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Abstract

Bacteria are the planet’s oldest and the most common life forms. Bacteria have developed
alongside humans and are good and harmful to our health. Our bodies contain nearly ten
times the number of bacteria as human cells, and this natural microbiota is critical for
appropriate development, nutrition, and disease resistance. Unfortunately, we live in an
environment rich with bacteria that may cause a wide range of human diseases.[1]

Antimicrobial resistance (AMR) occurs when bacteria no longer remain vulnerable to the
antimicrobial for which it was responsive in the past. Around 33,000 Europeans die each
year from infections caused by (AMR) bacteria [2]. However, this number will be ten times
the current number of deaths by 2050 if AMR develops rapidly [2]. Furthermore, the lack
of new antibiotics in the development or trial phases is causing concern, particularly for
multi­drug resistant bacteria that manufacture extended spectrum beta­lactamase (ESBLs)
and carbapenems. Enterobacteriaceae (E. coli and Klebsiella pneumonia) is a family of
bacteria that belongs to theWHO’s priority one pathogen list.[3]

In this thesis, we tried to see if it is possible to see the potential difference between an
AMR and a non­AMR bacterium. Also, we want to explore if it is possible to visualize
any difference between different AMR bacteria cells. And to see the bacteria, we need an
imaging technique that is suitable for imaging at high speed without the need for labels. The
next important fact is if the technique is quantitative, we might be able to see the difference
in the quantitative parameters of the two types of bacteria cells. We had one such option in
our laboratory as Quantitative phase microscopy (QPM).

QPM is a non­contact, non­invasive, and label­free methodology that can quantify
various morphological and statistical parameters such as refractive index, height, dry mass,
surface area, volume, sphericity, mean associated with biological specimens.[4]

This thesis aims to obtain QPM images of three different bacteria species: E. coli,
Klebsiella pneumonia (K. pneumonia), and Staphylococcus aureus (S. aureus). The E. coli
bacteria have two different strains: E. coli(CCUG17620 and NCTC13441). One of them is
the wild type without an antimicrobial resistance gene, and the other is the non­wild type
with an AMR gene and, in this case, will be an extended­spectrum beta­lactamase ESBLs.
Except for one bacteria sample, all others were with AMR­gene.

The primary hypothesis was to investigate any difference in the morphology and
quantitative parameters obtained by the QPM images of four different bacteria. The



long­term aim was to examine if QPM can be used to image and classify bacteria. First,
a systematic characterization of the QPM system is performed in terms of spatial phase
sensitivity, temporal stability, spatial resolution, and defocus correction is done after phase
recovery. Next, QPM imaging of four different bacteria sampled is done to investigate
morphological parameter changes at a single wavelength. Further, the work is extended
with multi­spectral QPM of these bacteria samples to develop new biomarkers related to
them. In the future, the result can be fueled with the power of machine learning for the
classification of these bacteria samples based on the quantitative parameters extracted from
their QPM images.
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AMR Antimicrobial resistance
Approx. Approximately
AIA Advanced iterative algorithm
CFU/ml Colony­forming unit per mili liter
DIC Differential interference contrast
DHM Digital holographic microscopy
DPM Diffraction phase microscopy
DPSS Diode­Pumped Solid­State
E Energy
En Entropy
E. coli Escherichia coli
ESBL Extended­spectrum beta­lactamase
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FTLS Fourier transform light scattering
IACG Interagency coordination group on antimicrobial resistance
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LED Light­emitting diode
LOD Limit of detection
MDR Multidrug­resistant
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OPD The optical path length difference
PA Projected area
PAV Projected area to volume ratio
PBS Phosphate buffered saline
PCM Phase­contrast Microscopy
PCA Principal component analysis
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PTLS Pseudo thermal light source
PLL Poly(L­lysine)
PZT Piezoelectric Transducer
QPM Quantitative phase microscopy
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RD Rotating diffuser
RI Refractive index
RT Room temperature
RCQS Regional quality control system
K. pneumonia Klebsiella pneumoniae
S. aureus Staphylococcus aureus
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SAV Surface area to volume ratio
SC Spatial coherence
Sk Skewness
TC Temporal coherence
UN United nations
UNN The University Hospital of North Norway
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WHO World health organizations
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Chapter 1

Introduction

The World Health Organization (WHO) has designated Antibiotic resistance (AMR) as one
of the most severe global dangers to human health [2]. AMR occurs when pathogens
no longer respond to the antimicrobial which they used to be in the past [2]. As a
result of the rise of AMR pathogens, our potential to treat life­threatening infections is
challenging. AMR pathogens are responsible for a considerable worldwide burden of disease
and mortality. According to United Nations Ad hoc IACG (Interagency coordination group
on antimicrobial resistance), 0.7 million people die annually due to some common infection
that becomes resistant to antimicrobial [2]. Only in Europe, 33000 people die every year due
to AMR pathogens [2]. According to a prediction made by Jim O’Neill in 2014 [5], if this
number continues to grow in the sameway, then by the end of 2050, around 10million people
will die due to AMR infections. Furthermore, this will cost the globe up to 100 trillion dollars
and even exceed cancer related mortality, as shown in Fig.1.1 [5] [6]. Therefore, there is an
urgent need to take the initiative to tackle this situation.

Figure 1.1: J
im O’Neill made the prediction (2014) [5] and further confirmed by Mara Baldry (2016)
[6]. It reveals that the highest number of deaths will be due to antimicrobial resistance

(AMR) if it grows in the same way. This number is even more significant than the fatality
due to cancer [6].

The focus or scope of this thesis is as follows.
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Chapter 1 Introduction

(1) Explore a microscopy technique also called quantitative phase microscopy (QPM) to
identify different types of bacteria.
(2) Investigate the challenges associated with bacteria imaging using QPM, such as
Brownian motion in bacteria, spatial phase sensitivity requirement, and defocus effect on
the phase maps.
(3) Perform Quantitative phase imaging (QPI) of three different classes of the AMR and one
type of non­AMR bacteria for their classification based on their morphological and statistical
parameters.
(4) Dual­wavelength study of the AMR and non­AMR bacteria samples to determine spectral
fingerprints if any.

This thesis covers imaging AMR and non­AMR bacteria cells using the QPM technique.
Additionally, it provides a literature review of the field and identifies the associated
challenges and limitations.

1.1 Choosing the suitable imaging modality

We needed to see through appropriate imaging techniques to differentiate bacteria. The
optical microscopic imaging techniques to visualize bacteria cells can be broadly classified
as:
(1) Labeling methods: fluorescence microscopy
(2) Label­free methods: phase­contrast microscopy (PCM), differential interference contrast
(DIC) microscopy, darkfield optical microscopy, and QPM.

Using a bright field light microscope, the absence of contrast in images of nearly
transparent specimens, such as bacteria cells, makes them difficult to image. This is
due to insufficient amplitude fluctuations in the transmitted light through the sample.The
contrast in imaging such specimens can be obtained by employing fluorescence microscopy
techniques. However, it requires exogenous contrast agent to label different structures
of the cells. Fluorescence microscopy allows researchers to investigate specific features
in a bio­specimen with excellent specificity [7]. However, unfortunately, it is expensive
and time­consuming. Also, labeling can alter the characteristics of bacteria cells; so
label­free approaches seem to give the desired output. There are mainly three available
imaging techniques. Other label­free methods, such as PCM and DIC microscopy, are not
quantitative techniques, therefore, pose limitations for the identification of different bacteria
samples if the difference between them is minute. On the contrary, QPM can quantitatively
measure the differences between different types of bacteria cells.
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1.2 Quantitative phase microscopy (QPM)

QPM is a non contact, non­invasive, and label­free approach that can precisely quantify
a variety of parameters associated with biological specimens such as surface area,
projected area, sphericity, volume, as well as statistical parameters(mean, variance, kurtosis,
skewness). QPM has been implemented in various industrial and biological applications in
the past [4][8]. QPM records images in the form of an interference pattern usually called an
interferogram.

The interferograms contain both real and imaginary (complex) information about the
specimen. The real part gives detail about amplitude, and the complex part provides phase
information. The sample’s complex information is encoded in a spatially modulated signal
formed by interference or superposition of the sample and reference beam [4][8]. This
encoded information is further numerically processed to acquire results in QPM.

1.2.1 The Basic principle of QPM

The basic principle of QPM gives details about the fact that how interference patterns have
encoded phase information. When a plane wave illuminates a specimen under a microscope,
the amplitude and phase of the transmitted light fluctuate due to the material’s transmittance
differences. At an image plane, the transmitted signal can be written as:

E(x, y, t) = |Eo(x, y)|.e−i(k.r−ω.t+ϕ(x,y)) (1.1)

The detectors only record the intensity of light wave, which is the square of the modulus of
the field |Eo|2,

I = |E(x, y, t)|2= |Eo(x, y)|2 (1.2)

Thus, the phase information of the specimen is lost. However, the resulting intensity retains
phase information if the image field interferes with another reference field R(r), which is the
basic principle of QPM [8].

R(x, y, t) = |Ro(x, y)|.e−i(kr.r−ω.tr) (1.3)

The superposition of the reference beam and the sample beam forms an interference pattern.
The total intensity due to the superposition of both fields at the image plane is as follows [8]:

I(x, y, t) = |E(x, y, t) +R(x, y, t)|2 (1.4)

I(x, y, t) = |Eo|2+|Ro|2+E∗(x, y, t).R(x, y, t) + E(x, y, t).R∗(x, y, t) (1.5)

I(x, y, t) = |Eo|2+|Ro|2+2|Eo||Ro|.Cos[(ω.(t− tr)− (k − kr).r + ϕ)] (1.6)
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It can be seen in Eq.1.6 that the resultant intensity has encoded phase information of the
specimen and can be retrieved using phase recovery algorithms [8]. The phase recovery
algorithms are discussed in Chapter 2 of the thesis. The basic principle of QPM is based
on the interference between the object and the reference beams. It is well known that light
fields being superimposed must be coherent to form interference [13]. Here, the coherence
properties of the light sources play an essential role to observe interference fringes in the
QPM system.

Coherence

The sources which originate such waves of light that vibrate at a constant or fixed phase
difference are known as coherent sources, and this property is called coherence. There are
two types of coherence.
1) Temporal coherence [9]
2) Spatial coherence [9]

Temporal coherence

A constant or fixed phase relationship between light vibrations at two instants is called
temporal coherence. Temporal coherence depends on the spectrum of the source [4][10][11].
The temporal coherence length lc is the propagation distance over which a wave maintains a
degree of coherence. A wave with a longer coherence length is closer to a perfect sinusoidal
wave. The temporal coherence length lc in mathematical form is written as follows [4]:

lc =
4ln2

π

λ2

∆λ
(1.7)

Eq.1.7 reveals that the greater the bandwidth∆λ, the shorter the temporal coherence length
and vice versa. So, The temporal coherence length lc would be less for a broader spectrum.

Spatial coherence

Spatial coherence is associated with the size of the source of light. Spatial coherence
describes the correlation of optical fields at two different spatial locations situated in the
transverse direction of the beam propagation at the same moment [9][10][11][12].

1.2.2 Superposition of waves and Interference of light

The superposition of two coherent beams of light results in bright and dark fringes, and this
phenomenon is called interference of light [13][14].
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Figure 1.2: A single source of light is converted into two spatially coherent point sources,
S1 and S2, by introducing a double slit in the path of the primary source of light: S1 and
S2 separated by distance d. The size of the slit is small to make the light spatially coherent
[13][14].

1.3 Methods to obtain two coherent sources

Coherence between light waves is the primary condition to obtain interference patterns.
However, it is almost impossible for two independent light sources to be coherent. That
is why a single source is usually converted into two light sources; this conversion can be
accomplished in two ways. [13].
(1) Division of wave­front [13].
(2) Division of the amplitude of a single beam [13].

The instrument used to achieve interference is called an interferometer. Many
interferometers work on either wave­front division or amplitude to obtain two coherent
sources. The light from these coherent sources superimposes to produce an interference
pattern.

1.3.1 Young’s double­slit experiment

Young’s double­slit experiment works on the principle of wavefront division and can
be explained with the help of a Fig.1.4. A single source of light originates two spatially
coherent point sources S1 and S2 by introducing a double slit (a small aperture) in the path
of the primary source of light. These sources S1 and S2 are separated by distance d. A
screen is held perpendicular to the point sources at a distance of L, as shown in Fig.1.4(a).
The two beams reach on the screen and superimpose with each other to produce interference.

5



Chapter 1 Introduction

Figure 1.3: Methods to obtain two coherent sources from a single source of light are shown.
In the left figure, a single source of light is transformed into two by the wave­front division
with the help of double slits are placed in its path. This experiment is called young’s
double­slit experiment. In the right­side figure, a single source of light is transformed into
two with the help of a beam splitter. The beam splitter divides the beam into two, and after
reflection from two different mirrors, they recombine to produce an interference pattern.
Such an interferometer is called a Michelson interferometer. [13].

The beam from the lower point source S2 travels an extra distance of about dsinθ to reach
the point, P. This extra distance is called path difference, which decides constructive or
destructive interference condition at point ’P’ [13][14].

δ = r2 − r1 = dsinθ (1.8)

Constructive interference

If the path difference is an integral multiple of the wavelength, then there will be a bright
fringe on the screen [13][14].

δ = dsinθ = mλ (1.9)

wherem = 0,±1,±2, .......

Destructive interference

Alternatively, if the path difference is an odd integral multiple of the wavelength, there will
be a bright fringe on the screen [13] [14].

