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Abstract

In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and
disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used.
To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for
foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted two-
part regression calibration model, initially developed for multiple replicates of reference measurements per individual to a
single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach,
how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with
the generalized additive modeling (GAM) and the empirical logit approaches, and how to select covariates in the calibration
model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable
intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC) study. In the EPIC,
reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately,
correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the
strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way
of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent
of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically
consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate
inclusion in specifying the calibration model.
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Introduction

Dietary variables are often measured with error in nutritional

epidemiology. In such studies, usual dietary intake is assessed with

instruments such as, food frequency questionnaire and dietary

questionnaire [1–3]. In these instruments, the queried period of

intake ranges from several months to a year. As a result, these

instruments are prone to error caused by difficulties to recall past

intake of foods or food groups, the frequency of consumption, and

the portion size. In general, the measurement error in usual

dietary intake can either be systematic or random. Systematic

error occurs when an individual systematically overestimates or

underestimates dietary intake, whereas random error is due to

random within-individual variation in reporting of dietary intake

[1,4]. The random error attenuates the association between

dietary intake and disease occurrence, whereas systematic error

can either attenuate or inflate the association.

PLOS ONE | www.plosone.org 1 November 2014 | Volume 9 | Issue 11 | e113160

http://creativecommons.org/licenses/by/4.0/
http://epic.iarc.fr/centers/epicmap.php
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0113160&domain=pdf


As a case study, we used the European Prospective Investigation

on Cancer and Nutrition (EPIC) study. In EPIC, country-specific

dietary questionnaires, hereafter DQ, were used to measure usual

intake of various dietary variables or groups of dietary variables in

different participating cohorts. With DQ measurements for usual

intake, an association parameter estimate that relates usual intake

to disease occurrence is often biased, mainly towards the null [4–

6].

Regression calibration is the commonly used method to adjust

for the bias in the association between usual intake and disease

occurrence, due to measurement error in the DQ. Regression

calibration involves finding the best prediction of true usual intake

given DQ measurements and other error-free variables [7]. The

prediction is further used as a proxy for true usual intake in the

disease model that relates dietary intake to disease occurrence.

Regression calibration requires a calibration sub-study, where

unbiased measurements are taken. Some prospective studies

therefore include a calibration sub-study that can either be

internal or external. Internal calibration study consists of a random

sample from the main study population, as was the case in the

EPIC, whereas external calibration sub-study consists of subject

not in the main-study but with similar design as the main-study

[8]. In the calibration sub-study, unbiased reference measurements

are collected by short-term reference instruments, such as food

records or 24-hour dietary recalls. The reference measurements

can be used as the response in the calibration model to predict true

usual intake. In the EPIC study, regression calibration can also

adjust for systematic error in DQ measurements due to the

multicenter component of the EPIC study, as described in [9,10].

In the EPIC calibration sub-study, a 24-hour dietary recall,

hereafter 24-HDR was used as the reference instrument. For each

subject in the calibration sub-study in the EPIC, only one

reference measurement was available [11]. For foods that are not

consumed daily, 24-HDR measurements would contain many

zeroes for many individuals. Handling these zeroes poses a

challenge in the calibration model [12–15]. The excess zeroes can

be handled with regression calibration in a two-step approach,

where the consumption probability and the consumed amount on

consumption days are modeled separately [13]. We refer to this

model as two-part regression calibration.

The currently published studies on two-part regression calibra-

tion method require epidemiologic studies with at least two

replicate reference measurements per subject [13–15]. Given the

design of the EPIC study with a single measurement per

individual, however, these calibration models cannot be applied

directly. Moreover, the performance of the calibration models in a

study design such as EPIC for episodically consumed foods has not

been studied exhaustively. Further, the effect of variable selection

on the performance of a two-part calibration model has not yet

been studied fully. The standard theory of selecting covariates into

the calibration model states that confounding variables in the

disease model must be included in the calibration model together

with the covariates that only predict dietary intake but not the risk

of the disease [14,16].

To fill the aforementioned gaps, we developed a two-part

regression calibration model to adjust for the bias in the diet-

disease association, due to measurement error in self-reported

episodically consumed foods, when each subject in the calibration

sub-study has only a single reference measurement. The second

goal was to assess the effect of reducing the number of variables in

the two-part calibration model with the covariates selected based

on the standard theory. As a working example, we studied the

association between intakes of each of the three vegetable

subgroups: leafy vegetables, fruiting vegetables, and root vegeta-

bles, on all-cause mortality as reported in the EPIC. We described

how to handle the excess zeroes, the highly skewed-heteroscedastic

non-zero reference measurements, non-linear relations in the

calibration model, and how to select covariates into the calibration

model. We showed that a suitably specified two-part calibration

model adjusts for the bias in the diet-disease association caused by

measurement error in self-reported intake in EPIC study. We

further showed that the extent of adjusting for the bias is much

influenced by how the calibration model is specified.

