dp st ha’” = ha”’. We then construct the
raw dataset as R = Dp = Dr. Each row of R represents an instance of a raw transaction ¢, at
time of its approval. Each column in R identifies values of a specific feature, and a column key,
represented as k;, is the feature name at i-th position. We consider Kg (more generically K) to be
the set containing all the keys in R.

5.2 Feature Selection and Extraction

The feature engineering process is based on fairness and revenue concepts outlined in Section 4. We
distinguish between feature selection and extraction and refer to the former as a subset of attributes
already present at the time of fetching (e.g., transaction size), while the latter are generated during
the pre-processing phase. They are intended to be informative and non-redundant, facilitating
the subsequent learning and generalization steps in order to determine a transaction inclusion
pattern. Ingestion engine and pre-processing create a local, run-time only, version of R, which
we call complete dataset C. Each row of C represents an instance of a feature vector ¢, which
identifies a transaction during a well-defined time slot. We define then T as the complete block-
epoch-based representation of a transaction ¢ € R, since it contains information belonging to the
same transaction for its entire lifespan L(1).

Definition 5.1 (Feature Vector). A feature vector t is a list of keys (k) that identify a block-epoch-
based transaction T in a specific time slot, and it is defined as t = [ky, ks, . . ., kn| with |K| = n.

Definition 5.2 (Complete Transaction T). A Multivariate Time Series (MTS) T = [t1,t2,...,t,]is
an ordered set of feature vectors ¢, and consists on y different univariate time-series with t € R”,
Vt €T, and |K| = n.

C is used to create the training/test datasets X, where |C| > |X| > |R| and Kx € K¢ € K. To
extract new features we apply a function to some values in the feature set K. Formally, to generate
anew key k’ we define f : K’ — Rst: K’ C K. Pre-processing layer and ingestion engine exchange
and update the information so that R contains newly generated features.

5.2.1 Fee-Functions: fy and f,. The fee-functions include revenue-based techniques which cal-
culate transaction fee and feerate. Transaction fee is a relevant information for our model, and it
is calculated using the function fy, which resembles Algorithm 1, and it is based on transactions’
inputs and outputs. If, a transaction t has n inputs and m outputs, we formalize Equation (14) for

calculating transaction fee.
n m
qﬁ:Zini—Zouj. (19)
i=1 j=1

We identify the fee-function fy as: (in, ou) — ¢ = fy(in, ou). Always based on the revenue princi-
ple, the feerate-function f, wants to get information on transaction feerate. As outlined in Equa-
tion (6) represents the way feerate is calculated, formally, we define f, as: (¢, q) = p = f,(¢, Q).

5.2.2 Pending-txs-Function: fp. This fairness-based function aims at quantifying the belonging
of a transaction t to the set P, to see whether such a transaction has chance of getting into A
anytime soon. The function fp generates feature AP, described in Equation (15), and graphically

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

On Optimizing Transaction Fees in Bitcoin using Al 77:13

be, 1 be, be, 1 beg
Arp_/ 1) ‘1 — >

‘ Ap(@+1)
H AP e o 0

@ fl ‘ : Tlme
AP
<> AP®)

<
Y

Y

€Pt,

Fig. 4. A transaction t; submitted at time ep;, and yet-to-be included, such that L(t;) = Li, takes different

AP values over time. For instance, at height x + 1, APGFD) = bex+1 — epy,. Blue AP represents a positive
number, while the red AP*~1) indicates a negative value.

explained in Figure 4. Specifically, AP®) represents how much a transaction t*) is waiting, from
its inception, until the nearer block epoch be,. We note that if t*) ¢ £ then AP*) has a negative
value, which is the case of A?*~V in Figure 4.

Afo(tx) = ,Bt(x) — epr,
(B.ep) — AP = fp(f, ep).

In the case a transaction is not included yet, we calculate f8; = bes. With the feature AP, we assume
that a transaction can not wait forever for approval if it has paid a fair amount of fee. Furthermore,
since we know y to be the number of ¢ instances in T, we can also quantify time, in relation to
the number of blocks that T has seen before being approved, so to consider both, an absolute
view of time in seconds, and a relative view in y-occurrences. Consequently, a block-epoch-based
transaction has y-different instances of AP.

(15)

5.2.3 Offset-Function: fs. The offset-function fy is a revenue-based solution. It orders pending
transactions according to their feerate, taking into account block space limitations. This function
generates a new feature, the offset, represented with §. For each block-epoch-based transaction
t, its offset value at height x, indicates the amount of bytes already occupied in the block space,
from unapproved transactions with a higher feerate, and it is represented as (ng) . The offset then is
relevant to give each transaction a place in the future block, greater is the offset and fewer are the
chances that t € A, If we now consider the set S at height x, containing n transactions ordered
by feerate, the offset value at any index i is given by

5§x) = i qis

(S(x),q) —d5=fs (S(x),q) .

As with AP, for each block-epoch-based transaction, there are y different occurrences of offset
values. Algorithm 2 lists how to calculate the offset for transactions in S®). If compared to other
features, this one requires more computational overhead, and the procedure DEFINES in Algo-
rithm 2 counts a time complexity of O(n?), where n is the number of transactions in S*). The
OFFSET execution time (Algorithm 2) is upper bounded to O(n), the latter procedure gets executed
n times, and consequently, the total number of operations is derived from i, ;o ij ~ Oo(n?).

(16)

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

77:14 E. Tedeschi et al.

5
16000 S S® o
140001 | 1: L 400
| . ;
; : 4 s
12000 i 5 | i i 350
b "T i | —
% 10000 1 i l ' g
2 i] 9
2 \ 1 \ [300 S
o ! !] | i <
= 8000 1 |1 | i | % Q
2 ! | ! i /. 250 2
5 1 | & | % ! 1‘! 3
6000 ~'1 i T [[=
i | | | N
. - ! ! | 20(
A | L | Y
4000 | e : 1
2000 :
i 100
0
\063 ‘oem \063 \oeu ‘Oec)
Block epochs be;

Fig. 5. Data sampled for five consecutive blocks. In each block-epoch slot, transactions are ordered by feer-
ate, then the offset is calculated. We see in this example that the offset value for transaction 1) changes

according to the block-epoch. Offset value for t() for instance, is higher than its offset at epoch x = 2, of
@, Thus, 551) > 5;2).

Figure 5 shows the offset trend over time, for five consecutive blocks. In each block-epoch time
frame, from be; to bes, transactions waiting to be approved are ordered in the mempool by feerate,
and then their relative offset value is calculated. For instance, transaction t*) appears in the pool
at height x = 1 and x = 2, with different offset values. Same transactions can then carry different

information based on their block-epoch snapshot, thus, adding valuable knowledge about network
status, at every block-epoch time slot.

