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Abstract

Understanding the principles underlying autonomous navigation might be the most enticing
quest the computational neuroscientist can undertake. Autonomous operation, also known
as voluntary behavior, is the result of higher cognitive mechanisms and what is known
as executive function in psychology. A rudimentary knowledge of the brain can explain
where and to a certain degree how parts of a computation are expressed. However, achieving
a satisfactory understanding of the neural computation involved in voluntary behavior is
beyond today’s neuroscience. In contrast with the study of the brain, with a comprehensive
body of theory for trying to understand system with unmatched complexity, the �eld of AI is
to a larger extent guided by examples of achievements. Although the two sciences di�er in
methods, theoretical foundation, scienti�c vigour, and direct applicability, the intersection
between the two may be a viable approach toward understanding autonomy. This project is
an example of how both �elds may bene�t from such a venture. The �ndings presented in
this thesis may be interesting for behavioral neuroscience, exploring how operant functions
can be combined to form voluntary behavior. The presented theory can also be considered
as documentation of a successful implementation of autonomous navigation in Euclidean
space.
Findings are grouped into three parts, as expressed in this thesis. First, pertinent back-

ground theory is presented in Part I – collecting key �ndings from psychology and from AI
relating to autonomous navigation. Part II presents a theoretical contribution to RL theory
developed during the design and implementation of the emulator for navigational autonomy,
before experimental �ndings from a selection of published papers are attached as Part III.
Note how this thesis emphasizes the understanding of volition and autonomous navigation
rather than accomplishments by the agent, re�ecting the aim of this project – to understand
the basic principles of autonomous navigation to a su�cient degree to be able to recreate its
e�ect by �rst principles.
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Chapter 1.

Introduction

One does not set out
in search of new lands

without consenting to
go beyond sight of any shore.

André Gide, Les Faux-monnayeurs

According to philosopher John Stuart Mill, an individual’s autonomy re�ects to what
extent a person acts according to his/her own values, desires, and inclinations [50]. Human
autonomy is an e�ect of higher cognitive processes referred to as executive function, indicating
the di�culty of achieving autonomy in technology. Before using the expression autonomy
in technology, the expression must be operationalized. First, autonomy should involve
self-governed freedom of choice; autonomous behavior should originate from the decision
agent’s personal experience or desires. Excluding all aspects of external control, autonomous
technology should not require set-points or algorithmic input. All forms of direct commands,
including programmed policies or remote control, should disqualify technology from being
autonomous. Second, autonomous technology implies a decision process that de�nes choices
based on personal experience rather than inherited rules or programmed re�exes. Genuine
autonomy comes from the autonomous agent’s experience rather than being a product of
rules or prede�ned algorithms.

De�nition 1 Autonomy requires freedom of choice and absence of external control; the control
of an autonomous agent comes exclusively from the agent’s experience, desires, and inclinations.

Most problem-solving algorithms involve accurately de�ned recipes, e�ectively controlling
the operation by prede�ned algorithms. Someoperations are preferably executed by automatic
algorithms; for example, robots on an assembly line – performing their work with quick
precision and in perfect synchrony – would be di�cult to improve beyond cybernetic control.
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CHAPTER 1. INTRODUCTION

For prede�ned tasks, limited operational domain, or in predictable environments, algorithmic
control can execute operations in what appears to involve autonomy. However, intricate tasks
for comprehensive operations can be di�cult to solve by algorithms.
Navigation, from navis “ship” and root of agere “to set in motion”, deals with the plan-

ning and e�ectuation of trajectories in Euclidean spaces. Euclidean geometry has been an
important tool for navigation for more than two millennia, initially for the planar geom-
etry involved in sailing, later extended to general 𝑁-dimensional1 spaces [19]. Similarly,
navigation involves a more general concept than maritime displacement.

De�nition 2 Navigation is the planning and realization of transitions in Euclidean space.

Skilled navigation requires knowledge on how best to achieve an objective. A navigational
task could, for example, be concerned with how to move an end e�ector of a robot to a target
con�guration. In this project, navigation is further separated into two equally important as-
pects: category 1 navigation is concerned with the e�ectuation of a command or planned path
in some Euclidean space. In the maritime context, this aspect of navigation has traditionally
been the responsibility of the crew. Category 2 navigation is concerned with planning and
executive decisions for navigation; reactive re-planning and generating set-points for a route,
and executive control according to objectives, are responsibilities of the commanding o�cers
on a ship. Whereas category 1 navigation is generally concerned with the execution of a
plan, category 2 navigation is concerned with the development and revision of planned paths
toward the objective. Both category 1 and category 2 navigation are required for autonomous
navigation.
Autonomous navigation is a fundamental ability for any living entity. Spatial navigation is

essential for locating food, shelter, a partner – or family, thus prolonging one’s life or gene pool.
Recent reports in theoretical neuroscience have further linked mechanisms of Euclidean
representation with ideas and mental concepts [16], implying the importance of navigation
in problem-solving. Three aspects appear to be crucial for the evolution of navigational
capabilities. Navigation must be general; learned elements should be applicable to new
situations; policies acquired in safe situations should be applicable to new environments
or while under distress. Navigation must be dynamic, allowing the extension or adaptation
of previous knowledge to a changing environment; knowledge acquired from one situation
should be generalizable to related situations. Navigation must be e�cient; problem-solving
should handle unseen situations and quickly learn to solve new tasks. Accomplishing all
three properties in adaptive technology appears di�cult, making autonomous navigation by
technology a challenging task.
1𝑁 ∈ ℕ, the set of natural numbers/ positive integers, i.e. 1, 2, 3, ...
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De�nition 1 and 2 disqualify most technology from being autonomous. Certainly, several
high-tech solutions can appear to be autonomous, performing a task exactly as speci�ed by
some human programmer. Half a century ago, such technology would have been referred to
as an automatic solution. With the term automatic becoming old-fashioned, researchers in
2022 tend to refer to similar solutions as being autonomous. Technology companies claim to
have autonomous solutions, a claim that is di�cult to question due to the secrecy involved
in proprietary technology.

“Automated” connotes control or operation by a machine, while “autonomous” connotes
acting alone or independently. Most of the vehicle concepts (that we are currently
aware of) have a person in the driver’s seat, utilize a communication connection to the
cloud or other vehicles, and do not independently select either destinations or routes
for reaching them. Thus, the term “automated” would more accurately describe these
vehicle concepts. [91]

It is important not to confuse algorithmic complexity with autonomy; robot control and path
planning can form complex sequences through algorithmic control, but always according
to rigorous mathematical models or by pre-programmed rule sets. Although impressive
performance and automatic e�ectuation of a task is great engineering, such solutions appear
to be di�cult to extend beyond lab conditions or simple challenges.

Figure 1.1.:Maritime navigation can be quite complex. Handling a number of desires, here
represented in green, and aversive objects, represented as red dots in the Euclidean space,
can be a challenging navigation challenge. Controlling the self, represented as a blue
dot, among a multitude of external objects with di�erent position and speed vectors, in a
continuous environment with inertial dynamics, is the environment considered in this
research; the WaterWorld environment[70]. Figure from [42]
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CHAPTER 1. INTRODUCTION

1.1. Problem statement

Autonomy, according to de�nition 1, requires an ability to acquire knowledge from experience
during the lifetime of an agent. Navigation, according to de�nition 2, requires that such
knowledge is applicable to Euclidean spaces. Autonomous navigation requires e�cient
problem solving and learning in real-time while navigating. The aim of this project is to
understand2 the basic principles involved in autonomous navigation, to a su�cient degree to
recreate in technology – a process that can further deepen our understanding of behavioral
autonomy. To achieve this level of understanding, the aim can be divided into the following
research objectives.

1. Identify basic principles underlying autonomous navigation from the psychology of
learning and neuroscience of navigation.

2. Explore methods from the �eld of AI to �nd concepts applicable for online autonomy.

3. Design and test an agent based on results of research objective (1) using the �ndings
from objective (2) to explore the basic principles involved in autonomous navigation.

In the context of this work, we consider the autonomous navigation of a general Euclidean
space as the ultimate expression of autonomy. Hence, our de�nition of autonomy expresses
that autonomous operation requires a behavior that is governed by an entity’s own experience.
Digital agents must be regarded as unique entities. Limiting the extent of an agent to the
duration of a single run, de�nition 1 requires that autonomous navigation emerges from
experience acquired during real-time execution. Further, the considered task for the agent
should be the navigation of Euclidean space – not discrete or task-speci�c challenges. Experi-
ments should highlight di�erences between implementations di�ering only by the examined
mechanism – to deepen our understanding and theory required to implement autonomous
technology, as well as achieving a better understanding of the principles underlying voluntary
behavior.

2“What I cannot create, I do not understand” – Richard Feynman’s blackboard at the time of his death[1]
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1.2. THESIS OVERVIEW

1.2. Thesis overview

The thesis is divided into three parts, re�ecting progression toward the main research aim.
Part I considers background theory from psychology, in Chapter 2, and from adaptive algo-
rithms by reinforcement learning in AI, in Chapter 3. These two chapters can be considered
as a ful�llment of research objective 1 and 2, respectively. Part II presents how distributed
latent learning is possible for digital decision agents, establishing operant desires by general
value functions – as inspired by Skinner, and how the value function can be extracted from
latently learned behavioral maps – as inspired by Tolman. Chapter 4 revisits the fundamen-
tals of RL, before exploring how the persistence school – the alternative understanding to
temporal di�erence learning – can be applied in RL. Chapter 5 concludes this thesis with
a discussion of neoRL �ndings according to the aim of the projects. Part III presents three
manuscripts, representing milestones in the developing understanding on the principles
of autonomy. Paper A illustrates the importance of a decomposed value function, and how
separation of concerns can be considered together with principles for neural representation
to form autonomous navigation. Paper B explores the validity of autonomous navigation, by
experiments for considering whether the presented framework is general, compositional,
and e�cient across modalities. Manuscript C considers deeper purposive graph structures,
demonstrating how neoRL agents bene�t from being guided by projections of desire from
other neoRL nodes.

5





Part I.

Background
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Chapter 2.

Psychology and navigation – true autonomy

it’s very di�cult
to �nd some way of de�ning

rather precisely
something we can do

that we can say that a computer
will never be able to do

Richard Feynman, asked "Can machines think?"[22]

The autonomy and free will of an individual are central in most religions. Psychology,
from ancient Greek, psyche (soul) + lògos (explanation), can be viewed as the study of
(changes in) autonomous behavior. The study of the mind is di�cult to approach through
scienti�c methods, which resulted in several model explanations in the early twentieth
century. Some of these models did not survive the test of time, e.g., explaining personal
characteristics by the external shape of the skull – see �gure 2.1. However, these early
attemtps marked an important shift from considering the mind as a religious matter to being
subject to scienti�c inquiry. First, the interest in measuring and observing the properties of
the mind allowed for a deeper understanding of behavior. Since autonomy was no longer
considered to come from an atomic soul, ultimately governed by God, researchers could
explore the basic principles of learning without o�ending the church. Second, a new scienti�c
movement opened for animal experiments while researching personal autonomy. Darwin’s
On the Origin of Species by Means of Natural Selection (1859) established how man and
creature are part of a continuum [17], making research on animal behavior relevant to the
understanding of human personality and autonomy. With the beginning of the twentieth
century, functionalist and behaviorist psychologists started to study the change in animal
behavior from the perspective of experience. Stimulus-response (S-R) experiments on simple
animals allowed researchers to quantify changes in behavior. Considering man as part
of a continuum rather than separate from nature allowed for deeper insights into human
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CHAPTER 2. PSYCHOLOGY AND NAVIGATION; ADAPTIVE BEHAVIOR AND NEURAL AUTONOMY

autonomy based on animal experiments[62].
This chapter presents an overview of the history of psychology, with emphasis on the ex-

pression of personal autonomy and the neuroscience of navigation. First, Section 2.1 presents
how functionalist biology evolved into behaviorism and eventually cognitive psychology.
Section 2.2 introduces the work leading to the 2014 Nobel prize. The discovery of place cells
and similar cell types representing one’s navigational state has become an important part of
modern neuroscience research. Neural representation of Euclidean space though, is involved
in more than spatial navigation. The brain’s navigation system has been implied in creative
problem solving, inductive reasoning, and intelligence [11]. This chapter summarizes the key
elements on the biological basis of learning and navigation, from the precognitive psychology
of learning to the neuroscience of navigation. The theory presented in this chapter plays a
crucial role in Part II Contribution.

2.1. Adaptive behavior in psychology

William James (1842-1910) was an early pioneer of functional psychology. As a professor
at Harvard, James established the course The Relation Between Physiology and Psychology
in 1875. “Psychology is the science of mental life, both in its phenomena and conditions”
[31]. James’ Principles of Psychology in�uenced functional psychologist John Dewey (1859-
1952), who was among the �rst to consider behavior in light of evolution1. John Dewey
was interested in inherited re�exes, automated policies where the animal reacts according
to the whole situation it is in. According to Dewey, claiming that stimuli S would always
cause the same physiological response, independent of the environment, would be a simpli-
�cation. William McDougall (1871-1938) expanded Dewey’s theories to re�exive behavior
and developed stimulus-response (S-R) connections for behavior. Note that the Markov
state, introduced in Section 3.1, can be viewed as an interpretation of the Dewey state. While
McDougall considered adaptive policies across generations, the Jamesian school of functional
psychology focused on learning as adaptive behavior according to an individual’s experience.
James’ student, Edward Lee Thorndike (1874-1949) claimed that the learning process had
strong similarities with the process of evolution. Referring to acquired S-R connections
as conditioned re�exes, Thorndike explained learning by what he referred to as the law of
e�ect, whereby a positive reinforcer increases the association between a situation and the
taken action, whereas negative feedback diminishes this association. Both McDougall’s S-R
reinforcement principles and Thorndike’s law of e�ect are e�ects of connections between
stimuli and the outcomes of the stimuli. Where McDougall claimed that policy search is
1Darwin published On the origin of species in 1859
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2.1. ADAPTIVE BEHAVIOR IN PSYCHOLOGY

Figure 2.1.: Phrenology, an early attempt on explaining behavior – ca. 1895.
(�gure fromWikiMedia Commons)
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CHAPTER 2. PSYCHOLOGY AND NAVIGATION; ADAPTIVE BEHAVIOR AND NEURAL AUTONOMY

an e�ect of evolution, Thorndike stated that reinforcement could happen internally in the
individual such that reinforcement of conditioned stimuli is a learning process [62, 69, 72].

2.1.1. Behaviorism & reinforcement learning in psychology

“Psychology as the behaviorist views it is a purely objective experimental branch of natural science.
Its theoretical goal is the prediction and control of behavior”[85]. In his 1913 article, John
B. Watson (1878-1958) campaigned for strengthening psychology as a science by adopting
methods from natural sciences. Only observable and measurable qualities would be reported
in the new science, excluding introspection and subjective methods from earlier psychology
research. Watson wrote: “Speaking overtly or to ourselves (thinking) is just as objective
a type of behavior as baseball” [86]. Via (the change in) animal responses after stimuli,
behaviorists could objectively measure the dynamic mind. Responses could either be explicit,
expressed by directly observable qualities in the external behavior of the animal, or implicit,
expressed as visceral movement, glandular secretions, or neural activity. Watson’s animal
research considered physiological responses and explicit actions, including both Thorndike’s
physiological law-of-e�ect and learning for voluntary actions [62]. Despite the stated goal
of reducing all behavior to S-R connections, the ultimate objective of behaviorism was to
understand the mechanisms involved in human behavior [62].
In a public debate between McDougall and Watson, McDougall criticized behaviorism for

being too deterministic – not leaving room for free will or voluntary actions[87]. How could
functionalistic views on re�exive behavior account for art, music, or unconditional love?
Behaviorists attempted to explain all aspects of human behavior by reinforcement principles,
concepts mainly used as models for the formation of instincts or re�exive behavior. The
use of relatively simple S-R connections, acquired by randomly encountered connections
during a single lifetime, can hardly explain higher human cognition. Chapter 3 covers
how similar reasoning applies to RL in AI, e�ectively limiting machine intelligence by RL
to simple problems and problem-speci�c agents. Classical behaviorism was critiqued for
being too simplistic, that reinforcement of simple S-R connections could not account for the
complexities of human behavior.
Burrhus Frederic Skinner (1904-1990) represented a renewal of Watson’s behaviorism.

Skinner’s behaviorism was devoted to the study of responses; concerned with describing
rather than explaining behavior, Skinner could investigate deeper S-R structures. With a focus
on how an agent operates on an environment for achieving an e�ect, operant conditioning
considers deeper 𝑆𝐷 − 𝑅 − 𝑆𝑅 sequences2. The discriminative stimuli 𝑆𝐷 de�nes the relevance
2Note for the computer scientist: expressed with terms from RL in AI, Skinner used discriminator 𝑆𝐷 to denote
a pre-condition (one aspect of agent state 𝑠), the animal re�ex 𝑅 as the agent’s action 𝑎 , and 𝑆𝑅 as reward 𝑅 .
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2.1. ADAPTIVE BEHAVIOR IN PSYCHOLOGY

of the link, i.e., the Dewey-state that relates to the conditioned response. The conditioned
re�ex 𝑅 denotes the response or action of the animal associated with the operant link, and
𝑆𝑅 the conditioning signal responsible for changing behavior. The response can be positively
reinforcing, increasing the drive for choosing action 𝑅 under antecedent state 𝑆𝐷. The
response can be negatively reinforcing, decreasing the drive for choosing action 𝑅 under
antecedent state 𝑆𝐷 . Since the conditioning signal 𝑆𝑅 comes after the conditioned re�ex 𝑅, we
say that conditioning works on a link that operates toward an objective. Operant conditioning
allows for di�erentiating behavior, better representing Skinner’s experimental �ndings [72].

2.1.2. Purposive Behaviorism & Cognitive Maps

Edward C. Tolman (1986-1959) found the re�ex model in classical behaviorism to be too
simplistic for explaining complex behavior. Tolman questioned the assumption that simple
𝑆 − 𝑅 connections could account for complex behavior, instead proposing a richer 𝑆 − 𝑂 − 𝑅
model. The internal state of the organism, 𝑂, allowed Tolman’s model to explain observed
di�erences in an individual’s behavior; a hungry animalwould bemoremotivated for reaching
food than right after feeding – e�ectively changing the animal’s behavior. Driven by the
purpose of feeding, the animal would activate latent knowledge on how to achieve satiety.
Stateful mechanisms for behavior allowed for more accurate models of animal behavior.
Tolman believed that the animal traversed the maze for a reason, to achieve something –
re�ecting purpose rather than conditioned re�exes as proposed by reinforcement learning
and classical conditioning[72, 76].
Purposive behaviorism considers learning and motivation to be equally important for

behavior. In Tolman’s early experiments, Tolman found that problem solving was greatly
a�ected by the motivation of the animal. In a maze experiment, Tolman and Honzik (1930)
measured the time it took for rats to escape a maze for three di�erent test groups. One group
was rewarded with food outside the maze, resulting in better performance than a second
group that did not receive any extra incentive other than escaping the maze. The third group
did not receive any reward until day 11, and from then on started to follow the same reward
schedule as the regularly rewarded group [77]. Tolman’s results are presented in Figure 2.2.
All groups learned how to escape the maze, possibly motivated by the auxiliary reward of
escaping the discomfort of being in a maze. The regularly rewarded group performed better
than the two other groups when unrewarded. When latermotivated by food, however, the rats
in the initially unrewarded group started to perform better than all other subjects. Classical
behaviorism was unsuccessful at explaining these results. Tolman proposed a mechanism he
called latent learning, a learning process that existed independently of external reward [76].
By considering behavioristic systems as information processing systems with an internal state,
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CHAPTER 2. PSYCHOLOGY AND NAVIGATION; ADAPTIVE BEHAVIOR AND NEURAL AUTONOMY

Figure 2.2.: Reward ismore important in forming behavior than for learning Evidence
for latent learning by Tolman and Honzik (1930). (After [78] according to [14]).
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2.2. THE NEUROSCIENCE OF COGNITIVE MAPS

guided by an internal representation, Tolman advanced behaviorism beyond considering
functionalistic S-R mechanisms into seeing stateful, cognitive entities [62]. When motivated
by food, the animal could extract purposive behavior according to internal knowledge of the
world – in the form of a cognitive map for solving a task [76].

2.2. The neuroscience of cognitive maps

The 1906 Nobel price in physiology and medicine was awarded Santiago Ramón Y Cajal for
what resulted in the neuron doctrine; that all behavior originates from a large number of cells
with signaling capabilities [57]. These specialized cells, the neuron, are surrounded by a lipid
bilayer membrane that is impermeable to electrons. The electrochemical potential across the
membrane, the neuron’smembrane potential, is sustained by active ion pumps. See Figure
2.3 for a schematic representation of the parts of the neuron. Most neurons have four distinct
functional parts; the dendrite is generally where input connections to the neuron are located;
the soma of the neuron integrates excitatory and inhibitory input; the axon conduct processed
information, potentially across large distances; the synapse propagates information onto
the next neuron. The neuron is the processing unit of the brain, processing and conducting
information in large neural networks by spatio-temporal integration in the soma according
to synaptic input.

