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Abstract to many-core architectures with thousands of cores. Fdr eac
shared memory location, theL/SC implementation con-
This paper addresses the problem of universal synchro-ceptually associates a reservation bit with each procesker
nization primitives that can suppastalablehread synchro-  reservations are invalidated when the location are modifyed
nization for large-scale many-core architectures. Theveni any processor. Implementingl/SC in the memory (with-
sal synchronization primitives that have been deployeélyid out compromising its semantics) limits the scalability loé t
in conventional architectures, are tkempare-and-swgi€AS)  multiprocessor since the total directory size increaseslcat-

and load-linked/store-conditiongLL/SC) primitives. How- ically with the number of processors [37]. Therefore, the
ever, such synchronization primitives are expected toheac LL/SC primitives are built on conventional cache-coherent
their scalability limits in the evolution to many-core aitgt- protocols [37, 14]. However, experimental studies havevsho
tures with thousands of cores. that theLL/SC primitives are not scalable for multicore ar-

We introduce anon-blockingfull/empty bit primitive, or chitectures [48]. The conventional cache-coherent padsoc
NB-FEB for short, as a promising synchronization primitive are considered inefficient for large scale manycore archite
for parallel programming on may-core architectures. Wewho tures [5]. As a result, several emerging multicore architec
that the NB-FEB primitive isiniversal, scalable, feasibéad tures like the NVIDIA CUDA [39], the ClearSpeed CSX [49],
conveniento use. NB-FEB, together with registers, can solve the IBM Cell BE [23] and the Cyclops-64 [12] architectures
the consensus problem for an arbitrary number of processesutilize fast local memory for each processing core rathan th
(universality. NB-FEB iscombinablenamely its memory re-  coherent data cache.
guests to the same memory location can be combined into For the emerging many-core architectures without coher-
only one memory request, which consequently mitigates perent data cache, the AS primitive is not scalable either since
formance degradation due to synchronization "hotspatsal-  C' AS is notcombinablg32, 10]. Primitives are combinable if
ability). Since NB-FEB is a variant of the original full/lempty their memory requests to the same memory location (arriving
bit that always returns a value instead of waiting for a coendi at a switch of the processor-to-memory interconnection net
tional flag, it is as feasible as the original full/lempty bithich work) can be combined into only one memory request. Sepa-

has been implemented in many computer systégasibility). rate replies to the original requests are later created fham
The original full/lempty bit is well-known asspecial-purpose  reply to the combined request (at the switch). The combin-
primitive for fast producer-consumer synchronization aiag ing technique has been implemented in the NYU Ultracom-

been used extensively in the specific domain of applicationsputer [22] and the IBM RP3 [41] machine and has been shown
In this paper, we show that NB-FEB can be deployed eas-to be a promising technique for large-scale multiprocesssor
ily as ageneral-purposprimitive. Using NB-FEB, we con- to alleviate the performance degradation due to synchaeniz
struct a non-blocking software transactional memory syste tion "hot spot". Although theingle-valued” AS, («x, b) [10],
called NBFEB-STM, which can be used to handle concur- which will atomically swapb to « if 2 equalsa is combin-
rent threadsconveniently NBFEB-STM is space efficient: able, the number of instructiofsAS, must be as many as
the space complexity of each object updatedbgoncurrent the number of integerg that can be stored in one memory
threads/transactions i®(N), the optimal. word (e.g. 264 C'AS, instructions for 64-bit words). This

fact makes theingle-valued” AS, unfeasible for hardware

Keywords: many-core architectures, non-blocking syn- implementation.

chronization, full/fempty bit, universal, combining, nbfecking Another universal primitive callesticky bithas been sug-

software transactional memory, synchronization priregiv gested in [42], but it has not been deployed so far due to its
usage complexity. To the best of our knowledge, the univer-

1 Introduction sal construction using the sticky bit [42] does not prevent a

delayed thread, even after being helped, from jamming the
sticky bits of a cell that has been re-initialized and reused
Since the universal construction is built on a doubly-lidke

list of cells, it is not obvious how an external garbage col-
lector (supported by the underlying system) can help solve
the problem. Moreover, the space complexity of the unidersa

Universal synchronization primitives [28] are essential f
constructing non-blocking synchronization mechanisnrs fo
parallel programming, like non-blocking software trargaal
memory [21, 27, 30, 36, 43]. Non-blocking synchronization

e_hmmates the concurrency c_:ontro! problems of mutualexcl construction for an object is as high @ N?log '), where
sion locks, such as priority inversion, deadlock and convoy .
N is the number of processes.

ing. As many-core architectures with thousands of cores are This paper suggests a novel synchronization primitivéedal

expected to be our future chip architectures [5], univesgat o N -
L S NB-FEB, as a promising synchronization primitive for paral
chronization primitives that can support scalable thread s : .
lel programming on many-core architectures. What makes

chronization for such large-scale architectures are e@sir L S T : .
; i L : NB-FEB be a promising primitive is its following four main
However, the conventional universal primitives lt@mpare- . -
properties. NB-FEB is:

and-swagC AS) andload-linked/store-conditiondL. L/ SC)
are expected to reach their scalability limits in the evolut  Feasible : NB-FEB is anon-blockingvariant of the conven-



tional full/lempty bit thatalways returnghe old value  Algorithm 1 TFAS(z: variable,v: value): Test-Flag-And-
of the variable instead of waiting for its conditional Set, a non-blocking variant of the original Store-if-Cleed-
flag to be set (or cleared). This simple modification Set primitive, whichalwaysreturns the old value af.

makes NB-FEB agdeasibleas the original (blocking) (0, flagy) — (z, flag,);

full’empty bit, which has been implemented in many  f flag, = false then

computer systems like HEP [45], Tera [3], MDP [15], (z, flag,) — (v, true);

Sparcle [2], M-Machine [31] and Eldorado [20]. The end if

space overhead of full/lempty bits can be reduced using return (0, flag,);

thesynchronization state buffer (SSB1].

Universal : This simple modification, however, significantly ~Algorithm 2 LoAD(z: variable)
increases the synchronization power of full/lempty bits,  return (z, flag.);
making NB-FEB as powerful aSAS or LL/SC. NB-
FEB, together with registers, can solve consensus prob-ajgorithm 3 SAC(z: variable,v: value): Store-And-Clear
lem for arbitrary number of processes, the essential prop= (0, flags) — (v, flags);
erty for constructing non-blocking synchronization mech- (x’ ﬂag") o (U’ falsg)"
anisms (cf. Section 3.1). ret’urn (IO’ flag(:); '

Scalable : Like the original full/empty bit, NB-FEB izom-
binable its memory requests to the same memory lo- Algorithm 4 SAS(: variablev: value): Store-And-Set
cation can be combined into only one memory request (0, flage) — (z, flaga);

(cf. Section 3.2). This empowers NB-FEB with the (, flagy) « (v, true);
ability to providescalablethread synchronization for return (o, flage);
large-scale many-core architectures. i