5.3 Prediction Model

The main purpose of the prediction model is to define whether or not a transaction ¢ at height x is
likely to be included in A, As explained in Section 5.2, the ML model gets as input a training/test
set X, which is the set identifying both the training and the test datasets, respectively X and
Xte. Following definitions of t and T (5.1-5.2), we represent the training/test dataset X as an M-
dimensional MTS collection of pairs (T';, Y;), represented as X = {(T1,Y1), (T2, Y2),...,(Tm, Yum)},
where Y; is the corresponding one-hot label vector to a certain transaction T;. For a value y; = |T;|,
the one hot label vector Y; is a vector of length y; where each element j € [1,y;] is equal to 1 if ¢;
represents the time slot of T’s inclusion, and 0 otherwise.

The ML framework outputs a model for transaction inclusion. The latter will be used later on to
predict whether or not a certain transaction will be included in the next mined block. Models need
to be updated and trained/tested at least every week, in order for them to be accurate, and to have
enough knowledge of the current network status. When the trained model gets a transaction ¢ as
input, it outputs a vector 8;, which represents the confidence for each transaction to be included or
not, in the next mined block. Since this is a binary classification, we represent 8; = [P;(vy), P(v1)],

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

On Optimizing Transaction Fees in Bitcoin using Al 77:15

ALGORITHM 2: Defining S and

1: procedure DEFINES(x) > add and order pending transactions in §)
2 S’ = {t|bex < ep; < beyy1} > S’ contains all transactions occurred between [bey, bey 1]
3 S—o

4 forallt e S’UP™ do > add transactions that are waiting and are in %)
5: pr < fpo(¢e.qr) > calculate feerate of t
6 Su{t} > add ¢ to the set S&)
7 sort(S, p) > order the set S by feerate in ascending order
8 forallt € Sdo

9 d; « OFFSET(t, S) > set the offset for every transaction in S
10:
11: procedure OFFSET(Z, S) > index i is the place of ¢ in the set S
12: 0y — 0
13: for all i € S after t do > for every transaction in set S, ordered after ¢
14: O «— 8+ qi
15: return J;

ALGORITHM 3: Normalization of X

1: procedure NORMALIZATION(X, Xte)

2 U — Mean(X) > expected value
3 o « Std(X) > standard deviation
4 X norm — X 1)/ > set the normalize training set
5 if Xte then > if the algorithm is in testing phase
6 Xtenorm — (Xte-p)/s > set the normalized testing set
7 return X,,0rm, Xtenorm

8 else

9 return X,,,,m

where vy is the class representing a non-inclusion in the next block, while v, represents an inclusion.
In other words, 6, represents the probability, P(v;), of ¢ to fall in the class v;, with i € {0, 1}.

We perform a supervised classification, which means that we know a-priori the outcome of
transactions in X, and use this information to test the model accuracy during the training phase,
which is the purpose of labels Y. Part of X is then used for testing, and Xte represents the respective
testing set of X. In our model implementations, we dynamically change the number of hidden
layers during the validation phase. We use a Rectified Linear Unit (ReLU) function for each
node in the NN, except for the output layer where we use a Normalized Exponential Function (or
softmax). The weights are initialized with He normalization, which takes into account Rectified
Linear Unit (ReLU) and makes it easier for deep models to converge [25]. Parameters for data
normalization are set before the training phase, the set X is normalized using its expected value
and standard deviation, as showed in Algorithm 3. If we are in the testing phase, then the algorithm
normalizes the testing set Xte, according to the mean and standard deviation of X. In order to
balance the set and be unbiased in the training phases, data normalization is a necessary measure
to be adopted since features have different orders of magnitude.

Parameters of the DNN classifier which cannot be estimated from data, known as hyperparame-
ters, are set manually by trial and error, including the number of hidden layers, the number of skip
connections, the batch size, and the number of epochs for each model. The batch size controls the

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

77:16 E. Tedeschi et al.

Table 1. Disk Space Occupied by Instances of Different Sets if they Contain
Information About 100k, 500k, 1M, and 5M Transactions

Disk space of different datasets
Dataset 100k txs 500k 1M 5M
R ~29 MB ~145 MB ~290 MB ~1.2GB
C ~40 MB ~730 MB ~1.6 GB ~13.7GB
X ~7MB ~130 MB ~288 MB ~2.4GB
B ~60 MB ~300 MB ~600 MB ~3GB

The last row shows the corresponding space taken by the same amount of transaction in the
actual Bitcoin blockchain. The sizes reported in this table consider a worst-case scenario for our
datasets and an optimal one for the Bitcoin blockchain.

granularity or precision of gradient descent, so the model internal parameters are optimized for
every batch size of tuples. The number of epochs instead represents the number of times that the
learning algorithm will work through the entire training dataset, ideally getting closer to the opti-
mal solution at every iteration. The model’s hyperparameters are configured in order to optimize
the model performance and accuracy. In the next section we present experiments and evaluations
of the ML model described so far.

6 EVALUATION

In this section we present the evaluation of our ML model. In Section 6.1, we describe the datasets
used for both training and testing, and the selection of features. In Section 6.2, we list our evaluation
metrics and what we define as model accuracy. Finally, in Section 6.3, we show the results of our
analyses in terms of overall accuracy, the importance of the selected features, and model cyclicity,
that is, how much information of the current network status can influence model prediction if the
model is updated cyclically.

6.1 Experimental Setup

We conducted experiments on a large scale with data from the Bitcoin blockchain. We analyzed
more than 30 million transactions across 15 thousand blocks between January 2021 and May 2021.
In Sections 5.1-5.2, we introduced datasets R, C, and X. Table 1 shows the required space on the
disk of those three datasets, when they store information about 100 thousand to 5 million trans-
actions. The raw dataset R contains information about blocks and transactions as it was collected
from the blockchain. Nothing is added, and redundant or irrelevant information is discarded in or-
der to save disk space. The dataset C is used to generate the block-epoch-based training/test dataset
X, and considering C’s demanding storage requirements at scale, only a copy of the lighter dataset
X is stored locally. The dataset C as can be observed, has a superlinear growth. This is as expected
if we consider that C stores all transactions in R, plus it keeps track of block-epoch dependent
features described in Section 5.2, and finally it has knowledge about # and S sets.

