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A B S T R A C T   

The environmental sustainability of bitcoin is making waves in the empirical literature, yet, no 
study has thus far examined the financial determinants of bitcoin energy consumption and carbon 
footprint. Here, we use novel estimation methods comprising dynamic ARDL simulations and 
general-to-specific VAR to examine steady-state effects, cumulative impulse-response, and 
counterfactual shocks of bitcoin trade volume on bitcoin energy bitcoin carbon footprint to ensure 
genuine causal inferences. We observed an increase in bitcoin trade volume spur both carbon and 
energy footprint by 24% in the long-run, whereas a dynamic shock in trade volume escalates 
bitcoin energy and carbon footprint by 46.54%.   

1. Introduction 

Blockchain technology is widely believed to be the most attractive and promising technological breakthrough for various in
dustries, namely logistic management, supply chain system, operational management, and internet of things (IoT) (Gallagher et al., 
2019; Jiang et al., 2021). The increase in the adoption of bitcoin in finance, retail, and politics is gradually bridging the gap between 
bitcoin and traditional assets that have existed in the past. Institutional adoption of cryptocurrencies, particularly bitcoin, is growing, 
thus altering the factors that affect current bitcoin trading compared to historical trends. The stock market crash of 2020 triggered a 
massive bitcoin bull run that lasted over a year—as investors used it as a conduit for the store of value during high uncertainty, low 
confidence in the economy, and expectations of higher future inflation (BinanceAcademy, 2021). Indeed, inflation has risen in almost 
all developed countries to levels not experienced over the last four decades. Cryptocurrencies have by far outperformed all traditional 
asset classes despite the high risk and price volatility. On average, bitcoin observes ~200% yearly growth with a reported all-time-high 
price of about US$68,000 and market capitalization of approximately US$1.2 trillion as of November 2021 (BinanceAcademy, 2022; 
CMC, 2022). The greater demand for bitcoin coupled with bullish market trend leads to more miners using powerful computers to 
compete against others at a faster rate to enable transactions to go through. This computing process for bitcoin mining is 
energy-intensive and often relies heavily on cheap and pollution-intensive energy sources. Thus, carbon emissions from using the 
bitcoin proof-of-work consensus network have attracted significant criticism from proponents of environmental sustainability in recent 
years––as electricity for mining rigs and data centers are dependent on fossil fuels such as coal, oil, and gas. 

Several studies have in recent years investigated the effect of bitcoin carbon emissions on climate change. For instance, a study that 

* Corresponding author. 
E-mail address: thomas.leirvik@nord.no (T. Leirvik).  

Contents lists available at ScienceDirect 

Finance Research Letters 

journal homepage: www.elsevier.com/locate/frl 

https://doi.org/10.1016/j.frl.2022.102977 
Received 10 March 2022; Received in revised form 10 May 2022; Accepted 15 May 2022   

mailto:thomas.leirvik@nord.no
www.sciencedirect.com/science/journal/15446123
https://www.elsevier.com/locate/frl
https://doi.org/10.1016/j.frl.2022.102977
https://doi.org/10.1016/j.frl.2022.102977
http://crossmark.crossref.org/dialog/?doi=10.1016/j.frl.2022.102977&domain=pdf
https://doi.org/10.1016/j.frl.2022.102977
http://creativecommons.org/licenses/by/4.0/


Finance Research Letters 48 (2022) 102977

2

employed IPO filings of large hardware manufacturers, mining operations, and mining pools estimated the annual bitcoin power 
consumption and carbon footprint as 4.58 TWh and 22.9 MtCO2eq (i.e., est. November 2018) (Stoll et al., 2019). Another study argued 
that the rising level of annual bitcoin energy consumption is expected to peak at ~296.59 TWh with a corresponding 130.50 MtCO2eq 
in 2024 assuming no policy intervention in China’s bitcoin operations (Jiang et al., 2021). The level of this energy consumption is 
comparable to the entire energy consumption of countries like Mexico and Italy and placing bitcoin consumption between the 10th and 
15th largest consumer of all countries in the world. Similarly, other studies have assessed the determinants of bitcoin energy con
sumption and environmental degradation using regression models (Erdogan et al., 2022; Huynh et al., 2021). Evidence from asym
metric causality found a positive shock of bitcoin demand stimulates environmental degradation (Erdogan et al., 2022), whereas 
bidirectional causality is confirmed between bitcoin returns and energy consumption (Huynh et al., 2021). Moreover, Naeem and 
Karim (2021) analyze the tail dependence between bitcoin and green assets and find that due to the high energy consumption by 
bitcoin mining, clean energy is an effective hedge for bitcoin. However, there is limited research underpinning the role of financial 
determinants studied herein. As such, we provide novel insights into the linkage between bitcoin trade volume and bitcoin energy 
consumption and carbon footprint. 

