
FYS-3900
Master's thesis in physics

Simulations of plasma �lament dynamics
in toroidal geometry

Petter Rønningen

May 16, 2010

FACULTY OF SCIENCE AND TECHNOLOGY
Department of Physics and Technology

University of Tromsø





FYS-3900
Master's thesis in physics

Simulations of plasma �lament dynamics
in toroidal geometry

Petter Rønningen

May 16, 2010





Abstract

Interchange driven propagation of so-called �blobs� arises in basic laboratory
plasmas, in the scrape-o� layer of fusion plasmas and as equatorial spread F
(ESF) phenomena in the Earth's ionosphere. The propagation of such blobs
has been demonstrated in the VTF experiment at MIT and in numerical simu-
lations. Experimental results show that the velocity of these blobs is inversely
proportional to the neutral gas pressure. These blobs have also shown the ten-
dency to form mushroom-like shapes.

We here develop a two-�eld model for the interchange motions in magnetised
plasma in toroidal geometry. This model is then used to simulate the dynamics
of propagating blobs using a two dimensional advection-di�usion solver. Study-
ing the e�ects of ion-neutral collisions and large blob amplitudes, we observe the
separation between an inertia dominated and a collisionally dominated regime.
We also observe that this separation persists for all simulated amplitudes.

We further perform simulations with parameters set to closely resemble the VTF
experiments. These simulations show that the experimental result of the velocity
being inversely proportional to the neutral gas pressure is in a qualitative match
with the simulated results for the collisionally dominant regime.
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4 1 INTRODUCTION

1 Introduction

Interchange driven propagation of so-called �blobs�, localised perturbations or
�eld aligned �laments on a background plasma [9], arises in basic laboratory
plasmas, in the scrape-o� layer of fusion plasmas as well as in space plasma
such as the so-called Equatorial Spread-F (ESF) phenomena [11, 15].

In fusion plasmas, a scrape-o� layer using magnetic �elds intersecting at des-
ignated collectors is commonly used in an attempt to control the exhaust of
plasma and heat by leading it along the magnetic �eld to target plates. How-
ever, blobs has been observed to quickly propagate across the �eld lines of this
scrape-o� layers, e�ectively escaping the scrape-o� layer and hitting the cham-
ber walls of the fusion tokamaks. This poses a problem both in term of loss of
heat and energy from the fusion plasma itself, as well as the release of polluting
particles into the fusion plasma.

The ESF phenomena, arising on the night side plasma in the F-layer for low lat-
titudes, is a large scale �localised� depletion of plasma relative to the background
plasma density propagating upwards in the radial direction across the magnetic
�eld of the Earth. The size of these depletions often range from centimeters
to several hundred kilometers [11, 15]. This phenomenon cause disruption in
communications and navigation as they give localised changes in the way com-
munication signals interact with the ionsphere, for example posing di�culties
when attempting to send communication signals over the horizon using refrac-
tion in the ionsphere.

As the phenomenas are driven by an interchange mechanism, either through the
curvature and radial dependence of the magnetic �eld for fusion plasmas or the
gravitation for ESF, we will in this thesis develop and implement a cylindrical
advection-di�usion model for the simulation of transport of plasma perturba-
tions across the magnetic �eld based on existing two-�eld models [8]. We will
further use this to simulate propagating perturbations in an attempt to inves-
tigate how the perturbation amplitude and the neutral background gas a�ects
the propagation and view this in light of the ESF propagation speed found in
[16].

Furthermore, we shall use this simulation code in an attempt to investigate
experiments on the Versatile Toroidal Facility (VTF) at MIT [13], where a
relation between propagation speed of blobs and the background neutral density
was found. We shall also investigate how the �mushroom�-like shape observed
in these experiments and predicted in earlier simulations using a similar model
[9] relate to our numerical experiments.
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2 Transport in magnetised plasmas

In this chapter we seek to derive a model for �uctuation driven transport in
magnetised plasmas. We will �rst brie�y describe the physical mechanics behind
the dynamics in section 2.1. Motivated by this, we will seek to describe the
plasma dynamics by a simple two-�eld model in section 2.2.

2.1 Fluctuation-induced transport

Plasmas in a non-uniform magnetic �eld are subject to mechanisms resulting
in transport of particles perpendicular to the magnetic �eld. We will here map
out some of the important physical mechanisms behind this phenomena.

We will consider a con�ned homogeneous background plasma subject to a ra-
dially dependent magnetic �eld. This magnetic �eld is curved and depends on
the radial distance from the center as in a toroidal plasma chamber (such as
the VTF or Blåmann device). We will show that this curvature of the magnetic
�eld and its radial dependency give rise to a charge polarisation on any pertur-
bation to the homogeneous background plasma. Furthermore, we will see that
this charge polarisation will drive the plasma perturbation across the magnetic
�eld lines.

It is worth noting that we are looking for slowly varying e�ects on convection of
plasma resulting in transport of entire �lament structures. Due to this, we wish
to disregard high frequency variations such as magnetic �eld waves and sound
waves.