We fetch data and store locally different R instances, one per each month of evaluation, and
list them in Table 2. For each period we fetch the same number of blocks (3,010 in our analysis),
and for every dataset R’ we create a prediction model based on the inclusion pattern defined in
Section 4. A C! dataset is generated at run-time, and from it, new information and features are
extracted. Finally, data from C' are selected to form the training/test dataset of features X*. For
every period i, we train one model with the first 50%-occurred transactions in R’. Each tested
set is labeled with hyperparameters defining how complete and new the considered set is. We
define these hyperparameters as a and . We identify a = IXte|/X|, as the fraction of transactions

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

On Optimizing Transaction Fees in Bitcoin using Al 77:17

Table 2. Tests and Evaluations are Performed on these Raw
Time-Series Datasets

Raw dataset for each period
i Date |RY| R size B price
1 January 6.5M 1.09 GB $29 k-$35 k
2 February 6.7M 1.12GB $33 k-$56 k
3 March 6.2M 1.05GB $49 k-$58 k
4 April 6.2M 1.04 GB $58 k-$56 k
5 May 5.2M 877 MB $58 k-$36 k

3,010 blocks are analyzed every month. |R!| is the number of transactions analyzed in
each set, while R’ size identifies the set’s space on disk. We also include the Bitcoin
price at time of evaluation to discuss any correlation between model prediction and
coin price at that time.

used for testing over the total number of points used for training e.g., if « = 0.5 the amount of
transactions used for testing is half of the one used for training. This value is important to have
an accurate prediction when live information is not available. In our case, we preferred to conduct
experiments using millions of older transactions fetched and stored locally. In this way, we know a-
priori their inclusion, and consequently, it is easier to evaluate large datasets quicker. As & — 1 the
set becomes complete, and the offset value constructed for testing is close-enough to the one used
for training, therefore we reduce false-positives points if « < 1 or false negatives if @ > 1. We say
that a complete set has an accurate view of the mempool size over time. The other hyperparameter,
¥, represents the distance (time-wise) of test set from training. Let mo be the difference between
the test month and the training month, the value ¢ is normalized through a sigmoid function so to
have a bound of [0, 1], such that: {/ = sigmoid(mo). If we use training and test data from the same
month, we have i = sigmoid(0) = 0.5, and we consider the model new. If the test is done with an
older model, we have mo > 0, and consequently ¥/ — 1. On the other hand, if we train the model
a-posteriori and want to test older data, mo < 0 and ¥ — 0. This parameter indicates how new
the transactions tested are compared to the ones trained. Therefore measures how updated the
model is in relation to the current network status. Furthermore, information on ¢ is useful later
on, when model cyclicity is analyzed.

The features we select to be trained (from C to X), are partially fetched from the blockchain and
some others are engineered as seen in Section 5.2. Following our assumptions, X should contain
information about fairness and revenue (Sections 4.2-4.3). We train our models with the following
features: Kx = [¢,q, p, AP, 5, APN,ON], where APy and Sy are normalized values for respec-
tively, AP and &. The first one represents the waiting time AP, as the number of created blocks a
certain transaction t, has seen from its inception (Equation (17)).

Y
APy =" o with,
i=0

oo, ift; ¢ PO,
W = .
1, ift; € PO,

(17)

The second one, dy, is the offset normalized with the maximum block space (~1.1 MB), so that
dn is a percentage which tells how much the mempool is already occupied by richer transactions
(Equation (18)).

50 = 5% x 100

N 0 (18)

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

77:18 E. Tedeschi et al.

6.2 Evaluation Metrics

Evaluating our ML model is an essential part of this study. While classification accuracy is still
our main evaluation metric, sometimes it is not enough to truly judge our model. For this, we also
consider a confusion matrix and area under curve (AUC) evaluation. We briefly describe them and
then present our results in Section 6.3.

6.2.1 Classification Accuracy. When we evaluate our model, we initially refer to its broad-
accuracy-value as the so-called classification accuracy, which is the ratio of number of correct
predictions to the total number of input samples:

Number of correct predictions

Accuracy = .
Y= "Total number of predictions

This metric is immediate and easy to calculate, and we use it as a general measure for comparing
accuracy between different models. However, classification accuracy does not always represent
an accurate model evaluation since it works well only when a homogeneous class distribution
is studied. Our classes proved themselves to be quite unbalanced, and since we did not want to
reduce the number of sampled data, we opted to include other metrics for evaluating the model.

6.2.2 Confusion Matrix. Confusion matrix allows to visualize how accurate our model is to
make predictions over the binary classification problem (vy, v1). We refer to the following defini-
tion of confusion matrix CM, also formalized in Table 3:

CM=Fr!. [aoo 001] i
dio dn
(19)
where Fl‘z’z = [bii], bii = Zaij.
J

a;j is the number of elements that truly belongs to i but were classified in j. The metrics we use,
obtained from CM, are the recall and the precision. The recall R; of a specific class v;, represents
the number of ¢ € v; which were correctly classified in class v;, while the precision P; for class v;

represents the number of data points classified in v; which actually belongs to v;.
Ri = L, Pi = L (20)

j=0 4ji Yoo i)

6.2.3 Area Under Curve. AUC is a widely used metric for binary classification problems. Area
Under Curve (AUC) represents the probability that our model will rank a randomly chosen ¢ € v,
higher than a randomly chosen t € vy. AUC has a range value of [0, 1], and the greater the value,
the better is the classifier performance. If AUC = 1 then the classifier is able to perfectly distinguish
between the two classes, if AUC = 0.5 the model is not able to distinguish between vy and v; class
points, while if AUC = 0, the classifier would be predicting all vy as v; and vice-versa. Area Under
Curve of Receiver Operator Characteristic (AUC-ROC) is a very important metric for our
evaluations, and specifically, we calculate Area Under Curve of Receiver Operator Characteristic
(AUC-ROC) following the scheme in Table 3, and according to

F
TPR= ———, FNR= —N,
TP+ FN TP + FN (21)
IN Fp
TNR

=——, FPR=——.

IN + FP IN + FP
True Positive Rate (TPR) identifies Ry, or Sensitivity, True Negative Rate (TNR) represents the Speci-
ficity, so what proportion of the negative class vy was correctly classified. False Positive Rate (FPR)
is equal to 1 — Specificity, and it represents the proportion of v, that was incorrectly classified.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

On Optimizing Transaction Fees in Bitcoin using Al 77:19

Table 3. Confusion Matrix Model

Actual values

0 1
«
()
=
g 0 True False
= Negative Negative
2
2
e
)
i
=%
1 False True
Positive Positive

From this model, we base the calculation of AUC-ROC.