Figure 2.3.:Most neurons have four functional elements in common: an input com-
ponent, a trigger or integrative component, a conductile component, and
an output component. The four functional components are referred to as
Dendrite, Soma, Axon, and Synapse. A large variety of neurons exist [33].
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CHAPTER 2. PSYCHOLOGY AND NAVIGATION; ADAPTIVE BEHAVIOR AND NEURAL AUTONOMY

Specialized ionic gates in the neural membrane can be opened by neurotransmitters,
depolarizing the neuron’s membrane potential. When the potential at the axon wall is
su�ciently depolarized, ionic gates temporarily open along the axon. The resulting sweeping
surge of depolarization is known as the action potential. When the action potential reaches a
synapse, neurotransmittors are released into the synaptic cleft between this neuron and the
next. Someneurotransmitters activate voltage-gated channels, with a depolarizing (excitatory)
or repolarizing (inhibitory) e�ect on the post-synaptic neuron; other neurotransmitters
initiate longer-lasting changes to the post-synaptic neuron signaling properties. When the
post-synaptic neuron is su�ciently depolarized, it �res an action potential, propagating the
signal on through that neuron’s output connections [33].
Eric Kandel later (1965) demonstrated how synaptic connections can change as a function

of activity [34], resulting in the current view that learning and memory originate from
synaptic plasticity. A persistent rewiring happens continuously as a function of neural
activity, resulting in short-term or long-term change in a synapse’s e�ciency for eliciting
response in the post-synaptic neuron [5]. Short-term changes could have signi�cance in
neural computation, whereas long-term synaptic remapping is the underlying mechanism of
learning. Computation by networks are said to be sparsely coded, a computational scheme
where individual nodes of the network have but a fraction of any computation [23]. The state
of the network at any given time is both the method and the output of computation – there is
no clear distinction between what is the result of neural computation and what belongs to its
computational state. Although individual neurons have a minor e�ect on problem-solving,
the collective pattern of activity and the changing connections between neurons is seen as
the origin of behavior. Any persistent remapping could provoke bene�cial patterns to emerge,
e.g., the activation of speci�c nodes as a result of external phenomena. Speci�c neurons have
been identi�ed that directly re�ect external properties of the environment, properties that
are intimately involved in autonomous navigation [13].

2.2.1. Neural representation of Euclidean state

Central to all navigation is knowledge of one’s current (navigational) state; knowledge of one’s
location, orientation, and heading, and for objects that can block or otherwise a�ect the path,
is fundamental for pro�cient path-planning. Separate considerations of the navigational state
can be mathematically formalized as vectors in a corresponding Euclidean space. Euclidean
geometry was �rst used for representing locations in the physical world and later extended
to involve general 𝑁-dimensional spaces [21]. With a set of axioms founded in “measuring
the world”, Euclidean geo-metry allows for measuring and planning displacement. Vectors
represent the distance and direction from some origin to some point in that Euclidean
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space. For example, the Cartesian vector ®𝑎 = [1.0, 3.0] can represent a point in a plane
(2𝐷), one unit size from the origin along the �rst dimension, and three units along a second
dimension. A polar coordinate ®𝑎 = [𝑟,𝜙] de�nes a point with distance 𝑟 along a line with
angle 𝜙 relative to some reference. The di�erence between Cartesian representation and polar
coordinate representation is illustrated in Figure 2.4. Euclidean geometry is a mathematical
framework for representing navigational states, using vectors to de�ne location, orientation,
or translation in an environment.

Figure 2.4.: Euclidean information can be represented in polar or Cartesian coordi-
nates. [a] Cartesian coordinate systems according to di�erent reference frames.
Information represented in allocentric reference frame North/East (𝑥𝑛, 𝑦𝑛) or
egocentric Forward/Starboard (𝑥𝑏, 𝑦𝑏). [b] Vectors expressed in polar coordinates,
e.g., the point with polar coordinate (3, 60°) has distance 3 units along the axis
with angle 60°.

The importance of Euclidean geometry for navigation – and the importance of naviga-
tion for basic survival – implies that the brain has an e�ective representation for Euclidean
information. Thinking in terms of Euclidean geometry is bene�cial for two reasons: First,
representing spatial information as vectors facilitates discussion and allows a mathemat-
ical analysis of navigation. Vectors in the Euclidean representation must be according to
a reference frame. An allocentric representation is a vector with at least one parameter
represented according to an external reference frame. For example, “two steps north and
one step west” represents relative displacement according to the Cardinal directions. An
egocentric representation measures parameters relative to the current situation of the agent.
For example, “two steps forward and one to your left” represents relative displacement mea-
sured according to one’s current parameter con�guration. Second, considering independent
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navigational concerns across separate Euclidean spaces facilitates discussion and analysis.
Rather than approaching navigational challenges as monolithic and inseparable tasks, as
indicated in classical behaviorism, independent representation of orthogonal information in
simpler Euclidean spaces decreases the complexity of the operation. A maritime operation
could, for example, involve (1) the �nal objective of the navigation, and (2) local obstructions
and dangerous tra�c. Decomposing the problem into separate concerns can simplify this
navigational task compared to a monolithic approach. A decomposed state representation
would be economical compared to monolithic approaches; the brain appears to represent its
navigational state across multiple simultaneous partial representations [13] Neural represen-
tation of Euclidean state (NRES) can hold Euclidean information for various navigational
modalities.

Figure 2.5.: Illustration of allocentric and egocentric reference frame. Direction and
position can be represented in a egocentric or allocentric reference frame. The
relative location between a house and the Ei�el tower can be given according to
allocentric Cardinal directions (North-East) or egocentric reference ("over there").
(Figure from [89])
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Navigational state – decomposed across multiple NRES

The �rst NRES cell to be explored was the place cell. O’Keefe and Dostrovsky (1971) observed
that speci�c cells in the hippocampal formation responded to navigational conditionals on the
animal’s allocentric position in an environment. Place cell activation re�ected navigational
information; whenever the location of the animal corresponded to the receptive �eld of one
place cell, this neuron exhibited a heightened neural activation [54]. The activation level of
the place cell in terms of �ring3 frequency appears to be governed by a Euclidean conditional.
Several other cell types have been reported by modern neuroscience, each representing a
separate consideration of navigational state.

De�nition 3 Information represented as vectors can only hold information about the parame-
ters involved in the constituting space; themodality of an NRES is the set of parameters involved
in the mapped Euclidean space.

The NRES modality of a place cell mapping is the allocentric position of the mouse. The activa-
tion pattern across the population involved in an NRES map forms the neural representation
of this NRES modality. Other examples involve boundary vector cells [44] or border cells
[65], responding to the location of borders or boundaries in the environment. The modality
of head direction cells [71] corresponds to the current heading of the animal, and speed cells
to the animal’s current velocity [38]. Landmark vectors cells [18] and object vector cells [29]
re�ects the location of external objects. Note how the object vector cell is directly analogous
to the radar in maritime navigation, representing objects in di�erent allocentric directions
and distances from the animal’s position. A selection of allocentric NRES modalities from
Bicanski and Burgess’ comprehensive review paper on neural vector coding [13] is presented
in Table 2.1.
Navigation can be concerned with absolute or relative states. First, navigating from one’s

current position 𝐴 to objective 𝐵 requires knowledge about one’s allocentric position and
heading. One’s position is re�ected by place cells [54]. The landmark vector cell encodes the
location of landmarks around the animal, but as object + position conjunctive conditionals
[18]. An animal’s current heading is re�ected in the head-direction cell, encoding the current
allocentric orientation of the head [71]. Second, safe navigation requires knowledge of im-
mediate dangers or objects that can block one’s path. The object vector cell (OVC) represents
the location of near objects [29]; the border cell represents insurmountable borders in a
proximal position NRES modality [65]; the boundary vector cell represents any boundary in
a distal position NRES modality similar to OVC encoding [44]. In contrast with the proximal
3Neuroscientists refer to the event of an action potential as a “�ring” in the neuron; the �ring frequency is a
common measure for a neuron’s activation level, re�ecting the rate of transmission in its output synapses.
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Figure 2.6.: A selection of identi�ed NRESmodalities of importance for navigation,
with reference to the original publication. (Illustration adopted from [6] )

requirement of border cells, OVC cells have receptive �elds at a range4 of distances. Addi-
tional NRES cell types are discovered every year; although it can be rewarding to recognize
navigational information as NRES modalities from neuroscience, this project bene�ts more
from identifying the basic principles behind neural representation of one’s navigational state.
Distributed state representation in the brain re�ects orthogonal aspects of the navigational
state as separate NRES modalities.

2.3. Discussion on the biology of autonomous navigation

In this chapter, we have reviewed how matters of the soul became a scienti�c discipline, a
science devoted to understanding the foundation of biological autonomy along with theories
from behavioral psychology and the psychology of learning, highlighting crucial aspects for
agent autonomy. We have seen how Skinner’s theories on operant conditioning, Tolman’s
concept of a cognitive map and latent learning, and recent �ndings from the neuroscience
of navigation could better represent behavioral complexity than Thorndike’s law-of-e�ect.
The identi�ed mechanism for neural representation of Euclidean space (NRES) has been
essential in the development of autonomous agents in chapter 4.
4OVC respond to a range of distances; most OVC cells have a receptive �eld up to 30𝑐𝑚 away in mice [29].
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Locality Repr. Direction Repr. Concern
Head-Direction Cell - allocentric Head direction
Place Cell allocentric - Agent position
Border Cell allocentric - Location of borders
Boundary Vector Cell [distance] allocentric Location of boundaries.
OVC [distance] allocentric Location of objects
LVC [distance] allocentric Location of landmarks

Table 2.1.:Neural representation for di�erent Euclidean spaces of importance for
navigation: Head-direction cell respond to the current allocentric angle of the
head (1D). The place cell and border cell respond by the proximal allocentric
location (2D). The remainingNRES respond to conditions that combine the current
heading with distance to map 2D space, combined with auxiliary conditions (e.g.,
the existence of boundaries, objects, or landmarks at the location).

Psychology can well be considered as the study of human behavior and the formation and
loss of personality – the expression of one’s autonomy. Early researchers like McDougall,
investigating re�exive behavior and instincts shaped by reinforcement, and Thorndike, con-
sidering similar mechanisms internally in the individual, were pioneers in the psychology of
functional behavior. Although McDougall investigated the development of re�exive action
and Thorndike considered learning within the individual, the primary di�erence between the
two involves the model explanation for the mechanism of adaptation. McDougall researched
inherited instincts, whereas Thorndike/Watson focused on adaptive behavior internally in
one individual – what is referred to as learning in biology. The debate between early move-
ments in behavioral psychology has relevance for today’s behavioral AI, and can provide
deeper insight into the methodological basis for RL in AI.

Two scientists of the neobehaviorist movement have received extra attention. First, experi-
mentalist B. F. Skinner was mainly concerned with describing observed behavior – observing
the rules of adaptive behavior rather than explaining their functional foundation. What Skin-
ner referred to as operant conditioning, the reinforcement of operant behavior toward some
objective, could inspire a mechanistic model of intrinsic rewards for RL agents. Achieving a
goal can be rewarding in itself for the operant link. Second, the more theoretically inclined
Edward C. Tolman introduced the concept of cognitive state for behavior. Tolman proposed
that reward has more impact on motivation than on learning, resulting in a model Tolman
referred to as purposive behaviorism. Claiming that reward a�ects motivation and behavior
rather than learning, Tolman introduced concepts like latent learning, stateful execution, and
cognitive maps to explain the full complexity of animal autonomy.

Electrophysical recordings have veri�ed Tolman’s hypotheses of cognitive maps for a range
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of navigational modalities. One’s absolute position, head direction, the relative or absolute
location of others, or heading and distance to path-blocking obstructions are reported in
recent neuroscience publications. Neural representation of navigational state appears to be
distributed across separate concerns, each represented by NRES. Similar coding has been
identi�ed for other continuous parameters, like sound frequency in bird song [2] or conceptual
space [6, 11, 16, 20] for human thinking. Neural representation of one’s navigational state is
expressed across several cognitive maps formed by NRES, demonstrating the importance of
distributed state representation in the brain.
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Chapter 3.

Adaptive algorithms and navigation

When a measure
becomes a target

it ceases to be a good measure

Goodhart’s Law

Inspired by early neuroscience, Rosenblatt (1957) demonstrated how a one-layered compu-
tational graph can recognize simple patterns by what has become known as the perceptron.

“The proposed system depends on probabilistic rather than deterministic prin-
ciples for its operation, and gains its reliability from the properties of statistical
measurements obtained from large populations of elements.”[59].

The original perceptron was inspired by the McCulloch-Pitts neuron model as an activation
function, as shown in Figure 3.1a. Later iterations of the perceptron have used di�erentiable
activation functions, allowing for deeper error signal propagation through the application
of the chain rule [61]. Backpropagation allows for deeper networks[60], with multi-layered
perceptrons (MLP) and what has later been referred to as arti�cial neural networks (ANN) or
deep learning [61]. ANN could be considered a simple frequency-domain interpretation of
biological neuronal networks [58]. These methods are referred to as perceptron-class adaptive
�lters in this text. A common activation function in deeper �lters is the recti�ed linear unit
(ReLU) function[24] – the integral of the activation signal in the original perceptron, as
presented in Figure 3.1. Today’s successor to the perceptron could be thousands of layers
deep, requiring large amounts of labeled examples to categorize patterns or train estimators
based on regression.
Behavioral autonomy requires more of the agent than what can be provided by perceptron-

class adaptive �lters. Although situation awareness is essential for understanding the world,
perceptron-class AI would not be su�cient for behavioral autonomy; behavioral adaption
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(a) The McCulloch-Pitts model.

(b) The ReLU activation function.

Figure 3.1.: Two perceptron-class activation functions, the McCulloch-Pitts model
and the ReLU activation function. [a] The original perceptron activation
function is an implementation of the McCulloch-Pitts neuron model. [b] The
ReLU activation function can be seen as the integral of the original activation
function (with a gradient de�ned by curve a).
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requires an ability to behave according to earlier experience. The objective of reinforcement
learning (RL) in AI is often summarized by the reward hypothesis[66].

“That all of what we mean by goals and purposes can be well thought of as
maximization of the expected value of the cumulative sum of a received scalar
signal (reward).”

According to the reward hypothesis, a stochastic decision process can emulate learning by
means of an iterative search for optimal parameters in the stochastic decision process. Both
RL and perceptron-class AI adapt according to external feedback, but while perceptron-class
�lters adapt according to supervised feedback and rote learning, the RL agent reinforces
bene�cial behavior as measured by the scalar reward signal 𝑅 . Autonomy requires that the
behavior of the agent adapt according to an agent’s own experience, making RL a promising
candidate for the journey toward autonomous navigation.

Figure 3.2.: The number of peer-reviewed AI publications, 2000-2019 [92]

Although AI publications represented 3.8% of all scienti�c publications worldwide last
year[92], one could ask whether these reports represent great engineering rather than sci-
ence. A substantial part of AI articles could be summarized as “our method outperforms
the state-of-the-art in 𝑋” where 𝑋 is some challenge claimed not to have any satisfactory
solution. Constructing methods for data-driven �lters can be impressive engineering. How-
ever, the otherwise data-driven research �eld can be criticized for being driven by examples
of accomplishment rather than scienti�c vigor. This chapter presents a short overview of
pertinent �ndings from computing science, with emphasis on distributed representation and
computation that could allow for purposive mechanisms in AI.
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3.1. Reinforcement learning in AI

A classical formulation of a sequential decision optimization problem is theMarkov decision
process(MDP)[8]. An MDP is a clear formulation of behavioristic theories as formalized
by Thorndike; the desire for repeating a certain response is reinforced when followed by
reward[75]. The learner and decision-maker of an MDP is called the agent. The agent
interacts with a system, referred to as the environment in the classic RL literature. The MDP
description requires a simple discrete-time formulation of the joint system comprised of the
agent and the environment. At every time step 𝑡, the three aspects of an MDP are updated
as shown in Figure 3.3. The agent’s choice interacts with the environment as the action 𝑎𝑡,
whereby the interaction at time 𝑡 results in an updated environment state, 𝑠𝑡+1, and a possible
reward signal 𝑅 𝑡+1 . Learning is expressed as a gradual improvement of the choices of the
agent, selecting the best action from a revisited state. If a state-action pair eventually leads to
reward, the desire for taking this action at the next visit to this state is reinforced. The MDP
problem representation requires that each state be time-invariant and contains su�cient
information to fully represent the next choice. The state and action representation must be
such that a state-action pair uniquely de�nes the probability distribution of the next state.
Sutton and Barto (2018) regards the Markov property to be a property of the state alone [66],
thus assuming that the action-set is prede�ned by the environment and held constant for the
duration of the algorithm1. Note that theMDPwas originally de�ned for sequential processes
with a �nite number of states, explicitly excluding continuous stochastic processes[8]. A
proper introduction to the MDP and the RL formalism for establishing adaptive procedures
is presented by Sutton & Barto (2018) [66]. The MDP is a probabilistic formulation of a
sequential process where behavior can be optimized according to an external scalar signal
𝑅 . Methods in RL consider the search for optimal behavior according to 𝑅 in the MDP
framework.
The value function represents experience in the form of the expectancy of future reward.

The value of a state 𝑣𝜋 (𝑠) re�ects expected accumulated reward by following policy 𝜋 from
state 𝑠 and onwards. The reward hypothesis of RL rede�nes appropriate behavior as the
maximization of expected return for accumulated 𝑅 , denoted by the return 𝐺𝑡:

𝐺𝑡 � 𝑅𝑡+1 + 𝑅𝑡+2 + ... + 𝑅𝑇 (3.1)

where 𝑇 de�nes the length of the episode. In its simplest form, the return is the sum of all
future reward – as de�ned by 𝑇 in Equation 3.1. Assuming that the importance of a cause is
inversely proportional with the time di�erence for some e�ect to happen, a simple solution
1Sutton & Barto (2018) refers to the Markov property as a trait of the state, the Markov state
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Figure 3.3.: The MDP considers decision making to be a discrete-time stochastic
process; learning is expressed as a search for optimal stochastic parameters
according to a scalar measure of success. The decision agent interacts with an
environment through actions 𝑎𝑡, according to the environment state 𝑠𝑡. The
purpose of RL is to optimize agent performance according to a scalar measure of
success – the accumulation of reward R [66].

would be to introduce a geometric discount factor.

𝐺𝑡 � 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + · · · =
∞∑︁
𝑘=0

𝛾𝑘𝑅 𝑡+𝑘+1 , (3.2)

where 𝛾 ∈ (0, 1) is the scalar discounting factor. The in�uence of the summed term in
Equation 3.2, decreases toward 0 with long time intervals between cause and e�ect; the
e�ect of lim𝑡→∞

[
𝛾𝑘𝑅 𝑡+𝑘+1

]
= 0 is stability in learning, and it is no longer necessary to limit

learning to episodes. The value function can be written as

𝑣𝜋 (𝑠) � 𝔼𝜋

[
𝐺𝑡

�� 𝑆𝑡 = 𝑠
]

(3.3)

= 𝔼𝜋

[ ∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝐾+1

���𝑆𝑡 = 𝑠

]
∀ 𝑠 ∈ 𝑆 , (3.4)

where 𝔼𝜋 (·) denotes the expectation value of the argument · while following policy 𝜋. The
value function 𝑣𝜋 (𝑠) can be thought of as the agent’s expectancy for future reward 𝑅 from
state 𝑠 while following policy 𝜋.

A policy is a mapping from individual Markov states of an MDP to an agent’s drive toward
the di�erent choices the agent canmake. TheRL literature refers to this drive as the probability
of the agent taking the corresponding action. RL agents change behavior with experience,
as expressed by agent policy 𝜋 being de�ned by agent experience. Agent experience is
represented by the value function 𝑣𝜋 (𝑠), de�ned under the acting policy 𝜋. The mutual
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dependency between 𝑣𝜋 (𝑠) and behavior policy𝜋makes the search for optimality challenging.
The learning process becomes a slow asymptotic process toward optimality, whereby the agent
alternates between improving the policy 𝜋 and evaluating this policy in terms of updating
𝑣𝜋 (𝑠) ∀ 𝑠 ∈ 𝑆. Challenges resulting in to slow RL are further explored in Section 3.4. Training
time increases exponentially with increasing state space[9], an e�ect Bellman referred to as
the curse of dimensionality.
Watkins (1989) proposed an extension to dynamic programming, referred to as primitive

learning in his thesis[84]. Rather than learning a model that estimates the transition prob-
ability and the value function for each state, Watkins proposed to gather experience about
state-action pairs directly. Referred to as Q-learning, one can think of this model as directly
estimating the quality of performing action 𝑎 ∈ 𝐴 from state 𝑠 ∈ 𝑆.

𝑞𝜋 (𝑠, 𝑎) � 𝔼𝜋

[
𝐺𝑡

�� 𝑆𝑡 = 𝑠,𝐴𝑡𝑎
]

(3.5)

= 𝔼𝜋

[ ∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1

���𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]
(3.6)

Any practical application of dynamic programming is severely limited in problem size when
the agent must learn the probability of transitions from any state to every other state 𝑠 ∈ 𝕊[28].
When considering the expected return of taking action 𝑎 from state 𝑠 and thereafter following
policy 𝜋, learning proceeds similar to temporal di�erence learning but without having to
consider value and policy separately[83]. Learning the full transition model increases the
task according to

��𝑆2�� · ��𝐴��, while Q-learning only requires the value for each state-action
pairs,

��𝑆�� · ��𝐴��. Still, the Q-learning agent has to visit every state-action pair several times
before a balanced opinion is formed, as illustrated in Figure 3.4b. Q-learning is subject to the
curse of dimensionality, limiting any practical use of tabular RL to simple environments and
research endeavors.

