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Abstract

relapse in ALL is poorly understood.

subtypes and in their clinical outcome after treatment.

Background: Although aberrant DNA methylation has been observed previously in acute lymphoblastic leukemia
(ALL), the patterns of differential methylation have not been comprehensively determined in all subtypes of ALL on
a genome-wide scale. The relationship between DNA methylation, cytogenetic background, drug resistance and

Results: We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis
of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First,
compared with control blood cells, the methylomes of ALL cells shared 9,406 predominantly hypermethylated CpG
sites, independent of cytogenetic background. Second, each cytogenetic subtype of ALL displayed a unique set of
hyper- and hypomethylated CpG sites. The CpG sites that constituted these two signatures differed in their
functional genomic enrichment to regions with marks of active or repressed chromatin. Third, we identified
subtype-specific differential methylation in promoter and enhancer regions that were strongly correlated with gene
expression. Fourth, a set of 6,612 CpG sites was predominantly hypermethylated in ALL cells at relapse, compared
with matched samples at diagnosis. Analysis of relapse-free survival identified CpG sites with subtype-specific
differential methylation that divided the patients into different risk groups, depending on their methylation status.

Conclusions: Our results suggest an important biological role for DNA methylation in the differences between ALL

Background

Methylation of cytosine (5 mC) residues in CpG dinucle-
otides across the genome is an epigenetic modification
that plays a pivotal role in the establishment of cellular
identity by influencing gene expression during develop-
ment [1]. In somatic mammalian cells, the majority of
CpG sites are methylated. However, CpG sites located in
regions of increased CG density, known as CpG islands,
generally have low levels of CpG methylation [2]. On the
molecular level, it is well known that CpG methylation

* Correspondence: ann-christine.syvanen@medsci.uu.se

Equal contributors

'Department of Medical Sciences, Molecular Medicine and Science for Life
Laboratory, Uppsala University, Uppsala 75185, Sweden

Full list of author information is available at the end of the article

( BiolMed Central

leads to X-chromosome inactivation, genomic imprint-
ing, and suppression of transposable elements. Disrup-
tion of DNA methylation patterns is associated with
diseases, and particularly with cancer [3]. Key regulators
that are essential for establishing and maintaining the
epigenomic landscape are frequently mutated and can
drive cancer development via alterations of DNA methy-
lation and histone modifications [4].

Pediatric acute lymphoblastic leukemia (ALL) origi-
nates from the malignant transformation of lymphocyte
progenitor cells into leukemic cells in the B-cell and
T-cell lineages. ALL is a heterogeneous disease, in which
patients are stratified into subtype groups based on their
cellular immunophenotype and recurrent cytogenetic
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aberrations, such as aneuploidies and translocations,
acquired by the leukemic cells [5,6]. In the Nordic coun-
tries, the five-year survival rate for pediatric ALL pa-
tients exceeds 80%, but one-fifth of the patients relapse
despite continued chemotherapy [5]. Although the cyto-
genetic aberrations are indicative of better or poorer
relapse-free survival rates, relapses occur in all cytogen-
etic subtypes [6].

We and others have previously observed differential
patterns of CpG site methylation in ALL cells compared
to non-leukemic bone marrow [7,8], in subtypes of ALL
[9-12], and between diagnosis and relapse [13]. However,
the genome-wide DNA methylation patterns have not
yet been comprehensively described for all subtypes
of ALL and the synergy between DNA methylation,
leukemogenesis, drug resistance, and relapse in ALL is
poorly understood. Increased understanding of the role
of aberrant DNA methylation is of considerable interest,
especially in lieu of the possible application of epigenetic
treatment in combination chemotherapy [14,15]. In the
present study we provide a comprehensive, genome-
wide map of de novo DNA methylation changes in ALL
cells at diagnosis and relapse by interrogating the methy-
lation levels of 435,941 CpG sites distributed genome-
wide in a large collection of pediatric ALL cells of
diverse cytogenetic backgrounds.

Results

The DNA methylation landscape in ALL
HumanMethylation 450k BeadChips were used for
quantitative  DNA methylation analysis of leukemic
blasts from pediatric ALL patients in the Nordic coun-
tries. This large collection includes samples from pa-
tients with T-cell ALL (T-ALL; n=101) and B-cell
precursor ALL (BCP ALL; n=663), including multiple
samples from rare subtypes of BCP ALL (Table 1). To
determine signatures of differential methylation that are
characteristic for ALL, we compared the CpG site
methylation levels in ALL cells to those in blood cells
from non-leukemic individuals. To represent the differ-
ent stages in lymphoid cell development, we included
CD19+ B cells, CD3+ T cells, and CD34+ hematopoietic
stem cells isolated from healthy adult blood donors. We
also included age-matched bone marrow (BM) samples
collected at remission from 86 of the ALL patients as
control samples. This set of non-leukemic reference cells
includes multipotent progenitor cells (CD34+) and ma-
ture lymphoid cells (CD19+, CD3+), which allows the
distinction of lineage- and cell type-specific differences
from de novo methylation in the ALL cells.

To obtain an initial view of the variation in CpG site
methylation in our dataset, we subjected the complete
set of methylation data to principal component analysis
(PCA). T-ALL, BCP ALL, and non-leukemic samples
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Table 1 Clinical information for the acute lymphoblastic
leukemia patients included in the study

Clinical feature® BCP ALL (%) T-ALL (%)
Number of patients 663 101
Malefemale ratio 1.2 29
Median age (years) 4.8 94
High hyperdiploid (HeH)? 187 (30%) 3 (3%)
t(12;21)ETV6/RUNX1¢ 163 (26%) 0 (0%)
Undefined" 105 (17%) 54 (54%)
Non-recurrent® 100 (16%) 37 37%)
11923/MLLS 28 (4.5%) 4 (4%)
t(1;19)TCF3/PBX1¢ 23 (3.5%) 0 (0%)
dic(9;,20) 20 (3%) 0 (0%)
1(9,22)BCR/ABL1 19 (3%) 1 (<1%)
IAMP21¢ 10 (1.5%) 0 (0%)
<45 chromosomes 5 (<1%) 0 (0%)
>67 chromosomes 3 (<1%) 2 (2%)
First relapse’ 24 3
Second relapse’ 5 0

“The diagnosis was established at a pediatric oncology center by analysis of
bone marrow aspirates with respect to morphology, immunophenotype, and
cytogenetics of the leukemic cells. Immunophenotypes (BCP ALL or T-ALL)
were defined according to the European Group for the Immunological
Characterization of Leukemias. Chromosome banding of bone marrow and/or
peripheral blood samples was performed using standard methods. The
definition and description of clonal abnormalities followed the
recommendations of International System for Human Cytogenetic
Nomenclature. Karyotypes were centrally reviewed.