Yet, literature that examines the overarching effect of financial indicators on bitcoin energy consumption and carbon footprint is 
limited. Here, we investigate the complex nexus between bitcoin price, trade volume, market capitalization, bitcoin energy con
sumption, and carbon footprint using novel estimation methods [i.e., dynamic ARDL simulations, and general-to-specific vector 
autoregression (VAR) model] that control for counterfactual shocks, high-dimensional and threshold effects that cannot be captured by 
the standard VAR model. 

2. Materials & method 

2.1. Theoretical framework 

The framework presented in Fig. 1 is inspired by the biological interaction between species where there is/no benefit for at least one 
species. This form of biological relationship highlights the importance of either symmetric or asymmetric interaction between sampled 
variables and their corresponding externalities (Von Jacobi, 2018). Mimicking the interaction where both species benefit, we hy
pothesize that bitcoin trade volume vs. carbon and energy footprint have mutualistic effects termed feedback interaction. In con
servation interaction, energy and carbon footprint intensity are expected to increase bitcoin trade volume––of which any policy to 
reduce energy and carbon intensity will decrease bitcoin trade volume. Contrary, there is a possibility that increasing bitcoin trade 
volume will spur carbon and energy footprint termed as growth relationship. Finally, the detachment interaction suggests no rela
tionship between bitcoin trade volume vs. carbon and energy footprint. 

Fig. 1. Theoretical framework showing the relationship between bitcoin, carbon footprint, and energy consumption. Here, we use BTC volume in 
the scheme as a case study, yet, it can be replaced with either market price or market capitalization without losing the theoretical interpretations. 
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2.2. Data 

This study constructed a bitcoin model based on daily frequency data spanning February 10, 2017-October 19, 2021. The sampled 
data series (Table 1) include bitcoins market price, USD exchange trade volume of bitcoins, and market capitalization of bitcoins 
collated from Blockchain (Blockchain, 2021), whereas estimated bitcoin energy consumption per year was collected from Digicono
mist (Digiconomist, 2021). Data for estimated bitcoin carbon emissions per year were constructed following the empirical procedure 
presented in Sarkodie et al. (2022). 

Bitcoin prices exhibit high volatility, which varies substantially over time with sudden large movements (jumps) and is linked to the 
liquidity of the market as well as the liquidity of bitcoin itself [see, for example (Chaim et al. (2018), Leirvik (2021), Qian et al. (2022), 
and Zhang et al. (2022)]. One way to illustrate the intraday volatility is by the natural logarithm of the ratio of daily high and low 
prices: 

σt = ln
PH,t

PL,t 

Where PH,t(PL,t) is the highest (lowest) price at day t. Fig. 2 illustrates the intraday volatility since 2017, which shows incidents of 
very high price movements in a day. The mean, maximum, and minimum intraday volatility for bitcoin is 0.05, 0.49, and 0.004. By 
comparison, the ETF SPY which tracks the US S&P500 index has a mean of 0.01, a maximum of 0.09, and a minimum of 0.001. 

Table 1 
Sampled variable description.  

Abbrev Variable Name Variable – Description Units 

BTCP Bitcoins Market Price Average USD market price across major bitcoin exchanges. US$ 
BTCVOL USD Exchange Trade Volume of 

Bitcoins 
The total USD value of trading volume on major bitcoin exchanges. US$ 

BTCMCAP Market Capitalization of Bitcoins The total USD value of bitcoin supply in circulation, as calculated by the daily average market price 
across major exchanges. 