δ = dsinθ = (m+
1

2
)λ (1.10)
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Figure 1.4: (a) Ray diagram of Young’s double­slit experiment. Rays from a light source
fall on the two slits separated by a distance d. P is a point; the screen is separated by a
distance L from slits. (b) The two rays cover a distance r1 and r2 respectively to reach point
P; they superimpose to produce interference. The path difference δ = r2 − r1 decides if this
interference will be constructive or destructive [13][14].

wherem = 0,±1,±2, .......

1.3.2 Michelson interferometer

TheMichelson interferometer works on the principle of division of amplitude and is depicted
schematically in Fig. 1.3b, with S representing a light source and BS being a beam splitter
[13]. M1 andM2 are high reflectivity plane mirrors. MirrorM2 is static, whileM1 can be
moved using translation stage [13]. MirrorsM1 andM2 are perpendicular to each other in
the interferometer’s typical setting, while the BS is at 45 degrees to the mirror [13].

Waves from source S are partially reflected and partially transmitted by the BS. The
two resultant beams interact as follows: The reflected wave is reflected again at M2, and
this reflected wave is transmitted through the BS and is represented in Fig.1.3b as ’5’. The
transmitted wave is reflected byM1 and reflected by the BS, resulting in the wave depicted
as 6. Waves 5 and 6 superimpose with each other to produce an interference pattern.x1, and
x2 are the distances ofM1 andM2 from the plate BS. If the beam splitter is a glass plate, the
beam reflected frommirrorM2 will undergo a phase change of π when reflected by the beam
splitter. Since the extra path that one of the beams will traverse is 2x, where x = x1 = x2,
the condition for destructive interference will be

2dcosθ = mλ (1.11)
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Similarly, condition for constructive interference will be

2dcosθ = (m+
1

2
)λ (1.12)

where m = 0, 1, 2, 3,... and d = x1 ∼ x2 [13].

1.4 Optical configurations of QPM

All the optical configurations of QPM systems can be divided into two categories.
(1) Non­Common path QPM.
(2) Common path QPM.

1.4.1 Non­common path QPM

In the non­common path configuration of the QPM, the sample and reference beam do not
follow the same path. One example is the Mach Zehnder[15] interferometer, as shown in
Fig.1.5. In Mach Zehnder [15] interferometer using a beam splitterBS1, a laser beam is split
into a sample and reference beam. The sample and reference beam recombine at an angle to
produce a high fringe intensity hologram at the CCD plane [4].

Figure 1.5: Schematic diagram of the transmission mode non­common path Mach Zehnder
interferometeric. MO stands for microscopy objective, and BS stands for a beam splitter. R
and O stand for reference and object wave [15].

Another example is Linnik[16][19­23] setup which is based on the Michelson
interferometer and is discussed in Section 1.3.1.
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1.4.2 Common path QPM

The interferometers with the same path for both the sample and the reference beams are
common path interferometers [17].

An example is the common path diffraction phase microscopy (DPM), as shown in
Fig.1.6 [17]. The sample and the reference beam follow the same path in this setup.
The reference beam also contains the sample information. One can decode the sample
information from the reference beam using the pinhole and diffraction grating. Grating is
used to separate the reference and sample beam. The zero­order beam acts as a reference
beam, and the first­order diffraction beam acts as a sample beam. The camera captures
interference patterns of reference and sample beam [17].

Figure 1.6: Diffraction phase microscopy experimental setup. A laser­interferometric
microscope with a common­path geometry in the DPM configuration. Between the
condenser and the objective lenses is a sample.OLstands for the objective lens, CL for
condenser lens,M1­2 for mirrors, and L1­6 for lenses [17].
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1.5 Geometrical vs. optical thickness

QPM measures the specimen’s phase shift (rad or mrad) produced. Then this phase shift
is used to find the OPD information. The geometrical and optical path length/thickness are
related to each other. The OPD is the product of refractive index and geometrical thickness
[24]. Let geometrical thickness is ’t,’ then.

OPD = ∆n.t = (n2 − n1).t[24] (1.13)

Despite the waves being in phase at the slits, the path difference δ introduces the phase
difference ϕ between the waves at any point on the screen. The phase difference and path
difference are related to each other as follows [14]:

OPD =
λ

2π
.∆ϕ (1.14)

In QPM, Eq.1.14 can convert the recovered phase information into OPD.

1.6 Phase sensitivity

We can characterize phase sensitivity in two.
1) Temporal phase sensitivity.
2) Spatial phase sensitivity.

1.6.1 Temporal Phase sensitivity

Michelson and Morley explicitly describe the difficulties involved in achieving the required
phase stability in their interferometric experiments on the speed of light [8]: “In the first
experiment, one of the principal difficulties encountered was […] its extreme sensitivity to
vibration. This was so great that it was impossible to see the interference fringes except at
brief intervals when working in the city, even at two o’clock in the morning” [8].Temporal
stability is arguably the most challenging aspect of establishing QPI. It gives information
about the phase change observed at a particular point in the FOV as a function of time
due to the system’s instability. The issue that frequently arises while researching dynamic
phenomena with QPI is: What is the smallest phase shift observed at a given point in the
FOV? For example, examining red blood cell membrane fluctuations needs a displacement
sensitivity of 1 nm, roughly equal to a temporal phase sensitivity of 5–10 mrad, depending
on the wavelength [8]. Uncorrelated noise between two fields typically restricts the temporal
phase sensitivity in time­resolved interferometric measurements. Hence the resultant signal
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has a random phase in the cross­term [8].

I =| A |2 + | B |2 +2 | A || B | cos[ϕ(t) + δϕ(t)] (1.15)

Here, ϕ is the phase, and δϕ is the phase noise. If δϕ varies at random throughout the
interval (−π, π) during the time scales, the knowledge about the quantity of interest ϕ is
lost. Experimenting with consecutive measurements of a stable sample/ without a sample
is a quantitative approach to determine phase stability. The standard deviation is used
to determine the temporal phase stability, δϕ, associated with a single point. This value
specifies the minimum detectable phase value as a function of time [8].

1.6.2 Spatial Phase sensitivity

The spatial phase sensitivity of the system defines the minimum spatial phase variations due
to either refractive index or height that the system can detect [8]. The standard deviation
of a flat surface’s reconstructed complete FOV phase image for spatial phase sensitivity
measurement is determined. In contrast to temporal noise, there are no straightforward
strategies to increase spatial sensitivity other thanmaintaining pristine optics andminimizing
the coherence length of the illuminating light [8]. The spatial non­uniformities in the phase
background are mostly caused by the random interference pattern (i.e., speckle) formed by
fields scattered from impurities on optics, specular reflections from the system’s different
surfaces, and so on. This spatial noise is increased when high coherent sources, such as lasers
are used [8]. Using white light significantly lowers the impacts of speckle while maintaining
the need for a coherence area at least as broad as the field of vision [8].

1.7 Types of light sources used in QPM, their advantages
and disadvantages

QPM system’s spatial phase sensitivity is dependent on the light source type used to
illuminate the specimens [9]. QPM uses the following light sources,
1. Halogen lamp (thermal light source): Halogen lamp has lower temporal and spatial
coherence.
2. Light­emitting diodes LEDs: LEDs have partially low temporal and low spatial coherence.
3. Light amplification by stimulated emission of radiation (Laser): Laser has high temporal
and spatial coherence.
4. Pseudo­thermal light source (PTLS) [9] A laser beam that has both high temporal and
spatial coherence is sent through a revolving diffuser or a rough surface to produce the PTLS.
The output of the diffuser provides a high temporal and partial spatial coherent light source.
The spectral bandwidth and coherence length of different light sources generally used in
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QPM are shown in Table. 1.1. The temporal coherence length of different light sources is
shown in Fig. 1.7. Broadband light sources such as white and light­emitting diodes can

Figure 1.7: Schematic representation of light field illumination wave­front profiles in case
of (a) halogen lamp,(b) LED (c) laser, and (d) PTLS, respectively. Coherence properties of
different light sources, their coherence length, and bandwidth [25].

Table 1.1: Different light sources used in QPM, their bandwidth, and coherence length [9].

Light source Spectral bandwidth Temporal coherence length
Laser 0.001nm 18cm
Halogen lamp 300nm 1µm
LED 10­20nm 20 µm
PTLS 0.001/1nm 18cm

increase QPM’s spatial phase sensitivity [9]. However, the drawback to using such sources
is either reduced temporal resolution or a smaller field of view (FOV). On the other hand,
these light sources have a higher phase sensitivity due to their shorter temporal coherence
length. However, the interference occurs when theOPD between the object and the reference
beam is within the light source’s coherence length. As a result, producing an interference
patternwith light sources of short temporal coherence length is challenging [9]. Furthermore,
compared to narrow­band light sources like lasers, these light sources have relatively low
photon degeneracy or the average number of photons per unit coherence volume [9].

The high photon degeneracy of lasers causes coherent and speckle noise in images,
drastically reducing their quality. Hence, regarding photon degeneracy and coherent noise
reduction, PTLS adoption in bright field optical microscopy outperformed traditional light
sources (compared to lasers).

A high temporal and high spatial coherent light source is usually needed to acquire
the interference pattern over the camera’s entire FOV [9][16][25]. Unfortunately, the
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image quality of a laser light source with high temporal and spatial coherence degrades
because of coherent noise and parasitic fringe generation induced by various reflections from
various surfaces of the optical elements [9][18]. The system’s spatial phase sensitivity and
measurement accuracy decreases as a result.

PTLS has lately piqued the curiosity of QPM researchers. PTLS offers the features of
broadband and narrow­band sources, i.e., highly spatial phase sensitivity and interference
across the whole FOV [9]. PTLS does not suffer from chromatic aberration of optical
components or biological specimen dispersion problems. Having imaging speed restricted
only by camera acquisition speed, PTLS can give single­shot phase imaging over broadFOVs
without compromising spatial phase sensitivity or temporal resolution [9]. Furthermore,
interference is achievable over a wider range of OPD between the object and the reference
arm of the QPM system [9]. In this master’s thesis, PTLS was used to image bacteria cells
using QPM.

1.8 Fixation

The fixation method can retain the morphology of live cells after death, as they disintegrate
fast if not fixed [26]. There are two types of fixation methods: additive and denaturing
fixation. Additive fixation is the most popular in microscopy [26]. In this method,
formaldehyde (CH2O) is obtained from paraformaldehyde (PFA), or formalin (since
formaldehyde is a gas at room temperature) is used for fixation. It protects cell shape
by cross­linking proteins through methylene bridges (−CH2−), subsequently fixing cell
shape [26]. Another method is the denaturing fixation method. This approach can denature
proteins by lowering their solubility or breaking hydrophobic interactions, modifying protein
structures, and inactivating enzymes. However, alcohols like methanol and ethanol can
cause significant cell shrinkage if used solely in such methods [26]. Therefore, other
denaturing compounds, such as acetone and acetic acid, are commonly used with alcohols
to improve fixing efficacy [26]. In this master’s thesis, the fixed samples were provided
by a collaborator. However, the fixation of the samples was done by the first method, i.e.,
additive fixation. The protocol followed for the fixation is described in Section 4.2.

1.9 Background of bacteria imaging using QPM

QPM has developed as an essential tool for cell and tissue analysis. QPI functions on
unlabeled specimens and is complementary to proven fluorescence microscopy, showing
low photo­toxicity and no photo­bleaching. Moreover,QPI is gaining traction as a powerful,
label­free image analysis method of thin tissues and cells [27].

Much work has been done in imaging cells and tissues using this technique. However,
very few papers were published on imaging bacteria as it was difficult for bacterial imaging
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due to lower contrast and noise. In the case of bacteria, the refractive index varies just in the
second decimal from water ( 1.38 vs. 1.33 for water ). Thus, for a one μm cell visualized
at 405 nm, a standard phase change of around λ/4 or 45◦ might be challenging to overcome.
However, the advantage of such tiny structures is that unwrapping is not necessary because
phase changes are not more than 2λ [28]. A work published in 2018 demonstrated and
verified a machine­learning identification technique based on linear logistic regressions that
can detect the bacteria cells by DHM image reconstructions with an accuracy of over 90%
and a localization error of about 7µm. The identification was verified using two classes of
microorganismswithout labeling. The basis of this technique, andMATLAB implementation,
was briefly explained [28].

In 2016 Jay Nadeau and his group found imaging bacteria cells challenging due to poor
contrast, tiny cell size, and swift movement with high­speed direction changes. They used
a combo of improved optical design and layout, customized chambers, and labeling with
a non­toxic chemical to track bacterial test strains automatically. Based on SNR estimates,
they discovered that etalon sample chambers outperformed other sample chamber designs
substantially [24]. The anti­reflective (AR) coated etalons boosted the average SNR by 24%
compared to the conventional microscopic examination. The combination of lower noise
and higher SNR demonstrates the importance of excellent optical quality sample chambers
in 3D bacterial identification and tracking. For 488 nm illumination wavelengths, corrole
or porphyrin dyes with high blue absorption were ideal. Other dyes may be used for more
common wavelengths utilized in biological studies. According to them, it is unknown if
these dyes are absorbent enough to be beneficial. They suggested that dye fluorescence is
unnecessary for this use, and in the future, one can investigate colorimetric agents that absorb
but do not fluoresce [24]. In Fig.1.8, the phase reconstruction has shown with and without
dye. The images were taken at best focus and about 6μm off from best focus [24].