Convenient to use: The original full/empty bit is well-known
as aspecial-purposerimitive for fast producer-consumer
synchronization and has been used extensively in the
specific domain of applications. In this paper, we show
that NB-FEB can be deployed easily agemeral-purpose
primitive. Using NB-FEB, we construct a non-blocking
software transactional memory system called NBFEB- sumed.
STM, which can be used to handle concurrent threads
convenientlyNBFEB-STM is space efficient: the space 3 NB-FEB Primitives
complexity of each object updated by concurrent
threads/transactions 8(V), the optimal (cf. Section The set of NB-FEB primitives consists of four sub-primitve
4). TFAS (Algorithm 1), Load (Algorithm 2),S AC (Algorithm

3) andS AS (Algorithm 4). The last three primitives are sim-

5 The retsttﬁf th;]S pacljper IS orgamge_dtas fOIIOW?' Secttlon ilar to those of the original full/empty bit. Regarding cénd
presents the shared memory and interconnection ne WorIfional load primitives, a processor can check the flag value,

models. a??“m.ed n th|s Paper. Sepuon; 3 des_crlbes the NB}‘lagm, returned by the unconditional load primitive to deter-
FEB primitive in detail and proves its universality and com- mine if it was successful
bmab'“ty propertles._ Sec'qon_ 4 presents NBFEB-STM, the When the value offlag. returned is not needed, we just
obstruction-free multi-versioning STM constructed onittiz ; ;
FEB primitive. Section 5 describ b lector th twnter — TFAS(z,v) instead of(r, flag,) — TFAS(z,v),
bprlml |:j/e. ec |otn Iescrl; esa glflr tag$ C(:heCNOI;FEaB wherer is z’s old value. The same applies$oAC andS AS.
g?'rl]\/l € used as an external garbage coflectorfor the For Load, we just writer < z instead ofr < LOAD(z). In
’ this paper, the flag value returned is needed only for combin-
ing NB-FEB primitives.

from a processor to a global shared memory module (such
as switches of a multistage interconnection network orérigh
memory modules of a multilevel memory hierarchy), can de-
tect requests destined for the same destination and nmaintai
the queues of requests. No memory coherent schemes are as-

2 Models
3.1 TFAS: A Universal Primitive

As previous research on the synchronization power of syn-
chronization primitives [28], this paper assumes the lizea  Lemma 1. (Universality) Thetest-flag-and-setrimitive (or
able shared memory model [6]. Due to NB-FEB combinabil- T'F'AS for short) is universal.
ity, as in [32] we assume that the processor-to-memory-inter
connection network imonovertakingand that a reply mes-
sage is sent back on the same path followed by the reque
message. The immediate nodes, on the communication path Animplementation isvait-freeif it guarantees that any process can com-

Proof. We will show that there is a wait-fréeonsensus al-
Sgorithm, for arbitrary number of processes, that uses drdy t




Algorithm 5 TFAS_CoONSENSUgproposal: value)

Decision: shared variable. The shared variable is initialized
to L with a clear flag (i.e.flagpecision = false).

Output: avalue agreed by all processes.
1T first « TFAS(Decision, proposal);
2T if first =1 then

3T:  return proposal;

4T: else

5T:  return first;

6T: end if

TF AS primitive and registers.

The wait-free consensus algorithm is shown in Algorithm
5. Processes share a variable callegtision, which is ini-
tialized to L with a false flag. Each process proposes its

(x, [v1]) The successive primitive with parametérs [vs])
Load SAC SAS TFAS
Load Load SAC(ve) | SAC(v2) | TFAS(v9)
(r, fr) (r, fr) (r, fr) (r, fr)
(r, fr) (r, fr) (r, fr) (r, fr)
SAC SAC(v1) SAC(vg) | SAS(v2) | SAS(v2)
(r, fr) (r, fr) (r, fr) (r, fr)
(vlv 0) (Ul ) O) (vlv 0) (Ul ) O)
SAS SAS(v1) SAC(vg) | SAS(v2) | SAS(v1)
(r, fr) (r, fr) (r, fr) (r, fr)
(vlvl) (Ulal) (vlvl) (Ulal)
(r, fr) (r, fr) (r, fr) (r, fr)
Like 5th Like 5th | Like 5th | if f,.=0: (v1,1)
column column | column else:(r, 1)

Figure 1. The combining logic of NB-FEB prim-

value & L) calledproposal by calling TFAS_CDNSENSU$proposal-bt.ives on amemory location x

The TFAS_®NSENSuUsprocedure is clearly wait-free since

it contains no loops. We need to prove that i) the procedure re
turns the same value to all processes and ii) the value rdurn

of the successive primitive request. For instance, the cell

is the value proposed by some process. Indeed, the procedurgAS’ TFAS] is the combining logic 0fSAS and TFAS

will return the proposal of the first process executing AS
on theDecision variable to all processes. Lgtbe a process
calling the procedure.

e If pisthefirst process executifigf' AS on theDecision
variable, since th®ecision variable is initialized tal
with a false flag,p's T F' AS will successfully writep’s
proposal toDecision and returnl, the previous value
of Decision. Since the value returned is, the proce-
dure return®’s proposal (line 3T), the proposal of the
first process executinfF"AS.

If p is not the first process executiigF'AS on the
Decision variable,p’s TFAS will fail to write p's
proposal toDecision since flagpecision has been set
to true by the firstT’FAS on Decision. p's TFAS

will return the value, calledfirst, written by the first
TFAS. The first value is the proposal of the first pro-
cess executin@g' F'AS on theDecision variable. Since
first #1 (due to the hypothesis that proposals are not
1), the procedure will returifirst (line 5T).

O

3.2 Combinability

Lemma 2. (Combinability) NB-FEB primitives are combin-
able.

Proof. Table 1 summarizes the combining logic of NB-FEB
primitives on a memory locatiom. The first column is the
name of the first primitive request and the first row is the name

plete any operation on the implemented object in a finite remal steps,
regardless of the execution speeds on the other procee31[2

in which SAS is followed byT F'AS. Let vy, v, r and f,. be

the value of the first primitive request, the value of the selco
primitive request, the value returned and the flag returresd,
spectively. In each cell, the first line is the combined resgue
the second is the reply to the first primitive request and the
third (and forth) is the reply to the successive primitive re
quest. The value8 and1 of f, in the reply represenfalse
andtrue, respectively.

Consider the cellT FAS, TFAS] as an example. The
cell describes the case where reqUE#AS(z,v1) is fol-
lowed by request’ ' AS(z, v9), at a switch of the processor-
to-memory interconnection network. The two requests can be
combined into only one requeBt’ AS(z, v1) (line 1), which
will be forwarded further to the corresponding memory con-
troller. When receiving a replyr, f,) to the combined re-
guest, the switch at which the requests were combined, cre-
ates separate replies to the two original requests. The tepl
the first original request F AS (z,v1), is (r, f) (line 2) as if
the request was executed by the memory controller. The reply
to the successive requesti AS(z, v2), depends on whether
the combined reque%tF AS(z, v1) has successfully updated
the memory location:. If f,. = 0, TFAS(x,v1) has suc-
cessfully updated: with its valuewv,. Therefore, the reply
to the successive requeBF AS(x, v2) is (v1, 1) as if the re-
quest was executed right after the first requestAd.S (x, vy ).