Materials and Methods

Ethics Statement
All participants who agreed to join the EPIC study signed an

informed written consent. The study was approved by the

Institutional Review Board of the International Agency for

Research on Cancer and local institutional review boards of each

participating center.

Study subjects
EPIC is an on-going multicenter prospective cohort study to

investigate the relation between diet and the risk of cancer and

other chronic diseases. The study consisted of 519,978 eligible

men and women aged between 35 and 70 years and recruited in

23 centers in 10 Western European countries [11,17]. The 10

participating countries were: France, Italy, Spain, United King-

dom, Germany, The Netherlands, Greece, Sweden, Denmark,

and Norway. The study populations comprised of heterogeneous

groups. In most centers, study populations were based on general

population while some consisted of participants in breast screening

programs (Utrecht, The Netherlands; and Florence, Italy),

teachers and school workers (France) or blood donors (certain

Italian and Spanish centers). In Oxford, most of the cohort was

recruited among subjects with interest in health or on vegetarian

eating. Only women were recruited in France, Norway, Utrecht

(The Netherlands) and Naples [18]. Information on usual dietary

intake, lifestyle, environmental factors and anthropometry was

collected from each individual at baseline. The dietary intake

information was assessed with different dietary history question-

naires, food frequency questionnaires or a modified dietary history

developed and validated separately in each participating country

[17]. The questions asked in the questionnaires included the

frequency of consumption over the past 12 months preceding the

administration, categorized into the number of times per day, per

week, per month or per year. A calibration sub-study was carried

out within the entire EPIC cohort by taking a stratified random

sample of 36,900 subjects. In the calibration sub-study, a 24-HDR

was administered once per subject using a specifically developed

software program (EPIC-SOFT) designed to harmonize the

dietary measurements across study populations [19].

We used EPIC dietary intake data for leafy vegetables, fruiting

vegetables and root vegetable sub-groups as a working example.

We further assumed measurements on the 24-HDR (in g/day) as

the unbiased reference measurements and those on the DQ as the

biased main-study measurements. We excluded subjects with

missing questionnaire data, missing dates of diagnosis or follow up,

in the top and bottom 1% of the distribution of the ratio of

reported total energy intake to energy requirement. We further

excluded subjects with a history of cancer, myocardial infarction,

stroke, angina, diabetes or a combination of these diseases at

baseline. As a result, data for 430,215 subjects were eligible for the

analyses. In the analysis, the data from the following centers were

excluded: Umeå and Norway for leafy vegetables and Norway for

fruiting vegetables. The decision to exclude these data was based
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Figure 1. The boxplots for the distribution of intake of vegetable subgroups. The country-specific boxplots show the distribution of the
consumed amount for those who reported consumption on the 24-HDR for leafy vegetables (LV), fruiting vegetables (FV) and root vegetable (RV)
subgroups in the EPIC study, 1992–2000.
doi:10.1371/journal.pone.0113160.g001
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on the inclusion criteria as stipulated in the EPIC analysis

protocol.

Disease model
In epidemiological studies, the interest is mainly in the

association between an exposure and disease occurrence. In our

working example, we were interested in the association between

intake of vegetable subgroups and all-cause mortality. If the true

usual intake of vegetable subgroups were known, then a

generalized linear disease model would be:

QfE(Y DT ,Z)g~bT TzbT
ZZ ð1Þ

where Y is a disease outcome, here, an indicator for mortality, T is

true usual dietary intake of a vegetable subgroup, Z is a vector of

error-free confounding variables and Q is a function linking the

conditional mean and the linear predictor. The coefficient bT

quantifies the association of interest and bT
Z is a vector of

coefficients for the confounding variables. If dietary intake is

measured with error, then bT would mostly be underestimated.

Therefore, a researcher should adjust for the bias in estimating bT

due to measurement error in DQ.

Regression calibration model
Regression calibration is the most commonly used method to

adjust for the bias in estimating bT (i.e., diet-disease association)

due to measurement error in the DQ. To describe regression

calibration, we denote reference measurement from 24-HDR by

R, main-study measurement from DQ by Q, and the covariates

that only predict vegetable intake and not mortality by C. Then, a

set of all covariates that possibly relate to usual intake is given by

X~ Z,Cf g. Regression calibration involves finding the best

prediction of true usual intake given DQ measurement and other

covariates [14]. The mean predictor from regression calibration is

denoted by E(T DQ,X). A major challenge in fitting the calibration

model is that true usual intake is not only unobservable but also

cannot be measured exactly. To circumvent this, a reference

measurement is required in place of the latent true intake. The

reference measurement should be unbiased for true intake, and

should be measured with errors that are uncorrelated with the

errors in the DQ measurements. We, therefore, made two strong

assumptions. First, we assumed the short-term measurement from

the 24-HDR to be an unbiased measurement for true usual intake.