Table 4. Classification Accuracy for each Month, from January Until May

Classification accuracy
14 January February March April May Overall
1 0.5 90.07% 90.9% 91.08% 85.52% 88.29% 89.17%

The overall accuracy represents the average classification accuracy for the whole period of analysis. The optimal case
scenario for hyperparameters « and ¢ is presented, in this way the model is complete and updated in relation to the
data tested.

Finally, False Negative Rate (FNR) indicates what proportion of the positive class was incorrectly
classified. The representation of the Receiver Operator Characteristic (ROC) curve and its con-
sequent AUC, has FPR on x-axis and TPR on y-axis.

6.3 Analyses

In Section 6.3.1, we present the overall classification accuracy of our classifier, following the evalua-
tion metrics defined in Section 6.2. We list classification accuracy for each month of the evaluation,
from January 2021 until May 2021, with an optimal scenario of « = 1 and / = 0.5. A confusion ma-
trix representing the whole period is also presented. In Section 6.3.2, we discuss the importance of
selecting the right features, how accuracy changes with or without certain information, and how
the results might diverge if the wrong assumptions are made. Also in these experiments, hyper-
parameters are set as an optimal case scenario. Finally, Section 6.3.3 outlines the importance of
keeping the model updated. Different hyperparameters are evaluated and an AUC-ROC score for
each of them is presented and compared.

6.3.1 Overall Accuracy. We present here the overall classification accuracy for each month of
training, by setting hyperparameters with their optimal values of « = 1, ¥ = 0.5. We show the
overall classification accuracy for each month in Table 4, while the CM for all the points analyzed
from January until May, of over 30 million transactions, is represented in Table 5. We observe
that during the whole training/test period, the overall accuracy of the model is above 90% for
three out of five months, while the model struggles between April and May, during the coin price
plunge (discussed in Section 7). Despite that, the model appears to be solid even in our worst-case
scenarios, and the confusion matrix in Table 5 shows that the model correctly classifies 91% of
transactions in vy, and 88% in v;.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

77:20 E. Tedeschi et al.

Table 5. Overall CM Score for Test Ran between
January 2021 and May 2021, with Parameters
a=1andy =0.5

Overall CM score
Vo U1
Uy 0.91 0.09
U1 0.12 0.88

This matrix shows how the 30+ million transactions were
classified using five different models, one for each month,
with a complete and updated view. False negative transactions
represents 9% of the negative ones, while false positive 12% of
the positive ones.

Table 6. Classification Accuracy for Different K x Sets

Classification accuracy for K
n: type January February March April May Overall
1 : Primitive 75.13% 78.54% 77.77% 62.52% 69.97% 72.78%
2 : Fairness 84.57% 86.24% 84.63% 83.64% 82.11% 84.23%
3 : Revenue 88.24% 87.73% 89.4% 80% 86.21% 86.31%
4 : Complete 89.51% 90.36% 90.04% 85.35% 88.23% 88.69%

Each set of selected features represents a different assumption we made in the analysis phase. From the concept of
inclusion as merely transaction fee and transaction size, to the concepts of fairness and revenue we explained.

6.3.2 Selected Features. In order to validate our assumptions, we verify and test how impor-
tant some features are in predicting transaction inclusion. In the following results we show the
classification accuracy and confusion matrix for trained models with only a specific subset of fea-
tures K{’(, C Kx. We evaluate four different sets of features where n = [1, 2, 3, 4], and each number
identifies a different type of evaluation: (1) Primitive information, the set K(l\, identifies only fetched
features such as transaction size and fee. This information is used by many fee predictors, with poor
results about fee overpaying, K;(= [¢, ql; (2) Fairness assumptions, the set Kﬁ(excludes features
based on the revenue principle, so a miner needs to only be fair in order to include transactions
in the next block, K{ZY = [p,q, AP, APN]; (3) Revenue assumptions, the set Ki(excludes features
based on the fairness principle, to monitor how much revenue impacts the transaction inclusion
pattern, Kf\, = [, q, p, 3, On1; (4) Assumptions-based, the set K:‘\, includes only extracted features,
this evaluation aims at verifying the reliability of our initial assumptions, including both, fairness
and revenue concepts, K‘j(=[p, AP, APN, S, 0N]-

The experiments performed for this purpose have a set up of @ = 1 and ¢ = 0.5, classification
accuracy results are shown in Table 6, and the related plot is presented in Figure 6. The DNN
classifier struggles when the Bitcoin price drops drastically over the month, e.g., in April. In fact,
we observe that when only primitive information is used, the accuracy drops 15% from the pre-
vious month, while with complete information the accuracy drop is 5% only. The impact of our
assumptions on predicting transaction inclusion is relevant. The model can perform from 12% to
14% better on average, if fairness and revenue principles are applied separately, to data that most
fee predictors use, and up to 23% if they are combined. To be noted is the variance of K /2\, classifica-
tion accuracy since it appears to be smaller than the one of K. This highlights the importance of
the fairness concept in order to delineate transaction inclusion. In the month of April, we observe

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

On Optimizing Transaction Fees in Bitcoin using Al 77:21

= Primitive # Fairness S Revenue N Complete
95% T

90% +

_

85% +
80% -+
75% E L

70%

65%

77777/

-
NN,

V//

o \
60% - ==

January February March April

Fig. 6. Classification accuracy results for each one of our assumption sets, from primitive to complete, for
each month of analysis from January 2021 until May 2021. The model accuracy increases considerably if a
complete feature set is used, compared to the basic idea of using only transaction size and transaction fee
as features.

an inversion of the Bitcoin price uptrend, and miner revenue was at its all-time-high. This outlines
how miners are deviating from the revenue principle more than the fairness one.

6.3.3 Model Cyclicity. In this paragraph, we deviate from the optimal hyperparameter settings
used so far, in order to highlight how much model classification accuracy could benefit if well-
formed data are used for training. Well-formed data creates what we call an updated model, or a
model trained cyclically over time, and this information should be complete (o = 1, for a correct
offset value) and new (i = 0.5, transactions should be tested with a relatively recent model). We
note that, if we deviate from the mean value of y = 0.5 towards 1, the test sets occur after the
training, while if the value ¥ tends to 0, the model used is newer than the transactions tested. De-
spite this being an unrealistic scenario, we want to monitor the model’s behavior with both, older
and newer transactions. We test for each month, all the possible combinations between the values
a =[0.05,0.1,0.5,1], and ¢ = [0.01,0.05,0.12,0.26,0.5,0.73, 0.88, 0.95, 0.98]. Results are showen
in Figure 7, where each point represents the average classification accuracy over five months if hy-
perparameters are changed according to « (x-axis) and i values (y-axis). The plot shows that the
accuracy is higher (yellow) when ¢y — 0.5 and @ — 1, but as the offset precision diminishes (lower
«), then model cyclicity () becomes less important. Here is outlined how much the combination of
both hyperparameters is significant, becomes relevant when it has the right information about
the mempool size, provided by the right choice of «. In this way, the offset contextualizes the model
over time, and without an accurate calculation of it, the model would just predict according to the
fairness concept, which seems to be less time-dependent than offset (Figure 6, Fairness bar).