Figure 1.8: Reconstructions of a single plane phase of bacterial cultures with and without
corrole dye. (A) E. coli is unlabelled. (B) E. coli with labeling. (C) B. subtilis unlabelled at
apparent best focus. (D) B. subtilis unlabelled 6 µm from best focus. (E) B. subtilis labeled
at apparent best foc s. (E) B. subtilis labelled 6 µm from best focus. (G) V. alginolyticus
unlabelled. (H) V. alginolyticus label d. (I) Zoom view of V. alginolyticus unlabelled. (J)
Zoom view of V. alginolyticus labeled [24].
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In 2016, scientists devised and experimentally proved a simple but powerful laser
approach for measuring bacterial activity in food by studying laser speckle decorrelation
using QPM. Several experimental validations demonstrated that spontaneous bacterial
activity induces substantial decorrelation in laser speckle dynamics. Although the current
approach can detect bacterial activity, it cannot distinguish between various harmful bacterial
strains. Nonetheless, the present technology can be employed in multiple applications
where the identification of bacterial activity is more critical, such as avoiding food toxicity
or performing prescreening tests. Furthermore, the proposed approach may be used in
research applications involving the measurement of the bacterial activity or the efficiency of
antibacterial medications [29].

DHM could attain spatial resolution several times smaller than a bacterial cell using
Mach Zehnder devices and high numerical aperture (NA) microscope targets in the blue
wavelength range. DHM is a very effective tool for visualizing bacterial motion in
three dimensions, and it will become increasingly valuable as contrast methods improve.
However, the employment of dyes to boost the quantitative phase’s amplitude and contrast
is still in its early stages [30].

In 2020 in a publication, a fast, label­free, and economical biosensor was designed for
the detection of E. coli has a 2.2 CFU / ml limit of detection (LO). Compared to bacterial
molecular components detection techniques, their framework focuses on the direct binding
of individual bacteria to the sensor via antibody­antigen coupling, which has the benefit of
requiring minimal sample pre­processing [31]. Furthermore, they claimed that the suggested
biosensor’s large FOV and real­time detection capacity allowed them to monitor bacteria
size development. Furthermore, recognizing and counting colony­forming units (CFU) is
considerably faster than it takes for colony units to be visible to the human eye [31].

In 2015, a research publication presented and experimentally proved an optical approach
based on Fourier transform light scattering measures and statistical categorization to
accomplish quick and label­free detection of bacteria [32]. The FTLS approach produces
2D angle­resolved light scattering maps for single bacteria(rod­shaped). These maps are
then carefully studied, and the specific fingerprint for each bacteria is determined using
statistical categorization [32]. Thus, a single light scattering measurement may categorize
a new undiscovered bacteria. In addition, bacteria produce nanometric extracellular
membrane vesicles involved in many biomedical applications [32]. To assess the uniqueness
of membrane vesicles derived from bacteria cultures, phase imaging and atomic force
microscopy were used to examine membrane vesicles. Phase imaging may be used to
characterize the physical characteristics of particular membrane vesicles in an individual
membrane vesicle population with a wide range of vesicle sizes ranging from twenty to
one hundred and fifty nanometers [32]. Furthermore, a method was devised for comparing
the physical features of membrane vesicles between samples quantitatively. This enabled a
study of the physical characteristics of membrane vesicles gathered from different bacterial

15



species [32].
In 2017, a paper was published. The authors demonstrated the categorization of healthy

and malignant cells usingQPM. They compared healthy cells to tumor and metastatic cancer
cells, using tumor samples and normal tissues from the same people [33]. The OPD maps
of the cells were recovered after acquisition and utilized to generate 15 parameters derived
from the cellular 3D shape and texture [33]. We discovered vital statistical significance in
the difference between the groups in most of the parameters estimated after evaluating tens
of cells in each group, with the same patterns for all statistically significant parameters [33].
Furthermore, a specifically developed machine learning algorithm based on the phase map
derived characteristics correctly categorized the cell type (healthy/cancer/metastatic) with
81–93% sensitivity and 81–99% specificity [33]. They suggested that the QPI strategy for
liquid samples described in this study might serve as the foundation for enhanced approaches
for staging freshly isolated live cancer cells in imaging flow cytometers [33].



Chapter 2

Phase recovery methods and Focus
correction algorithm

This section covers the mathematical forms of all the algorithms used in this thesis. My
supervisor Azeem Ahmed provided these algorithms, and I made them compatible with my
master’s thesis using MATLAB.

The phase information is stored in the recorded interferogram in QPM, as detailed
in Chapter 1, Section 1.2.1. Therefore, the next important step is to extract this phase
information from the interference pattern acquired experimentally. There are many methods
for phase recovery. Mainly we can categorize phase recovery methods in two.
(1) Single shot(frame) method
(2) Multi shot(frames) method

2.1 Fourier transform method

Fourier transform is a single­shot technique. It can recover phase information about a sample
from a single interferogram, decreasing acquisition time. There is a trade­off between
phase change inaccuracy and acquisition time [4][23]. Eq.1.6 is rewritten as a 2D single
interferogram with high­density fringes with a frequency of v0.

I(x, y) = E(x, y) +R(x, y).Cos(2πv0x+ ϕ(x, y)) (2.1)

Here I(x,y) is the 2D recorded intensity of interferogram in x and y­coordinates The desired
information is in phase ϕ(x, y), and E(x,y) and R(x,y) represent undesirable irradiance
variations caused by non­uniform light reflection or transmission by a test sample. Since,

cosx =
eix + e−ix

2
(2.2)
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Chapter 2 Phase recovery methods and Focus correction algorithm

Using Eq.2.2, one can rewrite the intensity of the input fringe pattern as follows [34].

I(x, y) = E(x, y) +R(x, y)
ei2πv0x+ϕ + e−i(2πv0x+ϕ)

2
(2.3)

Introducing a new variable
W (x, y) = 1/2R(x, y).eiϕ (2.4)

Putting values from Eq.2.4 in Eq.2.3.

I(x, y) = E(x, y) +W (x, y)e2πiv0x +W ∗.e−2πiv0x (2.5)

Using a fast fourier transform (FFT), resulting in Eq. 2.6 [34].

H(v, y) = e(v, y) + w(v − v0, y) + w∗(v + v0, y) (2.6)

e(v, y) is a background (DC) term at the Fourier plane’s origin. The termw(v−v0, y) is a plus
1 order term that includes details about the object and is located at (v, v0). Similarly, w∗(v+

v0, y) is a minus 1 order term at (−v,−v0) that contains complex conjugate details about the
specimen. Eq. 2.6 can be reduced to the following form after filtering out zero­order and
minus one order terms [34]:

H(v, y) = w(v − v0, y) (2.7)

The filtered spectrum is transferred at the origin or center, and then inverse Fourier transform
is used to obtain the complex signal(W(r)) and then phase information [34].

ϕ(x, y) = tan−1(
Im(W (x, y))

Re(W (x, y))
(2.8)

The recovered phase map is in wrapped form, and its values are between –π and π. So phase
unwrapping is made using a minimum LP −norm two­dimensional (2D) phase unwrapping
algorithm [4]. The Fourier transform approach is a single shot phase recovery algorithm that
allows high imaging. However, the zero and first­order peaks in the Fourier domain must be
well separated for a lossless reconstruction of the object, which necessitates a high density
of fringes [23]. In my thesis, I used this method to find the spatial and temporal sensitivity
of the system used for imaging.

2.2 Multishot phase reconstruction algorithms/methods

There are many multishot phase reconstruction algorithms, i.e., Five frame phase­shifting
algorithm and PCA.
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Chapter 2 Phase recovery methods and Focus correction algorithm

2.2.1 The Five frame phase­shifting algorithm

The Five frame phase­shifting algorithm is highly famous over other phase­shifting
algorithms due to its reasonable phase error and acquisition time. However, there is a
trade­off between phase error and acquisition time. For example, if we attempt to reduce
the phase change error by adding more frames (say N), the acquisition time also adds up,
or vice versa [4][35][36]. Hariharan [37] developed a phase­shifting algorithm using five
frames for phase recovery with a reasonable phase error value. One can write the intensity
of five phase­shifting two­dimensional interferograms at a specific wavelength [35].

I1(x, y) = U(x, y) +R(x, y) + 2
√
U(x, y).R(x, y)cos(ϕ(x, y)− 2δ) (2.9)

I2(x, y) = U(x, y) +R(x, y) + 2
√
U(x, y).R(x, y)cos(ϕ(x, y)− δ) (2.10)

I3(x, y) = U(x, y) +R(x, y) + 2
√
U(x, y).R(x, y)cos(ϕ(x, y)) (2.11)

I4(x, y) = U(x, y) +R(x, y) + 2
√
U(x, y).R(x, y)cos(ϕ(x, y) + δ) (2.12)

I5(x, y) = U(x, y) +R(x, y) + 2
√
U(x, y).R(x, y)cos(ϕ(x, y) + 2δ) (2.13)

Here U(x,y) and R(x,y) represents the intensities of sample and reference beams. ϕ(x, y) is
the phase changes associated with the sample. Also, The following expression can determine
the phase knowledge ϕ(x, y) relative to the test object [35].

ϕ(x, y) = tan−1sinδ
2(I4(x, y)− I2(x, y))

I1(x, y)− 2I3(x, y) + I5(x, y)
(2.14)

Themain limitation of five frame phase­shifting algorithm is that one can not implement it on
unequal phase shifts [37]. Phase­shifting interferometry requires equal multi­phase shifted
interferograms for the phase recovery. However, traditional phase­shifting algorithms can
not be implemented with unequal phase­shifted interferograms as they generate fringe­like
modulation error in the phase reconstruction [37].

2.2.2 Principal component analysis (PCA) algorithm

The principal component analysis (PCA) can extract phase information from randomly
phase­shifted interferograms. Moreover, it is rapid and easy to use as well [38]. For example,
one can write a set of 2D interferograms as follows:

In(x, y) = E(x, y) +R(x, y)Cos[ϕ(x, y) + δn] (2.15)
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Chapter 2 Phase recovery methods and Focus correction algorithm

’E’ denotes the background illumination, ’R’ represents the modulation, and ϕ is the phase.δ
denotes the phase steps. The Eq.2.15 can be expanded and written as follows.

In(x, y) = E(x, y) +R(x, y)[CosϕCosδn − SinϕSinδn] (2.16)

Introducing four new variables γn,ζn,I1 and I2 to put in Eq. 2.16 are as follows:

γn = cosδn (2.17)

ζn = sinδn (2.18)

I1 = R(x, y).Cosϕ (2.19)

I2 = R(x, y).Sinϕ (2.20)

Finally, Eq.2.16 is simplified as follows:

In = γnI1 + ζnI2 (2.21)

One can decompose any interferogram (without background term)into two uncorrelated
quadrature signals I1 and I2, which roughly prove the following statement [38].

+Nx∑
x=1

+Ny∑
y=1

I1(x, y)I2(x, y) ≡ 0 (2.22)

PCA is a statistical strategy for shrinking the size of an image or data set. It consists
of a mathematical procedure that reduces potentially associated images into the minimum
number of uncorrelated images(principal components) [38]. The principal components are
obtained by linearly combining the primary variables that indicate the ideal subspace of
a given dimension in a least­square sense [38]. PCA is mainly composed of three parts.
Presume there are n images of (nxny) and they represent as a matrix as

x = [x1 + x2 + x3 + .....+ xn]
T (2.23)

The covariance matrix Cm from x is calculated first in the PCA technique.

Cm = (x− µx)(x− µx)
T (2.24)

Each element in every column of µx corresponds to the average value of the corresponding
column of x. Since Cm is a real and symmetric matrix, one can obtain real eigenvalues and
orthonormal eigenvectors. Therefore, matrix theory can diagonalize the covariance matrix
Cm. The second part of the PCA approach is the diagonalization procedure using the singular

20



Chapter 2 Phase recovery methods and Focus correction algorithm

value decomposition algorithm.
Dm = ACAT (2.25)

Here
Dm =diagonal matrix
A = transformation matrix. The third step uses the Hotelling transform to obtain the principal
components.

y = A(x− µx) (2.26)

The eigenvalues of the first two main components are the highest and correspond to the
I1and I2 signals. Since we randomly assign the cosine and sine signals to the first and the
second primary component, the technique, cannot determine the proper global phase sign.
The phase ϕ is as follows:

ϕ = arctan
I2
I1

(2.27)

PCA technique is relatively fast and straightforward to implement; therefore, it is not
time­consuming. The approach does not require foreknowledge of the phase steps or
conditions for the background and modulation terms. PCA is possible to implement on
unequal phase shifts [38]. In short, we need to make a compromise between time and
accuracy inPCA compared to another randomphase­shifting algorithm such as theAdvanced
iterative algorithm (AIA) for phase recovery [39]. AIA [49] takes more time for phase
recovery but gives artifacts free output than PCA [38] takes less time to extract phase
information but can not remove artifacts that well. In my thesis, I used this method to extract
phase information of all the recorded interferograms of bacteria samples.

2.3 Defocus correction algorithm

For accurate measurements of phase and subsequently phase­related morphological
parameters focus correction is significant. Its first step is to obtain angular spectrum by
employing the Fourier transform of the complex signal E(x, y; 0). Here we suppose that the
signal is propagating along the z­axis, i.e., z=0 [19].

A(v, w; 0) =

∫ +α ∫
−α

E(x, y; 0) exp(−2πj(vx+ wy), dx dy (2.28)

This Eq.2.28, v, and w are the transform variables concerning λ. Then, The field is
propagated to various planes using angular spectrum [19].