PHigh hyperdiploidy (HeH) was defined as a modal number more than

50 chromosomes.

“Fluorescence in situ hybridization and/or reverse-transcriptase polymerase
chain reaction were applied to identify t(12;21), t(1;19), 11923, dic(9;20)
(p11-13;911), and iAMP(21g22).

dUndefined includes patients with no karyotype information available.
*Non-recurrent includes patients with chromosomal abnormalities other than
those defined in the recurrent groups.

fDetailed information on relapse samples is available in Additional file 2:
Table S15.

formed separated clusters using the principal compo-
nents 1 and 2 (Figure 1A). Although only two compo-
nents were needed to capture >60% of the variation in
the dataset (Figure 1B), higher order components sepa-
rated the subtypes of BCP ALL from each other (not
shown). Although the non-leukemic reference samples
originated from different blood cell populations, they
clustered together, clearly separated from the ALL sam-
ples. Unsupervised cluster analysis across all of the CpG
sites revealed distinct methylation patterns that sepa-
rated ALL cells according to their cytogenetic and
immunophenotypic subtype. The evident difference be-
tween ALL cells and the non-leukemic blood cells, and
the similarity between the non-leukemic cells in the
heatmap (Figure 1C) provide the rationale to use these
cells as a non-leukemic reference cell panel to detect dif-
ferential methylation.
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Figure 1 Unsupervised analysis of DNA methylation in acute lymphoblastic leukemia (ALL) samples and non-leukemic reference
samples. (A) Principal component analysis (PCA) of the DNA methylation data for 435,941 CpG sites across all samples included in the study. The
data from 764 ALL patients and 137 reference samples are plotted using the first two principal components. The top left panel shows the data
for the ALL samples, with each individual sample indicated by a ring. Data from BCP ALL samples are shown in blue and data from T-ALL
samples are in red. In each panel, the data from the samples with the indicated cytogenetic subtype of ALL are highlighted. The data from the
four different cell types in the reference cell panel are plotted by triangles with the cell types indicated by the color key to the right of the
panels. (B) The fraction of the variance explained by each principal component. The two first PCs shown in (A) explain approximately 63% of the
variance in methylation levels. (C) Hierarchical clustering of the ALL and reference samples based on the methylation levels of 435,941 CpG sites.
The 1,000 most variable CpG sites are shown in the heatmap. Clustering of samples by cell type and cytogenetic profiles is shown below
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Differential DNA methylation

We searched for differentially methylated CpG sites
(DMCs) in the ALL cells by comparing the p-values
(methylation values ranging from 0.0 to 1.0) in non-
leukemic reference samples to the ALL samples of each
individual subtype. CD19+, CD34+, and BM samples
were used as the reference panel for BCP ALL and
CD3+, CD34+, and BM were used as the reference panel
for T-ALL. For calling a CpG site as differentially meth-
ylated, we required a minimum absolute AB-value of 0.2

and a false discovery rate (FDR)-adjusted Wilcoxon
rank-sum P-value of <0.01 for the difference. This ana-
lysis revealed between 21,799 and 58,157 DMCs in the
ALL subtypes, distributed across 5,956 to 8,245 gene re-
gions (Table 2; in Additional file 1: Table S1). In total,
9,406 of the DMCs annotated to 2,023 gene regions and
2,979 CpG islands were observed across all the ALL
subtypes and were thereby considered 'constitutive'
(Additional file 2: Table S2). The vast majority of the
constitutive DMCs (98.6%) were hypermethylated in the
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Table 2 Differentially methylated CpG sites in the cytogenetic subtypes of ALL

DMC signature DMCs? Genes® Genes unique DMCs unique Unique DMCs Unique DMCs
(number of patients) to subtype© to subtype +DNAm (%)? -DNAm (%)¢
Constitutive (774) 9,406 2,023 NA NA NA NA
T-ALL (101) 58,157 8,245 895 16,841 15487 (92.0) 1,365 (8.0)
MLL/11g23 (28) 31,403 7,142 300 1,763 1,285 (72.9) 478 (27.1)
dic(9;20) (20) 53,680 9,009 202 2,370 1,561 (65.9) 809 (34.1)
HeH (187) 42,779 7,773 271 3,014 268 (8.9) 2,746 (91.1)
t(1;19)TCF3/PBX1(23) 21,799 5,956 107 1,110 272 (24.5) 838 (75.5)
t(12;21)ETV6/RUNX1(163) 45,589 7,973 156 2,114 1,126 (53.3) 988 (46.7)
(9,22)BCR/ABL1(19) 23,871 6,047 36 271 140 (51.7) 131 (483)
iAMP21 (10) 44,726 8,614 272 2,656 997 (37.5) 1,659 (62.5)
Undefined (105) 39,262 7,059 3 56 8 (14.3) 48 (85.7)
Non-recurrent (100) 42,109 7434 2 27 14 (51.9) 13 (48.1)

“Differentially methylated CpG sites (DMCs) with mean AB-values >0.20 and false discovery rate-corrected Wilcoxon rank-sum P-values <0.01.
PThe number of gene regions to which the DMCs are annotated.

“Genes with DMCs are considered unique to a subtype if only that subtype had significant DMCs in the gene region.