If £, =1, TFAS(x,v;) has failed to update the variable.
Therefore, the reply to the successive reqUestA S (z, vs)
is (r,1).

|



4 NBFEB-STM: Obstruction-free Multi-versioning run out of memory and thus prevent other transactions from
STM making progress, violating the obstruction-freedom prgype
The key idea to solve the space challenge is to break the list
Like previous obstruction-free multi-versioning STM el of obsolete Iocator_s into piepes so that a delayed tramsacti
LSA-STM [43], the new software transactional memory called . Prévents from being reclaimed only the locator thtas a
NBFEB-STM, assumes that objects are only accessed andirectreference as in the STMs usiaglS. T.helldea is based
modified within transactions. NBFEB-STM assumes that there®" the fact that only the head 6fs locator-list is needed for
are no nested transactions, namely each thread execuges onfUrther accesses to ti@ object. _
one transaction at a time. NBFEB-STM, like other obstrustio ~ However, breaking the list of an obsolete objealso cre-
free STMs [30, 36, 43], is designed for garbage-collected pr ates_ another challenge on finding the_head)Bf!ocator-hst. .
gramming languages (e.g. Java). A variable reclaimed by ©OPViously, we cannot use a head pointer as in non-blocking
the garbage collector is assumed to have all bits 0 when it inked-lists since modifying such a pointer requir€sts.
is reused. Note that there are non-blocking garbage collec-The key ideaiis to utilize the fact that there are no nesterstra
tion algorithms that do not require synchronization priveis ~ actions and thus each thread has at mostamtive locator

other than reads and writes while they still guarantee tie no N €ach locator list. Therefore, by recording the latesatoc
blocking property for application-threads. Such a garbageqf each thread appended(ﬁj§ locator-list, a transaction can
collection algorithm is presented in Section 5. find the head ofD’s locator list. The solution is elaborated

Only two NB-FEB primitives] F AS andS AC, are needed fUrtherin Section 4.2 and Section 4.3.

for implementing NBFEB-STM. Based on the key ideas, we come up with the data structure
for a transactional memory object that is illustrated inurey
4.1 Challenges and Key Ideas 2 and presented in Algorithm 6.

The transactional memory objectin NBFEB-STM is an ar-
ray of N pairs (pointer, timestamp), wher¥® is the num-
ber of concurrent threads/transactions as shown in Figure 2
Item T'MObj[i] is modified only by thread; and can be
read by all threads. Point@M Obji].loc points to the lo-
cator calledLoc; corresponding to the latest transaction com-
mitted/aborted by threat). Timestampl' M Obj|i].ts is the
commit timestamp of the object referencedbye;.old. Af-

The key ideais not to use the transactional memory Ob_ter successfully appending its locatboc; to the list by exe-
jectT M Obj [30, 36, 43] that needs to switch its pointer fre- cuting T FAS (head.next, Locs), t; will update its own item

quently’to anew locator (vyhen atransaction corr?mlts,). Such aTMObj (1] with its new locatorLoc;. The TMObj array is
T MObj would needS AC' in order to clear the pointer’s flag, used to find the head of the list of locatdisc: . - - - - Loc
allowing the next transaction to switch the pointer. Indtea A N

NBFEB-STM keeps a linked-list of locators for each object For each locatot.oc;, in add|t|or? to f'eldST:?’ old a_md
) ) . . new that reference the corresponding transaction object, the
and integrates a write-once pointefxt into each locator (cf.

Figure2). When opening an obje@tfor write, a transaction old data object and the new data object, respectively, as in

X : ) . : DSTM[30], there are two other fieldss andnext. Thects
T'tries to append its locator 0's locator-list by changing the field records the commit timestamp of the object referenced
next pointer of the head-locator of the list usifig' AS. Due b )

to the semantics ¢f F"AS, only one of the concurrent trans- by old. The_next field is the_ pom_ter o the next locator in
actions trying to append their locators succeeds. The otherthe locator list. Thenezt pointer is modified by NB-FEB
) rimitives. In Figure 2, value$0, 1} in thenext pointer de-

transactions must retry in order to find the new head and ther : .
append their locators to the new head. Using the locatpr-lis 22}; thcin\izlrugfit{gfé;gug? t?]l;ltlzg;g’r EZE?C:;\SIZ' h;ze
eachnext pointer is changed only once and thus its flag does its ﬂap clear (.. 0), and theext pointers of rgévioué loca-
not need to be cleared during the lifetime of the correspundi 9 e P o1 P :

. . : : tors (e.g.Locy.next, Locy.next) have their flags set (i.e. 1)
locator. This prevents 8AC from interleaving with concur- . . . .
rentT'FASes. Thenext pointer, together with its locator since theimezt pointers were changed. Thex? pointer of

will be reclaimed by the garbage collector when the lifetime 2 "W locator (e.gLocy.next) is initialized to(L,0). Due
. . to the garbage collector semantics, all locatass; reachable
of its locator is over. The garbage collector ensures that a

locator will not be recycled until no thread/transactiors laa from theT'M Obj sharedobject by following theitLoc; newt
reference to it. pointers, will not be reclaimed.

L For each transaction objeEt:;, in addition to fieldstatus,
Linking locators together creates another challenge on the ) .

) . . readSet andwriteSet corresponding to the status, the set
space complexity of NBFEB-STM. Unlike the STMs using of objects opened for read, and the set of objects opened for
CAS, a delayed/halted transactidhin NBFEB-STM may ) P ' J P
prevent all locators appended after its locator in a loekgor 2An activelocator is a locator that is still in use, opposite toaosolete
from being reclaimed. As a resulf; may make the system locator.

Unlike the STMs using” AS [30, 36, 43], NBFEB-STM
using? FAS andS AC must handle the problem thatAC’s
interference with concurrefitFF ASes will violate the atom-
icity semantics expected on variahleOverlappingl’ FF AS,
andT F'ASs both may successfully write their new values to
x if SAC interference occurs.




Txy Txy Txy Transactiorl 'z,
[Actve  [o] [Actve  [o] [Committeft 1 [Aborted [ 1
cts cts [ets 20 [ets |
Locy Locy Locy Locator Loc,
TX X TX X

old old
cts cts 20
next ‘ 0 next ‘

cts 1Q
next ‘ 1

cts 10
next ‘ 1

[oc its 0]['loc ts 29[ loc Tts 10[ loc Tts 1d TMObj
[4] [3] [2] [1]

Figure 2. The data structure of a transactional
memory object TMObj in NBFEB-STM with
four threads.

write, respectively, there is a fietds recordingl’x;'s commit
timestamp (if"z; committed) as in LSA-STM [43].

4.2 Algorithm

Athreadt; starts a transactidf by calling the SARTSTM(T)

procedure (Algorithm 6). The procedure sfistatus to
Active and clears its flag usinAC (cf. Algorithm 3). The
procedure then initializes the lazy snapshot algorithmA(LS
[43] by calling LSA_SART. NBFEB-STM utilizes LSA to

preclude inconsistent views biye transactions, an essential

Algorithm 6 STARTSTM(T": transaction)

TMObj: arrayN] of {ptr,ts}. Pointer TMObj[i].ptr
points to the locator called.oc; corresponding to the
latest transaction committed/aborted by threéad Times-
tamp TMObj[i].ts is the commit timestamp of the object
referenced byLoc;.old. N is the number of concurrent
threads/transaction¥.M Obj[i] is written only by thread;.