A(v, w; z) = A(v, w; 0)T (v, w) (2.29)
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Where

T (v, w) =


e−j 2πz

λ

√
1−(λv)2−λw2

,
√
v2 + w2 < 1

λ
,

0, otherwise

(2.30)

T(v,w) is called free­space transfer function. The next step is to calculate the inverse Fourier
transform to acquire a complex field in the spatial domain [19].

E(x, y; z) =

∫ α ∫
−α

A(v, w; z)ej2π(vx+wy) dv dw (2.31)

The complex field ’E(x,y;0)’ is produced from the phase­shifting methods, as in our case,
the Fourier transform approach. To compute the defocus distance, one can propagate the
field in various planes ranging from – r to +r (in µm). The amplitude variance associated
with each complex field E is determined from the following equation [19].

σ2
a =

1

µ

∑∑
[|E(v, u; z)| − µ]2 (2.32)

Where µ is the average of the complex field’s amplitude at distance r, plotting the amplitude
variance σ2

a as a function of distance r yields the sharpness curve. The objective lens’s
defocus length or a minimum of the sharpness curves determines the objective lens’s rear
focal plane.[19] The complex field ′E(x, y; 0)′ is propagated by the determined defocus
length to generate the samples’ phase map [19]. I used this method to correct the amount of
defocus in the images.



Chapter 3

Challenges during the project proposed
solutions

3.1 Mobility of bacteria and adopted sample preparation
protocol

The main challenge in bacteria imaging is mobility due to their Brownian motion, which is
high when the size of structures is negligible. We first attempted to make a 1mm agarose
slide, pipette 3 to 10 µl cell suspension, and shield it by the cover glass( agarose layer
was under the sample); this method was not successful as the thickness of Agarose was
not uniform, which caused an aberration in the interferogram. Next, we tried antifade
mounting reagents on a slide, but it could not immobilize the bacteria. Further, we tried
0.1% poly­L­lysine (PLL) coating on sample substrate (silicon wafer in our case) and found
it suitable to reduce the mobility of bacteria. First, the sample substrate is incubated for
10­15 minutes for PLL coating. The PLL is then removed and rinsed with water to make
its thin coating on the substrate. The bacteria sample is then pipetted on top of the region,
incubated with PLL, and allowed to settle down for 10­15 minutes.

3.2 Different QPM configurations and their pros and cons
in terms of resolution

Initially, we observed the sample inside a petri dish using a PDMS chamber and cover glass
on top of the specimen using Mach­Zehnder interferometer­based transmission mode QPM.
Due to the horizontal reference arm objective lens, we could not use a high NA objective
lens like water immersion 60x/1.2 NA objective lens as immersion media in the reference
arm could make the interferometer unstable.

We used a Linnik interferometer (Reflection mode QPM) with a 60X1.2 NA water
immersion objective lens to not sacrifice the resolution. The details about this setup are
in the next chapter.
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Chapter 3 Challenges during the project proposed solutions

3.3 Low vs. high temporal coherent light source

First, PTLS generated from four different wavelength laser diodes (at 450 nm, 520 nm,
638 nm, 808 nm) are utilized for multispectral QPM of bacteria samples. Due to their
low temporal coherence length, these light sources increase the spatial phase sensitivity
of the system compared to high temporal coherent lasers.[9] However, these light sources’
low temporal coherence length requires the OPD adjustment between the object and the
reference arm of QPM to generate high contrast interference fringes.[9] This leads to the
formation of circular fringes using non­identical objective lenses in the QPM system. [9]
We observed that circular fringes have spatially varying frequency of the interferogram over
the FOV, which leads to the generation of ringing artifacts in the recovered phase images
using phase­shifting algorithms. Therefore, high temporal coherent light sources are used,
which helped us obtain straight fringes and artifacts free phase reconstruction as illustrated
in Fig. 3.1b. Unfortunately, we could not perform experiments at other wavelengths
due to the unavailability of high temporal coherent lasers at blue and IR wavelengths
regimes. We expected the projected area to remain the same when imaged through different
wavelengths. Instead, it was changing with the change in wavelength. These results might
be due to defocus in images, as focus correction is significant in quantitative phase images.
Wrong­focused images can lead to wrong conclusions. It was possible to correct the defocus
mathematically, but it required data free of ringing artifact.

(a) (b)

Figure 3.1: An illustration of the output of two types of lasers(Diode with high­density
circular fringes and low coherence length and DPSS with low­density circular fringes and
high coherence length) along with rotating diffuser to make them PTLS. A comparison
between recorded interferogram(a)low lc light source with circular high­density fringes
obtained at zero OPD(b)high lc light source with straight fringes of low density
(b)Comparison between reconstructed phase images using (a)Low lc light sources with
ringing artifact zoomed­in (b)high lc light source without any ringing artifact.

In Fig.3.1a, an illustration of comparison of interferogram obtained when imaged using
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Chapter 3 Challenges during the project proposed solutions

low coherence length light with circular fringes and DPSS laser with high coherence length
and straight fringes.

Figure 3.2: An illustration of the output of two types of lasers(Diode with high­density
circular fringes and low coherence length and DPSS with low­density circular fringes and
high coherence length) alongwith rotating diffuser tomake themPTLS.Comparison between
reconstructed phase images using (a)Low lc light sources with ringing artifact zoomed­in
(b)high lc light source without any ringing artifact.

Fig.3.2a, the ringing artifact is zoomed in to make a clear vision in Fig.3.2b shows the
reconstructed phase image obtained using DPSS laser without any ringing artifact.

3.4 Effect of defocus on the phase recovery

The reconstructed phase map has a different amount of defocus at other regions; therefore,
it is necessary to do piece­wise focus correction for accurate phase map reconstruction.
For this, we adopted two different approaches; (1) split the full FOV image into multiple
sub­images and then apply focus correction algorithm, (2) focus correction at a single
bacteria level. First, we cropped the recovered phase map in 16 sub­images, i.e., 4X4
matrices, and made a stack of these sub­images as shown in Fig.3.3. Thus, each cropped
image had 576x576 pixels. Then, we calculated the defocus amount separately in all 16
parts. This approach, however, was not highly precise because the magnitude of defocus
varied even within the sub­images. Therefore, the defocus correction is done at a single
bacteria level for the most accurate quantification of the phase maps, as shown in Fig.3.4
After converting the reconstructed phase map into a stack of cells, defocus correction for
individual bacterium cells is performed. This procedure was successful since individual
bacteria cells were defocus corrected, and all focus bacteria cells were used for further
investigation. Here in Fig. 3.4c, it is visible that bacteria cells are getting focused. Some of
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Figure 3.3: (a)Schematic representation of recovered phase map cropped in 16 parts(b)
illustrates a stack of respective cropped parts.

the bacteria cells are removed from the image through segmentation; we wanted to have a
single bacteria cell in an image to have accurate quantitative analysis. .

Figure 3.4: An illustration of converting a phase image into the single­cell level and its
defocus correction (a) representation of recovered phase map and (b) illustrates a stack of
single cells (c) defocus correction and segmentation on the single­cell stack.

3.5 Sample concentration

Sample concentration was not uniform in all samples. Therefore optimization of the
concentration is done so that the cells are neither too sparse nor too dense in the FOV.
Moreover, to have a desirable concentration, bacteria samples are left for 30 minutes so
that all bacteria cells present in the sample volume settle on the substrate. Moreover, this is
necessary to determine the sample’s actual concentration. Otherwise, when all the bacteria
floating in the sample container settle later during imaging, the sample concentration would
rise.



Chapter 3 Challenges during the project proposed solutions

3.6 Sensitivity of set up

The main challenge was that the system was susceptible to even slight movement and
vibrations that were the cause of noise in the images. Therefore, the experiments are
conducted carefully on a vibration isolated optical table.
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Chapter 4

Material and methods

4.1 Selection of bacteria samples and their origin

We imaged four bacteria samples, out of which three of them were of the AMR gene, and
one was with the non­AMR gene. We took the same bacteria class (E. coli) in both types
of genes. E. coli­1 was of non­AMR gene, and E. coli­2 was of AMR. Table 4.1 gives some
information about the bacteria species taken for imaging.

4.1.1 Escherichia coli­1 (E. coli­1)

The origin of E. coli strain CCUG17620 is the Culture Collection University of Gothenburg,
Sweden. Its source is human. Its variance is O6: KN and tested by the Regional quality
control system (RCQS) for international control for sensitivity testing [40][41].

4.1.2 Escherichia coli­2 (E. coli­2)

The origin of E.coli strain NCTC13441 was culture collection at Public Health England. It
was cultured on the nutrient agar at 37°C for 24 hours under aerobic conditions. Its antigenic
property is O25:H4 (which is capsule and flagella antigen) [42][41]. It produced CTX­M­15
ESBL.

4.1.3 Klebsiella pneumonia (K. pneumonia)

The Norwegian National Advisory Unit provided K. pneumonia strain A2­23
(blaCTX­M­gr.1) on Detection of Antimicrobial Resistance (K­Res), University Hospital of
North Norway, Tromsø. Klebsiella belongs to the class of bacteria called Enterobacterales,
can become resistant to carbapenems, and K. pneumonia, in particular, has recently become
resistant to this class of antibiotics. K. pneumonia is bacteria that have developed AMR,
most recently to the class of antibiotics known as carbapenems. Carbapenems are usually
used against multidrug­resistant (MDR) bacterial infections [41].
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Chapter 4 Material and methods

Table 4.1: Overview of all the bacteria samples, their size, shape and AMR­gene [41].

S.no Bacteria name Gram stain Shape Size AMR gene
1 E. coli(CCUG17620) Negative Rod 1­2µm by 0.5µm —
2 E. coli(NCTC13441) Negative Rod 1­2µm by 0.5µm CTX­M­15
3 K. pneumonia(A2­23) Negative Rod 2µm by 0.5µm CTX­M­1
4 K. pneumonia(CCUG35600) Positive Spherical 0.5µm by 0.5µm mecA

4.1.4 Staphylococcus aureus (S. aureus)

S. aureus strain CCUG35600 was obtained from Culture Collection University of
Gothenburg, Sweden. It is obtained by culturing on blood agar at 37°C under anaerobic
conditions and tested by the regional quality control system (RCQS). It is resistant to many
antibiotics but sensitive against gentamicin [41][43]. All samples were collected and fixed
in Hamar by a collaborator and sent to us for the experiment’s performance at the same time
point.

4.2 Culture and fixation of bacterial cells

The culture and fixation of the bacteria cells were done by a collaborator and then were sent
to us. Their group adopted the following steps:
1) The bacteria cells were directly incubated from frozen (­80 °C) to 3 ml liquid Lysogeny
broth (LB) media and used cultures after 20 hours of incubation at 37 °C.
2) Each sample was centrifuged, and 2 ml of media was removed and resuspended in
the remaining media. After collecting the cells for concentrating them, the cells were
resuspended in PBS to reduce the presence of LB components within the samples.
3) Next, in 1 mL of PBS, the pellets were suspended. Then, 900 µl suspension was mixed
with 900 µl 4% PFA (pH 7.15).
4) For 1 hour, the suspension was incubated at room temperature.
5) Next, it was centrifuged and washed with 1.5 ml PBS and the second wash with 1 ml PBS
(per tube). At last, the centrifuge resuspended each pellet in 500 µl PBS and transferred the
solution to a smaller tube for shipping.

4.3 Sample preparation

First, we diluted them using phosphate­buffered saline (PBS) in 3:50 (30 µl sample in 500µl,
PBS). Next, we used a PDMS chamber on a silicon wafer and pipetted 0.1% poly­L­lysine
(PLL) of about 10µl inside the chamber. We let PLL in the PDMS chamber for 10 to 15
minutes, then pipetted it out of the PDMS chamber. Finally, bacteria cells were placed on
a reflective silicon substrate in a PDMS chamber and covered with an 18mm coverslip for
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QPM measurements.

4.4 Experimental setup

The upright QPM with Linnik interferometric microscope, was used to capture the images
of fixed bacteria samples. A Linnik interferometer[19][20][21][22][23] is a two­beam
interferometer used in microscopy. The basic setup is the same as an interferometer designed
by Michelson [15].

We used a laser with a maximum power of 500 mW or PTLS generation. The power
efficiency was kept to be approximately equal to 10%. The intensity at the sample is
measured to be equal to 10 nW/µm2 at 532nm and 660nm wavelengths. To break the spatial
coherence of the light from a continuous laser source, we used a revolving diffuser. We
projected the laser beam at a distance of around 40 mm from the diffuser’s center. The
diffuser’s speed is kept at 240 revolutions per minute (RPM) to allow adequate speckle­noise
averaging within the camera’s exposure time (30 ms). The rotating diffuser created a
temporally changing speckle field, which resulted in a considerable reduction in speckle
contrast [9][16] [20][21][25][33]. We coupled the diffuser’s output into a multimode fiber
bundle (MMFB) positioned at about one millimeter from the diffuser using a lens L1.