“Hypermethylated DMCs, + DNA methylation (DNAm).

*Hypomethylated DMCs, - DNA methylation (DNAm).
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Figure 2 Beta-value distribution and magnitude of differential methylation. Density plots demonstrate the differences in 3-value
distribution of the differentially methylated CpGs (DMCs) in the different DMC signatures between the ALL patients and reference samples. In
each panel, the distribution of all DMC B-values across all patients and controls is plotted on the left side of each panel and the mean difference
in B-value for each CpG is plotted on the right side of the panel. The red lines indicate DMCs with increased DNA methylation in ALL and blue
lines indicate DMCs with decreased DNA methylation in the line plots. The scales on the x-axis of the density plots and the y-axis of the line plots
range from 0 (no methylation) to 1.0 (100% methylation). (A) The distribution of all 3-values in the constitutive DMC signature for the 137
reference samples (black dashed line) and 774 ALL samples (black solid line) (left) and the mean difference in B-values (right). (B-1) The B-value
distributions of each of the DMCs in the subtype-specific DMC signatures across the reference samples (n = 137, dashed lines) and the ALL
samples by immunophenotypic or cytogenetic subtype (colored lines, left). The mean difference in methylation between the reference panel and
each subtype is plotted to the right.
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ALL cells compared with the non-leukemic reference
cells (Figure 2A). The number of DMCs that were
unique for each ALL subtype according to the applied
criteria varied independently of the number of samples
in a subtype, from 16,841 CpG sites in 895 unique gene
regions in T-ALL to 271 CpG sites in 36 unique gene re-
gions in the t(9;22) subtype (Table 2). As expected, the
heterogeneous BCP ALL samples with unknown cyto-
genetic aberrations labeled as 'undefined' and those with
‘non-recurrent’ abnormalities did not display unique dif-
ferential methylation patterns. The methylation patterns
between BCP ALL subtypes differed substantially, with
high methylation levels in samples harboring AMLL
rearrangements, which is opposite to a recent finding of
predominant hypomethylation in adult ALL with MLL
rearrangements [9], while the high hyperdiploid (HeH)
samples were predominantly hypomethylated in our
study (Table 2; Figure 2B-I), as has been previously de-
scribed in pediatric BCP ALL for HeH [11]. The distri-
bution between hyper- and hypomethylation between
the subtypes of pediatric BCP ALL in our study is in
agreement with the findings in a recent study of 50,000
CpG sites that used an alternative method for DNA
methylation analysis [16]. For the DMCs, the absolute
average [-value difference between ALL cells and
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reference cells for the subtype-specific DMCs was ap-
proximately 0.50, which is in agreement with allele-
specific gains or losses of DNA methylation in ALL
compared to normal cells (Figures 2A-I; Additional file
3: Figures S1A-F).

Functional genomic distribution of differentially
methylated CpG sites

The hypermethylated DMCs were enriched in CpG
islands, while hypomethylated DMCs were primarily an-
notated to 'open sea' regions, independent of whether
they were constitutive or subtype-specific (Figure 3A).
The subtype-specific differences were more frequently
observed in CpG island 'shores' and 'shelves', which dis-
play a large variation in B-value between ALL samples
(Additional file 3: Figure S2). Both constitutive and
subtype-specific DMCs in proximal promoter regions
(transcription start sites and 5 untranslated regions) of
genes were commonly hypermethylated, but a greater
enrichment of subtype-specific hypomethylation was
observed in gene bodies and in intergenic regions
(Figure 3B). To explore putative functional roles for the
DMCs, we intersected the genomic coordinates of the
constitutive and subtype-specific DMCs with regions de-
fined by chromatin-immunoprecipitation of six histone
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Figure 3 Functional genomic annotation of differentially methylated CpGs (DMCs). This figure shows the enrichment of the different DMC
signatures. The columns show the levels of enrichment of the constitutive DMC signature shared by all subtypes of ALL and the subtype-specific
DMC signatures as indicated above the panel. Functional genomic regions of DMCs annotated (A) in relation to gene region, (B) in relation to
CpG island annotation, and (C) in relation to chromatin marks in reference cell types. The fold enrichment of each annotation is indicated in each
box. The color scale in the panels indicates fold enrichment of the hypermethylated (red) or hypomethylated (blue) DMCs in each functionally
annotated region. The bolded numbers indicate annotations to which DMCs are enriched compared to the distribution of probes on the 450k
array (Bonferroni corrected one-sided Fisher's exact P < 0.001).
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marks and DNasel hypersensitivity (DHS) assays in rele-
vant primary cell types such as CD19+, CD3+, and
CD34+ cells [17,18]. Although the histone code in nor-
mal blood cells may not reflect that in ALL cells, the
genomic distribution of histone marks is useful for
annotating functional regions of the genome. This ana-
lysis revealed differences in enrichment between consti-
tutive and subtype-specific DMCs to functional genomic
regions with marks of repressed or active chromatin
(Figure 3C). The 9,406 constitutive DMCs were enriched
more than two-fold in regions marked by repressive
H3K9me3 and H3K27me3, or bivalently by H3K27-
me3 and H3K4me3, which marks active chromatin
(P <0.001). On the contrary, the subtype-specific DMCs
were enriched more than two-fold in regions of active
chromatin marked by DHS, H3K4me3, and H3K4mel
(P <0.001; Figure 3C). These observations suggest that
subtype-specific methylation of CpG sites has specific
functional roles.

The constitutive DMCs were enriched in genes in the
transcriptional regulatory network in embryonic stem
cells (P=353x10") and in genes that regulate or are
regulated by transcription factors involved in embryonic
development: NANOG (P=9.7 x 10°), OCT4 (P =4.9 x
107°), SOX2 (P=2.3%x10°), and REST (P=4.75x 107'%)
(Additional file 2: Table S3). While no enrichment to
known pathways was observed for the subtype-specific
DMC signatures, all of the DMC signatures were
enriched for genes with biological functions in cancer,
cellular development, cellular growth and proliferation,
and cell-to-cell signaling (P < 0.05).