Locator: record tx,new,old: pointer; cts: timestamp;
end. Thects timestamp is the commit timestamp of the old
version.

Transaction: record status :
{Active, Committed, Aborted}; cts: timestamp; end.
NBFEB-STM also keeps read/write sets as in LSA-STM, but
the sets are omitted from the pseudocode since managing the
sets in NBFEB-STM is similar to LSA-STM.

1s: SAC(T.status, Active); Il Store-and-clear
2s: LSA_START(T) I/ Lazy snapshot algorithm

Algorithm 7 OPENR(T": Transaction);: TMObj): Open a
transactional onject for read

Output: reference to aataobject if succeeds, at.

1R: LSA_OPEN(T,0;,” Read”); Il LSA's OPEN procedure
2R: if T.status = Aborted then

3R:  return 1

4R: else

aspect of transactional memory semantics [25]. The LSA has5R:

been shown to be an efficient mechanism to construct consis6R

return the version chosen by LSA KEN,;
end if

tent snapshots for transactions [43]. Moreover, the LSA can
utilize up to(N + 1) versions of an transactional memory ob-

jectT M Obj recorded inV locators ofl’ M Obj’s locator list.
Note that the global count&r7 in LSA can be implemented
by thefetch-and-incremergrimitive [22], a combinable (and

thus scalable) primitive [32]. Except for the global counte
CT, the LSA in NBFEB-STM does not need any strong syn-

chronization primitives other thaWF'AS. The ABORT(T)
operationin LSA, which is used to abort a transacfigiis re-
placed byl' F AS(T.status, Aborted). Note that thestatus
field is the only field of a transaction obje€t that can be
modified by other transactions.

When a transactioff’ opens an objead for read, it in-

vokes the @ENR procedure (Algorithm 7). The procedure

simply calls the LSA_®EN procedure of LSA [43] in the

Read mode to get the version @] that maintains a consistent

STM (cf. Lemma 8). Since NBFEB-STM utilizes LSA, read-
accesses to an objedtare invisible to other transactions and
thus do not chang@'’s locator list.

When a transactioff’ opens an objead for write, it in-
vokes the ®ENW procedure (cf. Algorithm 8). The task of
the procedure is to append to the headod locator list a
new locator. whoseT'z andold fields reference t@" and
O’s latest version, respectively. In order to fiddls latest
version, the procedure invokesN®b HEAD (cf. Algorithm 9)
to find the current head ad’s locator list (line 3W). When
the head called{ is found, the procedure determin@s lat-
est version based on the status of the corresponding transac
tion H.Tx as in DSTM [30]. If theH.T'z transaction com-
mitted, O’s latest version ig{.new with commit timestamp

snapshot with the versions of other objects being accessed bH.Tz.cts (lines SW-7W). A copy o0’s latest version is cre-

T'. If no such a version aof) exists, LSA_@ENwill abort T’
and consequently @ENR will return L (line 3R). That means
there is a conflicting transaction that makesnable to main-
tain a consistent view of all the object being accessed by
Otherwise, @ENR returns the version aP that is selected

by LSA. This version is guaranteed by LSA to belong to a

consistent view of all the objects being accessed’byp to
(N + 1) versions are available for each objétin NBFEB-

ated and referenced bly.new (line 8W) (cf. locatorsLocs

and Locs in Figure 2 asH and L, respectively, for an illus-
tration). If the H. Tz transaction aborted)’s latest version

is H.old with commit timestam.cts (lines 10W-12W) (cf.
locatorsLoc; and Locs in Figure 2 agd and L, respectively,
for an illustration). If theH . T'x transaction is active, RENW
consults the contention manager [24, 50] (line 16W) to solve
the conflict between th& and H.T'z transactions. If" must



abort, QPENW tries to chang€l.status to Aborted using
TFAS (line 18W) and returnsL. Note that other transac-
tions changd.status only to Aborted, and thus ifT’ F AS
at line 18W fails,T".status has been changed thorted by 1W: newLoc «+— new Locator;

another transaction. Iff.7Tx must abort, @ENW changes  2w: while true do

H.Tx.statusto Aborted usingT F'AS (line 21W) and checks  aw:  head « FINDHEAD(O); // Find the head o©)’s list.
H.Tz.status again. aw: fori=0to1ldo

Algorithm 8 OPENW(T": TransactionD: TMODbj): Open a
transactional memory object for write by a thread

Output: reference to a@ataobject if succeeds, at.

The latest version a is then checked to ensure that it, to- sw:
gether with the versions of other objects being accessdd by  sw:
belongs to a consistent view using LSAPEN with "Write" 7W:
mode (line 28W). If it does, ®ENW tries to append the new  gw:
locator L to O’s locator list by changing thél.next pointer
to L (line 32W). Note that thed.next pointer was initial- OW:

ized to L with a clear flag, befordf was successfully ap-  1o0w:
pended toO’s locator list (line 27W). If QPENW does not  11w:
succeed, another locator has been appended as a new heagy:
and thus ®@ENW must retry to find the new head (line 33W). 13w:
Otherwise, it successfully appends the new locdt@s the 14W:
new head of0’s locator list. QPENW, which is being exe-  15w:
cuted by a thread;, then make®)[i].ptr reference tal and 16W:

recordsL.cts in O[i].ts (line 36W). This remove®)'s refer-
ence to the previous locateidLoc appended by;, allow-

ing oldLoc to be reclaimed by the garbage collector. Since 17w:
oldLoc now becomes an obsolete locator ritsct pointer is 18W:

reset (line 37W) to break possible chains of obsolete losato

reachable by a delayed/halted thread, helpiifoc’'s de- 19W:
scendant locators in the chains be reclaimed. For each itenpow:
j in the O array such thaO[j].ts < Oli].ts, the O[j].ptr 21W:
locator now becomes obsolete in a sense that it no longeraw:

keepsO'’s latest version although it is still referenced ©yy]
(since only thread; can modifyO[j]). In order to break the

chains of obsolete locators,F@NW resets thewext pointer 23W:
of the O[j].ptr locator so thaO|[j].ptr's descendant locators 24w
can be reclaimed by the garbage collector (lines 38W-39W).25w:
This chain-breaking mechanism makes the space complexityew:
of an object updated by concurrent transactions/threads in  27w:
NBFEB-STM be©(N), the optimal (cf. Theorem 1). 28W:

In order to find the head @’s locator list as in @ENW, a

transaction invokes thelRDHEAD(O) procedure (cf. Algo- 29w
rithm 9). The procedure atomically rea@sinto a local array 30W:

start (line 2F). Such a multi-word read operation is supported
by emerging multicore architectures like CUDA [39] and Cell