3.2. Value function by approximation; artificial experience

Despite the prediction known as Moore’s law2, proposing an exponential development of
computational hardware, the sequential nature of MDP prohibits RL from scaling with
computational resources. The latency associated with interacting with the environment limits
the learning speed for MDP, not computational resources. Purely digital environments can,
or course, speed up execution – thus decreasing the latency associated with each interaction.

2Moore predicted that the number of transistors per area would double every two years, a famous prediction
which has been fairly accurate since 1965.
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(a) policy and value (b) . . . gradually approach optimality as an asymptotic function.

Figure 3.4.: Learning for MDP can be a slow asymptotic process due to the mutual
dependency between agent policy 𝜋𝑉 and agent value function 𝑉𝜋 . The search
for optimality can be slow or unstable (�gures from [66])

Physical environments, however, are constrained to real-time execution, and learning speed
is una�ected by additional computational resources. When the problem size requires an
excessive amount of training time, i.e., the number of interactions required by RL multiplied
with the latency involved in an interaction, it is common to consider arti�cial experience – RL
agents governed by an estimated value function. Distributed processing in perceptron-class
adaptive �lters3, has bene�ted considerably from the increase in transistor count. Deep
networks can be trained for regression, i.e., for estimating the value function for intermediate
values between points of experience. RL supported by deep function approximation has been
successful for a range of board games and computer games [73, 63, 64, 46, 51, 52]. Whereas
distributed graph-based processing scales well with additional hardware, the sequential
nature of MDP learning is a more important limitation than computational hardware is for
RL algorithms.
Function approximation can be applied in value space and in policy space[12]. Value space

function approximation imitates experience by synthesized value function entries for possibly
unexplored parts of the state space. The reward signal can be used for supervised learning of
perceptron-class networks, making MDP a rich source of automatically generated labeled
samples. Tailored deep function approximation has been shown to provide e�ective support
for RL in board games[74, 4], computer games[51, 52, 82], and for learning speci�c abilities
in robotics (reviewed by [36]). Although perceptron-class approximation can be e�cient for
3Multi-layered perceptrons, ANN, and deep learning are commonly referred to as perceptron-class �lters in this
text; see the introduction to this chapter for more on perceptron-class algorithms.
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Figure 3.5.:Moore’s law of 1965 is still accurate in 2020. Moore’s law predicts an expo-
nential increase in transistor count per area.

creating arti�cial values to guide the agent, the use of non-linear function approximation
can diverge when used with temporal-di�erence learning[79].

In addressing the challenges presented here, RL powered by deep function approximation
has become a substantial part of modern RL research. Digital environments could clone an
MDP or speed up execution to increase training data, facilitating the use of deep function
approximation by creating training data. One could even argue that data-driven methods for
perceptron-style AI are but another modality of experience, indirectly ful�lling the reward
hypothesis by association. However, generating the necessary amount of training data by
RL bootstrapping can be prohibitively expensive for real-time interaction learning. Deep RL
was responsible for one of the greatest accomplishments in modern computing science when
the AlphaGo algorithm accomplished superhuman gameplay in the ancient game of Go[63].
Note, however, how the algorithm required weeks of training on Google’s massive machine
parks, generating experience equal to millions of above-average human life spans4. This
amount of training is not plausible for autonomous navigation agents and online navigation.

4The policy network was trained on 30.000.000 samples, each collected from a separate game to avoid
divergence[63]. Average game time in real-life = 2 hours → 60 million hours = 0.75 million life spans
á 80 years. The value network was trained for even longer (50 M batches in 32 games = 1.600.000.000 games).
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3.3. Value function by superposition; collaborative experience

Central to RL policy making is the value function. The prediction problem refers to the
challenge of �nding the value function 𝑣𝜋 (𝑠). The value function re�ects the estimated
return when following policy 𝜋 from state 𝑠 and forwards. After every visit to state 𝑠, the
value function 𝑣(𝑠) can be updated by the Bellman equation:

𝑣𝜋 (𝑠) =
∑︁
𝑎

𝜋(𝑎 |𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑣𝜋 (𝑠′)] (3.7)

Scaling the probabilistic discounted return after 𝑎 |𝑠 by the probability of performing 𝑎 under
𝜋 highlights how Equation 3.7 learns the value under 𝜋. On-policy learning updates the value
function 𝑣𝜋 (𝑠) while following policy𝜋 [66]. The value function can also be updated o�-policy
– updating the value function under target policy 𝜋𝑡 while following another behavior policy
𝜋𝑏 ≠ 𝜋𝑡. A common example of o�-policy learning is in exploration; an agent can initially
follow a more exploratory policy to get to know the environment.
Combining Watkins’ primitive-learning[84] with o�-policy learning for arbitrary reward

signals, Sutton et al. (2011) demonstrated how general value functions (GVF) could be
formed. Q-learning could form value functions according to signals that could be orthogonal
to 𝑅 and thus unrelated to the behavioral policy. GVF can learn to estimate future values of an
auxiliary signal by the same principles as 𝑣(𝑠), e.g., the value of some unelated temperature
sensor [67]. To avoid confusion, the scalar reward signal for these partial agents is referred to
as the learner’s intent signal in the remainder of this text. The original GVF does not imply a
direct involvement in behavior but learns auxiliary information about the environment that
could have an indirect role in policy synthesis[67]. Since GVF learns by o�-policy learning,
there is no limit to how many GVF learners can observe the same stream of experience.
Wiering and van Hasselt (2008) explored the applicability of probabilistic superposition

principles for the use in policy [88]; speci�cally, the e�ectiveness of Boltzmann addition
and Boltzmann multiplication in value space was compared to a voting scheme between
agents. The article found that rank voting could be better than Boltzmann addition and
multiplication, but one of the authors revealed to me that this conclusion was based on overly
speci�c tasks5. Later, Van Seijen et al. proposed an approach for decomposing monolithic
tasks into simpler sub-tasks that could be learned by a set of single-minded agents [80]. The
separation of concerns was crucial when AI �rst solved the Atari game Ms. Pac-Man [81]. A
set of manually designed reward signals allowed separate learners to form value functions
according to di�erent considerations in the Ms. Pac-Man game. Each intent was relevant to

5In a discussion between the author and Hado van Hasselt at RLDM 2018, Montreal.
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Figure 3.6.: An autonomous agent for Ms. Pac-Man required separation of concerns.
The main objective in the Ms. Pac-Man task can be summarized as capturing
desirable elements while avoiding aversive elements. Approaching the objective
by separate learners, each learning the value function according to a separate
concern, allowed Van Seijen et al. (2017) to reach the maximum score in Ms.
Pac-Man [80].
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main task, allowing the agent to base the next decision on the aggregated state-action value
across the full set of learners. Since GVFs are trained o�-policy, several learners can train
based on the same sequential training data, making trainingmore e�cient. More importantly,
Van Seijen et al. found that decomposing the task into a set of smaller MDPs resulted in
an exponential break-down of task complexity as measured by the Markovian state-space6

allowing Ms Pac-Man to be solved without the use of arti�cial experience.

3.4. Curses for physical interaction learning.

Interaction with the physical world introduces challenges of a di�erent nature than those
relevant for board games. First, the physical world is continuous both in state and temporal
�ow. The real world contains an in�nite amount of information; whereas board games
have a �nite number of possible board positions. A substantial part of the physical world is
continuous – requiring discretization to create a digital representation by which the agent
can train. Discretizing the continuous parameters creates a digital representation of the
system, a representation in which the agent can train. Coarser resolution for Euclidean
parameter discretization or considering longer time-steps could decrease training time,
measured in the number of interactions. However, the low resolution resulting required by
this approach would ultimately be dictated by the curse of dimensionality, severely limiting
the capabilities of the trained agent. Second, requirements for real-time execution disqualify
many data-driven methods for arti�cial experience by perceptron-class AI. Even the most
accomplished approaches and reports on deep RL for games would be infeasible when
training in real-time. The monetary cost of equipment, time involved in repairs, and safety
concerns further limit the available training samples when interacting with the psychical
world. This section introduces some of the di�culties associated with learning in Euclidean
environments, focusing on arti�cial experience by function approximation and temporal
concerns for interaction learning.

3.4.1. Deep concerns with RL for Euclidean interaction learning

A promising application of Euclidean navigation is the planning and execution of movement
by a robot manipulator7. Many parameters from the physical world are intrinsically contin-
uous, a property that does not comply well with the MDP framework. The original MDP
6The raw state space corresponding to the binary channels is estimated to be on the order of 1077, whereas the
state space for each of the 1.800 GVFs is estimated to approximately 103 states[81].

7Euclidean navigation is as relevant for planning and e�ectuating the angles of a robot manipulator as it is for
maritime navigation.
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description requires a �nite number of states [10]. Typical solutions include function ap-
proximation and simpli�cation. First, function approximation can be applied to estimate the
value function instead of comprehensive coverage for the value function. We have seen how
arti�cial experience is possible by supervised learning by automatically generated samples
from RL and how such approaches can be challenging to apply in real-world interaction
learning. Deep RL agents are known to quickly become overly speci�c for solving the task
used in training, lacking the generality to transfer to similar tasks [32]. Second, the system
can be simpli�ed by considering coarser discretization, simpler tasks, designed reward func-
tions, or in environments with limited operational range. Although such research can be
of academic interest, any application of the trained solution becomes severely limited [36].
As there is less interest in task-speci�c demonstrations than genuine autonomy, this section
presents some of the challenges and shortcomings of deep RL.
As sparsely rewarded MDPs require longer training time to distribute the signi�cant

component of the value function across the state space, it can be tempting to help the agent
adopt the appropriate behavior by reward shaping [39]. Reward shaping involves arti�cially
created intermediate rewards, e�ectively guiding the agent in the right direction. Assuming
a perfectly shaped reward that fully represents the original objective, intermediate reward
signals help training by guiding the agent [39]. However, rede�ning the reward signal changes
the MDP and the task for which the agent becomes pro�cient. Measuring agent pro�ciency
by the same signal that is optimized8, can be challenging. Measuring the pro�ciency of the
agent by an unveri�ed representation of the reward signal further convolutes the measure of
success; it becomes unclear whether it is the pro�ciency of the agent that is being assessed or
the accuracy of the shaped reward. Successful attempts are published, whereas unsuccessful
attempts can be forgotten or tried elsewhere. As with the famous example of the Atari game
CoastRunners, where a shaped reward resulted in crazed behavior [15], shaped rewards
could easily result in dangerous situations when applied in the real-world. It can be tempting
to “help” the agent by specifying an arti�cial objective via shaped rewards, but doing so leads
to task-speci�c training and obfuscated solutions [30].
A second plausible solution would be to train on a simulation; training in a simulation

is preferred when training human operators for di�cult or dangerous tasks. Training on a
simulation could have two appealing properties for digital agents. First, using simulations to
generate training samples can be more e�ective than in the physical world; simulation time
does not have to run in real-time – the number of training samples acquired per wall-clock
time is limited by available hardware. Second, training in a simulated environment allows

8Remember Goodhart’s law from the epigraph in the intro of this chapter; Goodhart’s law originates[25] from
economics, but can be equally relevant to probabilistic algorithms.
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for safer training. Some Markov states may be damaging to equipment or personnel. While
some states can be crucial to practice on due to a proximity to danger, doing so in the real
world would pose a risk to equipment and personnel. Simulated states is not concerned with
the same problem; terminal states can be visited in a simulation without extra cost or risk.
Unfortunately, RL training on a simulation is known to pose challenges when transferring
to the real world. As RL is notorious for exploiting shortcuts and loopholes in a model, an
RL agent quickly becomes a specialist on the simulation rather than the real system[36].
Inherently unstable systems are di�cult to model correctly for RL training [3]. Although
less a�ected, agents trained for stable systems would still form sub-optimal policies when
trained on models rather than the real system [36]. Analogous to our earlier discussion on
reward shaping, training on a simulation could form agents that specialize in the digital
representation rather than becoming pro�cient in the real system.
A �nal optionwould be to lower expectations of the agent, for example by assigning simpler

chores to the robot. Demonstrating simple tasks in lab conditions, without external noise or
time-varying dynamics, would be interesting to report assuming that this is the limit of the
technology. Examples of tasks for robot RL agents featured on high-impact venues includes
opening doors [26], grasping irregular objects [45], or shifting a Rubik’s cube by a hand robot
[45]. The accomplishments in the above citations are performed by state-of-the-art deep
RL, trained for hours or days on speci�c tasks. Despite being highly successful in games or
environments with known and straightforward rules, current RL approaches fail to adapt
to new tasks or new terrains [53]. Although deep RL can be demonstrated for a large set of
physical environments, each task must be trained individually and from scratch, requiring a
signi�cant amount of training[47].

3.4.2. Temporal concerns with RL interacting with the physical world.

Finally, we focus on the role of temporality when applying the MDP framework to physical
interaction learning. All physical mechanisms are governed by continuous space and time.
The MDP formulation requires that the system state be expressed via discrete, unique entities
𝑠 ∈ 𝕊 [9]. As a result of the Markov property, the number of Markovian states in state
space 𝕊 vary with both spatial representation and also temporal resolution. Applying the
MDP framework to physical interaction learning requires discrete update times, i.e., discrete
time. This section introduces the considerations involved in representing physical systems as
discrete-time MDPs, identifying the e�ect non-trivial temporal systems have on Markovian
state spaces as the curse of temporality.
Contrary to the temporal �ow for board games – where the mechanim driving causality

is represented in its entirety by alternating which player makes a move – physical systems
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operate in the continuum of time. Future states depend on prior states as well as on the
relative timing of actuation of actions and external input to the system. Capturing temporal
mechanisms in the digital computer requires sampling of the considered variable with a
su�ciently high sampling frequency. The representation is only accurate down to the time
interval between time steps. Higher temporal discretization naturally increases the number
of Markov states, quickly growing the MDP problem size. As the sampling frequency must
be high enough to represent the �nest temporal mechanism of importance, non-trivial
temporal systems are a limiting factor for physical RL. In addition, while being capable of
representing the �nest temporal mechanism, the agent must also be capable of learning
slower mechanisms. Representing slow temporal mechanisms in a system with high sample
rate, requires sequences of redundant sampling. To satisfy the requirements associated with
the Markov property, each state 𝑠 ∈ 𝕊 must include all necessary information to de�ne
the probability distribution of the next state. Multi-step temporal e�ects would increase
the amount of information to be included in each Markov state, increasing the number of
states correspondingly. The resulting explosion of states would depend on the relative time
horizon for the considered temporal mechanism and the sampling frequency of the temporal
representation.

Observation 1 Let a temporal mechanism require knowledge about system states at 𝐿 separate
time steps to satisfy the Markov property, and ℂ be the set of possible permutations in the
considered system representation. The full set of Markov states required to represent the temporal
dynamics becomes 𝑂(Ψ𝐿), where Ψ is the number of permutations in ℂ.

Take, for example, a temporalmechanism that requires knowledge of the system state from the
previous three time-steps to de�ne the probability distribution of the next system state. The
Markov state set for this system at time 𝑡𝑛 would then be de�ned by the previous state at 𝑡𝑛−1,
in turn de�ned by possible states at 𝑡𝑛−2 and 𝑡𝑛−3, and 𝑡𝑛−2. Requiring all this information to
be represented in each instance of the Markovian state set would increase the dimensionality
of the state set with one axis per term.
For each temporal sub-mechanism, observation 1 states that the number of Markov states

increases exponentially with the number of time-steps required to represent the mechanism.
The logic applies to all considered mechanisms, implying that each temporal sub-mechanism
creates an additional explosion of 𝕊. Observation 1 could be viewed as an extension of
Bellman’s curse of dimensionality for temporal systems. Problems resulting from the temporal
e�ects of the environment may be subsumed under the heading “the curse of temporality”.
The importance of temporal considerations is examined by exploring the size of the Marko-

vian state space for di�erent popular RL environments. The state space of non-temporal
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MDPs for chess is estimated to be around 1050, for no-limit Texas Holdem Poker around 1080,
and for Go around 10170 Markov states. The Markovian state space of the real-time strategy
game StarCraft is estimated to be several orders of magnitude larger than any of these [55].
StarCraft is but a simulation with a limited number of temporal mechanisms compared to
the physical world. Observation 1 proposes that the number of Markov states necessary to
learn temporal inferences is exponential with the number of time steps determined to ensure
that the slowest relevant mechanism is represented. Compared to the trivial temporal �ow in
most board games, where time iterates exactly one step after every action, or early computer
games, where the introduction of a no-op “action” – choosing not to act – allows for a similar
situation, the intricacy of real-world temporal dynamics does not easily �t into the MDP
framework. Macado et al. (2020) demonstrated the importance of deterministic temporal
propagation in MDP by creating an RL environment with a non-deterministic temporal �ow.
Extending the popular Arcade Learning Environment [7], Macado et al. introduced what
they refer to as “sticky actions” – actions that could last for more than one time step [48]. Non-
deterministic temporal propagation after action-selection imposed signi�cant challenges
on RL agent performance [48]. The ability to account for non-deterministic temporal �ow
becomes crucial for RL agents interacting with the physical world.

3.5. Discussion on adaptive algorithms and navigation

This chapter contains an overview of selected approaches for emulating adaptive behavior
in the digital computer. The deterministic computer must simulate stochasticity according
to a probability distribution with de�ned probabilistic parameters. The Markov decision
process (MDP) emulates learning as a numerical search for optimal parameters in a generative
decision process. RL in AI is one framework for this kind of learning model, governed by
the following three aspects: the state of the system before interaction, the action through
which the agent interacts with the system, and a reward signal that re�ects the success
of the interaction. The value function expresses the expectancy of reward from state 𝑠 or
of taking action 𝑎 from 𝑠 while following a speci�c behavioral policy. For large problems,
the curse-of-dimensionality prohibits an extensive search as required by pure RL or other
methods rooted in dynamic programming. RL supported by deep function approximation is
referred to as deep RL, and is known to extend RL capabilities to handle colossal state spaces.
However, deep function approximation requires extensive training, limiting its practical use
for interaction learning with the physical world or when learning by real-time interaction.
Learning by RL can be dangerous when interacting with the real world. RL agents must

explore to learn the task and the environment, a process that can be dangerous for equipment
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or personnel. It may be tempting to train an RL agent on a simulation or with the help of
reward-shaping to decrease training time. However, the RL framework is notorious for ex-
ploiting any shortcuts or loopholes in a simulation. Any discrepancy between the simulation
and the real environment can lead to sub-optimal behavior or worse when interacting with
the real environment. The sequential nature of MDPs, alternating between policy evaluation
and policy improvement, further makes parallel learning through interaction with multiple
environments di�cult.
Esteemed roboticist and RL-researcher Leslie Kaelbling elegantly summed up state-of-the-

art robot learning, implying that current approaches to deep RL are unlikely to succeed for
real-world interaction learning. Reporting how today’s approaches to intelligent solutions
are incapable of general intelligent behavior, especially when having to train in real-time,
Kaelbling (2020) points out how RL supported by perceptron-class function approximation is
insu�cient for learning through interactions in the real world. The paper lists four properties
essential for real-world interaction learning. First, the solution must be sample e�cient; deep
perceptron-class function approximation is not su�ciently e�cient for real-time learning
required in online behavioral autonomy. Second, learning must be generalizable beyond the
situation in which the agent is trained; the knowledge acquired by deep RL for one task in
one environment does not transfer well to new tasks or for dynamic environments. Last
but not least, knowledge should be compositional and incremental – represented in a form
that can be combined and appended to existing knowledge. Current approaches for RL do
not have these properties, and it is necessary to discover fundamentally new approaches to
achieve arti�cial general intelligence or autonomous navigation[32].
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Chapter 4.

Purposive behaviorism for navigation

We want AI agents that can
discover like we can,

not which contain
what we have discovered.

Richard Sutton – the bitter lesson

The brain is the only mechanism considered capable of voluntary behavior. With un-
matched capabilities for autonomous navigation, neural systems have been the main inspira-
tion in this work. Chapter 2 provides an introduction on the relevant aspects of NRES and the
psychology of learning and autonomy. Autonomous navigation requires more from adaptive
behavior than what is accomplishable by rote learning or the slow process of forming re�exes.
Full autonomy requires an agent capable of handling unexpected situations and �nding
creative solutions, which is referred to as online adaptation in this text, with the following
four requirements. (1) All execution and learning must happen in real-time, without prior
experience or requirements for pre-training. Experience should originate from a single run;
indeed, restarting the whole environment a million times is obviously of little interest for
online navigation. (2) The observations and variables considered should be expressed in con-
tinuous Euclidean space. The particular meaning of the Euclidean parameters is irrelevant
for this research; that is, the agent should be capable of navigating the stock market price
as well as the location of a ship. Euclidean spaces are general, and autonomous navigation
agents should be capable of handling this generality. (3) Elements of attention, learning the
mechanisms of the environment should be separated from the task of acquiring elements
associated with reward. Removing or changing an element of interest should not a�ect the
agent’s knowledge of the environment. (4) Autonomous navigation is independent of reward
speci�cation while training. Since full autonomy requires an agent that constantly evolves,
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online navigation requires a separation between the learning agent and the performing agent.
Reward metrics can change, and agent priorities should be updated constantly in complex
environments, highlighting the importance of learning and behavior separately.