DMCs as regulators of gene expression

To investigate whether the DMCs influence gene expres-
sion and to determine which of the annotation classes of
DMCs are involved in the regulation of gene expression,
we compared the DNA methylation levels of each con-
stitutive and subtype-specific DMC with gene expression
data. First, we determined the correlation between the
methylation levels of constitutive DMCs and mRNA ex-
pression levels obtained using digital gene expression se-
quencing of 28 ALL samples, including T-ALL and five
BCP ALL subtypes, and five reference samples [19]
(Additional file 2: Table S4). The p-values of only a small
proportion (<1%) of the constitutive DMCs (n = 85)
correlated with up- or down-regulation of the mRNA
expression levels of 41 genes (permuted P<0.05 and
fold change >2) (Additional file 2: Table S5). This obser-
vation was expected since 79% of the constitutive DMCs
were annotated to regions containing the repressive
H3K27me3 or H3K9me3 marks in healthy blood cells
and thus genes in these regions were presumably not
widely expressed (Figure 3C). Secondly, we determined
which of the subtype-specific DMCs correlated with
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microarray-based gene expression data for 93 of the
ALL samples of the t(12;21), HeH, t(1;19), t(9;22),
dic(9;20), MLL/11q23 and T-ALL subtypes (Additional
file 2: Table S6). We found that, on average, 15% (range
10 to 21%) of the P-values for the subtype-specific
DMC s annotated to genes correlated with gene expres-
sion levels (permuted P<0.05 and fold change >2)
(Additional file 2: Tables S7 to S13). The proportion of
DMC s and gene annotations in t(12;21) that were corre-
lated with gene expression in our study were highly
similar to those in a recent, small methylation study on
the t(12;21) BCP ALL subtype [12]. Ten of the 17 genes
suggested in the earlier study based on their correlation
to be drivers of leukemogenesis were also highlighted in
our study (Additional file 2: Table S14).

We used the functional annotation of the DMCs
correlated with gene expression to explore their putative
functional roles, and found hypermethylated DMCs
that correlated with down-regulation of gene expression
to be enriched in DHS regions, active promo-
ters (H3K4me3), and enhancers (H3K27ac/H3K4mel)
(Figure 4A; Additional file 3: Figure S3). On the con-
trary, hypomethylation of gene bodies was highly corre-
lated with either up- or down-regulation of gene
expression. DMCs that were highly correlated with gene
expression included genes with functions in epigenetic
regulation and previously known subtype-specific gene
expression in ALL (Figure 4B). For example, we ob-
served an inverse correlation between the [B-value and
gene expression for the UHRFI gene, which encodes a
methyl CpG binding protein that has high affinity for
hemi-methylated DNA and was highly expressed in the
ALL samples, independent of their subtype, while it was
not expressed in reference samples [20]. DNA methyla-
tion of NCOR2, which is a transcriptional co-repressor
that acts through covalent modification of histones [21],
was positively correlated with gene expression in T-ALL.
We also show up-regulation of known subtype-specific
genes such as BIRC7 in t(12;21) [12,22] and DDIT4L in
HeH [19], and previously unobserved subtype-specific
expression of PHACTR3 in t(1;19) and UAPI in the dic
(9;20) subtype.

Differential DNA methylation in relapsed ALL

Next we compared the genome-wide DNA methylation
levels between paired samples at diagnosis and relapse
from 27 patients, and in five of the patients after a sec-
ond relapse (Additional file 2: Table S15). We used PCA
to visualize the genome-wide methylation patterns of the
sample pairs. Plots of the first two principal components
showed similar changes in DNA methylation levels be-
tween diagnosis, first, and second relapse in all patients
(Figure 5A; Additional file 3: Figure S4). We observed
a similar pattern in 10 paired BCP ALL samples at
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number of DMCs correlated with up-regulation (+) or down-regulation (-) of gene expression indicated by the numbers in the panel. The rows
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diagnosis and relapse from the Quebec childhood ALL
(QcALL) cohort that were included for verification of
our results (Figure 5B).

In total, we identified 6,612 DMCs in 1,854 gene re-
gions in the 27 paired diagnosis-relapse ALL samples
(Additional file 2: Table S16). Although only 773 (12%)
DMCs at relapse overlapped with the constitutive
DMC s, the gene region annotations of both signatures
were remarkably similar, and included 1,186 (64%) of

overlapping gene regions. Hence, like the genes in the
constitutive signature, the genes in the relapse signature
were enriched for the transcriptional regulatory network
in embryonic stem cells and in the Wnt/B-catenin
signaling pathways (P=2.8x 107, 1.8 x 10™% Additional
file 3: Figures S5 and S6), to genes regulated by REST,
SOX2, NANOG and OCT4 (P<6.6x10"'%), and to re-
gions with the repressive H3K27me3 mark or bivalent
H3K4me3/H3K27me3 marks (P < 0.001; Figure 5C).
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Figure 5 Increased DNA methylation at relapse. (A) Plot of the first two principal components (PC) of the genome-wide DNA methylat\on
data in 27 diagnostic-first/second relapse paired samples. The diagnostic sample is indicated by a filled yellow circle and the last relapse sample
is indicated by an arrowhead. (B) PCA of the 10 diagnostic-first relapse paired samples in the Quebec childhood ALL (QcALL) dataset.

(C) Enrichment of DMCs in relation to gene region, CpG island annotation, and chromatin marks. Hypermethylated DMCs are shown in red and
hypomethylated DMCs are shown in blue. In each box the fold enrichment for each specific mark is shown. Bold numbers indicate annotations
enriched for relapse DMCs compared to the distribution of probes on the 450k array (Bonferroni corrected one sided Fisher's exact P < 0.001).