BE [23]. In the contemporary chips of these architectures, aziw:
read operation can atomically read 128 bytes. In generah, su 32w:
a multi-word read operation can be implemented as an atomiczaw:

shapshot using only single-word read and single-word write

primitives [1]. ENDHEAD finds the itemstart;qies¢ With the 34W:
highest timestamp istart and searches for the head from asw:
locatorstart;qes: -ptr by following thenext pointers until it 36W:

finds a locato/ whosenext pointerisL (lines 3F-6F). Since

some locators may become obsolete and theirt pointers 37W:

were reset tal by concurrent transactions (lines 37W and

39W in Algorithm 8), RNDHEAD needs to checkl’s commit 38W:

timestamp against the highest timestampOo&t a moment

after H is found (lines 8F-10F). Iff's commit timestamp is 39w

40W:
41W:
42W:

if head.tx.status = Committed then
newLoc.old «— head.new:;
newlLoc.cts <— head.tx.cts;
newLoc.new «— COPY(head.new);/l Create a
duplicate
break;
else if head.tx.status = Aborted then
newLoc.old «+— head.old,;
newLoc.cts <— head.cts;
newLoc.new — COPY(head.old);

break;
else

myProgession —  CM(O;,"Write”)ll
head.tz is active = Consult the contention
manager

if myProgression = false then
TFAS(T.status, Aborted); Il If fails, an-
other has executed tHiSF'AS.
return _L;
else
TFAS(head.tz.status, Aborted);
continue; // Transactionhead.tx has com-
mitted/aborted= Check head.tz.status one
more time
end if
end if
end for
newLoc.tx «— T,
SAC(newLoc.next, L); Il Store-and-clear
LSA_OPEN(T, O,” Write”); Il LSAs OPEN proce-

dure.

if T.status = Aborted then
return _L;// Performance (not correctness): Don't
addnewLoc to O if T has aborted due to, for in-
stance, LSA_®EN.
end if
if TFAS(head.next,newLoc) #1 then
continue; // Another locator has been appended

Find the head again
else
oldLoc = O[i;

Oli] < (newLoc, newLoc.cts); Il Atomic assign-
ment;p;’s old locator is unlinked fron®.

SAC(oldLoc.next, L); Il oldLoc may be in the
chain of a sleeping threag Stop the chain here

for each itemL; in O such thatl;.ts < Oli].ts
do

SAC(L;.ptr.next, L) Il Reset thewext pointer
of the obsolete locator
end for
return newLoc.new;
end if

43w: end while




Algorithm 9 FINDHEAD(O: TMObj): Find the head of the
locator list

Output: reference to the head of the locator list

1F: repeat

2F:  start < O; // ReadO to a local array atomically.

3F:  Letstartiqes: is the item with highest timestamp;

4F:  tmp «— startiges-ptr; I/ Find a locator whoseext
pointer is_L

5F:  while tmp.next #1 do

6F: tmp «— tmp.next;

7F:  end while

8F:  start’ «— O; l/ Check iftmp is the head.

oF: Letstart],,..; is the item with highest timestamp;

10F: until tmp.cts > start],, ., -ts;
11F: return tmp;

Algorithm 10 ComMITW(T": Transaction): Try to commit

an update transactidh by threadp;

1c: CTr «— LSA_CommiT(T); /I Check consistent snap-
shot. CTr is T's unique commit timestamp from LSA.

2C: T.cts < CTp; Il Commit timestamp of” if 7" manages
to commit.
3C: TFAS(T.status, Committed);

greater than or equal to the highest timestamp@ pf/ is the
head ofO’s locator list (cf. Lemma 4). Otherwisd] is an
obsolete locator andiRDHEAD must retry (line 10F). The
FINDHEAD procedure is lock-free, namely it will certainly
return the head of’s locator list after at mosiV iterations

unless a concurrent thread has completed a transaction an

subsequently has started a new one, whéris the number

4.3 Analysis

In this section, we prove that NBFEB-STM fulfills the
three essential aspects of transactional memory seméics

Instantaneous commit: Committed transactions must ap-
pear as if they executed instantaneously at some unique
point in time, and aborted transactions, as if they did
not execute at all.

Preserving real-time order : If atransactiorY; commits be-
fore a transactioff; starts, theril; must appear as if
it executed beford’;. Particularly, if a transactioff;
modifies an objec) and commits, and then another
transactioris starts and read3, thenT, must read the
value written byT} and not an older value.

Preluding inconsistent views: The state (of shared objects)
accessed blve transactions must be consistent.

First, we prove some key properties of NBFEB-STM.

Lemma 3. A locator L; with timestamp:ts;, does not have
any links/references to another locatby with a lower times-
tampcts; < cts;.

Proof. There is only thenext pointer to link between loca-
tors. Thenext pointer of locator; points to a locator.; only
if L;.cts is not less tharl;.cts (lines 7W and 12W, Algo-
rithm 8). Note that for each locatdr;, the commit timestamp
L;.tx.cts of its corresponding transactidn.tx (if L;.tx com-
mitted) is the commit timestamp @fs new data and thus it is
always greater than the commit timestafypcts of L;'s old
gata. O

Lemma 4. The locator returned byrINDHEAD(O) (Algo-

of concurrent (updating) threads (cf. Lemma 5). Note that asrithm 9) is the headd of O’s locator list at the time-point

soon as a thread obtainsad from FINDHEAD (line 3W of
OPENW, Algorithm 8), the locator referenced ead will

FINDHEAD foundH .next =L (line 5F).

not be reclaimed by the garbage collector until the thread re Proof. Let L be the locator returned byifbHEAD. Since
turns from the ®ENW procedure. thenext pointer of a new locator is initialized tb (line 27W,
When committing, read-only transactions in NBFEB-STM AIgorithm 8) before the locator ?s gppended into the list by
do nothing and always succeed in their commit phase as in! £'45 (line 32W), ANDHEAD will find a locator L whose
LSA-STM [43]. They can abort only when trying to open "¢xt pointer isL at a time-pointp (line 5F). TheL locator
an object for read (cf. Algorithm 7). Other transactidis is either the head at that time or a reset locator (due to lines
which have opened at least one object for write, invoke the 37W aqd 39W, Algorithm 8). ) _
CoMMITW procedure (Algorithm 10). The procedure calls !f L is areset locatostart),,,,.cts > L.cts holds (line
the LSA_GomMIT procedure to ensure thatstill maintains ~ 10F) since a locator is reset (e.g.dLoc at line 37W orL;
a consistent view of objects being accessed/bffine 1C). at line 39W) only after a locator with a higher timestamp
T's commit timestamp is updated with the timestamp returned (€-9- newLoc) has been written into the array (line 36W).
from LSA_CoMmIT (line 2C). Finally, @MMITW tries to Since ANDHEAD atomically reads thé array after it found
Chang@_sgatus to Committed (line 3C).T.status will be L.next =1, itwill observe the higher timestamp. This makes

changed t&ommitted at this step if it has not been changed FINDHEAD retry and discard., a contradiction to the hypoth-
to Aborted due to the semantics GfFAS. esis thatl is returned by RDHEAD. Therefore, thd. loca-

tor returned by NDHEAD must be the head at the time-point
FINDHEAD found L.next =1 (line 5F). O

Since a thread must get a result frorNBHEAD (line
3W) before it can consult the contention manager (line 16W),



FINDHEAD must be lock-free (instead of being obstruction-
free) in order to guarantee the obstruction-freedom fargra
actions.