Second, we assumed the errors in the 24-HDR measurements to

be uncorrelated with the errors in the DQ measurements. We

denote the calibration model by:

E(T DQ,X)~E(RDQ,X): ð2Þ

We assumed in model (2) that measurement error in Q does not

provide extra information about Y other than that provided by T.

The measurement error in Q is, therefore, said to be non-

differential. In model (2), R is modeled as a function of Q and X
using standard regression methods, where a suitable distribution

for the error terms and a suitable parametric form of each

covariate in X is chosen.

In this work, we considered only the case of a single dietary

intake variable measured with error. In our data, the correlation

between the vegetable subgroups and the other confounders, as

measured by the questionnaire, were low justifying their omission,

as the contamination effect of the measurement error in these

variables on the correction factor for our dietary intake of interest

would be negligible.

Excess zeroes, heteroscedasticity and skewness in
reference measurements

Vegetable subgroups considered in this study are not consumed

daily. This results in many zero reference measurements reported

on the 24-HDR. As a result, the reference measurements have a

mixture of zeroes for non-consumers and positive intake for

consumers. The excess zeroes pose challenge in regression

calibration, with the reference measurements as the response.

To handle these excess zeroes, we used a two-part approach to

build a regression calibration model. In the first part, the

consumption probability as reported in the 24-HDR is modelled.

In the second part, the consumed amount on consumption

occasion is modelled [13]. The first part involves discrete data and

can be modeled either with logistic or probit regression, where the

probability of consumption depends on a given set of covariates. In

the second part, plausible family of densities for the consumed

amount on consumption occasion can be assumed [20]. The GLM

model for the consumption probability is parameterized as.

Pr (Rw0DQ,X)~w{1(aqQzaT
XX)~pQ,X. Similarly, the GLM

model for the consumed amount is parameterized as

E(RDQ,X,Rw0)~g{1(bqQzbT
XX)~mQ,X, where w{1

can be

either inverse-logit or inverse-probit function and g{1 can be an

inverse of any plausible link function. Thus, the calibration model

(2), adapted to two-part form to handle the excess zeroes in the

response is parameterized as E(RDQ,X)~w{1(aqQzaT
XX)|g{1

(bqQzbT
XX)~pQ,XmQ,X. The true usual intake can thus be

predicted from this model. We denote the prediction from this

two-part calibration model by

ÊE(RDQ,X)~p̂pQ,Xm̂mQ,X: ð3Þ

Another challenge is how to handle distribution for the

consumed amount that is commonly right-skewed with hetero-

scedastic variance. To handle heteroscedasticity, we applied a

generalized linear modeling (GLM) approach in a regression

calibration context. In the GLM approach, the variance is linked

to the mean as s2(RDQ,X,Rw0)~yfE(RDQ,X,Rw0)g, where y
is a function that links the conditional variance with the

conditional mean of reference measurement in the model for

consumed amount, s2 denotes the conditional variance, and E(:D:)
denotes the conditional expectation [21]. The advantage of GLM

approach is that the consumed amount can be predicted directly

without transforming the data. To determine the optimal re-

lation between the conditional variance and the conditional mean,

the GLM model is parameterized using a class of power-

proportional variance functions as follows: s2(RDQ,X,Rw0)~k

fE(RDQ,X,Rw0)gl
, where k denotes the coefficient of variation, l

is a finite non-negative constant. This power variance function can

be rewritten in a linear log-form as follows:

s(RDQ,X,Rw0)~azb logfE(RDQ,X,Rw0)g ð4Þ

where a~( log k)=2 and b~l=2. In model (4), l equals zero refers

to a classical nonlinear regression with constant error variance, l
equals one refers to a Poisson regression with the variance that is

proportional to the mean, where kw1 indicates degree of over

dispersion. Similarly, l equals two with kw0 refers to a gamma

Two-Part Regression Calibration Model to Correct for Measurement Error
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Figure 2. The variance-mean relation for Leafy vegetable intake. The graph shows a least squares regression line fitted to the scatterplots of
the logarithm of center-specific standard deviation versus logarithm of center-specific mean of the consumed amount of leafy vegetables for those
who reported consumption on the 24HDR in the EPIC Study, 1992–2000. The approximately linear regression line suggests a variance that increases
with the mean.
doi:10.1371/journal.pone.0113160.g002
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Figure 3. The empirical logit graph for Leafy vegetable intake. The graph shows loess curves fitted to 1) the scatterplots for the empirical
logit (dotted line) and 2) the mean of the predicted logit from a logistic model with log-transformed DQ (thick line) against the DQ category-specific
means for leafy vegetable intake in the EPIC Study, 1992–2000. The similarity in the two logit curves suggests that a log- transformed DQ is
appropriate for the consumption probability part of the two-part calibration model.
doi:10.1371/journal.pone.0113160.g003
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model with the standard deviation that is proportional to the mean