(D) Distribution of the methylation B-values in the relapse signature at remission (n = 3), diagnosis (n = 27), first relapse (n=27), and second
relapse (n=5). (E) The mean B-values of the DMCs in the relapse signature in the Nordic Society of Pediatric Hematology and Oncology
(NOPHO) and QcALL datasets. The color legend for (A,B,D,E) is to the right of (E). (F) Heatmap of the top ranked relapse DMCs. From the 27
patients in the NOPHO dataset, paired remission BM was available from 3, diagnostic samples were available from 27, first relapse data were
available from 27, and second relapse data were available from 5 individuals. From the QcALL dataset, DNA samples from remission BM, diagnosis
and relapse were available from each of the 10 patients. Each DMC is plotted as an individual row. Each column represents one DNA sample.
The proportion of methylated CpG sites is shown in the bottom panel. The gene annotations of the CpG sites are given on the right vertical axis.
The color key for the methylation levels is provided at the bottom right.

The methylation levels of each of the relapse DMCs
increased in each of the ALL pairs, with the highest
levels after the second relapse (Figure 5D). The [-values
of the CpG sites in the relapse signature were highly
similar in the Nordic Society of Pediatric Hematology
and Oncology (NOPHO) and QcALL sample sets
(Figure 5E), suggesting that this signature of DMCs is
common to relapsed ALL samples, regardless of subtype
and treatment protocol. To visualize individual B-value
changes in the paired samples, the top 25 ranking DMCs
from the relapse signature are plotted in the paired sam-
ples (Figure 5F). Regional analysis surrounding CpG sites

in each of the top 25 genes showed that nearby CpG
sites displayed concordant (increased) methylation chan-
ges at relapse (Additional file 3: Figure S7).

DNA methylation for predicting relapse-free survival in
ALL

Finally, we utilized CpG sites that constitute the four
signatures of differential methylation defined in this
study to search for DMCs that are predictive of relapse-
free survival of ALL patients. For this purpose, relapse-
free survival in each ALL subtype further stratified into
standard risk (SR), intermediate risk (IR), high risk (HR),
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and infant (I) treatment groups was analyzed against the
B-values of the DMCs comprising the constitutive,
subtype-specific, subtype-specific correlated with gene
expression, and relapse signatures using nearest shrun-
ken centroids classification (Additional file 2: Table S17;
Additional file 3: Figure S8) [23]. Four of the methyla-
tion signatures allowed for prediction of relapse-free
survival with an area under the receiver operating char-
acteristic (ROC) curve (AUC) >0.60 (Figure 6A). After
permutation testing, subtype-specific DMCs in the
group of ALL patients with the t(12;21) translocation
that had been treated according to the standard risk (SR)
protocol (n=71) were found to be associated with re-
lapse (P =0.033). In addition, the subtype-specific sites
in patients with the t(9;22) translocation treated on the
high risk (HR) protocol (n=18) and 11q23/MLL rear-
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rangements treated on the infant protocol (n=14) had
indicative P-values of 0.062 and 0.098, respectively,
despite the small number of samples in these groups
(Additional file 2: Table S17). The relapse signature in
all patients treated according to the infant protocol was
not statistically significant (P = 0.22).

The effect of each DMC in the relapse-associated sig-
natures was subsequently assessed using permutation
testing (Additional file 4). To reduce spurious associa-
tions, we required a minimum of two significant CpG
sites within the same gene or within 50 kb of each other.
Genomic regions were analyzed individually for predict-
ive classification of relapse-free survival. This resulted in
the identification of six genomic regions in t(12;21),
eight in 11q23/MLL, and one in t(9;22), whose methyla-
tion values were associated with relapse (Table 3).
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Figure 6 Prediction of relapse-free survival using differentially methylated CpGs (DMCs). (A) Performance of the DMC signatures in ALL
subtypes stratified according to treatment groups for predicting relapse-free survival using AUC scoring. The treatment groups are indicated by
standard risk (SR), intermediate risk (IR), high risk (HR), and infant. The predictive performance of the DMC signatures with AUC >0.60 was
assessed by permuting the data 1,000 times. The permuted P-values are indicated in the bar chart. Plots of the methylation levels across the (B)
ERVH-3 and (C) DNMBP genes in patients with the t(12;,21)ETV6/RUNXT translocation treated with the standard risk protocol and (D) the precursor
microRNA gene (LOC146880/ENSG00000215769) in patients harboring the t(9,22)BCR/ABLI translocation. DMCs associated with relapse-free
survival (P < 0.05) are highlighted above the heatmaps in (B-D) with black lines connecting the CpG site in the gene with the heatmap. The
patients (rows) are clustered based on the CpG sites associated with relapse-free survival. The three distinct methylation profiles in the heatmap
are indicated by the color bar to the right. The outcome for individual patients is marked by the inner color bar on the right side of the heatmap
with patients in remission in black, relapsed patients in red, late relapsed patients in yellow, patients with events other than disease relapse in
blue, and patients censored before 5 years of follow-up time in gray. The average methylation levels in the non-leukemic controls are shown
below the heatmap. At the bottom of each panel, Kaplan-Meier curves are color-coded by methylation groups, with blue indicating
hypomethylation, yellow indicating intermediate methylation, and red indicating hypermethylation. The Kaplan-Meier curves demonstrate the
difference in relapse-free survival of patients with different methylation profiles with the Gray's test P-value for the difference shown in
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Table 3 Gene regions with correlation between methylation level and relapse-free survival in ALL

ALL subtype® Gene symbol Gene name Chromosome  Number of DMCs®
t(12,21)ETV6/RUNXT  ERVH-3 Endogenous retrovirus group H, member 3 6012 1
Clorf222 Chromosome 1 open reading frame 222 1p36.33 2
KCNA3 Potassium voltage-gated channel, shaker-related subfamily, member 3 1p133 2
PAGT Phosphoprotein associated with glycosphingolipid microdomains 1 8g21.13 2
DNMBP Dynamin binding protein 10924.31 2
Cllorf52 Chromosome 11 open reading frame 52 11923.1 2
MLL/11qg23 ZSCAN18 Zinc finger and SCAN domain containing 18 1991343 4
ZNF544 Zinc finger protein 544 1991343 4
TAPBP/DAXX TAP binding protein (tapasin)/death-domain associated protein 6p21.3 3
WTI1 Wilms tumor 1 11p13 3
ZNF681 Zinc finger protein 681 19p12 3
ADARB2 Adenosine deaminase, RNA-specific, B2 (non-functional) 10p15.3 2
ZNF329 Zinc finger protein 329 19913.31 2
ZNF526 Zinc finger protein 526 19g13.31 2
1(9,22)BCR/ABLT LOC146880 Pri-miRNA; hsa-mir-6080 (ENSG00000215769) 17q24.1 2

?BCP ALL cytogenetic subtypes with subtype-specific differentially methylated CpGs (DMCs) predictive of relapse (P <0.1).