Figure 8 shows the AUC-ROC curves for five tests performed with different hyperparameter val-
ues, chosen to be representative for optimal-, average-, and worst-case scenarios. The parameters
chosen are represented in Table 7. We identify two average cases, and two worst cases, describ-
ing if the testing occurred before (-) or after (+) the training. In the optimal case, the model can

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

77:22 E. Tedeschi et al.

r— 20

T 88

84

L I
3
o
Accuracy

T 82

[) .
1.0 0.0
Fig. 7. Classification accuracy value (z-axis) for various models, tested with different hyperparameters setup.
The y-axis, with the ¢ parameter, represents how much a certain model is updated, while the x-axis indicates
the model’s completeness (a parameter). The importance of model cyclicity is highlighted in order to improve
classification accuracy.

distinguish between classes with an area under the curve of 0.97, which is a solid classification
result. Even if we accept an FPR of 10%, the FNR does not go higher than 10%, and if we accept an
FPR of 20%, the FNR is kept below 5%.

7 DISCUSSION

The extensive analysis we performed on Bitcoin, outlined difficulties in ensuring a low-payment
scheme for users. We explained in Section 3 how the interblock interval time and the block size
constraints negatively affect the system’s throughput. Fee markets emerge as a means to provide
a stable income for miners. This leads fee estimators to overprice transaction fees in order to
guarantee an immediate inclusion in the blockchain. However, this results in users having to pay
a fee two orders of magnitude higher than the recommended one. To optimize user expenditure
we define our view of a transaction inclusion model and then save data locally for the analysis.
The inclusion model formalized and described in Sections 4-5 is fundamental to extract the right
features for an accurate classification. With this, if models are cyclically trained at least once a
month, it is possible to collocate new incoming transactions in classes vy and vy, with an accuracy
score on average of 89%.

As Table 1 shows, the dataset we generate is efficient in terms of disk space even in the worst-
case scenario for our datasets (Table 2 lists the actual dataset sizes for our analysis). If the raw
dataset (R) size is compared to the actual blockchain size, then R saves on average 54% of disk
space. Furthermore, we notice that the training set X' containing block-epoch-based information,

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

On Optimizing Transaction Fees in Bitcoin using Al 77:23
1.0 e
0.8

3z

©

= 0.6
o

2

E>

o

a

s 0.4
3

= Worst— AUC = 0.8

Average— AUC = 0.89
0.2 ; — Optimal AUC = 0.97

\ Average+ AUC = 0.93
¥ Worst+ AUC = 0.82
0.0 - AUC=0.5

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 8. Five tests to measure AUC-ROC in an optimal, average, and worst-case. The optimal test is run with
a = 1and ¢ = 0.5, identified with a green continuous line. The two average tests are run with & = 0.2
and ¢ = [0.12,0.88], represented with a dot-dashed light blue lines. The two worst-case tests are run with
a =0.04, ¥ =[0.02,0.98], and they are represented with dotted yellow and red lines. When AUC = 0.5, the
classifier is not able to distinguish anymore between positive and negative class points.

Table 7. AUC-ROC Results for Different Hyperparameters

Evaluations on model cyclicity
type a 14 Accuracy AUC-ROC
Worst- 0.04 0.02 78.63% 0.82
Average- 0.2 0.12 84.71% 0.92
Optimal 1 0.5 91.08% 0.97
Average+ 0.2 0.88 81.25 0.89
Worst+ 0.04 0.98 70.25 0.8

The optimal evaluation is the one having a 100% complete model, and the test is performed within the same month of
training. An average evaluation model is 20% complete and there is a two months deviation from training and testing.
The worst evaluation case is when the model is only 4% complete and there is four months deviation between
training and testing.

is 54.4% lighter on average than the blockchain original size, with 89% of disk space saved, if smaller
datasets are taken into account. For dataset evaluation, we set a 3,000 blocks threshold (~20 days,
or ~6 million transactions) because the DNN models we produce are for short-term prediction
and, therefore, are more accurate if generated cyclically. The complete set (C) is the heavier one,
although we never store it locally and it is used only to generate its lighter version X for the
model’s training. In Table 2, we represent time-series observational data of the raw datasets R,
and we observe that the size on disk is 71.5% lower than the corresponding Bitcoin blockchain size.

Results of our experiments are presented in Section 6, highlighting the importance of select-
ing and generating the right set of features. Building a model using only data fetched from the
blockchain, which is the solution adopted by many fee estimators, is trivial. We label this as the

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

77:24 E. Tedeschi et al.

Table 8. Overall CM Score for April 2021 Data, using
the January 2021 Model

Overall CM score, = 0.95
o 0.5 1
%) U1 Vo U1
Vo 0.95 0.05 0.89 0.11
U1 0.41 0.59 0.26 0.74

Information of two CM tables is represented, the ¢ is kept
at 0.95 while two different values of « are evaluated, 0.5
and 1. This table shows the importance of having a complete
dataset during training, and how classification accuracy can
benefit from it.

primitive solution. During the five months of analysis, we test models with the set of engineered
features based on our intuition. We call it a complete solution, and then we compare it with the prim-
itive one. On average, we obtain an improvement in the accuracy score of 16%. Most importantly,
we notice the downtrend of our model accuracy score during the months of April and May. We con-
jecture that this is caused by a series of events that occurred during these months. Initially, there
was a Bitcoin price inversion-trend and its price dropped 46%.!* Following, more transactions sat-
urated the mempool'® and transaction fees reached a new all-time-high.'® Miners revenue reached
an all-time-high between April 14th and May 10th,'” leading us to consider that revenue stopped
being miners’ main means of inclusion. However, despite relevant and unpredictable exogenous
events, our complete solution never fell below 85.35% of accuracy score.

