Table S4

 Results from Egger's test and Rank correlation test.

Study	k	Method	Unadjusted	d estimates	Egger's test		Rank correlation test
			Reporter ES	Reanalysis ES	RMA: <i>z</i> , <i>p</i>	LM: $t(df)$, p	Kendall's tau; p
Acarturk et al, 2009	47	ML	0.70 [0.56, 0.83]	0.71 [0.56, 0.85]	2.40, .016	3.34 (45), .002	$0.14; .15^{1}$
Braun, et al, 2013	41	ML	-0.01[-0.10, 0.08]	0.003 [-0.10, 0.08]	-0.098, .92	-0.08 (39), .94	$-0.088, .418^{1}$
Cuijpers, Ciharova et al, 2021	37	ML	0.42 [0.26, 0,54]	0.40 [0.28, 0.52]	2.89, .004	2.73 (35), .010	$0.30, .007^{1}$
Cuijpers, Clignet et al, 2011	15	ML	0.29 [0.13, 0.44]	0.29 [0.13, 0.44]	1,08, .27	1.38 (13), .18	0.30, .13
Cuijpers, Dekker et al, 2009	25	ML	0.31 [0.20, 0.43]	0.31 [0.19, 0.42]	0.51, .61	0.09 (23) .92	$0.02, .87^{1}$
Cuijpers, Donker et al, 2010	24	ML	-0.02 [-0.2, 0.15]	-0.014 [-0.18, 0.15]	-2.34, .019	-2.18 (22), .040	$-0.25, .096^{1}$
Cuijpers, Driessen et al, 2012	18	ML	0.58 [0.45, 0,72]	0,57[0.44, 0.71]	0.83, .40	0.92, (16) .37	0.17, .32
Cuijpers, Koole et al, 2014	14	ML	0.35 [0.23, 0.47]	0.35 [0.23, 0.46]	-0.28, .77	-0.25, (12) .80	-0.054, .82
Cuijpers, Turner et al, 2014	12	ML	0.25[0.14, 0.36]	0.25 [0.14, 0.36]	1,09, .27	1,23 (10), .24	0.24, .310
Ekers et al, 2008	16	ML	-0.70 [-1,00, -0.39]	-0.71 [-1.01, -0.40]	-1.32, .19	-0.79 (14), .44	-0.23, .23
Huang et al, 2020	10	FE	-0.25 [-0.40, -0,09]	-0.25 [-0.41, -0.09]	-1.76, .078	-1.39 (8), .20	-0.29, .29
Kolovos et al, 2016	31	ML	0.33 [0.24, 0.42]	0.33 [0.24, 0.42]	0.81, .42	0.50 (29), .62	$0.14, .28^{1}$
Milling et al, 2018	13	FE	0.71 [missing]	0.71 [0.50, 0.92]	0.72, .47	0.67 (11), .52	$0.27, .20^{1}$
Osenbach et al, 2013	14	ML	0.14 [-0.03, 0.30]	0.13[0.000, 0.29]	0.04, .96	-0.30 (12), .76	$0.29, .0083^{1}$
Park et al, 2014	15	ML	0.38 [0.29, 0.48]	0.38 [0.28, 0.47]	-1.18, .23	-1.38 (13), .19	$0.04, .80^{1}$
Schefft et al, 2019	19	ML	0.24 [0.12, 0.37]	0.24 [0.11, 0.36]	0.77, .44	0.82 (17), .41	0.14, .40
van Bronswijk et al, 2018	22	ML	0.42 [0.29, 0.54]	0.41 [0.29, 0.53]	2.10, .036	1.03 (20), .32	0.32, .041

Note: RMA = using a random effects meta-regression model. LM= using a weighted regression model. ML = Using random effects model and the *rma.uni* function with the maximum-likelihood estimator (ML) from the *metafor* package (Viechtbauer, 2010). FE = using fixed effects model and the *rma.uni* function with the fixed effects estimator (FE) from the *metafor* package (Viechtbauer, 2010). ¹= Warning message in RStudio: "At least one of the p-value intervals contains three or fewer effect sizes, which may lead to estimation problems. Consider re-specifying the cutpoints".

Rounding Numbers

For numbers greater than 100, report to the nearest whole number (e.g., M = 6254). For numbers between 10 and 100, report to one decimal place (e.g., M = 23.4). For numbers between 0.10 and 10, report to two decimal places (e.g., M = 4.34, SD = 0.93). For numbers less than 0.10, report to three decimal places, or however many digits you need to have a non-zero number (e.g., M = 0.014, SEM = 0.0004).

For numbers	Round to	SPSS	Report	
Greater than 100	Whole number	1034.963	1035	
10 - 100	1 decimal place	11.4378	11.4	
0.10 - 10	2 decimal places	4.3682	4.37	
0.001 - 0.10	3 decimal places	0.0352	0.035	
Less than 0.001	As many digits as needed for non-zero	0.00038	0.0004	

Do not report any decimal places if you are reporting something that can only be a whole number. For example, the number of participants in a study should be reported as N = 5, not N = 5.0.

Report exact p-values (not p < .05), even for non-significant results. Round as above, unless SPSS gives a p-value of .000; then report p < .001. Two-tailed p-values are assumed. If you are reporting a one-tailed p-value, you must say so.

Omit the leading zero from p-values, correlation coefficients (r), partial eta-squared (η_p^2), and other numbers that cannot ever be greater than 1.0 (e.g., p = .043, not p = 0.043).

http://www.kordoutis.gr/Reporting Statistics%20in%20Psychology.pdf