PNumber of sites in the region associated with relapse-free survival (P <0.05).

Strikingly, 11 of the top ranking DMCs for relapse-free
survival in the t(12;21) subtype were annotated to a 2.2
kb region on chr6ql2, which encodes an endogenous
retroviral gene, ERVH-3 [24] (Figure 6B). In addition,
two CpG sites in the DMNBP gene distinguished a
group of t(12;21) patients with promoter hypomethy-
lation and high risk of relapse (Figure 6C). Two CpG
sites in the first intron of the non-coding RNA gene
LOC146880 (ENSG00000215769/hsa-mir-6080) in pa-
tients harboring t(9;22) translocations also distinguished
a group of patients with hypomethylation and high risk
of relapse (Figure 6D). The additional genes associated
with increased risk of relapse are plotted in Additional
file 3: Figure S9 to S11. These genes include PAGI in t
(12;21), which is known to harbor recurrent somatic
mutations in pediatric ALL patients with the hypodip-
loid karyotype [25], and WT1 in MLL/11q23, which is
commonly mutated in acute myeloid leukemia [26].
Mutations in both these genes are associated with in-
creased risk of relapse in pediatric leukemias. Five zinc
finger genes (ZSCANI1S8, ZNF256, ZNF329, ZNF544, and
ZNF681) on chromosome 19q13 were each independ-
ently associated with relapse in 11q23/MLL patients,
with hypomethylation indicating increased relapse
(Additional file 3: Figure S10). These findings indicate
that DNA methylation levels of individual genes could
be potentially useful as clinical biomarkers in addition to
the currently used treatment stratification.

Discussion
The 450k BeadChips for DNA methylation analysis are
particularly suitable for analysis of large sample sets for

which next generation bisulfite sequencing is not yet
feasible. In the present study, we examined the methyla-
tion status of 435,941 CpQG sites to determine the methy-
lation patterns in a large set of samples from patients
with childhood ALL at diagnosis (n=764), relapse
(n=27), and in non-leukemic reference samples
(n=137). The quantitative methylation data from the
450k BeadChips in our large set of ALL samples at diag-
nosis revealed that the average absolute (-value differ-
ence between ALL cells and reference cells for the
subtype-specific DMCs is approximately 0.50. Similarly,
the B-value difference from pair-wise analysis of ALL
cells at diagnosis and at relapse is close to 0.5. Based on
these observations we speculate that differential methy-
lation occurs in an allele-specific manner in ALL,
analogously to what has been recently suggested by inte-
grative analysis of single nucleotide polymorphisms and
methylation using next-generation sequencing in pros-
tate cancer [27]. Our speculation on allele-specific DNA
methylation is also substantiated by the quantitative cor-
relation between DNA methylation and allele-specific
gene expression that we observed in an earlier study of
close to 200 of the diagnostic ALL samples analyzed
here [28].

We analyzed multiple cytogenetic subtypes of ALL
and found a core methylation signature shared by all
the subtypes. This set of 'constitutive’ DMCs, which
comprised approximately 25% of all DMCs in each ALL
subtype, were predominantly hypermethylated and asso-
ciated with promoters repressed by the polycomb group
proteins (PcG) in the context of bivalent chromatin. In
stem cells, the repressive PcG complex cooperates with
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OCT4, SOX2 and NANOG to silence lineage-specific
genes and to preserve the pluripotent state of the cells.
Hypermethylation preferentially targets CpG islands of
PcG-regulated genes in solid cancers [29-31] and in leu-
kemias [13,32,33], which suggests a common signature
of hypermethylation across cancer types by which cells
lose their plasticity, giving them the ability to differenti-
ate while retaining unlimited self-renewal capacity [31].
Although the expression of the majority of the PcG-
regulated genes did not appear to be down-regulated in
our data set, other studies [29,31,34] have shown that
these genes are usually expressed at very low levels in
normal cells, and become fully silenced upon aberrant
DNA methylation in cancer cells. In our digital gene ex-
pression (DGE) data, the low expression levels of these
genes (<0.5 transcripts per million) inhibited accurate
quantification of differential expression.

To our knowledge, our study is the first to observe a
signature with higher DNA methylation levels of PcG
target genes at relapse of ALL than at diagnosis. ALL
cells at relapse are generally more resistant to chemo-
therapeutic treatment, which is consistent with the asso-
ciation between drug resistance and hypermethylation
that is beginning to emerge in hematological neoplasms
[13,35-37]. Hypermethylation may be reversible by pre-
treatment with a histone deacetylase inhibitor (vorino-
stat) and DNA methyltransferase inhibitor (decitabine)
before standard chemotherapy [14]. In total, 74 of the
genes in the constitutive and/or relapse DMC signatures
that we identified in the current study have been experi-
mentally shown to be targets for demethylation by
decitabine (P<3.96x10°). As recent evidence suggests
that cancer cells become dependent on DNA methylation
acquired at specific positions [38], targeting the DNA
methylation machinery may provide novel treatment op-
tions for cancers with hypermethylation phenotypes, espe-
cially for those patients who have relapsed [39].