Another fundamental aspect that boosts classifier accuracy score is model cyclicity. Figure 7
shows the importance of keeping the information in the model complete and new, especially when
unexpected events occur. We can evince from the plot that classification accuracy drops when older
models are used to classify more recent data, ¥ — 1, or when information in the test set is not
complete, @ — 0. Also, the accuracy score drops considerably if models prior to the price inversion
trend are used to classify more recent data. For instance, Table 8 shows confusion matrices of two
different tests. Both represent data fetched in April 2021 and classified with a model from January
2021. One dataset is complete (¢ = 1), while the other one is not (¢ = 0.5). Despite data complete-
ness, the all-time-high fees in April make the model incorrectly classify 26% of transactions in v,
while they belonged to v, (false positive). That means the model classifies more transactions as
included, while they are not. If we then reduce « to 0.5 the false positives increase to 41%, while
the false negative represents only 5%. When such events occur, the model ought to be trained more
frequently than once per month. This will reduce the number of misclassified transactions due to
some deviations from the previous inclusion pattern. In Figure 6 we show that our intuitions on
the selected features are correct, and they are crucial for an accurate classification. Both hyperpa-
rameters resulted to be fundamental for boosting the accuracy score. A complete set is needed to
have the right information on the mempool size in order to correctly calculate the offset value. An
updated (or new) dataset helps to have knowledge of the current miner inclusion trend.

Despite the fact that we obtain a good classification accuracy score, we note that the model could
be biased towards a specific range of transaction fees. In fact, bias gets into the model through the
data that is used for building the ML model [23]. We carry out a supervised approach, thus our

4Bitcoin price dropped from $ 63,000 to $ 34,000 starting on April 17th https://www.coindesk.com/price/bitcoin.
15Mempool count https://www.blockchain.com/charts/mempool-count.

16With an average of $ 60 per transaction on April 21st. https://www.blockchain.com/charts/transaction-fees-usd.
7Miners revenue reached 80 million per day https://www.blockchain.com/charts/miners-revenue.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

https://www.coindesk.com/price/bitcoin
https://www.blockchain.com/charts/mempool-count
https://www.blockchain.com/charts/transaction-fees-usd
https://www.blockchain.com/charts/miners-revenue

On Optimizing Transaction Fees in Bitcoin using Al 77:25

1.0 1.0

0.8 0.8
806 806
g g
£04 £04

Fed
o

0.0 5 3 5 6 0.0 5

10 10° 10* 10 10 10 10' 10° 10°
Fee (sat) Feerate (sat/byte)
Fig. 9. CDF of transaction fees in our dataset. Fig. 10. CDF of transaction feerate in our dataset.

model only knows the outcome for transactions that occurred in the blockchain. If most users
pay a fee greater than the optimal value, the model lacks samples for small transaction fee values.
Figures 9 and 10 show the fee and feerate Cumulative Distribution Function (CDF) during
the period of analysis. We observe that after the price drop occurred in late April 2021, fees were
considerably lower (May 2021), and that transaction fees between 10* and 10° sat'® represent nearly
the 75% of the total. The recommended feerate should be 1 sat/byte, however, we notice that nearly
0% of transactions have a feerate that low. Consequently, an educated guess is that our model is
biased and it is not accurate when predicting transactions with 1sat/byte of feerate. However,
the overall fee trend of approved transactions delineates a pattern itself, meaning that a too low
fee will rarely end up in an inclusion, which is in line with our model’s outcome. In fact, lower fee
transactions are evicted from the network and never included. Our model optimizes expenditure
within the range of the already approved transactions and its scope is not to detect possible evicted
transactions but to determine an inclusion in the next block. Information about eviction is not of
particular relevance. Finally, any transaction issuer could consult the model’s output in order to
tradeoft its probability of inclusion with more, or less fee to pay.

7.1 Future Work

We are currently working on expanding this work with some experiments related to user’s expen-
diture. The goal is to measure how much an issuer can lower its given fee, by keeping the output
confidence of the inclusion model high. By doing so, we can quantify the actual overspending of
the Bitcoin network, and we can contribute to improving the overall user experience.

The inclusion model we refer to might change during time. It is useful then to keep on observing
blockchain data in order to make new conjectures on inclusion pattern, if we want to use PoW-
based systems without overpaying for transaction space in the blocks. We are currently working
on a modified version of the aforementioned inclusion model which aims at boosting accuracy
score. This approach includes a holistic view of new block alternatives, and considers transaction
offset level being penalized if they fall in the > 1 MB space of the mempool. In this way the model
has a stronger second-price auction orientation. Furthermore, we aim to organize transactions at
every block epoch into ranks, and include transaction rank as a feature for the prediction model.
Finally, to reduce training data bias from high-fee transactions, a big enough number of low-fee
transactions can be added to the actual blockchain and their latency registered by the model.

181 satoshi = 0.00000001 Bitcoin.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

77:26 E. Tedeschi et al.

8 CONCLUSION

The unpredictable fee market in PoW-based blockchains, like Bitcoin and Ethereum, leads to un-
expected transaction delays and evictions unless a substantial fee is offered. This has serious eco-
nomic implications for the end users, as overpaying transaction fees and unstable prices become
the norm.

In this article, we present a systematic study of the transaction fee mechanism in Bitcoin and
show that the generic information available is not sufficient to delineate a pattern for transaction
acceptance. By analyzing the blockchain data for mechanisms and patterns governing miners’ de-
cisions to include individual transactions, we devise a novel formal transaction inclusion model
that is based on fairness and revenue principles. We show the applicability of our formal model by
using it to construct a DNN prototype that predicts transaction inclusion. Despite the limitations
of delineating a pattern when the block creation time is a randomized process and the miner’s
policies of inclusion are unknown, we obtained promising results. When training on more than
30 million transactions over a five months period, we obtained an overall average accuracy of 89%,
in spite of the price inversion trend and with peaks up to 91%. The model is therefore capable of
predicting transaction inclusion with a notable precision, enabling Bitcoin users to better select a
suitable fee paid and probability of transaction inclusion.

ACKNOWLEDGMENTS

We thank Christian Cachin and Ignacio Amores of the Cryptology and Data Security group at the
University of Bern for their helpful comments and feedback.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, PeteWarden,
MartinWattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. (2015). Retrieved April 2021 from https://www.tensorflow.org/. Software available from
tensorflow.org

[2] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Martin, and Carl Porth. 2005. BAR
fault tolerance for cooperative services. In Proceedings of the 20th ACM Symposium on Operating Systems Principles.
ACM, New York, NY, 45-58. DOI : https://doi.org/10.1145/1095810.1095816

[3] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. 2017. Hijacking bitcoin: Routing attacks on cryptocurrencies.
In Proceedings of the 2017 IEEE Symposium on Security and Privacy. 375-392. DOI : https://doi.org/10.1109/SP.2017.29

[4] Tom Augspurger, Chris Bartak, Phillip Cloud, Andy Hayden, Stephan Hoyer, Wes McKinney, Jeff Reback, Chang
She, Masaaki Horikoshi, Joris Van den Bossche, et al. 2012. Pandas: Python Data Analysis Library. software v0.21.0.
Pandas community. Retrieved from http://pandas.pydata.org/.