The study of cognitive processes and voluntary actions in psychology is the best source of
inspiration for the development of autonomous technology. Chapter 2 covers early move-
ments in psychology, with an emphasis on voluntary behavior. Interestingly, Thorndike’s Law
of E�ect, which has later served as an inspiration for RL in AI [66], was considered as being
too simple for expressing the nature of autonomy [87]. The newfound behaviorist movement
measured physiological and behavioral responses on animal subjects rather than considering
introspection as a valid research methodology. Skinner’s operant conditioning theory con-
sidered behavioral responses to be operant toward an objective, capable of better explaining
animal behavior as a distributed set of policies. Combined with Tolman’s cognitive maps,
and in particular reports on NRES from modern neuroscience, operant conditioning and
neobehaviorism could supply the necessary mechanistic understanding for reimplementing
autonomous navigation in technology.

This chapter summarizes the main �ndings in this research, with a particular focus on
accomplishing cognitive navigation for digital agents. Section 4.1 considers how theory from
Chapters 2 and 3 can establish NRES-oriented RL (neoRL) agents for navigation. Latent
learning can be expressed as operant behavior toward NRES cells, allowing for voluntary
behavior by the activation of operant GVFs. After discussing the complexity of the value
function and how function-approximation can be expressed via learned orthogonal value
components, the concept behind NRES-oriented RL is described in detail. Section 4.1.3
introduces the two schools of inference learning from early behaviorism and how following a
school other than temporal-di�erence learning is required for neoRL. In developing inference
inversion for neoRL, a temporally robust approach for learning inferences, the o�-policyNRES
learning is explained in greater detail. Research on autonomous navigation of Euclidean
space requires an appropriate RL environment. Section 4.2 discusses important attributes of
an RL environment for purposive navigation. Autonomous navigation is demonstrated in
the PLE WaterWorld environment by an agent implementing the presented theory. Section
4.3 provides a summary of the experimental results. The chapter is concluded by a brief
discussion on possible implications and future directions for the presented theory on neoRL
networks in behavioral AI.
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4.1. Latent learning and purposive behaviorism by neoRL agents

“Almost all reinforcement learning algorithms involve estimating value functions – functions
of states (or of state-action pairs) that estimate how good it is for the agent to be in a given
state (or how good it is to perform a given action in a given state).” [66]. The agent can emu-
late behavioral autonomy in complex environments by function approximation of the value
function, referred to as arti�cial experience in Section 3.2. Applying the same methods for
real-world interaction learning – learning to interact with a physical system – is di�cult due
to expensive training data and intricate temporal mechanics1. Inspired by neural capabilities
in autonomous navigation and the distributed nature of NRES, in this work, distributed
approaches are explored. Rather than learning what generally happens, i.e., system represen-
tation by stochastic principles, this section considers whether the superposition principle is
applicable for representing a deterministic value function.

4.1.1. The Arnold-Kolmogorov representation theorem

For complex systems dynamics, where modeling can be di�cult, the system must sometimes
be represented by what generally happens. Stochastic representations can predict future
values based on measures like average, variance, or other moments of the distribution. Some
challenges respond well to the stochastic simpli�cation of the decision process presented in
Section 3.1. Others, like the Euclidean navigation task appears to be less appropriate for a
pure stochastic model. Wold’s representation theorem states that any covariance-stationary
time series 𝑥𝑡 can be written as the superposition of a probabilistic component and one
deterministic component

𝑥𝑡 = 𝑧𝑡 + 𝑢𝑡 , (4.1)

where 𝑧𝑡 is a linearly �ltered white-noise process 𝑦𝑡, 𝑧𝑡 = 𝑦𝑡 + 𝑏1𝑦𝑡−1 + 𝑏2𝑦𝑡−2 + . . . , and 𝑢𝑡
is a deterministic component [90]. Allowing for partial inclusion of deterministic components
in the otherwise stochastic MDP, Wold’s representation theorem allows for experimentation
with deterministic behavioral components.
Consider �rst a pure white-noise navigation agent that chooses actions at random. The

resulting Wiener process – a process that can be expressed as the integral of a white-noise
process – is represented by the position of the agent after random movement. At any time
𝑡 > 𝑡0, the Wiener process𝑊𝑡 can increment with a random step in either direction along
each axis, resulting in Brownian motion. When the decision process has an equal probability
of choosing all directions, the location of the agent can be modeled as a Wiener process. The

1See Section 3.4.1 for more on the challenges of real-world interaction learning.
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white-noise signal for the Wiener process can be a�ected by a linear �lter 𝑏, establishing 𝑧𝑡
from equation 4.1. Making the linear �lter a function of the state, 𝑏(𝑠), the random process
𝑊𝑡 can be shaped into expressing directed behavior. Learning can be regarded as inserting
bias into this stochastic process, a bias that favors actions associated with reward 𝑅 . RL can
be seen as an approach for introducing bias into a white-noise behavioral process, in e�ect
adapting behavior according to experience.

Figure 4.1.: The Wiener process in 3D Euclidean space. With an equal probability of
stepping in every direction, the position of an 𝜀-greedy navigation policy with
𝜀 = 1.0 can be modelled as a Wiener process. (Figure by Shiyu Ji // Creative Commons)

Consider the deterministic component of a value function represented by equation 4.1
as the desire of the agent. Representing the full complexity of desire as a deterministic
function would involve intricate and multi-variate relations. In the year 1900, renowned
mathematician David Hilbert compiled a list of 23 unsolved problems where the thirteenth
problementailedwhether higher degree equations could be represented bymeans of functions
of only two arguments [27]. The Kolmogorov-Arnold representation theorem states that every
multivariate continuous function can be represented as the superposition of single-argument
functions.

𝑓(𝑥1, . . . ,𝑥𝑛) =
2𝑛+1∑︁
𝑞=1

𝜒𝑞

(
𝑛∑︁

𝑝=1
𝜓𝑞,𝑝 (𝑥𝑝)

)
, (4.2)

where𝜒𝑞 (𝑦) are continuous real functions [37]. Also referred to as the superposition theorem,
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the Kolmogorov-Arnold representation theorem proves that complex multi-variate functions
can be decomposed into a set of continuous functions of one variable.
Assuming that behavior can be represented by a su�ciently intricate desire function,

Wold’s theorem allows for partial simpli�cation of desire by stochastic representation. Like-
wise, Wold’s theorem opens for a partial introduction of a deterministic component for
stochastic MDPs. Representing the full value function as a deterministic function would
assuredly require intricate multi-variate mechanics of high complexity. The Kolmogorov-
Arnold representation theorem allows for the separation of concerns, which can be bene�cial
for two reasons. First, the simpler, possibly mono-variate, general value functions facilitate
learning by considering less intricate MDPs. Bellman’s curse-of-dimensionality dictates that
MDPs with larger state spaces require exponentially longer training time, or vice versa, how
decreasing the considered state space facilitates learning. Second, considering the decom-
posed value function as agent desire could allow for transparency and partial control over
the autonomous solution. Operant desires represent behavioral atoms analogous to Skinner’s
operant conditioning2. Introducing operant desires for RL could be a �rst step toward latent
learning and purposive behavioral AI.

4.1.2. Latent learning and NRES-oriented navigation

Consider �rst a simple grid world with a single rewarded state 𝑠∗ ∈ 𝕊 and actions correspond-
ing to positive and negative movement along each axis𝔸 = {𝑁, 𝑆,𝐸,𝑊} . Reaching 𝑠∗ results
in a unitary reward 𝑅 = +1.0 . No other rewards exist in this environment, and the agent
should learn how to reach 𝑠∗ from experience. For any Euclidean coordinate ®𝑐 in Figure
4.2, there exists exactly one corresponding grid world state 𝑠 ∈ 𝕊. Thus, the mapping from
𝔼 ∈ 𝑅2 to 𝕊 is unique and comprehensive; there exists one and only one state 𝑠 ∈ 𝕊 for every
coordinate ®𝑐 ∈ 𝔼.
The NRES transform from Section 2.2.1 can establish a discrete representation of Euclidean

information. An NRES population with mutually exclusive receptive �elds could be con-
sidered as a biological expression of tile coding across distributed one-hot neurons. Let the
receptive �elds of the NRES population correspond to the grid world of Figure 4.2. When the
Euclidean parameters change su�ciently to trigger a new NRES 𝑠+ ∈ 𝕊, events preceding this
NRES cell change should qualify for the inference 𝑠− + 𝑒→ 𝑠+. Events that repeatedly take
part in the transition from 𝑠− to 𝑠+ are likely to be important for this state change. Note how
NRES state for complex systems forces us to consider state change as being an e�ect of the
environment rather than controlled by agent action. Since NRES transitions and causalities
2Section 2.1.1 covers reinforcement learning in psychology and operant conditioning from the neobehaviorism
perspective.
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of the real-world can happen without agent interference, the learning agent should look for
the cause of the transition rather than delving into one’s own actions. The NRES-oriented RL
agent can use the activation signal for individual NRES cells as reward signals for training
operant desires by o�-policy GVF in 𝕊𝑁 .

Figure 4.2.: A simple NRES representation of Euclidean space. The simplest compre-
hensive and mutually exclusive set of receptive �elds results in the grid-world
representation. The 5𝑥5 representation, referred to as𝑁5 in this work, can de�ne
25 separate OVF – each with a di�erent intent. The OVFwith intent toward [4, 4]
will learn the value function according to a positive reward when activating the
corresponding receptive �eld. [41]

Tolman’s purposive behaviorism involves a clear separation between learning and behavior.
An expression of latent learning could be achieved by distributed o�-policy learning by
operant desires, trained operantGVFs toward the activation ofNRES cells. Purposive behavior
can further be expressed as a generative process similar to the series-expansion of orthogonal
desire components. Orthogonality in the value space can be de�ned as

De�nition 4 Orthogonal value functions of state space 𝕊 are value functions that are trained
on mutually exclusive reward signals.

Operant desires in the form of GVF toward NRES activation can form a set of OVF, assuming
that NRES �elds are independent andmutually exclusive. Using the activation signal of NRES
cells with mutually exclusive receptive �elds as reward signal for a set of GVF e�ectively
forms singular reward signals in 𝕊𝑁 . Operant desires trained with mutually exclusive NRES
activation signals for reward, result in one set of OVF. The set of OVF establishes a basis
in the value space domain, motivating the use of the Kolmogorov-Arnold representation
theorem for desire.
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Motivation and purpose can be expressed as elements-of-interest – projections of the agent’s
expectancy of reward in the considered NRES modality.

De�nition 5 Elements-of-interest of an NRES modality represent parameter con�gurations
associated with reward. Elements-of-interest are associated with valence, ameasure of an agent’s
motivation for reaching the it; elements-of-interest are associated with location, the parameter
con�guration of the element in the considered NRES modality.

Let the location of elements-of-interest activate and extract latent knowledge in the form of
OVF. The agent’s motivation for reaching an element-of-interest is proportional to its valence,
the expectation of reward associated with the element. Scaling the corresponding OVF by
reward expectancy associated with elements-of-interest contained in the associated NRES
cell, allows for purposive behavior by desire through series expansion:

𝑄𝑁 (𝑠, 𝑎) =
∑︁
𝑖∈𝕊𝑅

𝑤𝑖𝑄L𝑖 (𝑠, 𝑎) , (4.3)

where𝑤𝑖 is proportional to the valence of element 𝑖, and𝑄L𝑖 signi�es the OVF value function
activated by the NRES containing element-or-interest 𝑖. Since reward only comes from
elements-of-interest 𝜉𝑖 in the domain 𝔼, reward expectancy is limited to the set,

𝕊𝑅 = {𝑠 ∈ 𝕊
�� ∃ 𝜉𝑖 ∈ 𝔼, 𝜉𝑖 ∈ 𝑠} (4.4)

For simple challenges with direct reward mechanisms, valence can be programmed individu-
ally. For autonomous navigation and life-long learning, valence could be learned or adapted
over time – a simple task for other branches of machine intelligence. Note how positive
valence implies an attractive element-of-interest in 𝕖, whereas negative valence results in an
aversive e�ect for the element-of-interest. The full NRES value function 𝑄𝐸 can be formed as
the weighted sum of OVF activated by elements-of-interest.

4.1.3. Inference inversion in neoRL

Finally, the alternative to temporal di�erence for early behaviorism should be discussed.
Tolman (1948) writes about two schools in behaviorism, where the temporal di�erence
school is analogous to TD learning in RL. The equally acknowledged persistence school of
behaviorism focuses on how essential events are presented simultaneously with the desired
response more often than the sporadic occurrences of less relevant events. Stimulus-response
pairs that occur more frequently tend to “get strengthened at the expense of the incorrect
connections”[76]. The discrepancy between the two explanations may be subtle, and the
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operant inference trinity from Section 4.1.2 is repeated to facilitate discussion:

𝑠− + 𝑒→ 𝑠+ , (4.5)

where 𝑠− has the role of Skinner’s discriminatory stimuli 𝑆𝑅 – the pre-condition for the
inference; event 𝑒 represents the action –the conditioned re�ex involved in the causality; 𝑠+

represents the conditioning signal 𝑆𝑅 – the outcome of the inference. Whereas the temporal
di�erence school focused on the time di�erence between cause {𝑠−, 𝑒} and e�ect {𝑠+}, the
persistence school of behaviorism would instead look for a persistent reason {𝑒} behind the
transition 𝑠− → 𝑠+. The two directions can be summarized as: (a) the temporal di�erence
movement focusing on the cause as the learning driver, while (b) the persistence school
emphasizing the e�ect of the inference as what drives learning. This section considers the
development and conceptual basis for inference inversion in RL.

De�nition 6 The temporal driver of a process is the signal responsible for the �ow of time.

The temporal driver of the learning process and the temporal driver for the underlying
inferences should be considered separately. The temporal driver of a discrete-time process
is the event that makes time progress by one step such that 𝑡 ← 𝑡 + 1. Most MDPs have the
event of a new action 𝑎 ∈ 𝔸 as the temporal driver. Examples include chess, where time
progresses after the player makes a choice, or Atari, where introduction of a no-operation
action 𝑎𝑛𝑜𝑜𝑝 ∈ 𝔸 after a time-out allows for similar temporal dynamics3. In real-world
systems, it may be necessary to di�erentiate between the learning driver and the temporal
driver responsible for the inference being studied.
In traditional RL environments, the occurrence of an action establishes the temporal driver

of both the learning process and for inferences in the environment. The Bellman equation
updates the state-action value after every action:

𝑄𝑛𝑒𝑤 (𝑠𝑡, 𝑎𝑡) ← (1 − 𝛼) 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼
(
𝑅𝑡 + 𝛾max

𝑎
𝑄(𝑠𝑡+1, 𝑎)

)
, (4.6)

where 𝛼 is a ‘learning factor’ [84]. Using the occurrence of 𝑎 ∈ 𝔸 as a temporal driver
allows the Markov property to be expressed as an attribute of the state alone – referred to
as the Markov state by Sutton and Barto (2018). Whereas some challenges respond well to
action-driven learning, others require temporal abstractions that challenge traditional RL.
Temporal abstractions in RL have been explored for half a century with limited success –
with the options framework being the most accomplished. Sequences of basic actions can
3A modi�ed version of the Atari environment has been developed [48] with non-deterministic temporal
propagation, a modi�cation and a new environment that has received far less attention than deserved
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be expressed through temporally extended options, allowing the semi-MDP framework to
study temporal abstractions by action-driven MDP [68]. For the temporal complexity of
the real world, however, even RL supported by options and deep function approximation
is challenged when the task becomes interesting [36, 32]. In some cases the two temporal
systems may be independent, such as the temporal abstraction for inferences is separate from
the scale in which the agent performs actions; hence, purely action-driven RL may express a
fundamental �aw for behavioral AI.
The persistence school of behaviorism could be emulated by assigning credit to events after

each transition 𝑠− → 𝑠+ as a leaky integrator. All events that happened while at 𝑠− should be
assigned equal weight when transferring to 𝑠+, for example by changing the learning-constant
𝛼 to include a measure of persistence.

𝛼𝑖 = 𝜓𝑖 (𝑁)𝛼 , (4.7)

where the 𝜓𝑖 is a function of the number of times event 𝑖 happened during pre-state 𝑠−.
Multiple occurrences of the same event should a�ect learning positively through 𝜓𝑖 (𝑁),
whereas zero occurrences would a�ect learning negatively according the result of 𝜓(0).
Accepting the occurrence of an event as the basis for learning individual inferences, it is still
possible to utilize a transition-driven update by inference inversion,

𝑄𝑛𝑒𝑤 (𝑠𝑡, 𝑎𝑖) ← (1 − 𝛼𝑖) 𝑄(𝑠𝑡, 𝑎𝑖) + 𝛼𝑖

(
𝑅𝑡 + 𝛾max

𝑎
𝑄(𝑠𝑡+1, 𝑎)

)
, (4.8)

after 𝑠− → 𝑠+ for all inferences 𝑠− + 𝑎𝑖 → 𝑠+
�� 𝑎𝑖 ∈ 𝔸𝐼 . 𝔸𝐼 is the set of all operand events

considered during the update. Equation 4.8 a�ects all inferences considered between 𝑠−

and 𝑠+, increasing the inference value for events that happened and decreasing the value
otherwise. Note how equation 4.8 learns the inference value from the pre-state 𝑠− to post-state
𝑠+, rather than learning state-action values toward some global reward. The neoRL agent
is governed by the reward hypothesis via elements-of-interest, the agent’s projections of
expectancy or reward in the considered Euclidean space.

4.2. Research environment for autonomous navigation

Behavioral AI research involves two components: the agent, representing the autonomous
entity, and the environment, the system where the agent expresses behavioral autonomy.
The environment de�nes the set of choices available for the agent, thus deciding what can
be learned by the agent. Most available environments for RL research highlight popular
challenges for traditional RL research; hence, the low number of environments considering
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Euclidean navigation or challenges where the �ow of time is separate from the occurrence of
an action4 indicates the di�culty for achieving these aspects by RL alone. Although new
environment can easily be implemented, tailoring environments while trying to demonstrate
an e�ect might raise concerns with the generality of the results. This section describes the
main priorities for an environment for research on online Euclidean autonomy, and our
search for an existing environment that satis�es these criteria.
An implicit assumption in most RL research is related to the scalability of results. Learning

to play games or solve toy problems is interesting under the assumption that (a) methods scale
to real-world complexity and (b) results are general. The hypothesized curse-of-temporality5

states that even the simplest temporal mechanisms can drastically increase the number of
Markov states, possibly beyond what monolithic RL agents can handle. Temporality for the
selected environment should follow non-trivial mechanics, a requirement that excludes most
mainstream RL environments. Many task-speci�c environments exist for toy problems or
algorithmic challenges, whereas �nding an appropriate environment for general Euclidean
navigation with temporal concerns can be challenging. The four requirements for online
navigation listed in the introduction of this chapter have guided the search for an appro-
priate RL environment for navigational autonomy: (1) Interaction with the environment
should happen in real-time, limiting the number of samples and making statistical function
approximation di�cult. (2) Navigational state and observations should be reported as contin-
uous (Euclidean) coordinates. (3) Latent learning and the separation between behavior and
learning, together with (4) changing reward structure, requires that the environment reports
one’s position and elements of interest separately. Traditional RL environments can not
account for these requirements, forcing an unconventional choice of research environment
for autonomous navigation.
The PyGame Learning Environment (PLE) implementation of Karpathy’s WaterWorld

environment [70] considers a navigation challenge for an agent, governed by inertia me-
chanics. Basic actions accelerate the agent’s body (blue dot) in the allocentric directions up,
down, right, left – (𝑁, 𝑆,𝐸,𝑊). The representation of the self (blue), in addition to a �xed
number of elements of interest with varying valence (green, red), exist in the environment.
Green objects are associated with a positive reward of +1.0; red objects are associated with a
negative reward of −1.0. Encountering an element removes this entity and rewards the agent
according to the element’s valence, after which a new object is initiated with random valence,
location, and speed vector. The capture of the last green entity causes a full reset, reinitial-
izing all elements according to the described mechanics. Rewards come exclusively from

4Remember the direct link between action selection and the �ow of time in traditional RL; see Section 3.4.2.
5See Section 3.4.2 for more on temporal concerns in RL.
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Figure 4.3.: TheWaterWorld environment for autonomous navigation research. The
PLE WaterWorld challenge [70] represents the agent in a 2D Euclidean space.
Green and red elements signify locations with positive and negative reward
expectancy, respectively. The green and red elements of WaterWorld change
location with a constant speed and are re�ected upon encountering the wall.
The agent (blue) moves according to inertia mechanics, with an action set that
accelerates the body in the four cardinal directions 𝑁, 𝑆,𝐸,𝑊.
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encountering elements-of-interest, making accumulated reward an appropriate measure for
the agent’s navigational capabilities. Accumulated reward directly represents how well the
agent has succeeded in capturing green elements and avoiding red elements. Note how the
PLE version of WaterWorld di�ers from the JavaScript version, with REINFORCEjs being
implemented with a simpler egocentric representation – where directional “eye sensors”
measure the existence of and direction to objects of interest [35].
The allocentric PLE WaterWorld implementation can test all four requirements for au-

tonomous navigation listed in the introduction of this chapter. WaterWorld considers Eu-
clidean reactive navigation, with real-time execution, according to several free-roaming
objects of interest. The fourth requirement is expressed by a possible change in valence
after the capture of an element, establishing a chaotic and reactive navigation scenario. All
experiments study autonomous navigation in the WaterWorld environment with learning
happening in real-timewhile navigating. Online navigation (learning) capabilities are directly
observable as the (change in) immediate pro�ciency of the agent.