In our study we established that additional hyperme-
thylation in enhancers (marked by H3K4me3/H3K27ac)
and in gene bodies are strongly associated with gene ex-
pression. Enhancers are distal elements that regulate
gene expression and are influenced by aberrant DNA
methylation in several cancer types [2,40-42]. We show
here that DNA methylation of enhancers is associated
with differential gene expression in ALL. We also found
that hypomethylation is prevalent outside CpG islands
in gene bodies, and can be associated with either in-
creased or decreased gene expression. This observation
suggests a complex relationship between methylation in
gene bodies in the regulation of gene expression, which
may be acting via alternative promoter usage, splicing,
and activity of other regulatory elements [40]. Because
the regions with histone marks to which DMCs in ALL
cells were enriched originated from normal fractionated
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blood cells [17], our results warrant an investigation of
histone marks in primary ALL cells, which like DNA
methylation are potentially altered in ALL.

The DNA methylation status of individual candidate
genes has been demonstrated to predict clinical outcome
and allow refined subgrouping of ALL in a clinical setting
[10,43,44]. We utilized the signatures of differentially
methylated CpG sites identified in our study to screen for
new markers of relapse in ALL, and found that subtype-
specific DMCs may be useful as prognostic markers. We
detected differential methylation of multiple CpG sites
clustered in the ERHV-3, DMNBP, KCNA3, PAGI, and
Cl11orf52 gene regions that were associated with increased
risk of relapse in patients with the t(12;21) translocation
treated according to standard risk (SR) therapy. In other
patient subgroups we did not observe any significant asso-
ciation between DMCs and clinical outcome (P < 0.05).
Patients with HeH and t(12;21) represent the two largest
subgroups in pediatric BCP ALL (Table 1), and a majority
of them are stratified to standard risk (SR) therapy. One
possible explanation for the lack of DMCs with predictive
power in patients with HeH is that this subtype group is
less homogeneous than the t(12;21) group, and that vari-
ous combinations of extra chromosomes in HeH cause
differences in treatment response, something we will try
to explore further. In all other BCP ALL subgroups, pa-
tient numbers were considerably smaller, which hinders
analysis by repeated cross-validation. As in other contem-
porary ALL protocols, the current NOPHO ALL2008
protocol includes more intense treatment with aspara-
ginase for all patients than the earlier treatment protocols
that were used for the patients included in this study [45].
When follow-up times are long enough, it will be interest-
ing to see if the same genes continue to have prognostic
significance for patients treated on the most recent
NOPHO ALL2008 protocol. Several studies have reported
cancer-associated hypomethylation, expression, and a link
to poor outcome for some of the human endogenous
retrovirus families [46]. Although hypomethylation or ex-
pression of ERVH-3 has not previously been associated
with outcome in t(12;21) BCP ALL, this gene was origin-
ally discovered in the REH ALL cell line bearing the t
(12;21) translocation [24]. A recent study in acute myeloid
leukemia showed that decitabine treatment of acute
myeloid leukemia cells causes hypomethylation and up-
regulation of ERVH-3 expression [47]. Our findings of
hypomethylation in the ERVH-3 gene as a marker of
relapse in t(12;21) warrant exploration of the side effects
of decitabine treatment on abnormal hypomethylation of
endogenous retroviral genes.

Conclusions
We generated a comprehensive view of the methylation
landscape in pediatric ALL compared to non-leukemic
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reference cells. The analysis identified prevalent hyper-
methylation of CpG sites at diagnosis and relapse in all
subtypes of pediatric ALL. We also detected discrete
differences in methylation that drives differential gene
expression in a subtype-specific pattern. Moreover,
hypomethylation of several genes appeared to be predict-
ive of relapse in a subset of patients with the common t
(12;21)ETV6/RUNX1 translocation. Whether the de novo
methylation detected here contributes actively to ALL, or
is a passenger in the malignant transformation of blood
progenitor cells into ALL cells remains to be elucidated.
Our study implies that aberrant DNA methylation is a sig-
nature of leukemic development and progression, and for
the heterogeneity between patients of similar cytogenetic
backgrounds that contributes to relapse.

Materials and methods

DNA and RNA samples

BM aspirates or peripheral blood samples were collected
from pediatric ALL patients enrolled in the NOPHO
ALL92 or ALL2000 protocols [5]. Clinical follow-up data
were obtained from the NOPHO registry. The median
follow-up time for patients in continuous complete
remission was 9.1 years (range 4.6 to 18 years). Lympho-
cytes were isolated from ALL samples at diagnosis
(n=764), remission (n=86), first relapse (n=27), and
second relapse (n=5) by Ficoll-isopaque centrifugation
(Pharmacia, Uppsala, Sweden; Table 1). All samples in-
cluded in the study contained >80% leukemic blasts at
diagnosis (average 91%) and relapse (average 90%), and
<5% at remission. For validation, a sample set of DNA
samples that were isolated at diagnosis, remission, and
relapse from 10 children with pediatric BCP ALL from
the QcALL cohort was used. Clinical information for
QcALL and relapse samples is available in Additional
file 2: Table S15. CD19+ B cells and CD3+ T cells were
isolated from peripheral blood mononuclear cells of
healthy Swedish blood donors using positive selection
(CD19 Microbeads #120-050-301 and CD3 Microbeads
#130-050-101) and MACS cell separation reagents
(Miltenyi Biotec, Bergisch Gladbach, Germany). Pooled
CD34+ cells isolated from five healthy blood donors
were purchased from 3H Biomedical (Uppsala, Sweden)
[48]. DNA and RNA were extracted as previously de-
scribed [19,28]. The study was approved by the Regional
Ethical Review Board in Uppsala, Sweden and was
conducted according to the guidelines of the Declaration
of Helsinki. The patients and/or their guardians pro-
vided informed consent.