[5] RSJD Baker et al. 2010. Data mining for education. International Encyclopedia of Education 7, 3 (2010), 112-118.

[6] Soumya Basu, David Easley, Maureen O’Hara, and Emin Giin Sirer. 2019. The old fee market is broken, long live the
new fee market. Hacking Distributed (2019). Retrieved from https://bit.ly/3gUQaLc.

[7] Soumya Basu, David Easley, Maureen O’Hara, and Emin Sirer. 2018. Towards a functional fee market for cryptocur-
rencies. CoRR abs/1901.06830. http://arxiv.org/abs/1901.06830.

[8] Indranil Bose and Radha K. Mahapatra. 2001. Business data mining—a machine learning perspective. Information &
Management 39, 3 (2001), 211-225.

[9] Min Chen, Yixue Hao, Kai Hwang, Lu Wang, and Lin Wang. 2017. Disease prediction by machine learning over big
data from healthcare communities. IEEE Access 5 (2017), 8869-8879. DOI:10.1109/ACCESS.2017.2694446

[10] Frangois Chollet et al. 2015. Keras. Retrieved April 2021 from https://github.com/fchollet/keras.

[11] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, Andrew Miller, Prateek Saxena,
Elaine Shi, Emin Gun Sirer, Dawn Song, and Roger Wattenhofer. 2016. On scaling decentralized Blockchains. In
Financial Cryptography and Data Security. Springer, Berlin, 106-125. DOI:https://doi.org/10.1007/978-3-662-53357-
4 8

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

https://www.tensorflow.org/
https://doi.org/10.1145/1095810.1095816
https://doi.org/10.1109/SP.2017.29
http://pandas.pydata.org/
https://bit.ly/3gUQaLc
http://arxiv.org/abs/1901.06830
https://doi.org/10.1109/ACCESS.2017.2694446
https://github.com/fchollet/keras
https://doi.org/10.1007/978-3-662-53357-4_8

On Optimizing Transaction Fees in Bitcoin using Al 77:27

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]
[23]

[24]

[25]

[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

Jared Dean. 2014. Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners.
John Wiley & Sons.

C. Decker and R. Wattenhofer. 2013. Information propagation in the Bitcoin network. In Proceedings of the IEEE P2P
2013. 1-10. DOI:https://doi.org/10.1109/P2P.2013.6688704

Javier Diez-Sierra and Manuel del Jesus. 2020. Long-term rainfall prediction using atmospheric synoptic patterns in
semi-arid climates with statistical and machine learning methods. Journal of Hydrology 586 (2020), 124789. DOI:https:
//doi.org/10.1016/j.jhydrol.2020.124789

Sumeet Dua, U. Rajendra Acharya, and Prerna Dua. 2014. Machine Learning in Healthcare Informatics. Springer.
David Easley, Maureen O’Hara, and Soumya Basu. 2019. From mining to markets: The evolution of bitcoin transaction
fees. Journal of Financial Economics 134, 1 (2019), 91-109. DOI:https://doi.org/10.1016/j.jfineco.2019.03.004

Mark Erhardt. 2021. 88% of all BTC transfers are overpaying transaction fees. Retrieved February 11, 2021 from
https://bit.ly/32CJE73.

Ittay Eyal and Emin Giin Sirer. 2014. Majority is not enough: Bitcoin mining is vulnerable. In Proceedings of the
International Conference on Financial Cryptography and Data Security. Springer, 436-454.

Sead Fadilpasi¢. 2019. Stop Overpaying Bitcoin Transaction Fees. (2019). Retrieved July 23, 2020 from https://bit.ly/
2Cy5VtH.

J. Doyne Farmer and John J. Sidorowich. 1987. Predicting chaotic time series. Physical Review Letters 59 (1987), 845-
848. DOI:https://doi.org/10.1103/PhysRevLett.59.845

George Foster. 1977. Quarterly accounting data: Time-series properties and predictive-ability results. The Accounting
Review 52, 1 (1977), 1-21. Retrieved from http://www.jstor.org/stable/246028.

Wayne A. Fuller. 2009. Introduction to Statistical Time Series. John Wiley & Sons.

Jindong Gu and Daniela Oelke. 2019. Understanding bias in machine learning. arXiv:1909.01866. Retrieved from
https://arxiv.org/abs/1909.01866.

James Douglas Hamilton. 2020. Time Series Analysis. Princeton University Press.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision.
1026-1034.

Nicolas Houy. 2014. The Bitcoin mining game. Available at SSRN 2407834 (2014).

Nicolas Houy. 2014. The Economics of Bitcoin Transaction Fees. Working Papers 1407. Groupe d’Analyse et de Théorie
Economique (GATE), Université Lyon 2. Retrieved May 2021 from http://EconPapers.repec.org/RePEc:gat:wpaper:
1407.

Ari Jules, Ittay Eyal, and Mahimna Kelkar. 2021. Miners, Front-Running-as-a-Service Is Theft. Retrieved April 28,
2021 from https://bit.ly/3a8UPZs.

Kerem Kaskaloglu. 2014. Near zero bitcoin transaction fees cannot last forever. In the International Conference on
Digital Security and Forensics (DigitalSec’14). 91-99.

Aleksandar Kuzmanovic. 2019. Net neutrality: Unexpected solution to blockchain scaling. Communications of the
ACM 62, 5 (2019), 50-55.

Juanjuan Li, Xiaochun Ni, Yong Yuan, and Feiyue Wang. 2020. A novel GSP auction mechanism for dy-
namic confirmation games on Bitcoin transactions. IEEE Transactions on Services Computing (2020), 1-1.
DOI:10.1109/TSC.2020.2994582

Juanjuan Li, Yong Yuan, and Fei-Yue Wang. 2019. A novel GSP auction mechanism for ranking Bitcoin transactions
in blockchain mining. Decision Support Systems 124 (2019), 113094.

Toanna Lykourentzou, Ioannis Giannoukos, Vassilis Nikolopoulos, George Mpardis, and Vassili Loumos. 2009.
Dropout prediction in e-learning courses through the combination of machine learning techniques. Computers &
Education 53, 3 (2009), 950-965. DOI:https://doi.org/10.1016/j.compedu.2009.05.010

Xiaolei Ma, Haiyang Yu, Yunpeng Wang, and Yinhai Wang. 2015. Large-scale transportation network congestion
evolution prediction using deep learning theory. PloS one 10, 3 (2015), €0119044.