Let us now consider the inhomogeneous but azimuthal symmetric and radially
dependent magnetic �eld described as

B = −B0R0

R
b (1)

This magnetic �eld is considered to be parallel with the azimuthal direction,
and uniform in the vertical direction. The local background plasma is initially
considered homogeneous and we will assume quasineutrality, with the electron
density being equal to the ion density. We will let the parallel and perpendicular
motion relate to the direction of motion relative to the magnetic �eld direction.
Furthermore, we will in this thesis assume no or negible variations along the
magnetic �eld.

In this view, the �uid model of plasma is a good approximation as we are only
concerned with motion perpendicular to the magnetic �eld.

For simplicity of argument we take the momentum equation for a plasma species,
disregarding collisions and viscosity

mn
du
dt

= qn (E + u×B)−∇p (2)
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where m is the mass of the plasma particle, n is the particle density, u is the
�uid element velocity, q is the plasma particle charge, E is the electric �eld
and p is the pressure. As we are describing �uid motion, note that the time
di�erential describes the convective derivative dt = (∂t + u · ∇). Taking the
vector product with the magnetic �eld (B×Eq. (2)) gives us the perpendicular
drifts

u⊥ = − 1
B2

B×E +
1

qnB2
B×∇p+

m

qB2
B× du

dt

= uE + ud + up (3)

where the �rst term describes the electric drift uE, an uniform plasma drift
transporting plasma perpendicular to both the magnetic and electric �eld in bulk
regardless of particle charge. The second term describe the diamagnetic drift ud

driven by pressure gradients in the plasma, perpendicular to both the magnetic
�eld and the pressure gradient. The third term describes the polarisation drift
up which in this simple picture can be thought of as a balance drift to conserve
quasineutrality as the diamagnetic drift is charge separating.

It is worth noting that the diamagnetic drift in the �uid picture for this curved
magnetic �eld gives a contribution equal to the contribution of gradient and
curvature drifts in the guiding center picture [9].

We shall see that the charge separating diamagnetic drift current gives, for a
perturbation on the background plasma, to a vertical electric �eld. This is
the driving mechanism behind the perpendicular motion: The resulting vertical
electric �eld gives rise to electric drift uE (or E × B-drift as it is also called)
perpendicular to both the magnetic �eld and the electric �eld. This drift is not
charge separating, and consequently a plasma bulk motion directed outwards in
the radial direction at the center of the perturbation.

Furthermore, by virtue of quasineutrality, the charge polarisation of the per-
turbation �blob� is balanced by the polarisation current up due to the time
evolution of the electric �eld as well as the advection of the electric drift. For
the positive perturbation this results in a vorticity dipole with counter-clockwise
rotation around the top of the blob and clock around the bottom.

Figure 1 illustrates the transport mechanism of a typical blob, with the vertical
electric �eld from polarisation giving us the electric outward drift. κ is here the
curvature and gradient vector for the magnetic �eld.

2.2 Modelling the transport: The two �eld model

We now seek to �nd a simple model for the evolution of the particle density and
vorticity in a magnetised plasma that accounts for the transport phenomenas
described above. This model will be based on the �uid picture of plasma due to
the assumption of no or little variations or drift along the magnetic �eld, which
makes this a good approximation.
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sion of parallel and diamagnetic currents, respectively. The
latter is defined by Jd=b��P /B and represents the drive of
interchange motions in nonuniformly magnetized plasmas.
From the electric current densities defined above, the charge
continuity equation for the quasineutral plasma might be
written as � ·Jp=−� ·J� −� ·Jd, which corresponds term by
term to the vorticity equation �2�.

The physics of vorticity generation and interchange mo-
tions in nonuniformly magnetized plasmas is described by
Eq. �2�. An illustration of this mechanism is presented in Fig.

1 for a plasma blob with pressure perturbation P̃�0. We
note that the electric current density due to magnetic guiding
center drifts in a nonuniform magnetic field is given by69

JB =
P

B
�� � b + b � � ln B� , �4�

comprising the effects of magnetic-field curvature and inho-
mogeneity. With reference to Fig. 1, this current causes a
vertical charge separation due to accumulation of charged
particles of a definite sign in regions with a vertical pressure
gradient. In the fluid description, this is described by the
diamagnetic current compression,

� · Jd =
1

B
�� � b + b � � ln B� · �P = � · JB, �5�

where the two terms inside the parentheses contribute
equally in the electrostatic limit. It should be noted that there
is no net vorticity generation by this interchange mechanism;
it only acts to polarize electric charge and thus vorticity
when the magnetic guiding center drifts of negatively and
positively charged particles do not balance. The charge po-
larization gives rise to a vertical electric field and hence a
radial electric drift at the center of the blob structure. When
this dipolar charge separation is dynamically balanced by the
polarization current, the result is a large-scale convective
flow field and hence a net radial acceleration and motion of a
blob structure initially at rest.66,67