Lemma 5. (Lock-freedom) FNDHEAD(O) will certainly re-
turn the head oO'’s locator list after at mostV repeat-until
iterations unless a concurrent thread has completed a trans
action and subsequently has started a new one, wheis
the number of concurrent threads updatifg

Proof. From Lemma 4, any locator returned bWwBHEAD(O)
is the head ofD’s locator list. Therefore, we only need to
prove that FNDHEAD(O) will certainly return a locator after

. . /
at mostN iterations unless a concurrent thread has completede*

a transaction and subsequently has started a new one.

We prove this by contradiction. Assume thatBHEAD(O)
executed by threatl, does not return afteN iterations and
no thread has completed its transaction sine®HEAD started.
Since each threat; updates its own iten©[j] only once
when openingD for update (line 36W, , Algorithm 8), at
most(N — 1) itemsj of O, j # i, have been updated since
FINDHEAD(O) started.

First we prove that RDHEAD(O) will return in the iter-
ation during which no item of) is updated between the first
atomic read (line 2F) and the second atomic read ofGhe
array (line 8F).

actionT’; to commit its modifications to all objects in its write-
set instantaneously by switching its status frattive to
Committed. Its committed status must no longer be changed.
NBFEB-STM uses th& F'AS primitive (Algorithm 1) to achieve
the property (line 3C, Algorithm 10). Since the flag of the
T;.status variable isfalse (or 0) when the transaction starts
(line 1S, Algorithm 6), only the firsf"FAS primitive can
change the variable. [f; manages to change the.status
variable toCommitted, the variable is no longer able to be
changed using’F'AS until the transaction objedt; is re-
claimed by the garbage collector. Note that even if thrigad
completed transactiofi; and has started another transaction
the transaction obje@; will not be reclaimed until all the
locators keeping a referencefp are reclaimable.

Since active transactiori§ make all changes on their own
copyT;.new of a shared objec? before their status is changed
from Active to eitherAborted or Committed, aborted trans-
actions do not affect the value Ok O

The two other correctness criteria for transactional mem-
ory are precluding inconsistent views and preserving real-
time order [25]. Since TFAS use the lazy snapshot algorithm
LS A [43], the former will follow if we can prove that the
LSA algorithm is integrated correctly into NBFEB-STM.

Lemma 7. The versions kept itV locators O[j].ptr,1 <

Indeed, since each transaction successfully appendsiits owj < N, for each object) is enough for checking the validity

locator to the head af’s locator list only once when open-
ing O for update (line 32W), at mostN' — 1) locators are
appended ta@)’s locator list after the first scan. Therefore,
FINDHEAD will certainly find a locatoil. such thatl..next # 1.
(line 5F) in the current repeat-until iteration. Note that f
eachnezt pointer, only the first transaction executifig’ AS

on the pointer, manages to append its locator to the pointer.

Since (1) thenext pointer of a locator.; points to a loca-
tor L; only if L;.cts > L;.cts (cf. Lemma 3) and (2) iD-
HEeAD found L by following thenext pointers starting from
startigiest -ptr (lines 3F-6F), we havé.cts > start;gies -ptr.cts.
Note thatstart;qiess -ptr.cts = start;qes:-ts (line 36W). Since
no item of O is updated between the first scan (line 2F) and
the second scan of th@ array (line 8F), the items with high-
est timestamp of both scans are the same,sit@rt;qicsr =
start),,..;- Therefore,L.cts > start],,..,.ts holds (line
10F) andL is returned.

Since RINDHEAD executed by thread does not return af-
ter N iterations due to hypothesis, it follows that at least
items have been updated sincelBEHEAD started, a contra-
diction to the above argument that at mast— 1) items have
been updated sincaNDHEAD started. O

Lemma 6. (Instantaneous commitFAS-LSA guarantees that

of a transactionT" using the LSA algorithm [43], from the
correctness point of view.

Proof. The LSA algorithm requires only the commit times-
tamp (i.e. [O°T| 3) of the most recent version (i.e0¢”

4) of each objecD at a timestamg_'T” when it checks the
validity of a transactiorf’. The older versions o are not
required for correctness - they only increase the chantatha
suitable object version is available.

We will prove that by atomically reading tli¢ object/array
at the timestam@'T to a local variablé’” as at line 2F in Al-
gorithm 9, LSA will find the commit timestampO©7 |.

A new version ofO is created and becomes accessible by
all transactions when a transacti®yn commits its modifica-
tion L;.new (stored in locator ;) to O by changing its status
from Active to Committed (line 3C, Algorithm 10). Since
every transactiorf; writes its locatorL; to O[j].ptr when
openingO for update (line 36W, Algorithm 8) (i.e. before
committing), at least one of the locat@p$j].ptr, 1 < j < N,
must contain the most recent version(@fat the timestamp
CT whenO is read toV.

Since a transactioff; updatesO[j] with its new locator
L; only after successfully appendirg; to the head ofD’s
locator list, at most one of the locatatgj].ptr,1 < j < N,

committed transactions appear as if they executed instanta is the head of the list at the timestarfifi” when the snapshot
neously and aborted transactions appear as if they did notV of O is taken. Other locatofi[;].ptr that are not the head,

execute at all.

Proof. Similar to the DSTM [30] and LSA-STM [43], the
NBFEB-STM uses the indirection technique that allows agran

have their transactions committed/aborted befd@ Note

3Term| Ot | denotes the time of most recent update of obj@performed
no later than time [43].
4TermO! denotes the content/version of objéziat timet [43].



that as soon as the transaction of a locator committed/adbort
the locator’s versions together with their commit timegpdm
no longer changed. If transactiéf{i].ptr.tz committed, the
version kept in locato¥/ [j].ptr is V[j].ptr.new with com-
mit timestampV/ [j].ptr.tz.cts, the commit timestamp of the
transaction. If transactiol[j].ptr.tx has been aborted or
is active, the version i¥[j].ptr.old with commit timestamp
V[j].ptr.cts. The only possible version with commit times-
tamp higher tharCT is V[h].ptr.new whereV[h].ptr was
the head at the timestam®I’ whenV was taken and then
transactiorl/ [h].ptr.tz committed. In this casé/[h].ptr.old

is the most recent version &tI" and its commit timestamp is
V[Rh].ptr.cts.

Therefore, by checking the commit timestamps of the ver-
sions kept in each locatdf[j].ptr,1 < j < N, againstCT,
LSA will find the commit timestamp O“” | of the most re-
cent update of objec® performed no later tha@'T'.

|

Lemma 8. The number of versions available for each object
in NBFEB-STM is up t¢ N + 1), whereN is the number of
threads.

Proof. For each objeaD, each thread; keeps a version a
that has been accessed most recently; biyn locatorO[j].ptr
(or L; for short). If¢;’s latest transactioff; committedv;j e
[1,N], the L;.old is an old version oD with validity range
[Lj.cts, Lj.tz.cts) °. Therefore, if every thread has its latest
transaction committed, each obje¢tupdated byN threads
will have N old versions with validity ranges, additional to its
latest version. O

Lemma 9. (Consistent viewNBFEB-STM precludes incon-
sistent views of shared objects frdine transactions.