4.3. Results for neoRL autonomy; contribution and publications

An neoRL navigational agent have been designed as presented in Section 4.1.1 and 4.1.2 to
navigate the WaterWorld challenge. All learning is a result of real-time execution and au-
tonomous navigation in real-time during a single run. Each experiment starts with no priors
other than what has been presented in this chapter. A selection of the �ndings and the devel-
opment process have been published and presented at conferences and seminars, in venues
ranging from computational neuroscience to arti�cial general intelligence intelligence.
The main contribution of this project can be divided into three milestones, as presented

in paper A-C. First, paper A proposes how a distributed state representation is possible by
considering the value function as a potential. A selection of �ndings and theory extracted from
the development of the neoRL framework has been presented in venues on computational
neuroscience6, and biological neuroscience7, before being summarized in the �rst included
paper [41]. After introducing the basic principles of purposive neoRL navigation, the article
presents experimental results demonstrating an agent capable of forming behavior across
multiple state spaces to facilitate autonomous navigation. Paper B explores this further by
considering multi-NRES navigation originating from OVF from separate NRES modalities.
Learning inferences in di�erent NRES modalities, i.e., independent navigational information
as represented by separate Euclidean spaces, emphasizes the temporal robustness of inference

6The conference of cognitive and computational neuroscience [40]
7Invited talk on National Neuroscience Symposium, organized by the Kavli Institute of Systems Neuroscience.
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inversion. Papers A and B consider combining separate value function outputs by linear
principles. With conceptual similarities to the one-layered perceptron, the multi-resolution
and multi-modal neoRL can be considered a one-layered behavioral graph. A future paper
included as a manuscript C explores this analogy – whether deep neoRL graphs are possible
by generating elements-of-interest as output from neoRL nodes. Note how autonomously
formed elements-of-interest induce full category II navigation, whereby objective location
and valence in one NRES modality are formed based on learned inferences. This chapter
presents an overview of the main �ndings in milestone A-C.
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4.3.1. Decomposing the prediction problem; Autonomous Navigation by neoRL

This �rst milestone establishes the basic principles for neoRL navigation, as presented in
Section 4.1. Considering the value function as a potential �eld, paper A demonstrates how
di�erent forces can contribute independently to an aggregate value function. Orthogonal
value functions can be learned by o�-policy GVF learning, rewarded by NRES activation.
Hence, o�-policy training of OVF becomes analogous to latent learning of cognitive maps for
digital agents. The resulting map formed by the full OVF set can guide behavior according to
purpose, as represented by elements-of-interest. Experiments conducted in the WaterWorld
environment verify theoretical �ndings, as well as guiding further development of the neoRL
framework.
First, a comparison of NRES with di�erent resolutions uncovers the importance of NRES

resolution for agents’ navigational capabilities; both learning speed and �nal pro�ciency vary
with NRES design. Inspired by the NRES representations in the brain which steadily increase
in resolution along the dorsal-to-ventral axis of the hippocampus, a multi-resolution neoRL
was implemented. The multi-resolution neoRL agent across multiple NRES sets performed
better than single-resolution neoRL agents on all accounts such that the agent learned
quicker and attained higher pro�ciency, when the neoRL value function originated from
multi-resolution NRES compared to single-NRES neoRL performance. A 3.5-fold increase
in �nal performance was accomplished during the same execution time, implying quicker
learning despite involving almost six times the number of states for the multi-res neoRL
agent.
Directed exploration is proposed as a plausible explanation for improved learning when

navigating according to additional information. Whereas an 𝜀-greedy policy ensure su�cient
exploration by imposing complexity by partially adhering to a white-noise process8, directed
exploration based on earlier experience could instead be viewed as an analogy to intelligence
as psychology de�nes it9. An improved learning performance by assessing more auxiliary
information could be a �rst indication of emulated intelligence – problem-solving by purpo-
sive exploration. Directed exploration, or intelligent extraction of auxiliary experience when
attempting new parts of the state space, is essential for autonomous navigation.

8See Section 4.1.1 for how a Wiener process can be expressed as a pure white-noise process, i.e, with 𝜀 = 1.0 .
9Although the de�nition of intelligence is a disputed subject in psychology, it is reasonable to view intelligence
and problem solving as the ability to achieve a goal in a novel situation [49].
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Figure 4.4.: Autonomous navigation by purposive neoRL policy extraction.
[Top] The pro�ciency of single-NRES neoRL agents vary with NRES resolution;
the correlation between NRES resolution and neoRL performance is considered
as an important veri�cation of the existence of a coherent mechanism. [Mid]
Latent learning and purposive neoRL can collaborate between distinct NRES
maps in forming behavior. The illustrated NRES layout represents the agent in
experiment 2. [Bottom] Experiment 2: the multi-NRES oriented agent shows
real promise for autonomous navigation. (Figure from [41]) 55
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4.3.2. Navigating conceptual space; a new take on Artificial General Intelligence.

The second part of this project explores the generality and modularity of the neoRL approach;
paper B addresses Leslie Kaelbling’s (2020) concerns regarding robot learning by deep RL.
Kaelbling lists four challenges for the current direction in robot learning in a letter in Science
(2020) stating that navigationmust be (a) sample e�cient – require little training to achieve the
task, (b) generalizable – apply to other situations than it was trained on, (c) compositional and
(d) incremental – possible to combinewith earlier knowledge or extendable by new experience.
By considering robot planning as a special case of Euclidean navigation, Kaelbling’s concerns
are used as a guide to test the capabilities of neoRL navigation in this paper.
Two experiments address Kaelbling’s concerns, slightly adapted to address Euclidean

NRES navigation. First, the agent is challenged by navigating to the position of elements-of-
interest by another NRES modality. The recently discovered object-vector cell [29] (OVC)
in neurophysiology is emulated for WaterWorld observations. The OVC neoRL agent is
capable of comparable results as the native place-cell (PC) neoRL agent, demonstrating a
generality in inference inversion across NRESmodalities. Second, capabilities for incremental
or compositional learning are put to the test by letting a single agent experience and learn in
both PC and OVC NRES modality, and behave according to both. The neoRL agent is capable
of learning (a) e�ciently when challenged by (b) auxiliary information or when (c) supplied
with more information in the form of additional NRES state sets. See Figure 4.5.
Contrary to traditional RL in AI, known to require longer training when assessing more

information, the neoRL agent learns to a higher pro�ciency in a shorter time when consid-
ering more information. Increasing learning e�ciency by considering more information is
unheard of for monolithic RL; the curse-of-dimensionality has limited practical uses of RL
for more than 70 years. Note that neoRL does not a�ect the curse-of-dimensionality directly;
rather, the decomposed and distributed learning process is believed to alleviate the curse by
considering smaller NRES sets and with simpler reward functions. A decrease in training
time might be an e�ect of directed exploration, as proposed in Section 4.3.1.
Finally, a short word on the title: Theoretical neuroscience considers reasoning and general

intelligence to be an e�ect of navigating a conceptual space, a cognitive representation of
ideas as vectors expressed by NRES structures [11]. Conceptual spaces can encode ideas and
connections as points or vectors represented by NRES structures [6]. MRI measurements
on human subjects support theoretical results on NRES coding for ideas and reasoning [16].
Purposive navigation of such a space requires agents capable of �nding inferences and of
category II navigation in multi-dimensional cognitive space – without being limited to a
prede�ned action set or action-driven learning. Article B proposes the neoRL framework as
a potential �rst step toward conceptual navigation by digital agents.
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Figure 4.5.: [Top] The neoRL architecture is general across NRES modalities: (A) the original
place cell (PC) NRES modality is implemented by applying NRES code directly
on an allocentric location of the agent or elements of interest. (B) An emulated
object vector cell (OVC) NRES modality is implemented by vector subtraction.
OVC is centered on the self with an allocentric representation of other objects.
[Bottom] The neoRL navigation agent is compositional across NRES modalities.
An agent governed by both PC and OVC learned maps performs better than
mono-modal agents. Note the y-axis of the plot; the top curve from �gure A and
B are repeated here for comparison. (�gure from [42]) 57
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4.3.3. Towards neoRL graphs; the emergence of purposive networks.

Finally, we address the challenges implied by de�nition 1 and 2. Amajor discrepancy between
AI and systems behind real intelligence considers capabilities for reuse and recursion in
psychology, as illustrated by e.g. learning how to learn or holding a desire for more purpose.
Real-world complexity necessitates learning capabilities beyond what is possible by linear
increments of agent capabilities; online autonomy in physical environments is not plausible
with today’s RL – presumably limiting neoRL performance as well. Reuse of operant re�exes,
synergy e�ects between subsystems, and recursive connections could be crucial in neural
cognition – motivating a study of network phenomena for neoRL.

(a) Themulti-resolutionNRES
state space from paper A.

(b) An illustration of purpo-
sive value from �gure a. (c) The purposive neoRLnode.

Manuscript C explores neoRL agents as purposive networks based on theArnold-Kolmogorov
representation theorem and learned projections of desire. Considering actions with a Eu-
clidean signi�cance, expressing displacement in the considered space, the vector sum of
the resulting state-action value function could be interpreted as a Euclidean projection of
agent desire. The manifestation of a learned state-action value map, harvested according
to projections of desire, expresses a purposive desire vector 𝑒𝑜𝑢𝑡. Illustration b shows how
the Q-values from three NRES maps can be combines into one neoRL Q-vector. Figure
c illustrates the Euclidean neoRL node allows for two outputs 𝑄𝑜𝑢𝑡 and 𝑒𝑜𝑢𝑡 from one set
of elements-of-interest. As a projection of agent desire according to experience, one can
consider purpose fragment 𝑒𝑜𝑢𝑡 as being autonomous according to de�nition 1. The purposive
desire-vector 𝑒𝑜𝑢𝑡 can further establish an element-of-interest in compatible neoRL nodes.
Autonomous desires imply a category 2 autonomy by neoRL agents. Experiments demon-

strate four principles of purposive networks: (a) autonomous desires are possible by neoRL
agents, (b) di�erent desires can be extracted from the same learnedmap according to purpose,
(c) the value function from di�erent depths of the agent could contribute equally to agent
value function, and (d) recursive desires can improve navigational performance. Results are
repeated in Figure 4.7. Each neoRL node extracts desire-vectors according to purposive pro-
jections in a learned cognitive map, in e�ect implementing Tolman’s purposive behaviorism
for AI.
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(a) Aspect 1: a single desire vector 𝑒𝑃𝐶 as input to
𝜉𝑂𝑉𝐶 .

(b) Aspect 2: separate desire extraction; 𝑒𝑃𝐶𝑟𝑒𝑑 and
𝑒𝑃𝐶𝑔𝑟𝑒𝑒𝑛 .

(c) Aspect 3: joint value function from sequential
neoRL nodes.

(d) Aspect 4: recursive desires for neoRL auton-
omy.

(e) Transient pro�ciency of neoRL agent A-D.

Figure 4.7.: [[Top]] Illustrations of the neoRL architecture tested in experiment A-D. [a] The
neoRL node 𝜉𝑃𝐶 forms a single desire 𝑒𝑃𝐶 for value-generating neoRL node 𝜉𝑂𝑉𝐶 .
[b] Experiment B formed separate desire-vectors 𝑒𝑃𝐶𝑟𝑒𝑑 and 𝑒𝑃𝐶𝑔𝑟𝑒𝑒𝑛 from 𝜉𝑂𝑉𝐶 –
grouping according to valence. [c] The value function output from neoRL node
𝜉𝑃𝐶 and node 𝜉𝑂𝑉𝐶 contribute equally to agent value function. [d] Recursive
desires are possible for neoRL nodes: the 𝜉𝑂𝑉𝐶 is governed by three elements-of-
interest, 𝑒𝑃𝐶𝑟𝑒𝑑 , 𝑒𝑃𝐶𝑔𝑟𝑒𝑒𝑛 , and recurrent desire 𝑒𝑂𝑉𝐶 . [[Down]] Results from the
four experiments: [e] Purposive neoRL networks allows for purposive autonomy
by deep and/or recurrent desires. (Figure from [43]). 59
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4.4. Discussion; autonomous navigation by neoRL agents

In this chapter, the neoRL framework has been developed based on theory presented in
Chapters 2 and 3. First, after considering the mathematical formulation of MDP and how
Wold’s representation theorem allows for partial deterministic representation of the decision
process, we proposed referring to the deterministic component of the value function as
desire. The intricate and presumably multi-variate desire function can be decomposed by
the Kolmogorov-Arnold representation theorem. The superposition theorem states that any
multi-variate function can be represented as the weighted sum of mono-variate relations.
Hypotheses from Skinner’s operant behavior from Chapter 2 could inspire how simpler rela-
tions can be learned. Based on NRES maps from Section 2.2.1, we have seen how individual
GVF can learn how to achieve the activation of singular NRES cells – in e�ect learning
operant value functions for that objective. A set of OVF can establish the basis for value
function composition by the Kolmogorov-Arnold representation theorem. Free-roaming
elements-of-interest in the considered NRES modality can further activate OVF according
to the element’s valence. Purposive behaviorism is possible by neoRL agents, allowing for
autonomous navigation in Euclidean space.

The development process of the neoRL framework involved reviewing discussions on the
credit assignment problem as seen from behaviorists. Tolman(1948) reports two schools with
di�erent explanation of the credit assignment for learning, the temporal di�erence school
and the persistence school of behaviorism. The temporal di�erence school is analogous to TD
learning from RL, whereas the persistence school regards persistent co-activation between
stimuli as the main mechanism for learning. Section 4.1.3 develops inference inversion for
RL, inventing an update rule based on the persistence school and memory traces. With every
state update 𝑠− → 𝑠+, inferences are updated according to how active the corresponding event
was before state transition. Learning by inference inversion in RL gives credit to events that
persistently takes part in some operant inference. Since learning by inference inversion, in
e�ect, operates independently of action selection, this learning paradigm allows for inference
learning outside the constraints of having to consider a prede�ned action set. All events
that persistently take part in operant inferences should be considered; credit assignment by
inference inversion can learn inferences outside a prede�ned action set.

The separation between what drives learning from what drives the inference being learned
allows for temporal abstraction in the environment. Inferences learned for one NRES rep-
resentation of a problem can be combined with other inferences, as seen from multimodal
neoRL experiments in manuscript B. “Representing knowledge �exibly at multiple levels
of temporal abstraction has the potential to greatly speed planning and learning on large
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problems” [68]. With the �exibility allowed by the superposition theorem and the observed
ability of the neoRL framework to combine value functions across NRES representations,
inference inversion allows for temporal robustness across multiple NRES sets. Although it
can be challenging to grasp the signi�cance of considering multiple NRES in the same agent,
the direct relation between larger receptive �elds and a slower time scale is prominent. The
neoRL framework allows for latent learning across di�erent levels of temporal abstraction,
as represented by the di�erent Euclidean resolutions seen in manuscript A.
By considering mono-NRES behavioral modules as nodes in a network, the agent design

in papers A and B can be regarded as one-layered networks by which agent value function
is governed. In the Euclidean interpretation, where state-action values are interpreted to
projections of desire, neoRL networks are conceivable where deeper nodes are motivated by
earlier projections of desire. Where inference inversion and a separation between learning and
e�ectuation in RL could be a �rst step toward autonomous navigation, further development
and veri�cation of deep or recursive neoRL graphs for purposive networks is a crucial second
step toward behavioristic AI. Navigation by neoRL networks is promising for category II
autonomy by behavioral neoRL networks.
Online navigation autonomy is possible by combining OVF scaled by elements-of-interest

valence, allowing for marginally improved navigation capabilities over Brownian motion in
the WaterWorld environment. Pro�ciency of the neoRL agent scales well with additional
NRES layers. Assessing additional NRES maps in the same agent improves navigational
capabilities signi�cantly, does not degrade learning performance, and only results in a linear
increase in computation. A multi-resolution and multimodal neoRL agent performs well
for autonomous navigation in the WaterWorld environment, implying that neoRL would
scale beyond the WaterWorld environment and into the real world. The neoRL framework
is capable of producing autonomous Euclidean navigation in real-time, verifying earlier
�ndings on the importance of distributed processing and learning for autonomous learning.
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Chapter 5.

Computational cognitivism by navigation

Science is everything
we understand well enough

to explain to a computer,

art is everything else.

Donald E. Knuth

This project has explored the basic principles of autonomous navigation, aiming to under-
stand the principles of autonomy well enough to explain them to the computer. No current
technology was found to be satisfactory for autonomous navigation by De�nition 1 and 2;
only living entities are capable of the required degree of autonomy, making neuroscience and
the psychology of learning key to understanding autonomous navigation. A salient di�erence
between neural control mechanisms and digital technology lies in the distributed nature of
the former; whereas digital learning technology can be modelled as monolithic systems with
de�ned input and output, neural systems are distributed across countless nodes – each with
distinct inputs and outputs. Consequently, biological computation happens in spatiotemporal
networks without any clear distinction between the computational state of the networks
and the transient result of the computation. First, we explored the distributed nature in
neural representation of Euclidean space (NRES), to �nd out how NRES is possible by a
distributed pattern of activation based on geometric conditionals in a Euclidean space. When
information expressed as a coordinate of the NRES modality lies within the receptive �eld of
one NRES cell, this cell produces a positive de�nite output signal from this node. Second,
o�-policy RL methods can be applied to learn general value functions (GVF) according to
scalar intent signals. Separate GVF learners with NRES activation signals as intent (reward)
can learn orthogonal operant value functions (OVF) in one NRES map. The set of OVF from
one NRES instance can form a digital analogy to a cognitive map, allowing the agent to
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extract purposive policies by elements-of-interest associated with reward. The resulting agent
of NRES-oriented RL, referred to as neoRL, implements Tolman’s cognitive architecture by
latent learning and purposive policy extraction. The change from considering Thorndike’s
conditioned re�exes, to instead let Tolman’s purposive neobehaviorism inspire behaviorial
AI, might have a similar impact on behavioral AI as neobehaviorism have had for cognitive
psychology.

First of all, a comprehensive search for the neuroscience of navigation and the psychology
of learning and autonomy was conducted, summarized in Chapter 2. Section 2.1 starts by
introducing the Jamesian school of functionalism and Edward Lee Thorndike’s law-of-e�ect
from the very beginning of psychology as a science. The law-of-e�ect and S-R learning by
reinforcement are of particular interest for their role in inspiring RL in AI. Although the
theory of conditioned re�exes was accepted as a model explanation for re�exive actions,
the S-R mechanism could not explain the complexity of human behavior. The behaviorist
movement attempted to explain human behavior by expanding S-R reinforcement theory,
but was only partially successful at the theoretical level – as introduced in Section 2.1.1.
Edward C. Tolman modernized behaviorism by introducing stateful computation, latent
learning, and cognitive maps in his purposive behaviorism. B. F. Skinner further introduced
the concept of operant behavior, stating that an agent could activate operant re�exes to achieve
something. Mechanisms similar to cognitivemaps have been veri�ed bymodern neuroscience,
resulting in the 2014 Nobel prize in physiology or medicine “for their discovery of cells that
constitute the positioning system in the brain” [56]. Neural representation of Euclidean space
(NRES) has been summarized for several navigational modalities in Section 2.2, leading to a
discussion on how navigational state is distributed across multiple NRES, each representing
one aspect of navigational state by distributed patterns of activation. Skinner’s operant desires
and Tolman’s latent learning, together with concepts from NRES and cognitive maps, have
been necessary for developing the neoRL framework for research objective three.

The second research objective motivated a study of how adaptive algorithms are imple-
mented, and how learning could be emulated in the otherwise deterministic computer. An
overview of computing sciences that allows for adaptive behavioral AI, including perceptron-
class function approximation and algorithms inspired by Thorndike’s law-of-e�ect, is pre-
sented in Chapter 3. Adaptive algorithms by RL in AI learn one behavioral schema by
interaction learning based on a scalar reward signal, analogous to early functionalists’ view
on reinforcement of conditioned instincts. O�-policy derivates of RL can be used for learn-
ing auxiliary value functions, indicating the possibility of distributed value functions for
RL agents. First, Wiering and Van Hasselt (2008) explored how ensemble methods for RL
could be e�ective in toy problems; the pro�ciency of agents governed by voting schemes
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was compared to others governed by Boltzmann addition and multiplication. Van Seijen
et al. (2017) further demonstrated how the agent value function could be combined across
multiple learners for separate concerns; the hybrid reward architecture allowed for autonomy
in solving the complex and previously unsolved Ms. Pac-Man by a linear combination of
value functions from multiple learners. A selection of important �ndings from RL and AI
are reported in Chapter 3 – elements considered important in our attempt to implement
purposive behaviorism for AI by NRES-oriented RL.

In accordance with the third research objective, as a method for better understanding the
basic principles of autonomous navigation, an agent capable of autonomous navigation in
Euclidean space was implemented. After the fundamentals of neoRL had been developed
and implemented, Richard Sutton invited me to continue the project under his supervision at
the RLAI lab. Section 4.1.1 proposes how an MDP can be considered as a biased white-noise
process, expressing learning as a parameter search for the optimal bias for the stochastic
decision process. Wold’s representation theorem further allows the decomposition of a
stochastic decision process into one stochastic and one deterministic component; accordingly,
one could model parts of the presumably multivariate and complicated basis of autonomy
as being stochastic while still being able to capture deterministic aspects. The Arnold-
Kolmogorov representation theorem further allows for decomposition of a multi-variate
deterministic component into a set of simple mono-variate functions. The deterministic part
of the agent value function can be decomposed into simpler, learned, concerns – as introduced
in Section 4.1.2. The theory-intensive section is rounded o� by introducing inference inversion
for RL, an updated model based on the alternative school of behaviorism to credit assignment
by temporal di�erence. Although a proper introduction to time in RL is planned for future
publications, Section 4.1.3 proposes a separation between what drives learning and what
drives the inferences in RL. Inference inversion is believed to increase temporal abstraction
capabilities and robustness for RL algorithms.