[22]. To explore a suitable value for l to identify the right GLM

model, we plotted center-specific log-transformed standard devi-

ation versus center-specific log-transformed mean, separately for

each of the three vegetable subgroups as reported on 24-HDR in

the EPIC study. Then l is estimated as twice the slope of the fitted

regression line. The GLM model considered here can accommo-

date family of densities with skewed (asymmetric) distributions. We

chose to use graphical method to identify l due to its simplicity as

opposed to estimation methods such as the maximum likelihood

(MLE).

Table 2. Significant covariates (marked 6) in the reduced two-part calibration models, after a backward elimination on each part
of the standard two-part regression calibration model with transformed DQ and with other covariates selected using the standard
way of variable inclusion.

Leafy vegetables
Fruiting
vegetables Root vegetable

Covariates Part I Part II Part I Part II Part I Part II

Main effects

Qt 6 6 6 6 6 6

BMI 6 6 6 6 6

Smoking status 6 6 6 6 6

Physical activity 6 6 6 6

Lifetime alcohol 6 6

Education 6 6 6 6 6

Age 6 6 6 6 6 6

Age2 6

Total energy 6 6 6

Weight 6 6 6

Center 6 6 6 6 6 6

Season 6 6 6 6 6

Sex 6 6 6 6

Interaction
terms

Qt * sex 6 6

Qt * age 6 6 6 6

Qt * season 6 6

Qt * BMI 6 6

Qt * center 6 6 6 6 6 6

EPIC Study, 1992–2000.
Qt is a transformed DQ; Part I, refers to consumption probability part of the two-part calibration model; Part II, refers to consumed amount part of the two-part
calibration model;
*refers to an interaction term.
doi:10.1371/journal.pone.0113160.t002

Table 3. The area under the curve (AUC) from ROC curve for consumption probability (Part I), and root mean square error (RMSE)
and mean bias for the consumed amount (Part II) of the standard and the reduced forms of two-part regression calibration models
with transformed DQ.

Vegetable Subgroups Part I Part II

Models AUC RMSEa Mean Biasb

Leafy Standard 0.6846 66.841 0.0223

Reduced 0.6843 64.578 0.0019

Fruiting Standard 0.6305 118.823 0.0446

Reduced 0.6304 110.415 20.0334

Root Standard 0.6413 68.626 0.0895

Reduced 0.6408 66.524 0.0883

aRMSE~ 1
n

Pn
i~1

R̂Ri{Ri

� �2
; bmean bias~ 1

n

Pn
i~1

R̂Ri{Ri

� �
doi:10.1371/journal.pone.0113160.t003
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Nonlinearity and variable transformation
The relation between dietary intake variables is often nonlinear.

To explore the form of relation between consumption probability

as reported on 24-HDR and usual intake as reported on DQ, we

applied two techniques: the empirical logit plot, and the

nonparametric generalized additive model (GAM). With the

empirical logit technique, we categorized DQ measurements,

starting with the category of never-consumers followed by 10 g/

day intake intervals. In each category, we computed the logit of

consumption as reported on 24-HDR. The formula for the

empirical logit transformation [20,23] of consumption used is

given by

log
yiz0:5

ni{yiz0:5

� �
ð5Þ

where yi is the number of individuals who reported consumption

on the 24-HDR and ni is the number of individuals in the ith DQ-

category. The addition of 0.5 to both the numerator and the

denominator of the logit function serves to avoid indefinite

empirical logit values when yi~ni or yi~0, and this particular

value minimizes the bias in estimating the log odds [20]. The

estimated empirical logit is then plotted against the DQ category-

specific means. We fitted a loess curve to the resulting scatterplots

to have a visual inspection of the form of relation between the two

variables [24]. We further made the empirical logit plots for each

of the participating country in the EPIC study. With the

nonparametric GAM technique, we obtained an optimal smooth-

ing splines for the relation between the consumption probability,

as reported on 24-HDR, and DQ and other continuous variables

based on generalized cross validation criterion (GCV) [25]. We

fitted the GAM model for consumption probability, assuming a

binomial response and a logit link function using the mcgv package

in R [26]. In the GAM model, we included confounding variables

in the disease model (Z). We used the partial prediction plot from

the smoothed DQ component to identify plausible forms of

parametric transformations for the DQ [27]. From the selected set

of parametric transformations, Akaike Information Criterion (AIC)

was used to identify the optimal transformation. Similar to the

consumption probability part, we explored optimal form of DQ

for the consumed amount part of the calibration model with the

GAM approach.