Johnnatan Messias, Mohamed Alzayat, Balakrishnan Chandrasekaran, and Krishna P. Gummadi. 2020. On blockchain
commit times: An analysis of how miners choose Bitcoin transactions. The 2nd International Workshop on Smart Data
for Blockchain and Distributed Ledger (SDBD’20).

Malte Méser and Rainer Bshme. 2015. Trends, tips, tolls: A longitudinal study of Bitcoin transaction fees. In Proceed-
ings of the Financial Cryptography and Data Security: FC 2015. Springer, Berlin, 19-33. DOL:https://doi.org/10.1007/978-
3-662-48051-9_2

Satoshi Nakamoto et al. 2008. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review (2008).
Saurav Nanda, Faheem Zafari, Casimer DeCusatis, Eric Wedaa, and Baijian Yang. 2016. Predicting network attack
patterns in SDN using machine learning approach. In Proceedings of the 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks. 167-172. DOI:https://doi.org/10.1109/NFV-SDN.2016.7919493

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1016/j.jhydrol.2020.124789
https://doi.org/10.1016/j.jfineco.2019.03.004
https://bit.ly/32CJE73
https://bit.ly/2Cy5VtH
https://doi.org/10.1103/PhysRevLett.59.845
http://www.jstor.org/stable/246028
https://arxiv.org/abs/1909.01866
http://EconPapers.repec.org/RePEc:gat:wpaper:1407
https://bit.ly/3a8UPZs
https://doi.org/10.1109/TSC.2020.2994582
https://doi.org/10.1016/j.compedu.2009.05.010
https://doi.org/10.1007/978-3-662-48051-9_2
https://doi.org/10.1109/NFV-SDN.2016.7919493

77:28 E. Tedeschi et al.

[39] KarlJ. O’'Dwyer and David Malone. 2014. Bitcoin mining and its energy footprint. (2014). Retrieved April 2021 from
http://karlodwyer.com/publications/pdf/bitcoin_KJOD_2014.pdf.

[40] Haseeb Qureshi. 2019. Blockchain fees are broken. Here are 3 proposals to fix them. Hacker Noon (2019). Retrieved

from https://haseebq.com/blockchain-fees-are-broken/.

Zhijie Ren, Kelong Cong, Johan Pou welse, and Zekeriya Erkin. 2017. Implicit consensus: Blockchain with unbounded

throughput. Retrieved June 29, 2017 from https://bit.ly/34VEzcD.

[42] Peter R. Rizun. 2015. A transaction fee market exists without a block size limit. Block Size Limit Debate Working Paper
(2015), 2327-4697.

[43] Peter R. Rizun. 2016. Subchains: A technique to scale bitcoin and improve the user experience. Ledger 1 (2016), 38-52.

Retrieved from https://www.bitcoinunlimited.info/resources/subchains.pdf.

Salvatore Stolfo, David W. Fan, Wenke Lee, Andreas Prodromidis, and P. Chan. 1997. Credit card fraud detection

using meta-learning: Issues and initial results. In Proceedings of the AAAI-97 Workshop on Fraud Detection and Risk

Management.

[45] Mahmoudreza Tahmassebpour. 2017. A new method for time-series big data effective storage. IEEE Access PP (2017),

1-1. DOI:https://doi.org/10.1109/ACCESS.2017.2708080

Enrico Tedeschi. 2022. Bitcoin blockchain optimized for machine learning prediction model. (2022). DOI:https://doi.

org/10.18710/8IKVEU

[47] Enrico Tedeschi, Havard D. Johansen, and Dag Johansen. 2018. Trading network performance for cash in the bitcoin

blockchain. In Proceedings of the 8th International Conference on Cloud Computing and Services Science. 643-650.

DOI:https://doi.org/10.5220/0006805906430650

Enrico Tedeschi, Tor-Arne S. Nordmo, Dag Johansen, and Havard D. Johansen. 2019. Predicting transaction latency

with deep learning in proof-of-work blockchains. In Proceedings of the 2019 IEEE International Conference on Big Data.

IEEE, 4223-4231.

[49] Theodore B. Trafalis and Huseyin Ince. 2000. Support vector machine for regression and applications to financial

forecasting. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000.

Neural Computing: New Challenges and Perspectives for the New Millennium, Vol. 6. IEEE, 348-353.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,

Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K.

Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, ilhan

Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, lan Henriksen,

E. A. Quintero, Charles R Harris, Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and

SciPy 1. 0 Contributors. 2019. SciPy 1.0-fundamental algorithms for scientific computing in python. Nature Methods

17 (2020). DO :10.1038/s41592-019-0686-2

William W. S. Wei. 2006. Time series analysis. In Proceedings of the Oxford Handbook of Quantitative Methods in

Psychology: Vol. 2.

[52] Abbas Yazdinejad, Hamed HaddadPajouh, Ali Dehghantanha, Reza M. Parizi, Gautam Srivastava, and Mu-Yen Chen.

2020. Cryptocurrency malware hunting: A deep recurrent neural network approach. Applied Soft Computing 96

(2020), 106630.

Yu Zheng, Like Liu, Longhao Wang, and Xing Xie. 2008. Learning transportation mode from raw gps data for ge-

ographic applications on the web. In Proceedings of the 17th International Conference on World Wide Web. ACM,

247-256.

[54] Y. Zhu, R. Guo, G. Gan, and W. Tsai. 2016. Interactive incontestable signature for transactions confirmation in bitcoin
blockchain. In Proceedings of the 2016 IEEE 40th Annual Computer Software and Applications Conference. 443-448.
DOI:https://doi.org/10.1109/COMPSAC.2016.142

[55] RoiBar Zur, Ittay Eyal, and Aviv Tamar. 2020. Efficient MDP analysis for selfish-mining in blockchains. In Proceedings
of the 2nd ACM Conference on Advances in Financial Technologies. 113-131.

[41

—

[44

[l

[46

—

[48

=

[50

=

[51

—

(53

=

Received August 2021; revised February 2022; accepted March 2022

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 77. Publication date: July 2022.

http://karlodwyer.com/publications/pdf/bitcoin_KJOD_2014.pdf
https://haseebq.com/blockchain-fees-are-broken/
https://bit.ly/34VEzcD
https://www.bitcoinunlimited.info/resources/subchains.pdf
https://doi.org/10.1109/ACCESS.2017.2708080
https://doi.org/10.18710/8IKVEU
https://doi.org/10.5220/0006805906430650
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/COMPSAC.2016.142