The output of the MMFB is collimated using the lens L2, which has a focal length of
75 mm. And then, the beam is focussed onto the rear focal planes of the objectives MO2

(10x/0.25) and MO3( 60x/1.2) using lens L3 having a focal length of 125 mm and a beam
splitter. The beam splitter divides the input beam into two. It directs one to the reference
mirror and the other to the sample mirror. MO2 andMO3 project collimated light to the
sample and reference mirrors. The object and the reference mirror reflect light. These
beams are collected once more by the objective lenses MO2 and MO3 and recombined
at the Beam splitter. Lens L4 of focal Length of 200 mm collects the object and reference
waves, which interfere to produce interference patterns. The interferograms were captured
using an ORCA­Fusion (DIGITAL CAMERA C14440) and shown on a computer screen
(Philips 240B4QPYEB/00). A piezoelectric transducer (PZT) is used to generate a phase shift
between the sample and reference arms. First, light through the reference arm is blocked,
and the sample is focused. Then, light is allowed through the reference arm and observed
the interferogram’s contrast on the screen. A good interferogram contrast always reflects
that the sample is the best focus in the correct plane. Finally, we recorded an interferogram
of the sample with an image sensor. We imaged fixed bacteria; only wavelength changes,
keeping all other factors constant. Since the refractive index is a function of wavelength, so,
we can probe the properties which are wavelength dependent.
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Figure 4.1: Schematic diagram of the Linnik setup with a PTLS to acquire the quantitative
phase maps of bacteria cells sample. (RD­rotating diffuser, L­ lens, BS­beam splitter,
MO­microscope objective,MMFB­ multiple multimode fiber bundles).

4.5 Processing steps of recorded interferograms

Following processing, steps are adopted for data analysis.
(1)Phase recovery usingMATLAB and PCA [38] algorithm explained in Section 2.2.2.
(2) Phase Unwrapping
(3) Higher­order aberration removal
(4) Splitting of entire FOV in smaller cells.
(5)Defocus correction using algorithm explained in Section 2.3 and Image segmentation to
achieve a single bacteria cell.
(6) Conversion the phase information of single bacteria intoOPD information using Eq.1.15.
(7) Measurement of morphological parameters using OPD information obtained and
formulas discussed in Section 4.7 usingMATLAB.
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Figure 4.2: Block diagram to show step­by­step processing steps starting from recording the
data ending up on measurement of morphological parameters.

4.5.1 Phase recovery and unwrapping

PCA [38] was used to extract the phase information. Figure 4.3b depicts one of the recorded
interferograms utilized to extract amplitude and phase information, as illustrated in Fig. 4.3c.
Fig.4.3d is the reconstructed wrapped phase map(2304X2304 pixels).

Without processing, the phase measurements cannot differentiate between particular
phase values, say ϕ, and a value such as ϕ+2π or ϕ+4π [8]. So instead, the measurement is
stated to produce wrapped phase information. In other words, the phasemeasurements return
values within the [−π, π] interval [8]. Beyond the [−π, π], the recorded phase signal can be
mathematically corrected to span large intervals. This process is called phase unwrapping
[8][45]. In Fig.4.4’ dash line’ represents the wrapped phase, and the dotted line represents
the phase after unwrapping.

Wrapped phase images can be generated by a variety of technologies such as synthetic
aperture radar (SAR), magnetic resonance imaging (MRI), and fringe pattern analysis are
a few examples [8][45]. Unfortunately, the wrapped phase images generated by these
technologies are unreadable unless they are first unwrapped to make a continuous phase
map [8][45].

A phase unwrapping algorithm identifies the presence of a phase wrap in an image by
computing the difference between two successive samples, and it can perceive noise as a
phase wrap. If this difference is more significant than +π, the phase unwrapping algorithm
perceives this region to be wrapped. Due to noise, this might either be an actual phase wrap
or a false wrap. While working with phase images, it is crucial to record data carefully and
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Figure 4.3: Step by step process of phase extraction (a)Schematic illustration of 20 frames of
recorded interferogram(b)one of the 20 Interferogram (c) Amplitude and phase information
extracted using PCA (d) Reconstructed unwrapped phase information (e) Phase image after
unwrapping and tilt removal.

Figure 4.4: Visual comparison of wrapped and unwrapped phases is shown. The ’dash line’
represents the wrapped phase, and the dotted line represents the after unwrapping [45].

work in an environment where no movements and vibrations can cause noise in the images.
Therefore, it is best to conduct experiments carefully on a vibration isolated optical table.
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Unwrapping these phase maps using the minimumLp­norm 2D phase unwrapping algorithm
[53], as shown in Fig.4.3e., and the MATLAB code was provided by my supervisor Azeem
Ahmed.

4.5.2 Higher­order aberration removal

The defocus corrected unwrapped phase maps obtained in the previous step are corrupted
with the higher­order phase aberration. Therefore, removing the aberration effect from the
phase images is necessary before quantifying morphological and statistical parameters. The
background phase error is not part of the sample phase maps and is due to higher­order
phase aberration in any optical system. In reality, all the phase microscopy systems suffer
from the aberrations caused by imperfect optics used to develop the system. As high order
phase aberrations are not part of the specimen’s phase maps, removing such errors for the
recovered phase maps with minimal phase errors is mandatory.

The background related to the higher­order aberration is estimated using the inbuilt
MATLAB function file ’strel,’ which represents a morphological structuring element. The
structuring element is considered disk­shaped. The disk radius is considered to be greater
than the approximate average size of all the bacteria present in a FOV. In our case, the disk
radius equal to 30 pixels is optimal for the background detection. The measured background
is further subtracted from the bacteria phase map to remove higher­order phase errors.
The extracted phase was processed further.4.5a. The unprocessed phase map consists of
significant higher­order phase aberration. Therefore, image morphological operations were
used to eliminate the higher­order phase aberrations. The results from these two relatively
simple operations provided satisfactory results in Fig.4.5b.

(a) (b)

Figure 4.5: Illustration of Higher­order aberration removal through morphological
operations (a)Before (b) after.
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4.5.3 Segmentation of entire FOV and its splitting into smaller cells

Wedid image segmentation twice. First, it was done over the wholeFOV. The completeFOV
phase image was converted into a binary mask eliminating undesirable and bulging bacteria
using a threshold. Further, the connected components algorithm was used to determine
the location of each object(bacteria) in the binary mask using the MATLAB command
’regionprops’ to measure the extrema of each bacteria. These locations were then referenced
with the phase image to extract single bacteria and place it in a separate image. However, this
technique has its limitations. For instance, we can ensure that each image would have at least
one complete bacteria. Still, we might have some partial or even complete unwanted bacteria
along with the bacteria we were initially interested in. This happens because ’regionprops’
whilemeasuring the extrema of each connected object returns us theminimum andmaximum
range of pixels along both the x and y­axis and other bacteria may lie in the same region as
well. This problem has been later addressed in Section 4.5.5.

(a) (b)

(c) (d)

Figure 4.6: Splitting the full FOV phase image into smaller cells was done by developing
a mask using the image itself and removing unwanted and bulge of Bacteria through a
threshold. (a)Reconstructed phase image (b) Binary image of reconstructed phase image(c)
Binary image after removing unwanted and bulge of Bacteria (d) Schematic representation
of smaller cells obtained at this step.
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4.5.4 Defocus correction and segmentation at the cell level

The defocus correction at the cell level is crucial, as for each cell, the defocus amount is
different and needs to be corrected. One can propagate the field to various planes in a range
of ­r to+r where r is the expected defocus. The variance of amplitude at these positions vs.
position gives a sharpness curve. The sharpness curve is a plot of amplitude variance as
a function of propagation distance. The minimum point at the sharpness curve gives the
defocus amount in that image. The objective lens’s actual focal plane is where amplitude
variation gives a minimum. Fig. 4.7a represents the reconstructed phase image. The
sharpness curve depicts the change of amplitude variance w.r.t propagation distance ’z.’
As shown in Fig. 4.7b, the sharpness curve has the dip at d =­1.3 µm, which indicates the
objective lens’s actual focal plane. In a nutshell, this value is the quantification of defocus
amount [19].

After defocusing correction, we segment our data sets at the cell level. The bacteria cells
were made perfectly isolated in an image so that the statistical analysis is reliable.

Our primary expectation from segmentation is the noise­free image and only retains
well­shaped and well­imaged bacteria. On top of it, the overlapping bacteria, bacteria
clusters should be discarded as they can skew the statistical values for parameters of bacteria.
The first step was by creating a mask out of the image itself. Then, the image was
thresholded. The thresholding of the phase images is done bymeasuring the system’s peak to
valley phase sensitivity. The threshold phase value is considered 1.2­1.4 times the system’s
peak to valley phase error for the bacteria segmentation. This threshold value is an optimum
value for the segmentation as maximum phase values of most bacteria are approximately
more significant than 3­4 times of the peak to valley phase error. Next, the segmented
areas of an image are further dilated by 4 pixels along all sides to remove any chances of
bacteria crop. The generated binary image is then multiplied by the recovered phase image.
Therefore, the defocused phase information is corrected by propagating the complex field
from the region or plane (reconstructed) to the objective lens’s focal plane [19]. Fig. 4.7c is a
numerically focused image that is again having artifacts. Moreover, Fig. 4.7c has more than
one bacteria, and we are attempting to acquire a single bacteria cell in an image to achieve
trustable quantitative analysis. Fig. 4.7d is the binary image of Fig. 4.7c. Fig. 4.7e is the
single bacteria binary image obtained through segmentation. From Fig. 4.7f, it is visible
that bacteria cells are getting focused. Some of the bacteria cells are removed from the
image through segmentation because we wanted to have a single bacteria cell in an image to
have accurate quantitative analysis. That is why we only selected images containing single
bacteria cells to calculate morphological parameters.

In Fig.4.8 different bacteria cells are shown before and after defocus correction and
segmentation. Fig. 4.8a figures represent reconstructed phase images of bacteria cells on the
left side. Fig. 4.8b represents the numerically focused phase image. As shown in Fig.4.8b,
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Figure 4.7: Defocus Correction of E. coli at single­cell level imaged by 660nm PTLS using
60x/1.2NA objective lens(a)Reconstructed phase image before focus correction(b)sharpness
curve to estimate the amount of defocus in the idea that is ­1.3µm in this image (c)
Numerically focused image (d) Binary image of numerically focused image (e) Binary image
of single bacteria (f) Segmented and numerically focused image acquired by multiplying
image (e) with an image (c).

the defocus correction algorithm produces artifacts around the boundaries of cells that are
not part of the image, So it is crucial to remove them using segmentation.

Here in Fig. 4.8c is the binary image of image Fig.4.8b.Fig.4.8d represents the single
bacteria binary image obtained by segmenting it. Finally, fig. 4.8e is the product of phase
and single bacteria binary image to get a single bacteria per cell.

The bacteria cells that were perfectly isolated were chosen equally for both wavelengths.
The single bacteria cell images used for statistical analysis were 1332 for Ecoli­1, 1026
for Ecoli­2, 1577 for K. pneumonia, and 1806 for K. pneumonia. We compared the
morphological parameters using PTLS of wavelength 532nm and 660nm. The number of
cells was equal for the two wavelengths.
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Figure 4.8: Effect of defocus correction algorithm and segmentation on different bacteria
cells (a)Reconstructed phase image (b) Numerically focused phase image (c) Binary image
of numerically focused image (d) Single bacteria binary image (e) Multiplication of phase
and binary image.

4.5.5 Morphological parameters and their formulas

Following parameters were used for quantitative analysis of bacteria cells.

Phase volume

Phase volume is the equivalent of cell volume directly based on phase information and takes
refractive index variations within the cell into account [33]. The phase volume is related to
the cell’s dry mass.

V =

∫
P

OPD ds (4.1)
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Phase surface area

This metric may be computed as the sum of the projected area and the phase profile’s top
surface area.

SA =

∫
P

dA+ P (4.2)

SA =

∫
P

√
(1 + δh2x + δh2y) dxdy + P (4.3)

dA =The discrete cell surface area projected over a single camera pixel
δhx and δhy= The gradients along the x and y axes of the cell OPD map [46, 47].
dx and dy= Calibrated pixel width along the x and y­axis.

Phase surface area to volume ratio

This quantity reflects phase variations in the cell.

SAV =
SA

V
(4.4)

Projected area to volume ratio

This property specifies the cell’s flatness [33].

PAV =
PA

V
(4.5)

Phase sphericity index

This value expresses the measure of roundness of the cell. An object’s sphericity is defined
as the ratio of its volume to its surface area. The value of a round shape may indicate cell
abnormalities [33, 49–51].

Ψ = π
1
3 .
(6 ∗ V )

2
3

SA
= 4.84 ∗ (V )

2
3

SA
(4.6)

It is a dimensionless constant with values ranging from 0 for a flat disk to 1 for a spherical
shape [50].

Energy

Energy describes the texture of the cell [33].

E =
n∑

i=1

OPD(i)2 (4.7)
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Entropy

The concept of phase entropy is presented as a way to quantify 2­D phase space. The rate of
variability and diversity of the phase distribution is depicted by entropy [52].

Entropy = −
n∑

i=1

(p(OPDi)(log2p(OPDi) (4.8)

Phase mean

The mean is the average of the phase values of a group of cells [33].

µ =

∑n
i=1OPD(i)

n
(4.9)

Phase variance

This metric quantifies the dispersion of a collection of phase values of the cell [33].

σ2 =

∑n
i=1(OPD(i)− µOPD)

2

n
(4.10)

Phase kurtosis

Phase kurtosis determines whether the phase distribution of the cell is flat or peaked [33].

Kurtosis =

∑n
i=1(OPD(i)− µOPD)

4

σ4
(4.11)

Phase skewness

Phase skewness is a metric that measures how a cell’s (OPD) values differ from the average
value [33].