Variables inclusion in the calibration model
The theory of regression calibration states that all confounding

variables in the disease model must also be included in the

calibration model in addition to the covariates that only predict

dietary intake [14]. We used the same set of confounding variables

in Agudo [3] that studied the relation between intake of vegetables

and mortality in the Spanish cohort of EPIC. The eight

confounding variables were: BMI (kg/m2), smoking status (never,

former, current smoker), physical activity index (inactive, moder-

ately inactive, moderately active, active), lifetime alcohol con-

sumption (g/day), level of education (none, primary, technical,

secondary, university), age at recruitment (years), total energy

(kcal), and sex (male/female).

The covariates that only predict intake as measured 24-HDR

were selected based on their statistical significance in the

calibration model (3). We included plausible two-way interaction

terms of DQ measurements with the other covariates in the

calibration model. We hereafter refer to each of the calibration

model with covariates selected using the standard theory with the

prefix ‘‘standard’’, here, standard two-part calibration model. The

covariates are not only included once but twice in the two-part

calibration model (i.e., in each part of the two-part model), thus

posing a threat to over fitting. Moreover, some disease confound-

ing variables might not necessarily predict true usual intake

conditional on DQ. We therefore conducted a backward

elimination on the standard two-part calibration model based on

a significance level a of 0.2. We chose 0.2 to ensure that no

significant covariates are excluded from the model. We hereafter

refer to each of the reduced version of the standard calibration

model with the prefix ‘‘reduced’’, here, reduced two-part

calibration model.

To assess the power of the probability part of the two-part

calibration model to correctly discriminate consumers from non-

consumers as reported by 24-HDR, we used the Area under the

curve from the Receiver operating characteristic curve of the fitted

logistic model [28]. For the consumed amount part, we assessed

the predictive power of the model based on the root mean squared

error and the mean bias [29]. In building the two-part calibration

model, we conducted country-specific rather than center-specific

regression calibration models to obtain stable estimates given the

relatively smaller sample sizes in each center [10].

We also fitted other forms of regression calibration models to

compare with the developed two-part calibration model. These

forms of the calibration model include:

i. A two-part calibration model similar to the developed one but

with untransformed DQ. We hereafter refer to this model as

‘‘Two-part (untransformed DQ)’’. The aim of fitting this

model was to assess the effect of nonlinearity on the

performance of a two-part calibration model.

ii. A one-part calibration model with untransformed DQ and

with the usual assumptions of a classical linear model. This is

the calibration model commonly used by epidemiologists to

adjust for the bias in the diet-disease association. In this

model, two strong assumptions are made, namely, normality

and linearity. The aim of fitting this calibration model was to

quantify the inadequacy in adjusting for the bias in the diet-

disease association when these assumptions are violated.

In each of the two forms of calibration models, we used the

same set of covariates in each part of the standard two-part

calibration but with different parametric forms of DQ as explained

above. We conducted a backward elimination (a= 0.2) on each of

these forms of regression calibration models to obtain their

reduced forms. Subsequently, we used a Cox proportional hazard

model to study the association between usual intake of vegetable

subgroups and all-cause mortality [30]. The Cox proportional

hazards model was stratified by center and sex. To explore the

form of relation between usual intake of each of the three

vegetable subgroups and all-cause mortality in the Cox model, we

plotted the log hazard ratio estimate against the DQ category-

specific median intake [31].

We used bootstrap procedure to compute correct standard error

for the log hazard ratio estimate. The bootstrap approach

accounts for the uncertainty in the calibration process. We used

center-stratified bootstrap procedure on the calibration sub-study.

To each bootstrap sample, we added the main-study data and

fitted regression calibration model to generate replicate versions of

E(RDQ,X) for each subject in the entire EPIC cohort [32]. To each

replicate data, we fitted the Cox model yielding an estimate of log

hazard ratio with a standard error. The within-calibration and

between-calibration variances were combined using Rubin’s

formula to account for the uncertainty in the calibration process

[33–35]. The Rubin’s formula used to estimate the standard error

for the log hazard ratio estimate is

Two-Part Regression Calibration Model to Correct for Measurement Error
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Figure 4. Linearity assessment in the Cox proportional hazards model for Leafy vegetables. The graph shows a smoothed curve fitted to
the scatterplots of log hazard ratio estimate of leafy vegetable intake on all-cause mortality in each DQ category versus DQ category-specific median
intake. The approximately linear downward trend suggests a possible linear relation and a beneficial effect of vegetable intake on the risk of all-cause
mortality.
doi:10.1371/journal.pone.0113160.g004
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s2
T (b)~

1

m

Xm

i~1

SE(b̂bi)
� �2

z 1z
1

m

� �
1

m{1

� �Xm

i~1

b̂bi{b
� �2

ð6Þ

where s2
T (b) is the total variance of the mean of log hazard ratio

estimate from m calibrated samples, SE(b̂bi) is the within-

calibration standard error, and 1
m{1

� � Pm
i~1

b̂bi{b
� �2

is the

between-calibration variance.