The neoRL agent is put to test in a reactive navigation challenge, introduced in Section
4.2, prior to summarizing the results in 4.3. An agent built by the proposed principles in
Chapter 4 demonstrated both how autonomous navigation is plausible, while also uncovering
additional knowledge for neoRL autonomy. First, the concept of OVF and desire aggregation
by the Kolmogorov-Arnold theorem allowed for purposive behavior by a single-resolution
NRES-agent. The results are displayed in Figure 4.4, revealing a strong correlation between
NRES resolution and agent performance. Second, the performance of a multi-resolution
agent was compared to the single-resolution agent, resulting in a signi�cant improvement in
navigational pro�ciency. These �ndings are reported in paper A. The neoRL agent appears
to be capable of combining knowledge from latent learning across multiple state spaces;
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paper B explores the capabilities of neoRL for inter-modal navigation. The neoRL framework
is general across NRES modalities, compositional and incremental by additional neoRL
modules, and e�ective across orthogonal NRES-modalities. Third, the neoRL framework for
Euclidean navigation can form purposive graphs – graph structures where experience-based
desires can establish projections of desire for neoRL nodes. Manuscript C discusses the
possibility of deeper behavioral neoRL networks. Experimental results demonstrate how
elements of desire in one neoRL learned space can propagate to compatible neoRL nodes
by forming autonomous projections of desire. Figure 4.7 exempli�es how deep or recurrent
desires can signi�cantly improve neoRL navigational autonomy, making online autonomy
plausible for the real-world.

5.1. Conclusion

Autonomous navigation is plausible for agents emulating identi�ed principles from psychol-
ogy and the neuroscience of navigation. Theoretical and experimental results emphasize two
principles. First, the superposition principle appears to be have an equally important role
for behavioral autonomy as with engineering disciplines and in natural sciences. Whereas a
single-NRES node demonstrates a slight pro�ciency for autonomous navigation, this pro�-
ciency scales well with additional NRES behavioral maps. Multiple behavioral components
can be combined across from di�erent NRES of di�erent resolution, representing a behavioral
analogy to function representation by series expansion. Then desire from a neoRL node
is expressed by latent learning across multiple NRES state representations with di�erent
resolution, navigational performance improves signi�cantly.
Second, the neoRL framework demonstrates the importance of Tolman’s purposive be-

haviorism – verifying the implications of separating learning from behavior on behavioral
autonomy. Whereas knowledge is represented by latently learned OVF, purpose is extracted
according to the agent’s projections of desire. Di�erent sets of desire, de�ned as the input to
the neoRL node, can induce di�erent behavioral components expressed by the neoRL node.
Projections of desire can be established as a Euclidean interpretation of agent state-action
values, allowing for self-driven purpose and deeper structures of desire. Deep and recursive
structures for desire are demonstrated by experiments, validating the potency ofmulti-layered
behavioral graphs on autonomous navigation.
In humble respect and admiration of the wise (wo)men of old, this contribution only

seeks to attain a higher understanding of autonomy. Impressive insights by Skinner and
Tolman, combined with great works by Sutton et al. (2011) and Van Seijen et al. (2017), have
established a foundation upon which these results are built. Whereas earlier approaches
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rooted in dynamic programming have struggled with an exponential decrease in learning
e�ciency withmore information, the neoRL framework demonstrates an increase in learning
e�ciency when more information is available for the same task. Improvisation could be
a valid interpretation of problem solving based on auxiliary information, an explanation
that could have implications for the understanding of intelligence – possibly suggesting that
neoRL expresses an emulated rather than an arti�cial intelligence.
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Abstract

Navigating the world is a fundamental ability for any liv-
ing entity. Accomplishing the same degree of freedom in
technology has proven to be difficult. The brain is the only
known mechanism capable of voluntary navigation, making
neuroscience our best source of inspiration toward auton-
omy. Assuming that state representation is key, we explore
the difference in how the brain and the machine represent the
navigational state. Where Reinforcement Learning (RL) re-
quires a monolithic state representation in accordance with
the Markov property, Neural Representation of Euclidean
Space (NRES) reflects navigational state via distributed ac-
tivation patterns. We show how NRES-Oriented RL (neoRL)
agents are possible before verifying our theoretical findings
by experiments. Ultimately, neoRL agents are capable of be-
havior synthesis across state spaces – allowing for decompo-
sition of the problem into smaller spaces, alleviating the curse
of dimensionality.

Introduction
Autonomy or any form of self-governed activity implies
an ability to adapt with experience; hard-coded algorithms,
agents governed by external control, or deterministic model-
based path planning can hardly be said to be autonomous.
“Navigation can be defined as the ability to plan and execute
a goal-directed path” (Solstad, 2009). Robot motion plan-
ning can be defined in similar terms (Latombe, 2012); how-
ever, cybernetics and robot motion control involves model
with limited validity intervals or algorithms for determin-
istic control. The reward hypothesis from Reinforcement
Learning (RL) is relevant in this context: “That all of what
we mean by goals and purposes can be well thought of as
maximization of the expected value of the cumulative sum
of a received scalar signal (reward).” (Sutton and Barto,
2018). With a proven track record for learning to solve
digital challenges or for intelligent games, RL agents have
demonstrated a capability of autonomy for specific chal-
lenges. Via methods from function approximation by Deep
Learning, methods from RL can form agents with superhu-
man abilities for certain board games (Tesauro, 1994; Sil-
ver et al., 2016, 2017) and games of hazard (Heinrich and

Silver, 2016). However, RL supported by deep function ap-
proximation is known to require a tremendous amount of
training: Robot autonomy by RL remains an unsolved chal-
lenge, partially due to requirements for real-time execution
and model-uncertainty – limiting the number of accurate
samples for training (Kober et al., 2013). RL agents sup-
ported by deep function approximation can learn impressive
abilities, but statistical machine learning approaches require
much experience, do not generalize well, and are monolithic
during training and execution (Kaelbling, 2020).

Autonomous navigation is an ability unique to the cen-
tral nervous systems in the animal and insects. Determining
one’s parameter configuration relative to an external refer-
ence, one’s allocentric coordinate, is critical for navigation
learning (Whitlock et al., 2008). Several mechanisms have
been identified in the brain that represent Euclidean coor-
dinates at the single-neuron level (Bicanski and Burgess,
2020). Notable examples for navigation are Object Vector
Cells (Høydal, 2020), representing the allocentric location
of objects around the animal, Head-Direction Cells (Taube
et al., 1990), representing the heading of the animal, and
border cells (Solstad, 2009), representing the proximity of
borders for navigation. Possibly the most well-known cell
for Neural Representation of Euclidean Space (NRES) is the
Place Cell. This first identified NRES modality represents
the allocentric location of the animal (O’Keefe and Dostro-
vsky, 1971): When an animal’s location is within the recep-
tive field of one place cell, the neuron is active in terms of
having a heightened firing frequiency. The activation pattern
in an appropriate population of NRES neurons can thus map
any position in a finite Euclidean space (Fyhn et al., 2004).
Other NRES modalities have later been identified, with a
similar mechanism for representing coordinates in other Eu-
clidean spaces (Bicanski and Burgess, 2020). With our sense
of orientation originating from multiple NRES modalities,
distributed representation of state appears to be of critical
importance for navigational autonomy.

This article starts out by presenting important consider-
ations from RL and directions that could allow for a dis-
tributed representation of state. Off-policy learning allows
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agents to learn general value functions for independent as-
pects of a task (Sutton et al., 2011). When a hoard of learn-
ers base their value function on a mutually exclusive reward
signal, inspired by NRES cells, we propose a method for
learning an orthogonal basis for behavior. Experiments with
NRES-Oriented RL (neoRL) agents by the Place Cell NRES
modality demonstrate how the proposed framework allows
for reactive navigation in real-time.

Interaction learning by RL in AI
Reinforcement learning is the direction in machine learning
concerning learning behavior through interaction with an en-
vironment. We say that the decision agent learns to achieve
a task according to a scalar reward signal R by interaction
with an environment. The accumulated experience takes the
form of agent value function, reflecting the benefit of vis-
iting different states or state-actions pairs according to the
reward signal during training. When the algorithm learns
the value of state-action pairs, i.e., learning the value of se-
lecting specific actions from different states, this is referred
to as Q-learning. An important aspect of RL environments
is the Markov property: When a state-action pair uniquely
defines the probability distribution of the next state, the de-
cision process is referred to as a Markov Decision Process
(MDP). When a problem can be represented as an MDP, an
RL-agent can, in theory, learn an optimal solution to tasks
expressed by a reward function from interaction alone (Sut-
ton and Barto, 2018).

The prediction problem in reinforcement learning con-
cerns estimating the value of visiting different states s while
following policy π. The agent state is a compact representa-
tion of the history and necessary information for the agent to
make a decision at time t. The value function can be updated
according to the Bellman equation:

vπ(s) =
∑

a

π(a|s)
∑

s′,r

p(s′, r|s, a) [r + γvπ(s
′)] (1)

Updating the value function under policy π from experience
gathered while following the policy π, is referred to as on-
policy learning (Sutton and Barto, 2018). Off-policy learn-
ing allows an agent to form the value function while follow-
ing another behavior policy. Through off-policy learning, an
agent can learn the value function under a target policy πt
while following a different behavior policy πb 6= πt. The
agent can, for example, initially follow a more exploratory
policy or learn while observing human control (Abbeel et al.,
2007). Learning the value function is possible through pure
observation.

General Value Function (GVF) is one identified use of
off-policy learning, where the agent learns value functions
potentially unrelated to the control problem (Sutton et al.,
2011). These partial agents, only concerned with accumu-
lating experience, can be seen as independent learners of an
auxiliary value function used to answer questions about the

environment. Examples of questions, as listed in the original
paper, could be time-to-obstacle or time-to-stop for the Crit-
terbot demonstration (Sutton et al., 2011). Auxiliary value
functions can also be directly involved in policy, as demon-
strated for the Atari game Ms. PacMan. A set of General
Value Functions were trained for manually designed sub-
challenges in the Ms. Packman computer game, resulting
in an exponential breakdown of problem size compared to
“single-headed” RL agents (Van Seijen et al., 2017). Wier-
ing and Van Hasselt (2008) gave a methodological overview
over ensemble methods for integrating experience from mul-
tiple algorithms when forming policies. Notably, Boltzmann
addition and Boltzmann multiplication could integrate poli-
cies from multiple sources before action selection (Wiener,
1948). Both Wiering and Van Hasselt (2008) and Van Sei-
jen et al. (2017) propose ways multiple off-policy learners
could be involved in forming policy. From these demonstra-
tions on how multi-learner agents are possible, we shall dive
further into the mechanism of behavior synthesis. But first,
some neuroscience.

Neural Representation of Euclidean Space
The 1906 Nobel price in physiology and medicine was
awarded Santiago Ramón Y Cajal for work initiating the
neuron doctrine (Ramón y Cajal, 1911), claiming that be-
havior originates from a network of cells with signaling ca-
pabilities rather than a monolithic soul. The neuron doctrine
supplied a mechanistic understanding of biological compu-
tation as a distributed network of weak computational units.
Only by network phenomena and a delicately connected net
of neurons can decisions, policies, and ultimately behav-
ior emerge. Eric Kandel later reported how synaptic con-
nections change with use and how learning and memory
are consequences of synaptic plasticity (Kandel and Tauc,
1965). Before the neuron doctrine, the consensus was that
behavior and decision-making originate from a monolithic
entity that followed us in this life and beyond – the soul.

Neural Representation of Euclidean Space (NRES) have
been reported for different Euclidean spaces on a per-neuron
cellular activation: when the Euclidean coordinate falls
within the receptive field of an NRES neuron, the neuron
fires with a heightened firing frequency. A growing num-
ber of NRES modalities have been identified, with notable
examples for navigation being place cells (O’Keefe and
Dostrovsky, 1971), head-direction cells (Taube et al., 1990),
and object-vector cells (Høydal, 2020). While some NRES
neurons have simple receptive fields centered around a co-
ordinate, others have complicated repeating shapes like the
hexagonal pattern of grid cells (Moser et al., 2008). For
a comprehensive review of NRES modalities identified in
neuroscience, see (Bicanski and Burgess, 2020).

Neural state is very different from the monolithic state
of RL. Analogous to separate cells representing coordinates
of one Euclidean space, separate NRES modalities reflect
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Figure 1: Two simple sinusoidal functions can be combined
to a complex function by superposition. (Ling et al., 2016)

different aspects of the navigational state. The receptive
fields of NRES neurons have a systematic increase from the
dorsal to the ventral pole of the hippocampus (Fyhn et al.,
2008; Kjelstrup et al., 2008; Solstad, 2009), allowing for
NRES maps of multiple resolutions in parallel. The fully
distributed representation of state thus allows for learning
state representation by individual receptive fields, for differ-
ent NRES resolutions and across NRES modalities in paral-
lel. The monolithic Markov state of RL (Sutton and Barto,
2018), on the other hand, could explain difficulties for robot
interaction learning (Kaelbling, 2020). The most protruding
difference between AI and neural state representation lies in
the distributed nature of NRES. We now explore how this
can be emulated for RL systems.

Decomposing the Prediction Problem
The purpose of an agent in reinforcement learning is to es-
tablish a proper behavior as defined by a reward signal. The
agent improves behavior based on two intertwined aspects
of experience: (1) The prediction problem for learning the
value of visiting states or state-action pairs as defined by the
environment representation, and (2) The control problem for
selecting the most appropriate action based on the value as
learned by the prediction problem. In this section, we ex-
pand on the concept of the prediction problem by consider-
ing the value function as a potential field across orthogonal
reward signals.

Let Orthogonal Value Functions (OVFs) be value func-
tions of the state space S that adhere to mutually exclusive
reward signals in S. A relevant analogy would be to think
of the value function as a potential field between different
sources of energy. With multiple forces working on an ob-
ject, the resultant work can be found as a linear combination
of components. Similarly, a set of independent reward func-
tions in S acting on agent value function can form a basis
for agent value function in S. NRES with mutually exclu-
sive receptive fields is a good candidate for independent re-
ward signals; with the place cell as our leading example, it

is simple to visualize how agent position activates receptive
fields and OVFs. Each learner has a simple reward shape,
with a positive reward of R = +1 upon activation of the
corresponding NRES cell and R = 0 otherwise. A separate
learner form the OVF according to reward signals as defined
by mutually exclusive receptive fields of S.

Figure 2: An agent in N5 allocentric place-cell represen-
tation of Euclidean space: An N5 representation involves
that each axis is divided into 5 equal intervals. A learner
could, for example, form the OVF toward cell (4, 4), with a
reward signal defined by the activation of the corresponding
NRES cell. The reward function of this particular learner is
illustrated in red for feature sR ∈ S. The current parame-
ter configuration of the agent defines from which s ∈ S this
NRES modality’s value function is extracted.

Let there beK individual learners, one for every receptive
field of an NRES representation S. With mutually exclusive
receptive fields, the set of learners in S can be considered an
orthogonal basis of the value function in this representation.
Value functions of S can be expressed as a linear combina-
tion of OVFs formed by the K learners, allowing a neoRL
agent to synthesize a range of behaviors. The challenge of
learning apt behavior now reduces to learning priorities be-
tween policies expressed via OVFs. Estimating scalar val-
ues based on supervised samples is a well-studied field in
machine learning. However, for the sake of clarity, static
priorities defined by the associated reward is used.

The Control Problem by Superposition
The motivation for learning the value function is ultimately
to form an effective policy for the challenge at hand. A
simple challenge in Euclidean space can be for the agent
to move to one particular position, activating feature sx. If
learners use Q-learning to establishing a potential that con-
tributes to the Q-field of the agent, the next action can be
chosen by

a = argmaxaQtot(s, a)

where Qtot is the resultant Q-field of the current situation.
With a single learner as input to the agent value potential,
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the agent’s prediction problem becomes equivalent to that of
the single learner, and the mechanism surrounding the value
function of the agent simplifies to that of a monolithic agent.

For slightly more interesting challenges, multiple rewards
can be expressed in the decomposed NRES representation.
Each learner can be said to represent one consideration in
this environment, learning the value function related to ac-
tivating the corresponding NRES cell. When multiple con-
siderations have priority, the superposition principle allows
the Q-field to form over relevant OVFs.

Qtot(s, a) =
∑

i∈SR
QLi(s, a) (2)

where SR is the set of NRES cells associated with reward
and QLi(s, a) represent learner Li’s value component. The
K learners in the full features set can thus be considered to
be peer learners for the task of navigating the environment
representation.

SR = {s ∈ S
∣∣∣ |Rs| > 0}

An elegant approach would be to consider rewards to be
linked to elements of interest in the environment rather than
allocentric features: Let an Element of Interest (ξi) be an in-
stance in the environment associated with a reward. Assume
for now that the priority and Euclidean parameter configu-
ration of every element of interest in the set E = {ξi} is
provided by the environment. Any parameter configuration
is possible to map uniquely to the mutually exclusive NRES
feature map S. With element i’s importance wi proportional
to the reward associated with the element activating feature
s, the corresponding peer learner’s contribution to the Q-
field becomes:

Qtot(s, a) =
∑

i∈SR
wiQLi(s, a) (3)

Isolating rewards that comes from elements of interest, i.e.
abstaining from utilizing timestep rewards or other shaped
rewards, the set of rewarded states is defined by the set of
NRES cells occupied by an element of interest ξi.

SR = {s ∈ S
∣∣ ∃ξi ∈ E, ξi ∈ s} (4)

Note that an element of interest can be any element asso-
ciated with a reward in a particular state set representation,
decoupling the prediction problem in an environment from
the rewards of one task. Experience expressed by distributed
Q-fields is more general than monolithic value functions; In
the neoRL approach, moving rewards or changing agent pri-
orities during an agent’s life-time does not require retraining
the agent.

Experiments
Algorithms in RL learn behavior by interaction with the en-
vironment, making the environment defining for the out-

Figure 3: Element of Interest (EoI) activates desires for al-
locentric features according to their importance: An EoI sit-
uated in feature (4, 4) makes this desirable with 1.0 , an-
other positive EoI activates feature (1, 1) with priority 0.5 ,
as represented by a green with lower saturation. An aversive
element located in feature (2, 2) activates the corresponding
learner with a negative weight wi < 0.

come of any RL experiment. Numerous environments ex-
ist to highlight challenges for state-of-the-art reinforcement
learning agents. Learning autonomous navigation in allo-
centric space does not seem to get much attention, as finding
appropriate test-environments can be difficult. Preferably,
an environment for autonomous real-world navigation learn-
ing is represented by continuous allocentric coordinates and
with a complexity that requires reactive navigation. Real-
time execution would be a plus since it limits the amount
of training data available to the agent to a realistic order of
magnitude. Physical systems generally depend on temporal
aspects like inertia. Most of these qualities can be found in
Karpathy’s WaterWorld challenge.

WaterWorld
Karpathy’s WaterWorld challenge as implemented in
Pygame learning environment(PLE) (Tasfi, 2016) is an envi-
ronment with a continuous 2D resolution, inertia dynamics
and external considerations referred to as creeps. Creeps
move with a constant speed vector, reflected when hitting a
wall. Creeps have a demeanor, as illustrated by color: green
creeps are desirable with [+1] reward, and red creeps are re-
pulsive with [-1] reward upon capture. When the agent cap-
tures a creep, a new one is initialized with a random speed,
position, and demeanor – causing a chaotic scenario that re-
quires reactive navigation. When all green creeps have been
captured, the board is restarted with an accompanying [+5]
reward. In all experiments, a constant number of 8 creeps
have been used, as illustrated in Figure 4. We find the al-
locentric PyGame implementation (Tasfi, 2016) of Water-
World appropriate for RL research for real-time navigation
autonomy. However, the environment is listed as unsolved
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Figure 4: NRES N5 representation of Element-of-Interest
(EoI) in the WaterWorld environment. Each EoI and the
location of the agent represented in the PlaceCell NRES
modality. Red and Green represent the demeanor of each
creep, whereas Blue represents the current agent location.
In addition, arrows have been drawn to illustrate the current
speed vector of each element.

(OpenAI, 2020) – making comparisons to alternative solu-
tions difficult.

Instantaneous information regarding elements-of-interest
(EoI), i.e., the position and demeanor of each creep, is pro-
vided by the environment. Demeanor defines the reward as-
sociated with the creep, crucial for priority wi associated
with EoI i by equation 3. Positions are represented in 2D
allocentric coordinates from the environment, allowing for
extracting ξi ∈ S for the Place Cell NRES modality of EoI
i. Basal actions affect the agent by accelerating it in the car-
dinal directions, [N, S, E, W].