US$ 

ESTENE Estimated Consumption of Energy 
per Year 

Estimated TWh per Year TWh 

BTCEMI Estimated Carbon Emissions per 
Year 

Estimated tCO2 per Year tCO2  

Fig. 2. Logarithm of daily high and low bitcoin prices.  
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2.3. Model estimation 

The traditional higher-order vector autoregression (VAR) models based on equation-by-equation OLS often suffer from over
parameterization with several variables, hence, producing weak statistical inferences. To solve this limitation, Campos et al. (2005) 
proposed the general-to-specific (GETS) technique based on a more efficient procedure, viz. seemingly unrelated regression (Zellner, 
1962)––a system-estimation to improve statistical inferences after estimating VAR models. Subsequently, Asali (2020) developed the 
vgets algorithm that improves the general-to-specific VAR by adding long-run, cumulative impulse-response, and diagnostics to ensure 
genuine causal inferences. In this way, the parameters of the general-to-specific VAR can be used to validate the estimated VAR from 
traditional specifications. Using this novel estimation method, we investigate the following hypotheses––(1) bitcoin price, trade 
volume, and market capitalization have no effect on energy consumption and vice versa; and (2) bitcoin trade volume, price, and 
market capitalization have no effect on carbon footprint and vice versa. The empirical specification to examine the causal effects can be 
expressed as: 

xt =
∑2

i=1
αixt− i +

∑2

i=1
βiyt− i + ztδ1 + εxt (1)  

yt =
∑2

i=1
γixt− i +

∑2

i=1
φiyt− i + ztδ2 + εyt (2)  

where xt and yt denote a feedback causality between sampled variables in time t, xt includes bitcoin price, bitcoin trade volume, and 
bitcoin market capitalization, yt comprises bitcoin energy consumption, and bitcoin carbon footprint, z represents the exogeneous 
control variable (i.e., time trend), α, β, ϕ, γ, and δ are the parameter estimates, and ε represents the error term. The optimal lag order (i. 
e., 2) was selected using a combination of information criteria including AIC, SBIC, HQIC, and FPE. To assess causality from y to x and 
vice versa, we test the joint statistical significance of β parameters in Eq. (1), and γ parameters in Eq. (2). The short-run relationships 
across diverse variables are examined using 

∑2
i=1βi and 

∑2
i=1γi in Eqs. (1) and (2), respectively. 

The long-run effects are estimated using the empirical specifications expressed as: 

Ly→x =

∑2
i=1βi

1 −
∑2

i=1αi
(3)  

Lx→y =

∑2
i=1γi

1 −
∑2

i=1φi
(4)  

where Lx → y formulation is used to assess long-run effects of x on y whereas Ly → x specification is used to measure long-run effects of y 
on x. 

The cumulative impulse-response CIR simultaneously examines the reactions and dynamics of sampled variables in the long-run 

Table 2 
Descriptive statistical analysis.  

Statistics ESTENE BTCVOL BTCP BTCMCAP BTCEMI 

Mean 65.536 3.92 × 108 14071.480 2.58 × 1011 108.921 
Maximum 177.429 5.35 × 109 63554.440 1.21 × 1012 116.387 
Minimum 9.291 1.48 × 107 941.920 1.52 × 1010 294.886 
Std. deviation 34.331 4.47 × 108 15087.540 2.86 × 1011 15.441 
Skewness 0.775 3.529 1.768 1.777 57.058 
J-B test 289.597♣ 34691.430♣ 1144.118♣ 1155.217♣ 4.287♣ 

Observations 1712 1713 1713 1713 1712 
Daily Δ (%) 0.002 0.151 0.003 0.003 0.002 
Correlation      
ESTENE 1     
BTCVOL 0.022 1    
BTCP 0.740 0.282 1   
BTCMCAP 0.744 0.268 0.998 1  
BTCEMI 1.000 0.022 0.740 0.744 1 
Unit root  L.PP Δ.PP L.ADF Δ.ADF 
lnESTENE  -2.106 -26.616*** -2.564 -26.075*** 
lnBTCVOL  -10.203*** NA -11.724*** NA 
lnBTCP  -1.861 -43.337*** -1.832 -43.386*** 
lnBTCMCAP  -1.883 -43.475*** -1.857 -43.533*** 
lnBTCEMI  -2.073 -26.638*** -2.514 -26.100*** 

Notes: J-B denotes Jarque-Bera test, ♣represents the violation of Jarque-Bera test based on H0 of normal distribution at 1% significance level, *** 
denotes the rejection of H0 (i.e., contains unit root) at 1% significance level, L.PP and L.ADF are Phillips-Perron and augmented Dickey-Fuller unit 
root test at level whereas Δ.PP and Δ.ADF are estimated in first-difference. 
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using the expression: 