Skewness =

∑n
i=1OPD(i)− µOPD)

3

σ3
(4.12)

4.5.6 Statistical analysis

We obtained 11332, 1026, 1577, and 1806 OPD maps for bacterium cells for Ecoli­1,
Ecoli­2, K. pneumonia, and K. pneumonia, respectively. We utilized the two­sample t­test
for the p­values of the data to analyze statistical differences across the cells, for derived
parameter each bacteria cell line at the two wavelengths (532 nm and 660 nm).
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Table 4.2: Morphological parameters and their formulas

Parameter Definition
H(OPD) h(x, y)∆n = λ

4π
∗ ϕ(x, y)

Surface Area(µm^2) SA =
∫
P
dA+ P

Volume V =
∫
P
OPD ds

Mean µ =
∑n

i=1 OPD(i)

n

Variance σ2 =
∑n

i=1 OPD(i)−µ)2

n

Entropy Entropy = −
∑n

i=1(p(OPDi)(log2p(OPDi)

Kurtosis Kurtosis =
∑n

i=1(OPD(i)−µOPD)4

σ4

Skewness Skewness =
∑n

i=1(OPD(i)−µOPD)3

σ3

PAV PAV = PA
V

SAV SAV = SA
V

Sphericity Ψ = π
1
3 . (6∗V )

2
3

SA
= 4.84 ∗ (V )

2
3

SA

4.6 System Characterization

In anyQPM setup, higher temporal and spatial phase sensitivity ismandatory for the accurate
quantification of phasemaps. In addition, the temporal phase sensitivity gives interferometer
stability, contributing to biological cell membrane fluctuation measurements. Moreover,
this can be achieved using a high temporal coherent laser. However, the high coherent
light source can reduce the spatial phase sensitivity. In addition, interference with multiple
reflections from optical surfaces and light scatter due to dust particles degrades image quality
and ultimately appears in­phase images. So, the spatial phase sensitivity of QPM systems
restricts their phase measurement precision.

Figure 4.9: Block diagram of all steps done for characterization of the system.
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4.6.1 Pixel calibration of the system

The acquired results of images are usually in pixels. We can convert them into length units
by using a calibration factor. We can calibrate the system using a low­resolution chart, as
shown in Fig.4.10a First, we captured an image of a standard USAF chart using an objective
lens of 1.2 NA water immersion (60×) and wavelength 638 nm. Then the line profile of the
USAF chart on a specific region shown by the yellow line is plotted and shown in Fig.4.10b.

Figure 4.10: Pixel calibration of the Linnik interferometer­based QPM system(a) USAF
low­resolution chart with a yellow line showing one of the regions selected and (b) its
line profile. The width of a yellow line on line profile will give results in pixels, and for
comparison, the width of the same line in micrometers can be obtained USAF Resolving
Power Test Target 1951[48]. On comparing these two results calibration factor was estimated
as 89nm.

The width of the line in Fig.4.10b is found to be 44pixels. The width of the same line
in micrometer using USAF resolving power test target 1951[48] with group number 7 and
element number 1 is found as 3.91 micrometers.

3.91µm = 44pixels (4.13)

1pixel = 0.0888µm = 88.8nm (4.14)

This process was repeated several times at different positions, and the average result for the
calibration factor was found as

1pixel = 0.091µm = 91nm (4.15)
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4.6.2 Measurement of temporal phase sensitivity

The temporal sensitivity specifies the minimum detectable phase value as a function of
time as discussed in Section 1.6.1. The interferometer type determines the temporal phase
stability,i.e., whether it is a common or non­common path interferometer [8]. We imaged a
silicon wafer without any sample and recorded a 1­minute time­lapse interferometric video
in a stable environment to assess the current QPM’s spatial and temporal phase sensitivity.
As explained in chapter 2, the Fourier transform approach is then used to extract phase
maps for the whole interferometric video. The change in phase value of a particular pixel as
a function of time measures the system’s temporal phase sensitivity. The setup’s temporal
phase noise is independent of the light source’s coherence length. Therefore, it is solely
dependent on the interferometer’s stability. Fig.4.12 (a) depicts the setup’s temporal noise
as a function of time. Fig. 4.12 (b) illustrates the setup’s temporal noise as a function of
time.

Figure 4.11: Schematic representation of the process to find temporal sensitivity (a) A
1­minute movie is recorded using the QPM setup. (b) A pixel is selected on all of its
frames (c). The phase values of selected pixels are found and plotted as a function of time;
it represents phase noise. The standard deviation of phase represents temporal sensitivity.

Fig. 4.12 (b) shows phase variation with time. It contains 800­time points with a
temporal step size of 12 fps (≈ 80ms) at the center of the interferogram (256,256). As
a result, the temporal phase stability is about 38 mrad, equating to a 1.9nm sensitivity in
temporal height measurement.
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Figure 4.12: Determination of QPM’s temporal phase sensitivity(a) interferogram produced
while using a Si substrate as a test specimen (b) temporal phase noise or phase variation with
time.

4.6.3 Measurement of spatial phase sensitivity

The spatial phase sensitivity of the system defines the minimum spatial phase variations due
to either refractive index or height that the system can detect as discussed already in Section
1.6.2 [8]. One of the interferograms from the recorded movie used to determine Temporal
phase sensitivity can measure the system’s spatial phase noise. Fig.4.13a and 4.13b shows
the interferogram and the recovered phase map, and Fig. 4.13c shows the corresponding
histogram, respectively. The system’s spatial phase noise was measured by measuring the
standard deviation of the reconstructed phase values and is 5.6 mrad.

Figure 4.13: The process to find the spatial sensitivity of the Linnik based QPM system.
(a)Recorded interferogram and (b)its respective reconstructed phase image. (c)Histogram
of recovered phase image. The system’s spatial phase noise was measured by measuring the
standard deviation of the reconstructed phase values and is 5.6 mrad.
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4.6.4 Resolution measurement of the system by the knife­edge method

The slanted knife­edge approach can estimate the resolution of the setup [44]. It was
calculated by choosing any line on theUSAF chart and plotting a line profile from the center
of the dark line to the center of the adjacent line, as shown in Fig. 4.14a by yellow region on
theUSAF chart. Fig. 4.14b shows the line profile of the yellow region. Fig. 4.14c represents
the plot of differential of line profile respectively whose full­width half maximum (FWHM)
is 6 pixels. It is 0.5387µm = 538.7nm in length dimensions. Therefore, using the formula,
the theoretical resolution (calculated value of lateral resolution) is 275nm.

d =
λ

2NA
=

660

2X2.4
= 275nm (4.16)

where λ= 660nm and NA = 1.2

Figure 4.14: Step by step process for resolution measurements using Knife­edge method.
(a)USAF low­resolution chart with a highlighted yellow region. (b)The line profile of the
highlighted region is shown in(a) and the differential of the line profile. FWHM of the
differential profile was found as 6 pixels, and in microns, it is seen as 0.546µm = 546nm.
This process was repeated at several points, and averageFWHM was found to be 5.6 pixels
and 509.6nm in length dimensions that gives an estimated resolution.
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4.6.5 Image of a high­resolution chart recorded by an objective lens
with a magnification of 60X and a NA of 1.2.

A high­resolution chart can also determine the resolution of a setup. For example, the image
in Fig.4.15 is a high­resolution chart recorded by an objective lens with a magnification of
60X and a NA of 1.2. The resolved bar number on the high­resolution chart is 1400

Figure 4.15: Resolution using the high­resolution chart.

Barnumber = 1400linepair/mm (4.17)

Barwidth =
1

1400
.mm/linepair (4.18)

Barwidth =
1000

1400
µm/linepair = 0.714µm/linepair (4.19)

=
0.714

2
µm/line = 0.357µm/line = 357nm/line (4.20)

The measured lateral resolution was obtained to be 357 nm.



Chapter 5

Results and Discussion

5.1 Comparison between Laser and pseudo thermal light
source

Laser has high temporally and spatially coherent properties. Coherent noise and parasitic
fringe production caused by several reflections from various regions of the optical
components significantly degrade image quality. As an outcome, the system’s spatial phase
sensitivity is reduced [4][9]. However, as the coherence length of the Laser is large (e.g.,
20­100 cm), it is experimentally easy to obtain the interference fringes. On the contrary,
broadband light sources such as white light and LEDs are utilized to improve the phase
sensitivity and measurement accuracy of QPM. Due to their lower temporal coherence
length, such light sources allow high spatial phase sensitivity compared to Laser. However,
it is well known that the interference occurs whenever the OPD between the specimen and
the reference beam is within the temporal coherence length of the light source [4]. As a
result, generating an interference pattern using such low coherent light sources (coherence
length 2­6 µm) is challenging.

Thus, a temporally high coherent and spatially low coherent PTLS offers many benefits
over conventional light sources. Such sources have been synthesized by sending Laser light
through a rotating or stationary diffuser and a vibrating multimode fiber bundle (MMFB)

[4]. For the spatial phase sensitivity comparison, we recorded interferograms of the bacteria
sample using a Laser and PTLS as shown in Fig.5.1a and Fig.5.1b respectively. The phase
map reconstructed using the interferogram recorded by Laser is noisy due to coherent noise
and speckle noise, as seen clearly from Fig.5.1c. Thus the sample information of the thin
specimens like bacteria is embedded in noise and difficult to be recovered. On the contrary,
with PTLS, one can recover a noise­free phase map.
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(a) (b)

(c)

(d)

Figure 5.1: Comparison between Laser and PTLS for imaging in Linnik based QPM.
Interferogram images of E. coli were reproduced using (a) Laser and (b) PTLS.
Reconstructed phase images of E. coli were imaged using (c) Laser and (d)PTLS. The PTLS
reduces the coherent noise and thus provides high spatial sensitivity.
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5.2 Characterization of the morphological parameters of
bacteria using a single and the dual­wavelength light
source

For the quantitative analysis of the morphological changes happening in the cell, phase maps
are usually transformed intoOPD using Eq.1.13. All the parameters were computed from the
OPD information. The parameters extracted include surface area (SA), volume (V), surface
area to volume ratio (SA/V ), and sphericity (ψ), projected area(PA), projected area to volume
ratio (PA/V ), energy, entropy, mean, variance, kurtosis, and skewness. These parameters
were calculated using the formulas mentioned in the previous chapter.

Whisker box plots were plotted of all the measured values of morphological parameters
of each bacteria sample cell. The center lines on the box plot indicate the median, while the
25th and 75th percentiles, or first and third quartiles, are indicated by the bottom and top
sides of the box, respectively. The quartiles are the data points that divide the arranged
data(ascending or descending order) into four parts. 1st quartile is also called the 25th
percentile, and it is a data point that contains 1/4th or 25% data below it. The 3rd quartile is
also called the 75th percentile, and it is a data point that includes 3/4th or 75% data below
it. Similarly, the central line on the whisker plot represents the median that gives the central
value of arranged data. The end of the upper and lower whisker represents the maximum
and minimum of the data set, respectively.

The first work of the thesis was to image four bacteria classes using QPM at 532 nm
and investigate their morphological parameters. To extend this work further, I used another
wavelength, i.e., 660 nm, to determine if the bacteria have any spectral signature in the
phase map. For such studies, one should have a tunable broadband Laser source. However,
due to the availability of limited Laser sources during my master project, I opted for two
different Laser sources, i.e., 532 nm and 660 nm. As the refractive index is a function
of wavelength, which has both real and imaginary numbers. We hypothesized that some
bacteria might have a different response to a change of wavelength, which can be used to
pick up a signature. Furthermore, this could change the phase map of the bacteria differently
for different bacteria. We tested the hypothesis by experimenting, and our observation is that
with the change of wavelength refractive index has changed. So, we can probe the properties
which are wavelength dependent. All­optical path length changes by changing the refractive
index, and these changes are not linear for all the bacteria.
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5.2.1 Phase surface area

The average surface area decreased by 3.7 % for E. coli­1. Nevertheless, the mean surface
area increased by 3.4%, 0.65 %, and 0.7% for E. coli­2, K. pneumonia, and S.aureus,
respectively, on increasing wavelength from 532 nm to 660 nm. The variation in the median
of the surface area was also different for each sample. For E. coli­1, median surface area
decreased, but it increased on switching the wavelength from 532 nm to 660 nm for all other
bacteria cells.

Figure 5.2: Whisker box plot of the surface area of E. coli­1, E. coli­2, K. pneumonia and
S.aureus (a) at 532 nm (b) at 660 nm. In this plot, it is visible that median was decreased for
E. coli­1 while increased for all other bacteria cells on switching to 660 nm from 532 nm.

5.2.2 Projected area

The average projected area was 0.82 µm2 for E. coli­1, 0.83 µm2 for E. coli­2, 0.81 µm2

for k.pneumonia and 0.77 µm2 for S.aureus at 532 nm. However, the projected area is
not changing much on changing the wavelength. All the average values and the standard
deviation values of all the parameters are mentioned in Table 5.1. The projected area
decreased by 1.2% for E. coli­2 and K. pneumonia on increasing the wavelength from
532 nm to 660 nm. On both wavelengths, the median of predicted area values remained
constant. However, the distribution of values appeared to be symmetrical for E. coli­1 and
asymmetrical for the other bacteria cells.
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Figure 5.3: Whisker box plot of the projected area of E. coli­1, E. coli­2, K. pneumoniaand
S.aureus (a) at 532 nm (b) at 660 nm. The median of projected area values remained the
same on both wavelengths. However, the distribution of values seemed to be symmetrical
for E. coli­1(median line exactly in the middle) while asymmetrical for all other bacteria
cells.