Allocentric Position Modality, Single layer: Our pri-
mary assumption is that the agent value function in effect
can be considered a potential field across OVFs, pulling
the agent toward the next decision. Our first experiment
explores to what degree the superposition principle holds
for the value function of individual learners. We compare
the accumulated score of neoRL agents based on single-res
NRES to Brownian motion, i.e., an ε-greedy policy with
ε = 1.0. Under the convention used in Figure 4, where N5
signifies an NRES map with 5x5 tiles, five different resolu-
tions are explored from N10 to N90. All experiments were
conducted over 150.000 time-steps for each neoRL agent.

Allocentric Position Modality, Multiple resolutions:
Our second experiment explores how integrating experience
across multiple state spaces affect neoRL performance. An
interpretation of the progressive increase for receptive fields
in the ventral direction of the hippocampus is that different
NRES maps exist with different resolutions. We adopt this
view in experiment 2, where we let the neoRL agent com-

bine value function across multiple NRES state representa-
tions. In this experiment we assess whether the neoRL agent
is capable of forming apt policies by integrating experience
across multiple state spaces. We compare the proficiency of
a multi-res neoRL agent that learns over {N3, N7, N23}
NRES state spaces to three single-res agents by N3, N7,
and N23 NRES. The neoRL agent layout is illustrated in
Figure 5. Prime numbers are used as the resolution for each
layer, minimizing the potential for overlapping boundaries.
The resulting 587 learners in the multi-res agent learn in par-
allel by off-policy learning. In this setup, the contribution of
each learner is inversely proportional to the size of its recep-
tive field.

Figure 5: Illustration of multiple state representation in the
decision agent, where each tile represent the objective of its
respective learner. [Red] N3 representation [Blue] N7 rep-
resentation [Black] N23 representation.

One approach of measuring the proficiency of the agent is
as the per-timestep average reward across parallel runs. We
are interested in real-time learning efficiency and initialize a
neoRL agent with no priors at the beginning of each run. A
per-timestep average across 100 independent runs provides
information about the transient timecourse in navigation ca-
pabilities. Note that every run starts with a separate neoRL
agent with no prior experience. All experiments are con-
ducted on an average desktop computer, with one run taking
somewhat under one hour on a single CPU core.

Results
Results are reported as real-time execution of agents as they
learn, without any previous experience at the task. Reported
resolution for each experiment adheres to the convention
from Figure 2, dividing each axis of the Euclidean space
into N steps. The x-axis of all plots represents the number
of time steps since the beginning of a run, i.e., the real-time
execution in time-steps since initiation of the agent.

Allocentric Position Modality, Single layer A dis-
tributed representation of the Markov state is plausible for
neoRL agents. Figure 6 shows the accumulated score of
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neoRL agents with NRES Place Cell representations from
N10 to N90. All neoRL agents perform better than con-
trol. Brownian motion seems incapable of achieving a single
board reset since the accumulated score fluctuates around 0
for the length of the experiment. All neoRL agents are ca-
pable of accumulating a significant amount of experience,
verifying that OVF can function as a basis for synthezing
successful behavior.

A strong correlation between NRES resolution and pro-
ficiency at the task can also be observed in Figure 6. The
immediate proficiency at the task can be seen from the steep-
ness of the curve. Agents based on lower NRES resolution
initially learn quicker than agents with higher NRES resolu-
tion. However, neoRL agents based on lower NRES resolu-
tions seem to saturate at a lower proficiency. For these par-
ticular runs, with 8 creeps and during a 150.000 time step in-
terval, theN50 representation appears to achieve the highest
score. Although this number is task-specific, it is worth not-
ing how all neoRL agents are comparable in learning speed.
Despite N70 NRES having almost 50 times the dimension-
ality of N101, the two neoRL agents based on these repre-
sentations are comparable in learning. This effect requires
further attention.

Allocentric Position Modality, Multiple resolutions
Combining the value potential from multiple representations
of state can significantly increase navigation performance.
The transient proficiency of the neoRL agent in the four ex-
periments, N3, N7, N23, and multi-res {N3, N7, N23},
is presented in Figure 7. Each curve is the result of a per-
timestep average over 100 independent runs. These results
verify without any doubt that neoRL agents benefit from
combining experience across multiple NRES feature sets.
With the algebraic sum of the per-timestep proficiency of
the three mono-res agents shown in grey, we see that the
multi-res neoRL agent learns quicker, to higher proficiency,
than the sum of its parts.

The superposition principle for behavior across state
spaces seems to alleviate the curse of dimensionality: The
almost 6-fold increase in the number of states (from 72 = 49
to 32 + 72 + 232 = 290 states) resulted in a 3.5-factor in-
crease in received reward without increasing training time.
Figure 7 shows that learning happens as fast or possibly a
little faster for the multi-res agent than for the N7 mono-res
agent. This effect could be defining for real-world interac-
tion learning and requires further attention.

Discussion
Navigation autonomy is plausible in real-time by RL agents
with an emulated neural representation of space. NRES-
Oriented RL (neoRL) agents are possible due to developed

1The N10 representation is comprised of 100 receptive fields,
whereas the finer N70 resolutions have 4900 receptive fields.

theory on orthogonality in the value domain, allowing for
behavior synthesis across multiple learners.

Whereas neural systems are capable of autonomous nav-
igation, modern technology is not. The most protruding
difference between these systems is how state is repre-
sented. Digital RL systems require a monolithic state con-
cept, whereas neural systems work by patterns of activa-
tion. The Markov state in RL holds enough information
to uniquely define the probability distribution of the next
state (Sutton and Barto, 2018). The Markov decision pro-
cess works well with deep function approximation, and RL
agents supported by deep learning have mastered a selec-
tion of board games. However, deep RL agents require
much training, do not generalize, and are neither incremen-
tal nor compositional (Kaelbling, 2020). With deep RL ap-
pearing to struggle with real-world interaction learning, we
have looked elsewhere for inspiration. Evidence suggests
that Neural Representation of Euclidean Space (NRES) rep-
resent Euclidean coordinates by activation patterns on the
per-neuron level. An NRES set S with mutually exclusive
receptive fields provides a set of orthogonal reward signals
of S. Utilizing these signals as reward signal for indepen-
dent learners, the set of Orthogonal Value Functions (OVFs)
form a basis for any reward function of S. Experiments ver-
ify that NRES-Oriented RL (neoRL) agents are capable of
forming skilled navigation while learning.

Considering this work as a plausibility study for neoRL
navigation, we see at least three important directions for
further study. Firstly, a thorough mathematical analysis on
the relevance of orthogonality could be key for proper un-
derstanding of neoRL capabilities. Specifically, deriving
the equations for how singular reward functions cause or-
thogonal value functions can cause a better understanding
of behavior synthesis. In experiment 2, we have seen how
different state-space representations of the same parameter
set can improve performance. We believe the same to be
possible for state spaces across different parameter spaces.
Secondly, the priority wi in Equation 3 remains static in this
work but allows for a dynamic weighing of OVF based on
importance. Directly learning the association between el-
ement i and global reward R would make neoRL learning
comply to the reward hypothesis, and be an important con-
tinuation of this work. Lastly, all experiments conducted on
the neoRL framework have yet been with the WaterWorld
environment. The WaterWorld represents a quite general
task in a highly general Euclidean space across undefined
parameters. Many would find it more interesting with a
tangible demonstration in a more specific Euclidean space,
e.g., navigation of the joints’ angles in a robot manipulator
task. A most important next step would be to demonstrate
neoRL navigation for other Euclidean spaces, e.g., for mar-
itime autonomy, (learned) autonomous driving, or for adap-
tive control of robot manipulators.
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Figure 6: Accumulated Reward by peer agents with elements of interest for runs with grid coding resolutions, N10−N90 over
150.000 time steps. Brownian motion in black is believed to be comparable to a first run of an untrained Deep RL agent.

Figure 7: The neoRL agent is capable of incorporating experience from multiple state sets for navigation. A neoRL agent with
experience from all three layers seen in Fig. 5 (purple) performs better than neoRL agents based on the individual NRES layer
(blue, orange, green). The grey line represents the algebraic sum of the mono-res agents, highlighting that the multi-res neoRL
agent performs better than the sum of its parts. Each curve is a presentation of the per-timestep average of 100 independent
runs.

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/33/30/1929957/isal_a_00444.pdf by guest on 16 January 2022



References
Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. (2007). An

application of reinforcement learning to aerobatic helicopter
flight. Advances in neural information processing systems,
19:1.

Bicanski, A. and Burgess, N. (2020). Neuronal vector coding in
spatial cognition. Nature Reviews Neuroscience, pages 1–18.

Fyhn, M., Hafting, T., Witter, M. P., Moser, E. I., and Moser, M.-B.
(2008). Grid cells in mice. Hippocampus, 18(12):1230–1238.

Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., and Moser, M.-B.
(2004). Spatial representation in the entorhinal cortex. Sci-
ence, 305(5688):1258–1264.

Heinrich, J. and Silver, D. (2016). Deep reinforcement learn-
ing from self-play in imperfect-information games. arXiv
preprint arXiv:1603.01121.

Høydal, Ø. A. (2020). Allocentric vector coding in the medial en-
torhinal cortex. Unpublished PhD thesis, Kavli Insitute of
Systems Neuroscience / Center of Neural Computation.

Kaelbling, L. P. (2020). The foundation of efficient robot learning.
Science, 369(6506):915–916.

Kandel, E. R. and Tauc, L. (1965). Heterosynaptic facilitation in
neurones of the abdominal ganglion of aplysia depilans. The
Journal of Physiology, 181(1):1.

Kjelstrup, K. B., Solstad, T., Brun, V. H., Hafting, T., Leutgeb, S.,
Witter, M. P., Moser, E. I., and Moser, M.-B. (2008). Finite
scale of spatial representation in the hippocampus. Science,
321(5885):140–143.

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement
learning in robotics: A survey. The International Journal of
Robotics Research, 32(11):1238–1274.

Latombe, J.-C. (2012). Robot motion planning, volume 124.
Springer Science & Business Media.

Ling, S. J., Sanny, J., Moebs, W., Friedman, G., Druger, S. D.,
Kolakowska, A., Anderson, D., Bowman, D., Demaree, D.,
Ginsberg, E., et al. (2016). University Physics Volume 1.
OpenStax.

Moser, E. I., Kropff, E., and Moser, M.-B. (2008). Place cells, grid
cells, and the brain’s spatial representation system. Annu.
Rev. Neurosci., 31:69–89.

O’Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a
spatial map: Preliminary evidence from unit activity in the
freely-moving rat. Brain research.

OpenAI (2020). OpenAI, Snake v0.

Ramón y Cajal, S. (1911). Histologie du système nerveux de
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Abstract. Edward C. Tolman found reinforcement learning unsatisfac-
tory for explaining intelligence and proposed a clear distinction between
learning and behavior. Tolman’s ideas on latent learning and cognitive
maps eventually led to what is now known as conceptual space, a geomet-
ric representation where concepts and ideas can form points or shapes.
Active navigation between ideas – reasoning – can be expressed directly
as purposive navigation in conceptual space. Assimilating the theory
of conceptual space from modern neuroscience, we propose autonomous
navigation as a valid approach for emulated cognition. However, achiev-
ing autonomous navigation in high-dimensional Euclidean spaces is not
trivial in technology. In this work, we explore whether neoRL naviga-
tion is up for the task; adopting Kaelbling’s concerns for efficient robot
navigation, we test whether the neoRL approach is general across nav-
igational modalities, compositional across considerations of experience,
and effective when learning in multiple Euclidean dimensions. We find
neoRL learning to be more resemblant of biological learning than of RL
in AI, and propose neoRL navigation of conceptual space as a plausible
new path toward emulated cognition.

1 Introduction

Edward C. Tolman first proposed cognitive maps for explaining the mechanism
behind rats taking shortcuts and what he referred to as latent learning [25].
Tolman was not satisfied with behaviorists’ view that goals and purposes could
be reduced to a hard-wired desire for reward [4]. Experiments showed that unre-
warded rats would perform better than the fully rewarded group when later
motivated by reward [26]. Arguing that a reinforcement signal was more impor-
tant for behavior than for learning, Tolman proposed the existence of a cogni-
tive model of the environment in the form of a cognitive map. The mechanisms
behind neural representation of Euclidean space (NRES) has later been identi-
fied for a range of navigational modalities by electrophysical measurements [3].
Further, the NRES mechanism has been implied for navigating conceptual space
[5], a Euclidean representation where betweenness and relative location makes
sense for explaining concepts [7]. Results from theoretical neuroscience indicate
NRES’ role in social navigation [17], temporal representation [6], and reasoning
[2]. Cognitive maps for representing thought have received much attention in

c© Springer Nature Switzerland AG 2022
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neurophysiology in the recent five years [2,5,17]. Navigating conceptual space
as an analogy of thought could explain generalization and reasoning based on
locality [7].

Fig. 1. Evidence for latent learning by Tolman and Honzik (1930). (after [26], from
Systems and theories of psychology [4]).

Autonomous navigation is difficult to reproduce in technology. Autonomous
operation implies a decision agent capable of forming decisions based on own
desires and experience. A well-renowned approach to establish experience-based
behavior is reinforcement learning (RL) from AI. Via trial and error based on a
scalar reward signal R, a decision agent is capable of adapting behavior accord-
ing to the accumulation of R. Considering robot path planning as Euclidean
navigation, we look toward robot learning for inspiration on autonomous navi-
gation. However; whereas RL powered by deep function approximation has been
demonstrated for playing board games at an expert level, requirements to sample
efficiency combined with high Markov dimensionality in temporal systems makes
deep RL difficult in navigation learning [10]. Leslie Kaelbling (2020) points out
key challenges for efficient robot learning, apparently concerned with the current
direction of deep RL. Navigation has to be efficient (require few interactions for
learning new behaviors), general (applicable to situations outside one’s direct
experience), and compositional/incremental (compositional with earlier knowl-
edge, incremental with earlier considerations). The current state-of-the-art deep
RL for robotics struggles on all three points [9].

Inspired by neural navigation capabilities, Leikanger (2019) has developed an
NRES-oriented RL (neoRL) architecture for online navigation [12]. Via orthog-
onal value functions (OVF) formed by off-policy learning toward each cell of an
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NRES representation, the neoRL architecture allows for a distinction between
learning and behavior. Inspired by animal psychology, the neoRL framework
allows purposive behavior to form based on the desire for anticipated reward [13].
However, navigating a multi-dimensional conceptual space of unknown dimen-
sionality in real-time would be impossible for any current learning algorithm. In
this work, we adopt Kaelbling’s three concerns when testing whether neoRL nav-
igation allows for autonomous navigation in high-dimensional Euclidean space.

2 Theory

Central to all navigation is knowledge of one’s current navigational state. Infor-
mation about relative location, orientation, and heading to objects that can
block or otherwise affect the path is crucial for efficient navigation. When such
knowledge is represented as vectors relative to one’s current configuration, neu-
roscientists refer to this representation as being egocentric. When represented
relative to some external reference frame, coordinates are referred to as being
allocentric. Vectors can be expressed as Cartesian coordinates, e.g. the vector
�a = [1.0, 3.0] represent a point or displacement in a plane, one unit size from the
origin along the first dimension, and three units along a second dimension. Vec-
tors can also be represented in polar coordinates �a = [r, ϕ], a point with distance
r from the origin in the allocentric direction ϕ. In order to apply RL for naviga-
tion, all this information must be represented according to the Markov property;
each instance of agent state must contain enough data to define next-state dis-
tribution [20]. Combined with temporal dynamics, the number of such instances
becomes prohibitively expensive for autonomous navigation by RL [10]. Neural
state representation, on the other hand, appears to be fully distributed across
individual neurons and parts of the hippocampal formation [18]. NRES cod-
ing for separate navigational modalities (as should be represented in separate
Euclidean spaces) have been located in different structures in the hippocam-
pal formation [3]. Navigational state representation for the only system capable
of true autonomous navigation seems to be decomposed across multiple NRES
modalities. This section introduces theory and considerations on how state is
represented in the animal and the learning machine, an important inspiration
for neoRL mechanisms for navigation and problem solving.

2.1 Neural Representation of Euclidean Space

The first identified NRES neuron was the place cell [16]; O’Keefe and Dostrovsky
discovered that specific neurons in the hippocampus became active whenever the
animal traversed a specific location in the test environment. Reflecting the allo-
centric position of the animal, the individual place cell could be thought of as a
geometric feature detector on the animal’s location; the place cell is active when-
ever the animal is located within the receptive field of the cell. Other NRES cells
have later been identified, expressing information in various parameter spaces.
Identified NRES modalities for navigation includes: one’s allocentric location
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Fig. 2. Some identified NRES modalities of importance for navigation, with reference
to the original publication. All NRES modalities could be important for autonomous
spatial navigation. The place cell and the object vector cell will be of particular impor-
tance in the examples and experiments of this text. (Illustration adopted from [1]

[16], allocentric polar vector coordinates to external objects [8], and one’s cur-
rent heading [24]. A selection of relevant NRES modalities is listed in Table 1 or
in Fig. 2. A more comprehensive study on NRES modalities in neurophysiology
has been composed by Bugress and Bicanski [3].

Table 1. Neural representation for different Euclidean spaces of importance for nav-
igation: Head-direction cells reflect the current allocentric (ac.) angle of the head (a
scalar parameter). The place cell and border cell respond to a proximal allocentric
location (2D). The remaining NRES reflect conditions represented in other Euclidean
spaces – listed as NRES modalities.

Location Tuning Direction NRES modality

Place cell Ac. [proximal] 2D – Current position [16]

Border cell Ac. [proximal] 2D – Location of borders [19]

Object vector cell Polar c. [spectrum] 2D Ac. Location of objects [8]

Boundary vector cell Polar c. [spectrum] 2D Ac. Location of boundaries [14]

Head-direction cell – [angular] 1D Ac. Head direction [24]

Speed cell – [rate code] 1D – Current velocity [11]

Neuroscientists assume that populations of NRES neurons map Euclidean
vectors by neural patterns of activation. A simple mapping could be formed by
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a population of NRES cells responding to mutually exclusive receptive fields.
One could visualize this representation as a chessboard; exactly one cell (tile)
would be satisfied for any point on the board. Referred to as one-hot encoding1

in computing sciences, a mutually exclusive map structure is defined by the
resolution and the geometric coverage of the map’s tiles. This intuitive map is
appropriate for demonstrative purposes: All examples and experiments in this
text are encoded by a comprehensive one-hot mapping as illustrated in Fig. 3,
where, e.g., N13 signifies a 13 × 13 tile set in �2.

2.2 Autonomous Navigation by neoRL Agents

One can separate navigation into two distinct aspects; the desired location – the
objective of the interaction – and how this objective can be reached. When both
aspects are governed by one’s own inclinations and experience, we refer to this as
an autonomous operation. A most accomplished approach to experience-based
behavior is RL from AI; a decision agent can be thought of as an algorithmic
entity that learns how better to reach an objective by trial and error. The decision
process of the agent can be summarized by 3 signals: the state of the system
before the interaction, the action with which the agent interacts with the system,
and a reward signal that reflects the success of the operation with regard to an
objective. Experience can be expressed via the value function, reflecting the
expected total reward from this state and forward under the current policy.
Since behavior (policy) is based on the current value function, and the value
function is defined under one policy, an alternating iterative improvement is
required for learning. The resulting asymptotic progress is slow, requiring many
interactions by RL learning. Although RL has proven effective for solving a
range of algorithmic tasks, autonomous control for robotics remains a challenge
[10]. Even RL powered by deep function approximation (deep RL) has limited
applicability for online interaction learning in Euclidean spaces [9].

A neoRL agent, on the other hand, is composed by a set of sub-agents learning
how to achieve different NRES cells for the corresponding NRES representation
[12]. The whole set of learning processes constitutes the (latent) learning aspect
of the agent; behavior can later be harvested as a weighted sum over the OVFs
according to priorities [13]. Learning OVFs as general value functions [21] with
R defined by NRES cell activation, the value function of the whole neoRL agent
resembles Kurt Lewin’s fieldt theory of learning [15]. Leikanger (2021) demon-
strated how emulated NRES for agent state allows for autonomous navigation in
a single Euclidean space [13], however, multi-modal navigation and combining
experience across NRES modalities remains to be tested. As multi-modal NRES
capabilities would bring neoRL state representation closer to navigational state
representation in the brain, compositionality across NRES modalities would be
important for making neoRL a plausible candidate for conceptual navigation.

1 Note for computing scientists: NRES is not concerned with the Markov state. Any
similarity to RL coarse coding and CMAC can therefore be considered to be an
endorsement of these AI techniques, not grounds for direct comparison.
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Fig. 3. (A) The allocentric WaterWorld environment: Blue entity is governed by inertia
dynamics, with a desire for green (R = +1) and aversion for red (R = −1). (B) An
N5 mapping of NRES: Each axis is divided into N = 5 equal intervals, resulting
in N2 = 25 NRES cells. An OVF represents the value function toward one NRES
activation. (C) Learned NRES maps can form behaviors via anticipated reward: When
an NRES tile contains an element associated with reward, the corresponding OVF is
weighted accordingly. Anticipated rewards are illustrated using the same colors as in
(A); one aversive NRES cell in red and two desirable NRES cells associated with various
anticipation are represented in shades of green. (Color figure online)

3 Multi-modal neoRL Navigation

Adopting Kaelbling’s three concerns for Euclidean navigation, we next explore
how neoRL navigation scales with increasing (Euclidean) dimensionality. First,
it is crucial that NRES-oriented navigation can operate based on different
Euclidean spaces; with little knowledge of the form or meaning of conceptual
spaces, neoRL must be capable of navigation by other information than location.
Further, we are interested in how neoRL navigation scales with additional param-
eters or across multiple NRES modalities. Any exponential increase in training
time with additional states would make conceptual navigation infeasible. NeoRL
navigation must be general across NRES modalities, compositional across con-
ceptual components, without any significant decline in learning efficiency. In this
section, we explore neoRL capabilities for hi-dimensional navigation by experi-
ments inspired by Kaelbling’s concerns for efficient robot navigation.