We fitted a Cox proportional hazards model that ignores the

measurement error in DQ. This method is hereafter referred to as

the naı̈ve method. In the naı̈ve method, the DQ measurements

were used to study the association between usual intake of a

vegetable subgroup and all-cause mortality.

Results

Excess zeroes, heteroscedasticity and skewness in
reference measurements

In Table 1, each of the three vegetable subgroups showed a

high percentage of zero reference measurements as reported on

the 24-HDR, especially for root vegetable subgroup in most of the

participating countries. The rather high percentage of zero

reference measurements suggests that these subgroups of vegeta-

bles are not consumed daily by everyone. The Pearson correlation

coefficient for each of the three vegetable subgroups in each of the

participating countries, as measured with 24-HDR and DQ, were

rather low but mostly statistically significant. The boxplots for the

distribution of the consumed amount on consumption events as

reported on 24-HDR showed positive skewed distributions for

these dietary variables (Figure 1). These exploratory findings

suggested a need to properly handle the excess zeroes, to choose

either a suitable distribution or a correct transformation for the

consumed amount, as reported on 24-HDR in building a

calibration model.

For each of the three vegetable subgroups, a linear trend was

shown between the log of standard deviation and the log of the

mean for the consumed amount (see Figure 2 for leafy vegetables).

The linear trend is a clear evidence of a variance that increases

with a mean (presence of heteroscedasticity). The slope (standard

error) of least squares regression line fitted to the resulting

scatterplots was estimated as 1.057 (0.085). For fruiting vegetables,

the estimates were 0.994 (0.076) as shown in Figure S1. Likewise

for root vegetables, the estimates were 1.021 (0.130) as shown in

Figure S2. These slopes of the fitted lines were all close to the

theoretical value of 1 for a GLM gamma model. Based on these

exploratory findings, we chose a gamma GLM model for the

consumed amount part of the two-part calibration model

separately for each of the three vegetable subgroups. The

correlation between each of the three vegetable subgroups ranged

from 0.06 to 0.12 with total energy and from 20.07 to 0.05 with

alcohol, as measured with DQ. These low correlations suggest

minimal contamination effect of measurement error, hence

justifying our choice not to adjust for the error in these variables.

Non-linearity and variable transformations
To explore the form of DQ in the part I model for the

consumption probability, the loess curve fitted to the scatterplots of

the empirical logit versus the DQ category-specific means

presented in Figure 3 showed a nonlinear relation between the

logit of consumption as reported on 24-HDR and the DQ

reported intake (dotted lines). The partial prediction plots from the

GAM approach showed similar behavior. From the plausible set of

parametric transformations for DQ, here, square-root and

logarithmic, we chose log-transformed DQ based on the AIC

criterion for each model fitted to country-specific data. As a result,

we further fitted a logistic model with log-transformed DQ and

computed mean of the predicted logit of consumption in each

category of DQ. The loess curve fitted to the scatterplots of the

mean of predicted logit against DQ category-specific means is

shown in the same figure (continuous line). The similarity of the

two loess curves suggested the aptness of log-transforming DQ in

the part I model for consumption probability of leafy vegetables.

The graphs for fruiting vegetables and root vegetables yielded

similar results.

To explore the form of DQ in the part II model for the

consumed amount part, we fitted a GAM model with gamma

distributed error terms and a log link function (as suggested by

exploratory results). Based on partial prediction plots for the

smoothed DQ components and using the AIC criterion, we chose

a square-root transformed DQ for both leafy vegetables and root

vegetables subgroups, and a log-transformed DQ for fruiting

vegetables.

Two-part regression model building
In addition to the confounding variables in the Cox model

(under variables inclusion in the calibration model sub-section),

season of DQ administration, center where the DQ was

administered and the body weight of the participant were also

included in the calibration model because they predicted intake of

each of the three vegetable subgroups. Other covariates included

in the standard two-part calibration model were the transformed

DQ, and two-way interaction of transformed DQ with sex, age,

season, BMI and center. We used the same set of covariates on

each part of the standard two-part calibration model but with

additional quadratic term for age at recruitment in the consumed

amount part. In Table 2, we showed the remaining significant

terms after a backward elimination on each part of the standard

two-part calibration model separately for each of the three

vegetable subgroups.

The areas under the curve from the ROC curve for the

consumption probability part of the standard two-part calibration

model and its reduced form were quite similar for each of the

vegetable subgroups (Table 3). This suggest that some confound-

ing variables and other two-way interaction terms of DQ with

other covariates in the standard model do not necessarily predict

the consumption probability and therefore should not be included

in the calibration model.