5.2.3 Volume

In Table 5.1 it was shown that for all samples except S. aureus average volume is the same
0.1 µm3. However, median, quartiles, and range increased with an increase of wavelength.
For S.aureus, the phase volume is 0.2 µm3 at both wavelengths.

Figure 5.4: Whisker box plot of phase volume of E. coli­1, E. coli­2, K. pneumoniaand
S.aureus (a) at 532 nm (b) at 660 nm. The median and quartiles of phase volume were
increased by increasing the wavelength. It reveals that wavelength does affect the phase
volume.
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5.2.4 Surface area to volume ratio

The surface area to volume ratio decreased with an increase in wavelength. On average SA/V
ratio was 69 and 63 µm−1 for E. coli­1 in the case of 532 nm and 660 nm, respectively. For
E. coli­2, the average surface area to volume ratio was 76 µm−1 and 66 µm−1 in the case
of 532 nm and 660 nm, respectively. For K. pneumonia, the results indicate that surface
area to volume ratio average values were 74 µm−1 and 64 µm−1 for 532 nm and 660 nm,
respectively. In the case of S.aureus, the mean surface area to volume ratio at 532 nm and 660
nm were found as 54 µm−1 and 49 µm−1. All these results indicated that SA/V decreased
with the increase of wavelength.

Figure 5.5: Whisker box plot of surface area to volume ratio for E. coli­1, E. coli­2, K.
pneumoniaand S.aureus (a) at 532 nm (b) at 660 nm. The median and quartiles were
decreased by increasing the wavelength for all bacteria cells.

5.2.5 Projected area to volume ratio

The projected area to volume ratio results indicated that it was decreased with an increase in
wavelength. PA/V decreased 6% for E. coli­1, 17% for E. coli­2, 13.3% for K. pneumonia
and 10.7% for S.aureus . The average PA/V was 6.8 µm−1 at 532 nm and 6.3 µm−1 at 660
nm. For E. coli­2, the average PA/V values were 9.9 µm−1 and 8.2 µm−1 at 532 nm and 660
nm, respectively. In the case of K. pneumonia, the arithmetic mean of PA/V values were 9.3
µm−1 and 8.1 µm−1 at 532 nm and 660 nm, respectively. Moreover, at 532 nm and 660 nm,
the S.aureus had an average PA/V of 5.5 µm−1 and 4.9 µm−1 respectively.
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Figure 5.6: Whisker box plot of the projected area to volume ratio for E. coli­1, E. coli­2,
K. pneumonia and S.aureus (a) at 532 nm (b) at 660 nm. The median and quartiles of PA/V
decreased with the increase of wavelength from 532 nm to 660 nm.

5.2.6 Sphericity index

The results of sphericity indicated that the mean sphericity increased with an increase in
wavelength. It rose 7.59 % for E. coli­1, 8% for E. coli­2, 8.49 % for K. pneumonia, and 5.7
% for S.aureus with the increase in wavelength.

Figure 5.7: Whisker box plot of sphericity for E. coli­1, E. coli­2, K. pneumoniaand S.aureus
(a) at 532 nm (b) at 660 nm. sphericity seemed to be highest for S. aureus. Moreover,
on switching the wavelength to 660 nm, the sphericity rose. The median and quartiles of
sphericity increased by rising the wavelength.
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5.2.7 Energy

The average energy increased with wavelength. The mean energy increased 7.5% for E.
coli­1, 20.5 % for E. coli­2, 12.29% for K. pneumonia, and 7.97 % for S.aureus on changing
the wavelength from 532 nm to 660 nm. Moreover, the energy seemed to cover a large range
of values compared to all other bacteria cells.

Figure 5.8: Whisker box plot of energy for E. coli­1, E. coli­2, K. pneumonia and S.aureus
(a) at 532 nm (b) at 660 nm. The median and quartiles of energy remained the same at both
wavelengths.

5.2.8 Entropy

The entropy results indicated that average values decreased on increasing wavelength from
532 nm to 660 nm for E. coli­1, E. coli­2, and S.aureus by 2.25%, 1.36%, and 1.34%,
respectively. The average entropy seemed to be increasing by 0.6% for K. pneumonia
on increasing wavelength from 532nm to 660nm. Also, the median of entropy increased
for K. pneumonia and decreased for the other three cells with increasing wavelength. The
arithmetic mean and standard deviation results are shown in Table 5.1.
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Figure 5.9: Whisker box plot of entropy for E. coli­1, E. coli­2, K. pneumonia and S.aureus
(a) at 532nm (b) at 660nm. The median of entropy increased for k. pneumonia and increased
for the other three bacteria cells with the increase of wavelength.

5.2.9 Mean

The mean OPD values increased on increasing wavelength as shown in Fig.5.10. The mean
increased 9.49% for E. coli­1, 13.09% for E. coli­2, 12.92% for K. pneumonia, and 8.89 %
for S.aureus on average.

Figure 5.10: Whisker box plot of OPD mean for E. coli­1, E. coli­2, K. pneumoniaand
S.aureus (a) at 532 nm (b) at 660 nm. The quartiles and medians of mean OPD for all
bacteria increased with wavelength shift to a higher value.

The results in Fig.5.11 also indicated that the mean phase decreased with increasing
wavelength. In the case of E. coli­1 phase, on average decreased by 11.4%, for E. coli­2,
it was reduced by 8.8%, for K. pneumonia 9.1% and 12.3% for S.aureus. From Fig.5.10
and 5.11, one can observe that the OPD values were increasing with the xtitOPDincrease

55



Chapter 5 Results and Discussion

in wavelength, but phase values were decreasing. In equation 1.13, it was clear that phase
and OPD were directly related at a constant wavelength. In our case, the wavelength was
not constant; it was varying. Now it depends on the dominant variable and changing the
most ( wavelength and phase) to decide if OPD increased on increasing the wavelength or
decreased. Since it was clear from Fig. 5.10 thatOPD increased the wavelength, it followed
the wavelength trend rather than phase. Sowe can say phase values were changing negligibly
compared to wavelength change.

Figure 5.11: Whisker box plot of phase mean for E. coli­1, E. coli­2, K. pneumonia and
S.aureus (a) at 532nm (b) at 660nm. The mean phase seemed to be decreasing with the
increase of wavelength.

5.2.10 Variance

The results of variance indicated minute variation in OPD values on average. The average
variance for E. coli­1was 9.5×10−5 and 8.1×10−5, for E. coli­2 8.1×10−5 and 7.1×10−5,
for K. pneumonia 12 × 10−5 and 11 × 10−5 and for S.aureus 26 × 10−5 and 22 × 10−5at
532 nm and 660 nm respectively. The average variance seems to be increasing by 15 %
forE. coli­1, 12.42% for E. coli­2, 8.12 % for K. pneumonia and 11.68 % for S.aureus on
increasing wavelength from 532 nm to 660 nm.
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Figure 5.12: Whisker box plot of Phase variance for E. coli­1, E. coli­2, K. pneumonia and
S.aureus (a) at 532 nm (b) at 660 nm.

5.2.11 Kurtosis

The average kurtosis decreased by 1.9% for E. coli­1, 1.21 % for E. coli­2, 0.096% for K.
pneumonia, and 0.4% for S.aureus on increasing wavelength from 532nm to 660nm.

Figure 5.13: Whisker box plot of kurtosis for E. coli­1, E. coli­2, K. pneumoniaand S.aureus
(a) at 532nm (b) at 660nm. Median kurtosis remained the same for all bacteria cells.
However, quartiles are changing slightly with the rose of wavelength.

5.2.12 Skewness

Skewness decreased by increasing the wavelength from 532 nm to 660 nm. It fell by 27.4%
for E. coli­1, 30.01 % for E. coli­2, 16.4% for K. pneumonia, and 7.93% for S.aureus on
switching wavelength from 532 nm to 660 nm.
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Figure 5.14: Whisker box plot of skewness for E. coli­1, E. coli­2, K. pneumonia and
S.aureus (a) at 532nm (b) at 660nm. The median and quartiles of skewness decreased with
the increase of wavelength.

5.2.13 Statistical significance and histogram

We utilized the two­sample t­test for the p­values of the data to analyze statistical differences
across the bacteria cells, for derived morphological parameters of each bacteria cell at
the single and dual wavelengths (532 nm and 660 nm). At first, we considered a single
wavelength, i.e., 532nm. We took all the bacteria samples in a pair of two, e.g., E. coli­1 and
S. aureus. In this way, we made six pairs of bacteria cells to check the statistical significance
of their morphological parameters using the two­sample t­test.

Our null hypothesis was that mean of every morphological parameter was the same for
both the bacteria cells at 532 nm. The alternative hypothesis was that there was a significant
difference between the mean of morphological parameters for each bacteria cell at 532 nm.
The threshold α for the t­test was 0.05. The histograms of all the parameters were plotted
to check if the distribution of the sample is gaussian or not. Fig.5.15 shows the histograms
plotted for all the morphological parameters of E. coli­1 and S. aureus. The morphological
parameters were significantly different and satisfied the alternative hypothesis. The symbol
∗ ∗ ∗ on the histograms in the Fig.5.15 represents p<0.0005. This process was repeated
for all pairs of bacteria cells. In comparing all other pairs, i.e., E. coli­1 and S. aureus, K.
pneumonia, and E. coli­2, E. coli­2, and S. aureus, K.pneumonia and S. aureus, we found
that nine morphological parameters were statistically significant. The figures are shown in
Appendix Section to save space.

Then, the statistical significance of morphological parameters for dual­wavelength was
checked using the same two­sample t­test. The null hypothesis was that there is no change
in the arithmetic mean of morphological parameters on changing the wavelength. The
respective alternative hypothesis was that there is a significant change in the arithmetic
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Table 5.1: Morphological parameters (M.P) of four Bacteria cells at two different
wavelengths (532 nm and 660 nm), i.e., surface area, volume,S/V, and sphericity
correspondingto the experiment described in Section 4.1.

Bacteria

M.P E.coli­1 E.coli­2 K.pneumonia S.aureus

532
(nm)

660
(nm)

532
(nm)

660
(nm)

532
(nm)

660
(nm)

532
(nm)

660
(nm)

SA (µm2) Mean 8.9 8.6 6.8 7.1 7.2 7.2 8.3 8.3
STD 1.9 *** 1.9 0.4 *** 1.4 1.8 ­ 1.8 1.9 ­ 1.9

PA(µm2) Mean 0.82 0.82 0.83 0.82 0.81 0.82 0.77 0.77
STD 0.07­ 0.07 0.08 ­ 0.08 0.08 * 0.09 0.07 ­ 0.07

V(µm3) Mean 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
STD 0.05 *** 0.05 0.04 *** 0.04 0.06 *** 0.06 0.08 *** 0.09

SA/V Mean 69 63 76 66 74 64 54 49
(µm−1) STD 12 *** 10 13 *** 9 19 *** 14 14 *** 11

PA/V Mean 6.8 6.3 9.9 8.2 9.3 8.1 5.5 4.9
(µm−1) STD 2.5 *** 2.2 3.4 *** 2.6 4.3 *** 3.6 2.7 *** 2.2

Sphericity Mean 0.14 0.15 0.14 0.16 0.15 0.16 0.17 0.18
(ψ) STD 0.02 *** 0.01 0.01 *** 0.01 0.02 *** 0.02 0.02 *** 0.02

Energy Mean 0.3 0.4 0.2 0.3 0.3 0.4 0.7 0.7
STD 0.2 *** 0.2 0.2 *** 0.2 0.3 *** 0.3 0.6 * 0.6

Entropy Mean 3.0 2.9 2.9 2.9 3.0 3.1 3.5 3.5
STD 0.4 *** 0.4 0.4 * 0.3 0.5 ­ 0.5 0.5 ** 0.5

Mean(µm) Mean 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
∗10−2 STD 0.3 *** 0.3 0.3 *** 0.3 0.5 *** 0.4 0.6 *** 0.6

Variance(µm) Mean 9.5 8.1 8.1 7.1 12 11 26 22
∗10−5 STD 6.5 *** 5.3 7.2 *** 5.1 1.1 * 9 25 *** 21

kurtosis Mean 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
STD 0.3 *** 0.2 0.2 * 0.2 0.2 ­ 0.2 0.3 ­ 0.3

Skewness Mean 0.3 0.2 0.4 0.2 0.4 0.3 0.5 0.5
STD 0.2 *** 0.2 0.2 *** 0.2 0.2 *** 0.2 0.2 *** 0.2
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Figure 5.15: Histograms of the morphological parameters based the OPDmaps for E. coli­1
(blue) versus at S.aureus (brown): (a) surface area, (b) projected area, (c) phase volume,
(d) sphericity, (e) phase surface area to volume ratio, (f) projected area to volume ratio, (g)
variance, (h) mean, (i) entropy, (j)kurtosis, (k) skewness and (l) energy. *** denotesP­values
<0.0005 − for p>0.05.

mean of morphological parameters on changing the wavelength. We repeated this process
for all four bacteria cells. Fig.5.16 represents the corresponding histograms for E. coli­1,
and p­values were represented by the * symbol on top of them. It was found that eight
the morphological parameters satisfied the alternative hypothesis for all the morphological
parameters. The histogram images are shown in Appendix Section. However, Table 5.1 and
symbol * describe the statistical significance at dual­wavelength.
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Figure 5.16: Histograms of the morphological parameters based on the OPD maps for E.
coli­1 at 532 nm (blue) versus at 660 nm (brown): (a) surface area, (b) projected area, (c)
phase volume, (d) sphericity, (e) phase surface area to volume ratio, (f) projected area to
volume ratio, (g) variance, (h) mean, (i) entropy, (j)kurtosis, (k) skewness and (l) energy.
Symbol *** denotes P­values <0.0005 − for p>0.05.