Proof. Since the LSA lazy snapshot algorithm is correctly in-
tegrated into NBFEB-STM (Lemma 7), the lemma follows.
O

Definition 1. The value of a locator L is either L.new if
L .tx.status = Committed, or L.old otherwise.

Lemma 10. In eachO’s locator list, the old valud.’.old of
alocator L' is not older than the value of its previous locator
5L.

Lemma 11. (Real-time order preservatioNBFEB-STM pre-
serves the real-time order of transactions.

Proof. We need to prove that if a transacti@ih modifies an
objectO and commits and then another transacfigrstarts
and read®), 7> must read the value written B and not an
older value [25]. Namely77 is the most recent transaction
committing its modification t@ beforeT; readsO.

First we prove thafl; reads the value; written by T} if
T, opensO for read (cf. QPENR, Algorithm 7). In the proof
of Lemma 7, we have proven that the value(dfread at a
timestampC'T by LSA is the most recent value ¢f at that
timestamp. Sincd? is the most recent transaction commit-
ting its modification taD beforeT; read<0, v, is in the set of
available versions o read by LSA_®EN (line 1R). Since
T, commits beforel, starts and read®, the commit times-
tamp ofv; is less than the upper bound of any validity range
R7,” chosen by the LSA_EEN (i.e. [O°T| < Thae in
terminology used by LSA [43].) Therefore, the LSAPEN
in OPENR will return vy, which is subsequently returned by
OPENR (line 5R)

We now prove thafl; reads the value; written by 77 if
T opensO for read (cf. GPENW, Algorithm 8). Particularly,
we prove that theld value ofT’s new locator (lines 6W and
11W)iswy.

Let p; and p, be the threads executirfy and 75, re-
spectively,L; be the locator containing;’s modification (in
Ly.new) that is committed t@ andwv, be the value 0O read
by T>. Thew, value is the value of the hedd of O’s locator
list returned from INDHEAD executed byl», which is either
H.new if H.ts.status = Committed or H.old otherwise
(line 6W or 11W).

SinceT; committed beford?, started H is the head 0D’s
locator list that include&; (cf. Lemma 4). Note that sincg
is the latest transaction committing its modificationQpall
locatorsZ’ that have ever been reachable frdm via next
pointers, have the most recent timestamp/value (cf. Lemma
10) and thus will not be reset (lines 38W-39W, Algorithm 8).
Since there is a directed path fram to H via next pointers,
it follows from Lemma 10 that the value df is not older
than that ofZ .

On other hand, sinc&; is the latest transaction commit-
ting its modification taO beforeT; reads0, there is no value
of O that is newer than that df;. Therefore, the value off

Proof. Let L be the locator pointed b¥.next. SincelL.tx.statusis the value ofL;. That meandy reads they; value written

must be eitheC'ommitted or Aborted (but notActive) be-
fore L” is appended td..next (lines 5W-24W, Algorithm 8),
L".old is L's value, which is eithel.new if L.tx.status =
Committed (line 6W) or L.old if L.tz.status = Aborted
(line 11W). That meang.” .old is not older thanL’s value.
Arguing inductively for all locators on the directed patbrfr
Lto L', the lemma follows. O

5Thevalidity rangeof a versionu; of an objectO is the interval from the
commit time ofv; to the commit time of the next versian; of O [43].

6A locator L is apreviouslocator of a locatorl’ if starting from L we
can reachl.’ by following next pointers.

by Ty.

Finally, we need to prove that LSA_HEN at line 28W
acceptw;. Indeed, since); is the most recent update of
and7; commits beford, starts, the commit timestamp of
is less than the upper bound of any validity rardgye chosen
by the LSA_CQPEN (i.e. |O°T| < T,.az). Therefore, the
LSA_ OrPENat line 28W accepts; . O

"Thevalidity rangeR of a transactiorT” is the time range during which
each of the objects accessedbys valid [43].



Lemma 12. For each object, there are at most NV locators
that cannot be reclaimed by the garbage collector at anytime
point, whereN is the number of update threads.

Proof. Let L; be a locator created by a threpd A locator
L; cannot be reclaimed by the garbage collector if it is reach-
able by a thread. In NBFEB-STM, a locatby is reachable if
itis i) p;'s newlocatornew Loc, i) p;'s sharedocator, which
is referenced directly by[i].ptr, and iii) p;'s old locators
oldLoc that is reachable by other threads’s shared loca-
tor will become one op;’s old locators ifO[:].ptr is updated
with p;'s new locator (line 36W, Algorithm 8). At that mo-
ment,p;’'s new locator becomes;’s shared locator. If there
is no thread keeping a direct/indirect reference;te old lo-
cators, these locators are ready to be reclaimed (i.e. cimrea
able) wherp; returns from the ®ENW procedure.

Let C” andC? be the chains of locators (linked by their
next pointers) that cannot be reclaimed due to threadnd
Oli], respectively. Th&? chain starts at the locator that is
referenced directly by; (not directly byO) and ends at either
the locator whoseext pointer is_L or the locator whose next
locator is referenced directly by another threadCor The
C¢ chain starts at the locator that is referenced directly by
O[i] and ends at either the locator whoesert pointeris_L or
the locator that is referenced directly by another threa@.or
Note that there are no two locators whese:t pointers point
to the same locatak ; sincep; successfully appends; into
the head of the locator list only once (line 32W, Algorithm 8)

Atany time, each thregel has at most on€? and oneC?.
TheC? starts either wittp;'s new locator (before assignment
Oli] <« newLoc at line 36W, Algorithm 8) or withp;’s old
locator (after this assignment). Singghas a unique item in
the O array, it has at most on€y. Therefore, there are at
most2N chains.

We will prove that ifp; has three locators participating in
chains (of arbitrary threads), at least one of the threetdusa

Q(N).

From Lemma 12, for each obje€t there are at mostN
locators that cannot be reclaimed by the garbage collettor a
any point in time. Since each locatbrreferences to at most
one transaction objedt.tx (cf. Figure 2), the space complex-
ity of an objectisO(N).

Due to theinstantaneous commitquirement of transac-
tional memory semantics [25], when opening an object for up-
date, each thread/transaction in any STM system must create
a copy of the original object. Therefore, the space compfexi
of an object updated bj¥ threads isD(V) for all STM sys-
tems. It follows that the space complexéy V') of an object
updated byN threads in NBFEB-STM is optimal. O

Definition 2. Contention level’’L; , of a memory location

[ at a timestamp is the number of requests that need to be
executed sequentially on the location by a memory controlle
(i.e. the number of requests fbbuffered at time).

Definition 3. Contention level of a transactidf that starts
at timestamps and ends (i.e. commits or aborts) at times-
tamper is maxs, <t<e, CL;+ for all memory locations ac-
cessed by’

Lemma 13. (Contention reductiorijransactions using NBFEB-
STM have lower contention levels than those usihgs-
based STMs do.