A similar remark could be made for the consumed amount part

of the model, based on the root mean squared error and the mean

bias, which were quite similar.

The graphical exploration of the smoothed curve fitted to the

scatterplots of the log hazard ratio estimate of dietary intake on all-

cause mortality versus the DQ category-specific median intake

showed approximately linear relations for each of the three

vegetable subgroups as shown in Figure 4 for leafy vegetables,

Figure S3 for fruiting vegetables, and Figure S4 for Root

vegetables. We therefore assumed a linear term for DQ in the

three fitted Cox proportional hazards models.

As expected, the log hazard ratio estimate for usual intake in the

Cox model adjusted for measurement error in DQ were larger in

absolute value than the naive estimate that ignores the measure-

ment error. Similar remark was made for all the fitted forms of

regression calibration models but the standard two-part calibration

model with untransformed DQ (Table 4).The log hazard ratio

estimates adjusted for the bias with the standard calibration

models were smaller than those adjusted with the reduced

Two-Part Regression Calibration Model to Correct for Measurement Error
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calibration models, e.g., 20.265 for the standard two-part

(transformed DQ) and 20.479 for the reduced two-part (trans-

formed DQ) calibration model per 100 g intake of root vegetables.

The poor performance of the standard calibration models might

be due to over fitting by covariates that did not significantly predict

usual intake of vegetable sub-groups. The log hazard ratio estimate

adjusted with the standard two-part calibration model was even

smaller than the naı̈ve estimate. This shows that a poorly specified

calibration model can result in adjusted association estimates that

are more biased than the unadjusted estimates. The standard error

of the log hazard ratio estimate corrected for the uncertainty in the

calibration was larger than the uncorrected one for each of the

calibration models presented. This means that ignoring uncer-

tainty in the calibration underestimates the standard error. The

underestimation of standard error was more severe for the

standard calibration models. Further, the log hazard ratio estimate

calibrated with the reduced one-part linear calibration model was

smaller than that obtained with the reduced two-part (transformed

DQ) model. The seemingly poor performance of one-part linear

calibration model suggests that a poorly specified calibration

model does not adequately adjust for the bias in the diet-disease

association. Further, the predicted intake values for some subjects

not in the calibration sub-study, in some cases were rather

unrealistic. The unrealistic predictions were mainly from the

standard calibration model with untransformed DQ. The calibra-

tion models with untransformed DQ resulted in a much smaller

log hazard ratio estimate than their counterparts with transformed

DQ. This might be driven by extreme prediction from highly

skewed DQ measurements in the calibration model. The effect of

the extreme DQ values was further compounded by two factors:

including the same covariate twice in the two-part calibration

model and by the exponentiation effect due to the log link function

used to fit the calibration model. As a result, we conducted a small

sensitivity analysis where the unreasonably high predicted values

were retained in the Cox model. Including these high predicted

values resulted in massive change in the log hazard ratio estimate

mainly with standard two-part calibration model with untrans-

formed DQ. For leafy vegetables, for instance, including the

unrealistic predictions from the standard two-part calibration

model with untransformed DQ changed the estimate of log hazard

ratio from 20.174 to 20.00518 per 100 g intake. In Table S1, we

present the percentages of these unrealistic predictions, defined as

extreme if it exceeded fivefold the ninety ninth percentile of the

predicted usual intake. In the final analysis, we excluded these

unrealistic values.

Discussion

In this work, we adapted a two-part regression calibration

model initially developed for multiple 24-HDR measurements per

individual for episodically consumed foods to a single replicate

setting. We focused on dietary intake data that are skewed,

heteroscedastic, and with substantial percentage of zeroes as

reported on the 24-HDR. We further described how to explore

and identify a suitable GLM model and a correct parametric form

of a continuous covariate in the calibration model. As a result, we

applied flexible GLM models that could simultaneously handle the

skewness and heteroscedasticity in the consumed amount. Thus,

we avoided complications resulting from data transformation. We

chose the log link function to stabilize the variance and to ensure

positive prediction for usual intake [36].

The standard way of including variables in the calibration

model states that all confounding variables in the disease model

and those that only predict dietary intake but not the disease

occurrence must be included in the calibration model. Given the

complexity of the two-part calibration model, some confounding

variables in the disease model do not necessarily predict dietary

intake. This could pose a threat to over fitting the calibration

model. We further conducted a backward elimination on each part

of the two-part calibration model separately. The reduced

calibration model with only significant covariates outperformed

its standard counterpart in adjusting for the association bias.

Leaving out confounding variables from the calibration model is

against the standard theory of regression calibration. Nevertheless,

we argue that if the omitted covariates have no effect in the

calibration model, they should be excluded and the calibration

method should still be correct. We further found out that assuming

linearity when it does not hold in a calibration model can pose a

serious threat to the bias-adjustment of the association parameter.