CIRy→x =

∑2
i=1βi

(
1 −

∑2
i=1αi

) (
1 −

∑2
i=1φi

)
−

∑2
i=1βi ×

∑2
i=1γi

(5)  

CIRx→y =

∑2
i=1γi

(
1 −

∑2
i=1αi

) (
1 −

∑2
i=1φi

)
−

∑2
i=1βi ×

∑2
i=1γi

(6)  

where CIRy → x measures CIR effects of y on x while CIRx → y formulation assesses CIR effects of x on y. Contrary to the traditional 
symmetric VAR, the general-to-specific VAR iteratively drops lagged-variables with estimated t-statistic less than 1 using cut-off based 
on Haitovsky rule (Asali et al., 2017). Thus, the general-to-specific VAR is estimated with the constrained parameters that pass the 
cut-off. The standard errors of nonlinear and cross-equation combination of parameters including long-run and cumulative 
impulse-response effects are estimated using the delta method (Asali et al., 2020). 

3. Results & discussion 

The daily summary of descriptive statistical analysis is presented in Table 2. The 5-year daily data shows an estimated average 
bitcoin energy consumption per year of 65.54 TWh and 108.92 tCO2 average bitcoin carbon footprint per year. Both estimated bitcoin 
energy and carbon footprint correspond to an average daily market capitalization of US$ 2.58 × 1011 based on average market price of 
U$ 14071.48 and trade volume of US$ 3.92 × 108. Bitcoin energy and carbon footprint observed a 0.002% daily change whereas trade 
volume, price, and market capitalization observed a daily change of 0.151%, 0.003%, and 0.003%, respectively. The raw sampled data 
violate the normality assumption as depicted by the Jarque-Bera test––justifying logarithmic transformation of variables. The test for 
stationarity using Phillips-Perron (PP) and augmented Dickey-Fuller (ADF) unit root techniques confirms first-difference stationary 
variables excluding trade volume which exhibits level stationarity. The correlation test shows positive association among sampled 
variables, however, the underlying causal effect relationship useful for statistical inferences is examined hereafter. 

Note that the correlation between ESTENE and BTCEMI is 1. BTC energy (ESTENE) is correlated with BTC carbon footprint 
(BTCEMI) because BTC footprint is constructed using IEA emission factors (i.e., emission factors are single values), hence, the supposed 
linearity only stems from the multiplication with the emission factor [see Sarkodie et al. (2022) for detailed calculations, and Owusu 
et al. (2022) for the constructed dataset]. Nevertheless, both variables are used exclusively as dependent variables in separate models. 

Fig. 3. CUSUM parameter stability test (a) BTC price (b) BTC market capitalization (c) BTC trade volume (d) BTC energy consumption.  
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This implies BTC carbon footprint and BTC energy will produce nearly similar results but differences in magnitude. This idea in 
accordance with IEA is to depict how either energy consumption or carbon footprint is crucial in the proof-of-work ecosystem of BTC 
and the dynamics of Bitcoin trading. From a modeling perspective, both scenarios represent the robustness of the estimated models. 

Existing studies show the effect of mining on bitcoin energy consumption and subsequent emissions (Stoll et al., 2019). Contrary, 
we assessed the financial-related impacts of bitcoin transactions on energy and carbon footprint. Using novel estimation techniques, 
we assessed steady-state effects, Granger causality, and cumulative impulse-response relationships. To verify the estimated models, we 
employed post-estimation diagnostic tests to examine the stability and robustness of the general-to-specific VAR to make 
genuine-causal inferences. The diagnostic tests (see Appendix A-F) reveal the estimated GETS specification has no serial correla
tion––rendering the optimal lagged-variables weakly exogeneous, hence, validating the robustness of the parameters to provide true 
causal effects and statistical interpretations. 

Moreover, we examined the time series regression for residual structural breaks using cumulative sum (CUSUM) test presented in 
Fig. 3. The structural evidence of the depicted results confirms parameter stability of sampled variables over time. This implies the 
selected variables can genuinely be used to examine causal-effect relationships and counterfactual shocks without estimation bias. 