DNA methylation assay

DNA was treated with sodium bisulfite (EZ DNA methy-
lation Gold, Zymo Research, Irvine, CA, USA) and DNA
methylation levels were measured using the Infinium
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HumanMethylation 450k BeadChip assay (Illumina, San
Diego, CA, USA). The ALL samples and controls were
randomly distributed across the arrays, all arrays were
measured using the same HiScan instrument, and no
evidence for batch effects was observed in the B-values
(data not shown). The methylation B-value distribution
between Infinium type I and II probes was normalized
using peak-based correction (Additional file 3: Figure
S12) [49]. The data were filtered by removing the
data from probes on the X and Y chromosomes and
with genetic variation affecting probe hybridization
(Additional file 3: Figure S13). After filtering, methyla-
tion data for 435,941 CpG sites remained for further
analysis (Additional file 1). A subset of diagnostic ALL
samples (n =364) were previously analyzed on a custom
GoldenGate DNA methylation array (Illumina) [10].
DNA methylation values of 207 CpG sites interrogated
by both arrays evaluate reproducibility of the B-value
measurements (Additional file 3: Figure S14). Additional
details about the methylation assay, probe filtering, and
technical validation can be found in Additional file 4.
The DNA methylation data are available at the Gene
Expression Omnibus (GEO) with accession number
GSE49031.

Annotation of CpG sites

CpG sites were annotated to RefSeq genes and CpG
islands according to the Human Methylation 450k mani-
fest file version 1.1. The distribution of probes that
passed our stringent filtering is shown in relation to
CpG islands, gene regions, and corresponding p-value
distributions are shown in Additional file 3: Figures S15
and S16. When a CpG site had more than one gene-
level annotation, that is, was present in both the tran-
scription start site and the first exon, both annotations
were used.

The following publicly available chromatin datasets
from primary CD19+, CD3+, or CD34+ cells were
obtained from the NIH Roadmaps Epigenomics Project:
DHS regions, H3K27me3, H3K36me3, H3K4me3, H3K9
me3, and H3K4mel (Additional file 2: Table S18) [17].
Peaks were called using the MACS software using
default settings [50]. H3K27ac peaks were downloaded
from the UCSC table browser [51] derived from
H1-hESC and GM12878 cell lines [18]. CpG sites were
annotated for the chromatin marks by overlapping
genomic location with a peak in at least two of the
replicates analyzed (Additional file 2: Table S1).

Analysis of differential DNA methylation

DMCs were determined using the non-parametric
Wilcoxon rank-sum test. They were determined in
T-ALL using remission BM, CD3+, and CD34+ cells as
reference and in BCP ALL using remission BM, CD19+,
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and CD34+ cells. The Wilcoxon signed-rank test was
used to identify methylation differences between paired
samples at diagnosis and relapse. Minimal cut-off values
for the mean absolute differences in DNA methylation
(AB) of 0.2 were applied to highlight CpG sites with
large differences between groups. CpG sites with stand-
ard deviations >0.10 in the reference control group
(n=33,533 sites) were removed from DMC lists to
minimize DMCs occurring due to cell type-specific vari-
ability (Additional file 3: Figure S2).

Correlation between DNA methylation and gene
expression

Genome-wide digital mRNA gene expression (DGE) se-
quencing data from 28 ALL patient samples and five
non-leukemic reference samples were generated as pre-
viously described (Additional file 2: Table S4) [19]. RNA
expression levels for 93 ALL patient samples were mea-
sured with Affymetrix U1333 Plus 2.0 arrays (Additional
file 2: Table S6). Raw data were processed and normal-
ized using the robust multichip average (RMA) algo-
rithm [19,52]. The expression datasets are publicly
available at GEO under series GSE47051. Details on the
gene expression assays can be found in Additional file 4.
For each DMC signature, the correlation between
B-value and log2 transformed gene expression was
evaluated using the Pearson’s correlation coefficient.
Statistical significance of each DMC was calculated by per-
muting the data 10,000 times and comparing the correl-
ation coefficient in the unpermuted data to the permuted
coefficients. In each dataset, the permuted P-values were
adjusted for multiple testing using the Benjamini and
Hochberg approach for controlling FDR [53].

Data analysis and visualization

Data analysis was carried out in the R environment [54].
The R code for the analyses performed in this study is
available at GitHub [55]. One-sided Fisher’s exact tests
were used to assess the significance of the enrichment of
DMCs to functionally annotated regions, using the an-
notation of the 450k array as background. Pathway
analysis and enrichment for upstream regulators was
performed using software from Ingenuity Pathway Ana-
lysis (Ingenuity® Systems, Redwood City, CA, USA) and
significance was evaluated with the Fisher’s exact test.
All P-values were adjusted for multiple testing by FDR
unless otherwise stated. Analysis of relapse-free survival
for constitutive and relapse DMC signatures was
performed on all patients. Relapse-free survival for the
subtype-specific signatures was evaluated individually for
T-ALL and BCP ALL separated into the cytogenetic
subtypes 11q23/MLL, HeH, t(1;19), t(12;21), and t(9;22).
Each subtype was further stratified according to stan-
dard, intermediate, high risk, or infant treatment
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protocols [5]. The patients with dic(9;20) and iAMP21
were not analyzed for relapse-free survival due to the
small number of patients in each treatment group.
Nearest shrunken centroids classifiers were designed to
discriminate between the classes and evaluated with re-
peated cross-validation [23]. AUC was used to measure
predictive performance and statistical significance was
evaluated by permuting the data 1,000 times. Each CpG
site was scored by its coefficient after shrinkage and the
significance was evaluated by permutation testing, as
described above. Further details on the relapse-free clas-
sification procedure can be found in Additional file 3:
Figure S8 and Additional file 4.

Additional files

Additional file 1: Table S1. (Tab delimited .txt) Probe-level annotations
for the 485,577 probes on the 450k array, including a column denoting
the 435,941 CpG sites analyzed in the current study. Columns
representing the differentially methylated CpG (DMC) signatures are
included.

Additional file 2: Tables S2 to S18. Supplemental Tables S2 to S18.
Additional file 3: Figures S1 to S16. Supplemental Figures S1 to S16.

Additional file 4: Supplemental materials and methods.
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