The association parameter estimate adjusted for the bias with a

poorly specified calibration model can sometime be worse than the

unadjusted estimates. Thoresen [37] also found, in a simulation

study, that a less accurately specified calibration model can have a

considerable impact on the degree of bias-adjustment. We

observed that predicted values for some subjects not in the

calibration sub-study were extremely large. The extreme predic-

tions resulted mainly from standard calibration models with linear

DQ as a covariate. In such a case, predictions are made outside

the variable space on which the model is fitted. Due to the curse of

dimensionality, the prediction space would extend more outside

the variable space in the complex models.

The consumption probability and the consumed amount for

episodically consumed foods may be correlated. In each of the

fitted two-part calibration models, we accounted for this correla-

tion partly by allowing covariates to overlap on both parts of the

calibration model [14]. With only a single 24-hour recall

measurement per subject, any further correlation cannot be

estimated. In future studies, a sensitivity analysis can be performed

to assess the effect of the unaccounted part of the correlation. This

can be done by varying the magnitude of the assumed positive

correlation between the consumption probability and the

consumed amount.

A limitation of this study is that we made some strong

assumptions. First, we assumed the 24-HDR to be unbiased

measurement of true usual intake. Second, we assumed that the

errors in the 24-HDR are uncorrelated with the errors in the DQ.

However, previous studies have shown that these assumptions may

not hold for dietary self-report instruments, and that, use of 24-

HDR as a reference instrument for vegetable intake may be flawed

[4,38–40]. The biomarker studies using doubly labelled water for

energy intake and urinary nitrogen for protein intake suggest that

self-reports on recalls or food records may be biased. This is

because individuals may systematically differ in their reporting

accuracy. Additionally, the errors in these short-term instruments

are shown to be positively correlated with the errors in the DQ

[41]. As a result, using 24-HDR as a reference instrument can

seriously underestimate true attenuation [42]. Therefore, the

results obtained with the 24-HDR as reference instrument should

be interpreted with caution. Nevertheless, the bias in 24-HDR is

reported to be substantially less severe than that in the DQ [38].

Thus, when there is no objective biomarker measurements for
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dietary intake, using 24-HDR may still provide the best possible

estimation of true intake [14].

In summary, a correctly specified two-part regression calibra-

tion model, which fits the data better, can adequately adjust for the

bias in the diet-disease association, when only a single reference

measurement is available per individual. Further, the ability to

adjust for the bias is influenced considerably by the form of the

specified calibration model. We therefore advise researchers to pay

special attention to calibration model specification, with respect to

the response distribution and the form of the covariates.

Supporting Information

Figure S1 The variance-mean relation for Fruiting
vegetables (FV). The graph shows a least squares regression

line fitted to the scatterplots of the logarithm of center-specific

standard deviation versus logarithm of center-specific mean of the

consumed amount of fruiting vegetables for those who reported

consumption on the 24HDR in the EPIC Study, 1992–2000. The

approximately linear regression line suggests a variance that

increases with the mean.

(TIFF)

Figure S2 The variance-mean relation for Root vegeta-
bles (RV). The graph shows a least squares regression line fitted

to the scatterplots of the logarithm of center-specific standard

deviation versus logarithm of center-specific mean of the

consumed amount of root vegetables for those who reported

consumption on the 24HDR in the EPIC Study, 1992–2000. The

approximately linear regression line suggests a variance that

increases with the mean.

(TIFF)

Figure S3 Linearity assessment in the Cox proportional
hazards model for Fruiting vegetables. The graph shows a

smoothed curve fitted to the scatterplots of log hazard ratio

estimate of fruiting vegetable intake on all-cause mortality in each

DQ category versus DQ category-specific median intake. The

approximately linear downward trend suggests a possible linear

relation and a beneficial effect of fruiting vegetable intake on the

risk of all-cause mortality.

(TIF)

Figure S4 Linearity assessment in the Cox proportional
hazards model for Root vegetables. The graph shows a

smoothed curve fitted to the scatterplots of log hazard ratio

estimate of root vegetable intake on all-cause mortality in each DQ

category versus DQ category-specific median intake. The

approximately linear downward trend suggests a possible linear

relation and a beneficial effect of root vegetable intake on the risk

of all-cause mortality.

(TIF)

Table S1 Unrealistic predicted usual intake of vegeta-
ble subgroups. The table displays the maximum and the ninety-

ninth percentile of predicted usual intake and percentage (number)

of unrealistic predictions (i.e., unrealistic if greater than five times

ninety-ninth percentile of predicted intake) using different forms of

regression calibration models; each model in its standard form,

that is, with the covariates selected using the standard theory, and

also in the reduced form, that is, with covariates that significantly

predict intake.

(DOC)
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