Fig. 4 presents the summary relationships of price, trade volume, and market capitalization in carbon, and, energy functions while 
accounting for relationships contrariwise. We observe unidirectional granger causality from either carbon footprint or energy con
sumption to market capitalization––which validates the existence of conservation interaction. This infers a reduction in bitcoin energy 
consumption and subsequent carbon footprint has potential of declining BTC market capitalization. In contrast, a bidirectional granger 
causality is observed between––market price and carbon footprint/energy footprint (Appendix A and D), and trade volume and energy 

Fig. 4. Summary relationships of price, trade volume, and market capitalization in carbon and energy functions.  
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consumption/carbon footprint (Appendix B and E). These mutualistic effects confirm the feedback interaction, implying the potential 
impact of market price and trade volume on either bitcoin energy consumption or carbon footprint and vice versa. 

Next, we examined the direction of these causal effects in both short- and long-run while accounting for cumulative impulse- 
responses. Historical bitcoin energy consumption, carbon footprint, and trade volume have short-term inertia effects that deter
mine future consumption, emissions, and trade patterns (see Appendix A-F). The long-run effect shows 10% growth in energy con
sumption and carbon footprint increases bitcoin market price by 0.25% whereas trade volume grows by 0.01%. However, 1% increase 
in bitcoin trade volume spurs both carbon and energy footprint by ~24% in the long-run. The cumulative impulse-response function 
validates the estimated long-run effects showing significantly higher impacts (see Appendix A-F). For example, 1% shock in bitcoin 
trade volume increases energy and carbon footprint by 46.54%. This implies among all financial indicators, increasing bitcoin trade 
volume has significant effect on bitcoin transactions, which has direct impact on network hashrate, electricity used for mining, and 
carbon footprint. 

After identifying trade volume as the main energy and carbon footprint driver, we exclusively test the causal-effect relationship and 
counterfactual shocks between trade volume vs. energy consumption and carbon footprint, respectively, using both standard ARDL 
and dynamic ARDL simulation techniques. The ARDL technique applies to I(0), I(1), or a mixture of both excluding I(2) variables. In 
contrast, aside from all-inclusive conditions of the standard ARDL technique, the dynamic ARDL simulations further require strict I(1) 
dependent variable and residual independence (i.e., parameter stability and robustness). Both standard ARDL and dynamic ARDL 
simulations show trade volume spur BTC energy consumption in the long-run, yet has mitigation effect in the short-run (Appendix G). 
We further examine the effect of counterfactual shock in trade volume on BTC energy consumption and carbon footprint, respectively 
in Fig. 5. Forecasting the effect in 30 days, a positive change (1%) in trade volume escalates BTC energy consumption and carbon 
footprint whereas a negative shock (-1%) in trade volume declines long-term BTC carbon footprint and energy consumption (Fig. 5). 

Fig. 5 shows a 1% shock in trade volume slightly increases predicted BTC energy in the short-run but increases at a higher rate in the 
long-run. However, a -1% shock in trade volume stimulates fluctuation at a lower rate in predicted BTC energy in the short-run but 
decreases at a higher rate in the long-run. The stochastic simulation of 1% shock in trade volume triggers a stabilized trend in predicted 
BTC carbon footprint but eventually decreases at a higher rate in the long-run. On the contrary, -1% shock produces a stable effect in 
the short-run but drifts downwards in the long-run. These findings are consistent with the notion that BTC consumes a lot of electricity 
per transaction and electricity sources used for BTC mining rigs are mostly dependent on fossil fuels (Küfeoğlu & Özkuran, 2019). This 
may provide information for investors and policymakers to enact policies driving the use of renewable energy in mining rigs while 

Fig. 5. Predicted BTC energy consumption with (a) 1% change in trade volume (b) -1% change in trade volume. Predicted BTC carbon footprint 
with (c) 1% change in trade volume (d) -1% change in trade volume. Legend: blue dots (•) denote the predicted value whereas the red to light blue 
vertical bands represents the 95% confidence interval. 
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increasing the technological development of energy-efficient mining components. 

4. Conclusion 

This study examines the effect of financial indicators on bitcoin energy and carbon footprint using several empirical techniques. 
The additional diagnostic tests that assess residual independence validate the robustness of the estimated models to facilitate genuine 
causal inferences. The adoption of environmental, social, and governance (ESG) criteria is becoming widespread in many companies’ 
standard operations. Hence, environmentally conscious investors who employ these ESG criteria may fail to adopt bitcoin as a pro
spective investment option, due to its energy and carbon-intensive proof-of-work consensus algorithm. This explains the significant 
nexus between financial indicators (i.e., market capitalization, market price, and trade volume) bitcoin energy, and carbon footprint. 
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