Proof. (Sketch SinceC'AS is notcombinable[32, 10], M
conflictingC AS primitives on the same synchronization vari-
able, likeT' M Obj pointer or a transaction’status variable

in C AS-based STMs [30, 36, 43], issué remote-memory
requests to the corresponding memory controller. SINEelS

is combinable, the remote-memory requests fi@nconflict-

ing T F'AS primitives to the same variable, like thext pointer

or a transaction’status variable in NBFEB-STM, can be
combined into only one request to the corresponding mem-

must be the end-locator of a chain. Indeed, during the execu-ory controller. Therefore, the combinable primitive sfimni

tion of the GPENW procedure (Algorithm 8)p, creates only
one new locator (line 1W) in addition to its locatori].ptr,

if any. If p; has three locators that are participating in chains,
at least one of them ig;’s old locatorZ° resulting from one

of p;’s previous execution& of OPENW. Sincep; sets the
next pointer of its old locatobldLoc to L before returning
from E (line 37W), L°’s next pointeris_L. That meand.’ is

the end-locator of a chain.

It then follows that each thread has at most tvam-endo-
cators participating in all the chains. The number of nod-en
locators in all the chains is at mas¥ . Since there are at most
2N chains, there are at maslV endlocators. Therefore, the
total number of locators in all the chainsiig/. O

Theorem 1. (Space complexityThe space complexity of an
object updated byV threads in NBFEB-STM i®(N), the
optimal.

Proof. Since each obje@ in NBFEB-STM is an array ofV
items (cf. Algorithm 6), the space complexity of an object is

cantly reduces the number of requests for each memory loca-
tion buffered at the memory controller.
O

5 Garbage Collectors

In this section, we present a non-blocking garbage collec-
tion algorithm called NB-GC that can be used in the context of
NBFEB-STM. The NB-GC algorithm does not requires syn-
chronization primitives other than reads and writes while i
still guarantees the obstruction-freedom property dppli-
cation threadgor mutators in the memory management ter-
minology). The obstruction-freedom here means that adhalte
application-thread cannot prevent other applicatioedbs from
making progress.

Like previous concurrent garbage collection algorithnts fo
multiprocessors [4, 7, 8, 11, 13, 16, 18, 17, 19, 33, 35, 44, 46
47, 26], the new NB-GC algorithm is a priority-based garbage



collection algorithm in which the collector thread is a priv. Algorithm 11 GENERICCOLLECTOR: the main stages of a
leged thread that may suspend and subsequently resume theollection cycle using the sliding view technique

mutator threads. The NB-GC algorithm is an improvement 1. Raise theSnoop; flag of each mutator;

of the seminal on-the-fly garbage collector [16, 17, 18] gsin 2. Obtain a sliding view (concurrently with mutator’'s com-
the sliding view technique [35] called SV-GC. Unlike the SV- putation);

GC algorithm, the NB-GC algorithm allows the collector to 3. For each mutatak/;: 1) Suspend/;; 2) Turn theSnoop;
suspend a mutator at any point in the mutator's code (even  flag off; 3) Mark aslocal objectsO directly reachable

in the reference slot update and object allocation proejur from M;’s roots; 4) Resuma/;;
This prevents a mutator from blocking the collector and con- 4: Update the reference counterrc of each objecO;
sequently from blocking other mutators. 5: Reclaim object®) that are not markelbcal andO.rc =

In the concurrent garbage collection model, there are two 0; For each descendent of a reclaimed objectD.rc —
kind of threads: application threads (e.g. the mutatora) th —; D is checked for reclamation lik®. This operation
perform user programs (error-prone codes), and privileged  continues recursively until there are no objects that can
threads with higher priority (e.g. the collector) that @erf be reclaimed.

system tasks (error-free codes). Whereas the applicitieads
can be delayed/preempted arbitrarily, the system threhdaw
running will not be preempted by the applicationthreads: NB —,--- , RC(0,) + +. The main stages of thgenericsliding
GC guarantees obstruction-freedom &pplication threads view algorithm [35] are shown in Algorithm 11. The algo-
which usually perform users error-prone codes. Namely, arithm is genericin the sense that it may use any mechanism
halted application-thread will not prevent other applimat for obtaining the sliding view. Instead of using an atomic
threads from making progress via blocking the garbage col-snapshot algorithm [1] to obtain a consistent view of allghea
lector. The model, in some sense, covers the non-blockingreference slots, the algorithm uses a much simpler meahanis
garbage collection algorithms [29, 38] that, at the firstkkloo calledsnooping16] to avoid wrong reference counts that re-
seem not to require privileged threads. In fact, the nom#btay ~ sult from an inconsistent view. For instance, if the only-ref
garbage collectors require strong synchronization prest erence to an objee? is moving from slots; to slots, when
like compare-and-swawhose atomicity is guaranteed by hard- the view is taken, the view may miss the reference in both
ware threads, a kind of privileged threads. s1 (reading after modification) ang, (reading before modi-
The SV-GC algorithm using the sliding view technique fication). To deal with the problem, the snooping mechanism
[35] does not need synchronization primitives other thalse ~ marks adocal any object that is assigned a new reference in
and writes. However, it requires that the mutator be sus-the heap while the view is being read from the heap. The
pended only at a safe point, particularly it requires that th marked objects are left to be collected in the next collectio
mutator not be stopped during the execution of areferente sl cycle. The reader is referred to [35] for the complete SV-GC
update nor new object allocation. If a mutaldris preempted  algorithm.
during such an execution, the collector cannot progresesin We found that the SV-GC algorithm [35] can be easily im-
it cannot suspend the mutatd?. This would prevent the  proved to provide obstruction-freedom for mutators usirey t
other mutators from making progress due to lack of mem- helping techniqug9]. Basically, if the collector suspends a
ory. Therefore, the SV-GC collector does not guarantee themutator during its execution of a reference slot update er ob
obstruction-freedom for mutators and must rely heavily on ject allocation procedure, the collector helps the muthgor
the scheduler to avoid such a scenafio. completing the procedure on behalf of the mutator and mov-
The basic idea of the sliding view technique in the SV- ing the mutator’s program counter (PC) to the end of the pro-
GC algorithm is as follows. At the beginning of a collection cedure before resuming the mutator. Note that in the con-
cycle k, the collector takes an asynchronous heap snapshoturrent garbage collection model there is only one collecto
S, of all (heap) reference slots By comparing snapshot that can suspend a given mutator and the collector suspends
S,_1 and Sy, the collector knows which objects have their only one mutator at a time. The improved algorithm provides
reference counter changed during the interval betweemthe t  obstruction-freedom for mutators (or application-thigauly

collections. For instance, if in the interval a referencs sl preventing mutators from blocking the collector and conse-
is sequentially assigned references to objegt®1, - - - , on, quently from blocking other mutators. It is obstructioedr
where(s, 01) is recorded inS;_; and(s, o,,) in Sk, the col- in the sense that progress is guaranteed for each active muta

lector only needs to execute two reference count updates fottor regardless of the status of the other mutators.
o9 ando,,: RC(0g) —— andRC(o,)++, instead on refer-
ence count updates fop, o, and(n — 1) immediate objects
0i,1 <i<(n—-1) RC(og) — —,RC(01) + +, RC(01) —
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