5.3 Discussion

The primary hypothesis was to investigate any difference in the morphology and quantitative
parameters obtained by the QPM images of four different bacterial cells ( E. coli­1, E.
coli­2, K. pneumonia, and S. aureus). In addition, we wanted to see if different bacteria cells
could assign a unique fingerprint to distinguish them quickly using QPI and the measured
morphological parameters. Fig.4.8 depicts different classes of bacteria cells, illustrating that
a naked eye cannot detect significant differences even when utilizing QPI. However, the
quantitative analysis of morphological parameters can solve this by studying the cell’s OPD
maps.

Table 5.1 summarizes the average and standard deviation values for each parameter for all
cells. Quantitative analysis suggested that few morphological parameters were different on
average at a single wavelength, including SA, SA/V, and PA/V. However, the wavelength has
affected the estimation of numerous statistical parameters. Volume, sphericity, and energy
increased while all other parameters decreased with an increase in a wavelength. As bacteria
were attached to the substrate, the projected area of bacteria was not changing as a function of
wavelength. The geometrical thickness should remain constant with a change in wavelength.
The optical thickness changed as the refractive index changed with wavelength because the
refractive index was changing, consequently, the phase.
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Furthermore, increasing the wavelength surface area of all the bacteria cells decreased.
In addition, we saw that when the wavelength was changed, the average projected area,
kurtosis, and entropy of the cell’s OPD did not change much, and minute changes were
observed.

At a single wavelength( i.e., 532 nm), the SA/V and the PA/V were minima for S.aureus
and maximum for E. coli­2. That was an exciting result as SA/V and PA/V of non­AMR E.
coli (E. coli­1) was lower than AMR E. coli (E. coli­2). The PA/V and SA/V decreased with
the increase of wavelength of light. The fall in the projected area (PA) and surface area
(SA) on increasing the wavelength supported the rise in phase volume. Together, they were
responsible for the overall decrease in surface area to volume ratio and projected area to
volume ratio.

Sphericity was 0.142±0.0483 in the case of E. coli­1,0.144±0.0562 for E. coli­2 and
0.148±0.0631 forK. pneumonia at a single wavelength, i.e., 532nm. Moreover, on increasing
the wavelength, the sphericity index rose. The bacteria’s phase maps were found to be higher
at 532 nm than that for 660 nm and found to be in good agreement with the theory, which
predicts an increase in refractive index when the wavelength falls.

Every statistical and morphological parameter followed a non­linear trend.
Unfortunately, all statistical parameters overlap for the two wavelengths, making it
challenging to build unique fingerprints of the bacteria cells using whisker box plots, mean,
and standard deviations. It was logical that there was specific variation within bacteria,
which was also highlighted by a relatively large spread in the morphological distributions
for every sample.

At this point, we used the two­sample t­test for p­values to check in two ways
(1) If morphological parameters could differentiate bacteria cells at a single wavelength.
First, we tested the bacteria cells in a pair of two bacteria cells. e.g. E. coli­1 and E. coli­2 or
S.aureus and K.pneumonia. In this, we make six pairs and test the significance of the results.
(2) If on changing the wavelength, the parameters were changing.

At a single wavelength, we did a two­sample t­test using all four samples in a pair of two
at a threshold of 0.05. In comparing E. coli­1 and E. coli­2, we found that all the parameters
were statistically significant except kurtosis. For all the parameters, p­values were less than
0.0005. In the two­sample t­test between E. coli­1 and K. pneumonia, the results of all the
parameters were significant exceptmean and entropy. For all other pairs of bacteria cells (i.e.,
E. coli­1 and S.aureus, E. coli­2, and K. pneumonia, E. coli­2, and S.aureus , K. pneumonia
and S. aureus), the morphological parameters were significant with p<0.0005. Overall, 9
out of 12 parameters were significant at a single wavelength in all cases.

In the case of dual­wavelength, all the morphological parameters were statistically
significant except the projected area forE. coli­1with p<0.0005. For E. coli­2 projected area
was not found to be statistically significant; entropy and kurtosis were found to be significant
with p<0.05. All other parameters were significant. For K. pneumonia, all parameters
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except surface area, entropy, and kurtosis were significantly different. In the case of
S.aureus, all parameters except surface area, projected area, and kurtosis were quite different.
Overall, eight out of 12 parameters were always significant with different probabilities.
Table 5.1 shows that 8 of the 12 OPD­based metrics were statistically significant. Every
subfigure depicts the histograms of a particular parameter of bacteria cells. The results
at two wavelengths were represented by different colors (blue for 532 nm and brown for
660 nm). Based on p­values of 0.05, 0.005, or 0.0005, all of these factors are statistically
significant. These findings show that the parameters can statistically distinguish between
each cell at two wavelengths, which was challenging to be done just using OPD analysis.
The area under the curve values correlates to the separation between the groups shown in
the histograms. (Fig.7.6 to Fig.7.8), with high percentages corresponding to lower p­values
between the cells in the histograms. So volume, sphericity, SA/V, PA/V, mean, and skewness
have a better separation than the rest of the parameters. If we combine all the results of
a single wavelength and dual­wavelength, it was observed that 7 out of 12 parameters (i.e.,
volume, sphericity, SA/V, PA/V, variance, skewness, and energy) were significantly different
in all the cases. Therefore, these seven parameters could be used in the future to build unique
fingerprints of these bacteria cells.

In 2017, similar research distinguished cancer and healthy cells using morphological
parameters. They found high statistical significance in the difference between the cell groups
in most of the parameters estimated after evaluating tens of cells in each group, with the same
patterns for all statistically significant parameters. Additionally, using the parameters and
a machine learning system, diagnosis of the cell type (healthy/cancer/metastatic) was done
with 81 to 93 percent sensitivity and 81 to 99 percent specificity [45].

In the future, deep learning approaches can be implemented to classify these bacteria
samples for diagnostic purposes. The acquired seven overall statistically significant
morphological parameters (V, SA/V, PA/V, sphericity, energy, variance, and skewness) and
the machine­learning techniques can enable the establishment of unique fingerprints and
quick identification of AMR bacteria cells.



Chapter 6

Conclusion

First, we systematically characterized the performance of theQPM system in terms of spatial
and temporal phase sensitivity, spatial resolution, the effect of defocusing on the revered
phase maps of the bacteria samples. Then, the spatial phase sensitivity of the setup is
measured for direct laser and PTLS and compared. The system’s phase sensitivity is 5.6mrad
for PTLS, higher than for direct laser. Moreover, the temporal phase stability of the system
is measured to be equal to 38 mrad, which is quite good and can utilize for the study of the
dynamics of the cells.

Furthermore, it is observed that slight defocus in the recorded data introduces significant
error in the recovered phase maps of the bacteria cells. Therefore, we numerically
compensated its effect for generating accurate phase maps of the bacteria sample to analyze
the morphological and statistical parameters further.

Moreover, the experiments are conducted with a diode laser of approximately 1 nm
spectral bandwidths and an extremely narrow band (0.001 pm) laser. Due to its short
temporal coherence length, a diode laser can only create circular fringes with high contrast.
Furthermore, this led to circular fringe­like artifacts in the phase­shifting algorithm on
recovered phase maps. The explanation behind the formation of such artifacts is the
spatial frequency variation over the camera FOV when the shape of fringes is circular. A
high­coherent laser can correct this sort of artifact, which generates straight fringes instead
of circular fringes due to the possibility of an extended range of OPD adjustment.

For noise­free images, chromatic aberration­free optical components are required. A
narrow­band light source such as a laser might bypass these restrictions; however, the high
temporal coherence length increased the noise and lowered the spatial phase sensitivity.
Therefore, a spatially low and temporally high coherent source (i.e., PTLS) can solve this
problem.

This study employed PTLS based QPM to see the morphological differences between
bacteria cells at a single wavelength. Unfortunately, all statistical parameters overlap on a
single wavelength, making it challenging to build unique fingerprints of the bacteria cells.

Therefore, dual­wavelength QPM is used to extend the work and exploit the spectral
diversity to develop new wavelength­dependent bio­markers and create a distinct boundary

64



between different bacteria samples. The bacteria’s phase maps are found to be higher
at 532 nm than that for 660 nm and found to be in good agreement with the theory,
which predicts an increase in refractive index when the wavelength is decreased. Every
statistical and morphological parameter follows a trend, but this trend is not linear. The aim
was to investigate if different bacteria respond differently to the wavelength change. The
refractive index is a function of wavelength. It was envisioned that other bacteria might react
differently to a change of wavelength, which could be used as a biomarker to differentiate
them. The two­sample t­test showed that for a single wavelength, nine out of 12, and for
dual­wavelength, eight out of 12 parameters were significantly different. Combining the
results showed that 7 out of 12 parameters (i.e., volume, sphericity, SA/V, PA/V, variance,
skewness, and energy) were significantly different in all the cases.

In the future, these seven parameters and deep learning approaches can be implemented
to classify these bacteria samples and build unique fingerprints for diagnostic purposes.
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Appendix

7.1 Statistical significance at single and dual wavelength

In this Section, histogram plots along with results of two sample t­test were shown. Nine
out of 12 parameters satisfied the alternative hypothesis for single wavelength. Three
morphological parameters including kurtosis, mean and entropy satisfied the null hypothesis
in the following Fig.7.1, and Fig.7.2. The single wavelength results with were represented
on the histograms Fig. 7.1 to Fig. 7.5 by symbol ∗ for p<0.05,∗∗ for p<0.005,∗ ∗ ∗ for
p<0.0005 and − for p>0.05.

Eight out of 12 parameters satisfied the alternative hypothesis for dual­wavelength.
Four morphological parameters including surface area, projected area, entropy and kurtosis
satisfied the null hypothesis. The results of dual wavelength are shown in Fig.7.6 to Fig.7.8.

Figure 7.1: Histograms of the morphological parameters based the OPD maps for E. coli­1
(blue) versus at E. coli­2 (brown): (a) surface area, (b) projected area, (c) phase volume,
(d) sphericity, (e) phase surface area to volume ratio, (f) projected area to volume ratio, (g)
variance, (h) mean, (i) entropy, (j)kurtosis, (k) skewness and (l) energy.Symbol *** denotes
p­values <0.0005.
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Figure 7.2: Histograms of the morphological parameters based the OPD maps for E. coli­1
(blue) versus atK .pneumonia (brown): (a) surface area, (b) projected area, (c) phase volume,
(d) sphericity, (e) phase surface area to volume ratio, (f) projected area to volume ratio, (g)
variance, (h) mean, (i) entropy, (j)kurtosis, (k) skewness and (l) energy. Symbol * denotes
p­values <0.05 and *** denotes p­values <0.0005.

Figure 7.3: Histograms of the morphological parameters based the OPD maps for K
.pneumonia (blue) versus at E. coli­2 (brown): (a) surface area, (b) projected area, (c) phase
volume, (d) sphericity, (e) phase surface area to volume ratio, (f) projected area to volume
ratio, (g) variance, (h) mean, (i) entropy, (j)kurtosis, (k) skewness and (l) energy. Symbol
*** denotes p­values <0.0005.
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Figure 7.4: Histograms of the morphological parameters based the OPD maps for E. coli­2
(blue) versus at S .aureus (brown): (a) surface area, (b) projected area, (c) phase volume,
(d) sphericity, (e) phase surface area to volume ratio, (f) projected area to volume ratio, (g)
variance, (h) mean, (i) entropy, (j)kurtosis, (k) skewness and (l) energy. Symbol *** denotes
p­values <0.0005.

Figure 7.5: Histograms of the morphological parameters based the OPD maps for
K.pneumonia (blue) versus at S .aureus (brown): (a) surface area, (b) projected area, (c)
phase volume, (d) sphericity, (e) phase surface area to volume ratio, (f) projected area to
volume ratio, (g) variance, (h) mean, (i) entropy, (j)kurtosis, (k) skewness and (l) energy.
Symbol *** denotes p­values <0.0005.
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Figure 7.6: Histograms of the morphological parameters based the OPD maps for E.coli­2
at 532nm(blue) versus at 660nm (brown): (a) surface area, (b) projected area, (c) phase
volume, (d) sphericity, (e) phase surface area to volume ratio, (f) projected area to volume
ratio, (g) mean, (h)variance, (i) entropy, (j)kurtosis, (k) skewness and (l) energy. Symbol *
denotes p­values <0.05 and *** denotes p­values <0.0005.

Figure 7.7: Histograms of the morphological parameters based the OPD maps for
K.pneumoniaat 532nm(blue) versus at 660nm (brown): (a) surface area, (b) projected area,
(c) phase volume, (d) sphericity, (e) phase surface area to volume ratio, (f) projected
area to volume ratio, (g) mean, (h)variance, (i)entropy, (j)kurtosis, (k) skewness and (l)
energy.Symbol * denotes p­values <0.05 and *** denotes p­values <0.0005.
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Figure 7.8: Histograms of the morphological parameters based the OPD maps for S.aureus
at 532nm(blue) versus at 660nm (brown): (a) surface area, (b) projected area, (c) phase
volume, (d) sphericity, (e) phase surface area to volume ratio, (f) projected area to volume
ratio, (g) Mean, (h)variance, (i) entropy, (j)kurtosis, (k) skewness and (l) energy.Symbol *
denotes p­values <0.05 and *** denotes p­values <0.0005.
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