All experiments are conducted in the allocentric version of the WaterWorld
environment [23], illustrated in Fig. 3A. An agent controls the movement of the
self (blue dot), with a set of actions that accelerate the object in the four direc-
tions N , S, E, W . Three objects of interest move freely in a closed section of
a Euclidean plane. When the agent encounters an object, it is replaced by a
new object with a random color, location, and speed vector. Green objects are
desirable with an accompanying reward R = +1.0, and red objects should be
avoided with R = −1.0. No other rewards exist in these experiments, making
R a decent measure of an agent’s navigation capabilities. Note that the agent
must catch the last green in a board full of red before the board can be reset
and continue beyond (on average) 1.5 points per reset.
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The PLE [22] version of WaterWorld reports the Cartesian coordinates of
the agent and elements of interest; thinking of the Euclidean plane in Fig. 3A
as representing location facilitates later discussion. A direct NRES encoding of
this information will be referred to as place cell (PC) NRES modality in the
remainder of this text. One can also compute a simple object vector cell (OVC)
interpretation by vector subtraction:

�oi
OVC = �oi

PC − �sPC

where �s is the location of self and �oi is the location of object i in PC or OV C
reference frame. Note that this OVC interpretation allows for a modality similar
to OVC with the self in the center and allocentric direction to external objects,
but not with polar coordinates as reported for OVC [8]. However, the two Carte-
sian representations of location still give different points of view due to different
reference frames. Information is encoded in NRES maps as described in Sect. 2.1;
the neoRL agent is organized across multiple NRES maps of different resolutions
as described in [13]. Multi-res NRES modalities cover resolutions given by primes
up to N13, i.e., with layers N2, N3, N5, N7, N11, and N13. For more on multi-
resolution neoRL agents and the mechanism behind policy from parallel NRES
state spaces, see [13]. All execution runs smoothly on a single CPU core, and the
agent starts with no priors other than described in this section. Referring to the
NRES modalities as PC and OVC for WaterWorld is only syntactical to facil-
itate later discussions; 2D Euclidean coordinates are general and can represent
any parameter pair.

Learning efficiency is compared by considering the transient proficiency of
the agent as measured by the reward received by the agent during 0.2s inter-
vals. Any end-of-episode reward is disabled in the WaterWorld settings; the only
received reward is R = +1 when encountering green elements and R = −1 when
encountering red elements. The simple reward structure makes accumulated R
a direct measure of how well the agent performed during one run. However,
observing the transient proficiency – real-time learning efficiency – of the agent
requires further analysis: in all experiments, a per-interval average or received
reward is computed over 100 independent runs with additional smoothing by a
Butterworth low-pass filter. All runs are conducted in isolation; the agent is ini-
tiated before each run and deleted after the run – without any accumulation of
experience between runs. The x-axis of every plot represents minutes since agent
initiation. The y-axis represents proficiency as computed by the per-interval
average of received reward, scaled to reflect [R/s]. Proficiency thus measures
how many more desirable (green) encounters happen per second than unwanted
(red) ones.

3.1 NeoRL Navigation: NRES Generality

First, we examine the generality of the neoRL architecture by comparing naviga-
tional proficiency for an agent exposed to a PC modality to one exposed to an OVC
modality. We are interested in the generality of neoRL navigation; can neoRL nav-
igate the PC modality by different Euclidean information, and at what cost?
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Fig. 4. The neoRL architecture is general across NRES modalities: (A) an original
place cell (PC) NRES modality, implemented by applying NRES code directly on an
allocentric location of the agent or elements of interest. (B) an emulated object vector
cell (OVC) NRES modality, implemented by vector subtraction. OVC is centered on
the self with an allocentric representation of other objects.

Results are presented in Fig. 4: agent proficiency from the original PC modal-
ity (Fig. 4A) can be compared with agent proficiency when navigating by the
OVC modality (Fig. 4B). The immediate proficiency of several mono-resolution
neoRL agents is plotted alongside the proficiency of a multi-resolution neoRL
agent. There is no loss in sample efficiency when utilizing the OVC modality
compared to PC modality. The multi-res neoRL agent performs better than
mono-res neoRL agents for both the PC and the OVC modality. NeoRL naviga-
tion performs well across both aspects of experience, indicating that the neoRL
architecture is general across navigational modalities.

3.2 NeoRL Navigation: NRES Compositionality

Secondly, we are interested in how neoRL scales with additional navigational
information. Experiment 1 showed how a neoRL agent is capable of reactive
navigation based on an auxiliary NRES modality. In this experiment, we explore
the benefit of combining experience across more than one NRES modality. A
multi-modal neoRL agent is exposed to both the PC and the OVC modality
from experiment 1, effectively doubling the number of NRES states for the agent
to consider. We are anxious about how well the neoRL architecture scales with
the additional information, both for final proficiency and learning time.
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Fig. 5. Multi-modal neoRL navigation leads to higher proficiency and quicker learning
than mono-modal agents, despite having twice as many NRES states.

Compare the proficiency of the neoRL agent when exposed to PC, OVC, and
multi-modal information in Fig. 5. Combining information across multiple NRES
modalities significantly improves navigational performance. The final proficiency
of the multi-modal neoRL agent approaches 0.55[R/s] while the PC neoRL agent
barely reaches 0.29[R/s]. The multi-modal neoRL agent reaches final proficiency
after 15 min, whereas the PC neoRL agent uses more than 160 min. In terms of
learning efficiency, i.e., how fast the agent reaches final proficiency, and in terms
of trained performance, the multi-modal neoRL agent performs better than both
mono-modal neoRL agents.

4 Discussion

Contrary to RL in AI, neoRL navigation learns quicker, to higher proficiency,
when more information is available to an agent. The neoRL agent is capable
of multi-modal navigation, making multi-dimensional Euclidean navigation by a
digital agent plausible.

Moving on from reinforcement learning and classical behaviorism, Tolman
made a clear distinction between learning and performance after his latent learn-
ing experiments (see Fig. 1). Observing how an animal could learn facts about
the world that could subsequently be used in a flexible manner, Tolman proposed
what he called purposive behaviorism. When motivated by the promise of reward,
the animal could utilize latent knowledge to form beneficial behavior toward
that objective. Mechanisms underlying orientation have further been implied in
cognition, a conceptual space where ideas are represented as points in a multi-
dimensional Euclidean space. Technological advances have allowed new evidence
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from modern neuroscience, supporting Tolman’s hypotheses on cognitive maps’
involvement in thought. Inferring that active navigation of such a space corre-
sponds to reasoning and problem solving, we here propose autonomous navi-
gation of conceptual space as an interesting new approach to artificial general
intelligence. However, navigating conceptual space – with high dimensionality,
an unknown form, and possibly an evolving number of Euclidean dimensions, is
no trivial challenge for technology. Based on neural representation of space, the
neoRL architecture is distributed and concurrent in learning, capable of sepa-
rating between latent learning and purposive behavior, and a good candidate for
emulated cognition by autonomous navigation of conceptual space.

Adopting Kaelbling’s concerns for efficient robot learning to account for
multi-modal navigation, we have methodically tested neoRL navigation in the
WaterWorld environment. Firstly, it is crucial that neoRL navigation can oper-
ate in other Euclidean spaces than its primary navigation modality. Our first
experiment verifies that the neoRL architecture is general across Euclidean
spaces; a neoRL agent that navigates by the location modality is compared to
one exposed to a relative-vector representation of external objects. Both NRES
modalities perform admirably at this task, indicating that neoRL navigation is
not restricted to one NRES modality. Secondly, we explore how neoRL naviga-
tion scales with additional NRES modalities; an agent based on both a place-cell
and an object-vector-cell representation is compared to the two mono-modal
neoRL agents from experiment 1. Navigation, both in training efficiency and
final proficiency, improves significantly when more information is available to
the agent. High-dimensional Euclidean navigation appears to be plausible with
neoRL technology, formed by the basic principles from neuroscience and NRES.

In this work, we have collected evidence from theoretical neuroscience and the
psychology of learning to propose a new direction toward emulated cognition. We
have shown how online autonomous navigation is feasible by the neoRL architec-
ture; still, the most interesting steps toward conceptual navigation in machines
remain. What are the implications of autonomous navigation of conceptual space
for AGI? Could latent spaces from deep networks be used for neoRL navigation?
Should desires (elements of interest) propagate across NRES modalities based
on associativity? Many important questions are yet to be asked. In showing that
neoRL is up for the task of multi-modal navigation, we hereby propose a novel
approach to AGI and present a plausible first step toward conceptual navigation
in machines.
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Abstract

The neoRL framework for purposive AI implements latent learning by emulated cognitive maps, with general value
functions (GVF) expressing operant desires toward separate states. The agent’s expectancy of reward, expressed as
learned projections in the considered space, allows the neoRL agent to extract purposive behavior from the learned map
according to the reward hypothesis. We explore this allegory further, considering neoRL modules as nodes in a network
with desire as input and state-action Q-value as output; we see that action sets with Euclidean significance imply an
interpretation of state-action vectors as Euclidean projections of desire. Autonomous desire from neoRL nodes within
the agent allows for deeper neoRL behavioral graphs. Experiments confirm the effect of neoRL networks governed
by autonomous desire, verifying the four principles for purposive networks. A neoRL agent governed by purposive
networks can navigate Euclidean spaces in real-time while learning, exemplifying how modern AI still can profit from
inspiration from early psychology.

Keywords: Tolman, purposive AI, GVF, autonomous navigation, neoRL



1 Behavioristic AI by neoRL nodes

Thorndike’s law-an-effect in functionalist psychology have been reported as an important inspiration for Reinforce-
ment Learning (RL) in AI [6]. Thorndike considered the reinforcement of randomly encountered reflexes as a plausi-
ble explanation for simple behavior and acquired reflexes. The law-of-effect represents an essential first step toward

Figure 1: The first multi-map neoRL agent ; The
neoRL agent is capable of expressing latent learn-
ing across several representations of the same Eu-
clidean space, forming agent value function as a
weighted sum of operant value from all NRES maps.
(figure from [1])

the study of behavior becoming a natural science, quickly re-
placed by behaviorism for explaining advanced policies and hu-
man behavior. Edward C. Tolman (1866-1959) further proposed
that behavior is separate from learning, attempting to explain
observations where an animal could express different behavior
as a function of varying motivation [9]. Combining Tolman’s
latent learning with operant conditioning from E. C. Skinner, con-
sidering policies as being operant toward an objective, the ne-
oRL framework allows for purposive behaviorism for Euclidean
navigation [1]. By expressing latent learning as a set of oper-
ant reflexes in the environment, i.e., with a set of general value
functions (GVF) [7] trained by mutually exclusive conditionals
as reward signals, agent purpose becomes an expression of the
parameter configurations where operant value functions are ex-
tracted. Considering a set of conditionals inspired by the 2014
Nobel Price in neuroscience, the discovery of place cells and
other mechanisms behind state representation for neural navi-
gation, Leikanger (2019) demonstrated how operant neoRL sub-
agents could apply for autonomous navigation. Latent learning
by a set of operant GVFs combined with elements-of-interest, projections associated with reward in the considered Eu-
clidean space, allows for autonomous navigation governed by the purpose of attaining reward. See my thesis [4] for
more on the theory behind NRES-oriented RL (neoRL) agents, scheduled to be presented in a public online1 PhD defence
only days before RLDM.

A neoRL learning module can be considered as a behavioral node in a purposive network; early results for ne-
oRL navigation explored the effect of considering multiple state spaces in parallel for the neoRL agent. In some
ways analogous to the Hybrid Reward Architecture [10], the neoRL navigation agent combines several learners
that establish GVFs toward separate concerns [2]. From applying the superposition principle in the value domain,
the neoRL agent is capable of combining value function from many learners in one state space [1], across multi-
ple representations of the same state space [2], or across information represented in orthogonal Euclidean spaces
– thus capable of fully decomposing the state space to simpler considerations [3]. The behavioral node consists
of three parts; first, the latently learned cognitive map formed by GVF on operant desires toward NRES cells.
Operant desires are trained by off-policy GVF, expressing latent learning on how to accomplish different condi-
tionals in this environment representation. Second, the neoRL agent is governed by purpose – mental projec-
tions of parameter configurations associated with reward are expressed as elements-of-interest in the NRES map.

Figure 2: A schematic representation of fig. 1, the
neoRL agent from [2]. Agent value function is formed
from the combined value functionQN from each of the
three ξN neoRL nodes, where N ∈ {3, 7, 23} [2].

These free-ranging representations of desire in the considered
space are mapped to NRES nodes, activating GVFs correspond-
ing to the associated valence – the element’s expectancy of re-
ward upon achievement. Note that the same neoRL node, con-
taining latent knowledge in one NRES representation, can be
harvested by different sets of elements-of-interest. Third, the
value function can be extracted by elements-of-interest from the
digital analogy to Tolman’s cognitive map – resulting in an ac-
tionable Q-vector output of the neoRL node. When mutually
exclusive NRES receptive fields are used for latent learning, the
GVF components become operant toward that NRES cell – Op-
erant Value-function Components (OVC). The singular (orthog-
onal) value component can be combined with others to form the
full value function of the agent, further implying that multiple
modalities can be learned in parallel and combined to one agent

value function [3]. Figure 2 shows the aggregation of the value function for the neoRL agent in [2]. The location and
valence of elements-of-interest can be considered as inputs to the neoRL behavioral node, and the superposition of
weighted OVC establishes an output of the neoRL node.

1Information about the streamed PhD defence will be posted on www.neoRL.net
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The purposive AI expressed by the neoRL agent in figure 2 can well be considered as a single-layered behavioral net-
work with a single output state-action value function. Figure 2 presents a functional representation of the multi-map
navigational agent from figure 1. The individual neoRL sub-nodes ξ3, ξ7, ξ23 are trained by latent learning, and purpo-
sive state-action value functions {Q3, Q7, Q23} can be extracted for the digital analogy to a cognitive map by purposive
elements {ein}. The network would have an input, the full set of elements of interest {ein}; the purposive network would
have a latent state, formed by latent learning expressed as off-policy operant desires; the neoRL network would have an
actionable state-action Q-vector as output. When further assuming a Euclidean significance for the action set, as with
A = {N,S,E,W} in [2], the state-action value could be interpreted a Euclidean desire-vector;

~d =
~∑

Qin ,

where ~∑ represents the vector sum. The valence of the desire vector ~d should express the combined valence across {ein}.
~eout = ~d

eoutψ =
∑

einψ ,

where ~ei signifies the coordinate and eiψ represents the valence of purposive element i. A functional schematic of the
neoRL module is illustrated in figure 3; a single output-desire can be formed from any number of input elements {ein}.
Different sets of purposive elements-of-interest {ein} can establish different output desire eout and actionable state-action
values QN from the same cognitive map. Earlier networks of the neoRL node could be seen as a behavioral analog to
a one-layered perceptron [5]. The enclosed theory allows for multi-layered neoRL networks governed by autonomous
desire.

2 Experiments

A comprehensive environment for research on autonomous navigation is the PLE implementation [8] of Karpathy’s
WaterWorld environment; An agent controls acceleration of the self in the four Cardinal directions [N,S,E,W ], i.e.,
[up, down, right, left]. Three objects move around in the Euclidean plane according to predefined mechanics. Encoun-
tering an object replaces it with a new object with a random color, location, and speed vector. Green objects are desirable
with a positive reward R = +1.0, and red objects are repulsive with a negative valence of −1.0. Capturing the last green
object resets all remaining (red) objects by the same reset mechanisms. The only reward comes from encountering ob-
jects, making the accumulation of R an objective measure for navigational capabilities and its time course an indication
of real-time learning capabilities.

Rewards are only received sparsely, with discrete +1.0 or −1.0 steps after encountering objects in the Water-
World environment; measuring the immediate proficiency of the agent by accumulated R can be a challenge.

Figure 3: A neoRL learning module with one input
and two output; actions with a Euclidean significance
implies state-action vectors to be representable in the
same Euclidean space; eout can be used as input for
compatible neoRL nodes.

Capturing the transient time course of agent skill can be done by
averaging independent runts; the enclosed experiments average
100 separate runs to measure transient navigational proficiency,
i.e., across 100 separate agents. No pre-training or other precur-
sors are available for the agents, making all navigation happen
live as the agent gathers experience in the environment for the
first time. Curves are presented with minutes along the x-axis,
signifying the wall-clock time since the beginning of each run.

We shall explore four aspects in the WaterWorld environment;
first, we challenge the basic principle of propagating purpose
by the layout illustrated in figure 4a. The first neoRL node, ξPC ,
forms a purposive desire based on all reported objects from Wa-
terWorld; a single desire vector ~dwith accompanying valence eψ
propagates to the compatible neoRL node ξOV C as autonomous
desire ePC . Experiment [b] explores the effect of extracting sepa-
rate desires from the same learned cognitive map. A purposive
desire vector from the neoRL node comes from extracting latent
knowledge from considered coordinates; the agent extracts two purposive vectors from ξPC , one from desirable objects
eingreen and a separate from aversive objects einred . The output from multiple neoRL nodes can be combined for the
policy-forming value function in the neoRL framework; experiment [c] explores the effect of aggregating value function
from multiple depths of the neoRL net. The output desire from a neoRL node ξN can be applied to any compatible ne-
oRL node ξM , including itself: experiment [d] explores recurrent connections for neoRL nodes. Collaborative experience
is explored with and without recursive desires, as illustrated in figure 4c and 4d. All results are reported in figure 4e.
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(a) Aspect 1: a single desire vector ePC as input to ξOV C . (b) Aspect 2: separate desire extraction; ePCred and ePCgreen .

(c) Aspect 3: joint value function from sequential neoRL nodes. (d) Aspect 4: recursive desires for neoRL autonomy.

(e) Transient proficiency of neoRL agent A-D.

Figure 4: [[Top]] Illustrations of the neoRL architecture tested in experiment A-D. [a] A first attempt on desire from expe-
rience; neoRL node ξPC forms a single desire ePC for value-generating neoRL node ξOV C . [b] Latent knowledge can be
extracted separately for separate classes for desire; experiment B forms two desire-vectors ePCred and ePCgreen from ξOV C

– grouping according to valence. [c] The value function output from neoRL node ξPC and node ξOV C contribute equally
to agent value function. [d] Recursive desires are possible for neoRL nodes: the ξOV C is governed by three elements-of-
interest, ePCred , ePCgreen , and recurrent desire eOV C . [[Down]] Results from the four experiments: [e] Purposive neoRL
networks allows for purposive autonomy by deep and/or recurrent desires.
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3 Discussion

The neoRL agent navigates continuous space by projections of desire, vectors of purpose associated with an agent’s ex-
pectancy or reward. When actions have a Euclidean significance, purposive Q-vectors can form autonomous projections
of desire, experience-based inferences that can establish input to deeper neoRL nodes. Experiments demonstrate how
deeper or recurrent desires are crucial for navigational proficiency, suggesting purposive neoRL networks as a plausible
approach to autonomous navigation.

This work explores four principles of purposive neoRL networks. First, experience-based desire vectors can shape pur-
posive navigation in Euclidean space. The neoRL network from illustration 4a improves navigational proficiency over
time; however, considering all objectives under one, i.e., forming a single desire vector based on all red and green objects,
becomes too simple for proficient navigation. Second, a single neoRL node can generate different eout desires by consid-
ering different sets of objectives {ein}. Experiment b demonstrates the effect of separating desires according to valence,
resulting in the increased performance by the neoRL navigational agent. The simplicity and clarity expressed by separa-
tion of desires, as illustrated in figure 4b, facilitates explainability of the trained solution – a crucial element if traditional
AI is to be applied for desire classification. Third, the neoRL agent can base agent value function on any neoRL node in
the network. Agents extracting purpose from multiple depths of the neoRL network, as illustrated in 4c, becomes better
navigators than more superficial agents. Fourth, desire vectors eout from one neoRL node can form objectives for any
compatible neoRL node – including itself. Experiment [d] explores recursive desires, where the output of ξOV C – desire
vector eOV C – establish an additional purpose for neoRL node ξOV C . The proficiency of the recursive agent from 4d is
reported as curve [D], showing how recursive desires drastically improve the agent’s navigational proficiency. Results
can be examined in figure 4e and in real-time video demonstrations at www.neoRL.net .

Note that no comparison has been made with alternative approaches for control; this work is only concerned with un-
covering the basic principles of purposive neoRL nets for behavioral AI. Still, any attempt on finding RL or AI solutions
capable of allocentric Euclidean navigation in real-time has failed. Further work could involve finding and comparing
alternative approaches for real-time autonomous navigation in the WaterWorld environment. Likewise, this work in-
volves no search for optimal parameters for neoRL navigation. Experiment [c] explores collaborative experience with
1:1 weight ratio between ξPC and ξOV C , and experiment [d] only explores a unitary feedback loop r = −1.0. It is left
for further work to explore network architecture theory or find data-driven methods for parameter adaptation. We have
barely scratched the surface of autonomous navigation by purposive networks, proposing neoRL networks as a plausible
new approach toward navigational autonomy.
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