B. Ballooning and parallel flows

The energy conservation equation for reduced fluid de-
scriptions is obtained by multiplying the current continuity
equation �2� with the electrostatic potential � and integrating
over space.70–73 The polarization current term on the left-
hand side then to lowest order yields the temporal rate of
change of the fluid kinetic energy based on the electric drift,

−� dx� � · Jp =
d

dt
� dx

1

2
�VE

2 , �6�

where the integration extends over the plasma layer under
consideration. The diamagnetic current compression on the
right-hand side of Eq. �2� gives an energy transfer term for
the electric drift kinetic energy,

−� dx� � · Jd =� dxP � · VE =� dx2PVE · � , �7�

assuming the surface term to vanish after integration by
parts. It is thus clear that cross-field plasma motions are am-
plified provided the collective thermal energy flux is directed
opposite to the magnetic-field curvature vector. For a plasma
in a toroidal magnetic field, this is along the major radius
axis, thus implying ballooning of the fluctuation level and
the turbulent transport, that is, they tend to maximize on the
outer midplane, often referred to as the side of unfavorable
magnetic curvature. As a result, plasma and heat enter the
region of open magnetic-field lines predominantly on the
outer midplane.16–20

The poloidally asymmetric transport of plasma into the
SOL caused by ballooning can induce parallel plasma flows
in the SOL due to particle transport along the field lines.
Such transport-driven parallel flows would be independent of
the direction of the magnetic field, in contrast to neoclassical
flows and toroidal rotation. Measurements during experi-
ments with forward and reversed magnetic-field directions as
well as discharges with different magnetic topologies have
clearly indicated the existence of such transport-driven par-
allel flows.17–20 Apart from its direct interest for divertor op-
eration, the observation of ballooning and associated parallel
flows strongly suggests interchange motions as the mecha-
nism governing the collective dynamics and cross-field trans-
port in the plasma boundary region.

C. Sheath dissipation

Modeling the behavior of a plasma at material surfaces
is very challenging, and usually involves a large number of
approximations. In the very simplest cases this can, however,
be treated within a fluid description. Assuming Boltzmann
distributed electrons and the plasma facing surface to be
electrically floating, the boundary condition for the parallel
electric currents at the sheaths is given by

J� = − enCs	1 − exp�−
e�

T
�
n̂ · b , �8�

where � is the deviation of the electric plasma potential from
its stationary floating value with respect to the surface poten-
tial and n̂ is the surface unit normal vector. Moreover, n and

FIG. 1. Illustration of the ideal interchange mechanism leading to radial

motion of a localized blob structure with an excess pressure P̃ relative to the
ambient plasma. The vertical polarization of electric charge and vorticity
due to magnetic guiding center drifts leads to a radial electric drift at the
center of the blob structure.

082309-3 Radial interchange motions of plasma filaments Phys. Plasmas 13, 082309 �2006�
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Figure 1: Illustration of the ideal interchange mechanism for a blob structure.
We note the vertical electric �eld giving rise to the electric drift opposite to the
curvature vector κ. Figure taken from [9].

2.2.1 Plasma motion

For any magnetised plasma, we have the momentum equation for particle species
α, assuming electrostatic motions and an isothermal �uid, given as

mαnα
duα
dt

= qαnα (−∇φ+ uα ×B)−Tα∇nα−∇·Πα−
∑
β

mαnαναβ (uα − uβ)

(4)
(as described in for example [6, 8]) where mα is the particle mass, nα is the
particle density, uα is the plasma species �uid velocity, qα is the plasma species
particle charge, φ is the electrostatic potential and Tα is the species' tempera-
ture, Πα is the viscous stress tensor, B is the magnetic �eld vector and ναβ is
the collision frequency between species α and β. Note that the di�erential we
use here is the convective derivative dt = (∂t + uα · ∇) describing advection by
the �uid velocity.

We �rst get the projected plasma �uid velocity perpendicular to B by taking
the vector product of the magnetic �eld and momentum equation, B×Eq. (4).
We choose to rewrite the magnetic �eld as B = Bb where b is the unit vector
in the magnetic �eld direction. We note that B × (uα ×B) = B2u⊥α for the
second term on the right hand side allows us to solve for u⊥α:

u⊥α =
1
B

b×∇φ+
Tα
mαB

b×∇ lnnα +
mα

qαB
b× duα

dt

+
∑
β

mαναβ
qαB

b× (uα − uβ) +
1

qαnαB
b× (∇ ·Πα) (5)

The �rst two terms describes the electric (or E × B) drift and diamagnetic
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drift respectively. The third term describes polarisation drift, while the two
remaining terms describes momentum loss due to collisions and due to viscosity.
While the electric and diamagnetic drifts are independent of the plasma velocity,
the polarisation drift and the collision term do depend on the velocity uα.

As we are assuming no or negible drift or variations along the magnetic �eld,
the perpendicular picture gives for our use the full picture.

When then assume low frequency plasma variations (duα/dt� ωcα) and a low
frequency particle collision rate (ναβ � ωcα). The electron motion ue can to
lowest order be decomposed into

ue = uE + ude +O

(
ω

ωce

)
(6)

where uE is the electric drift and ude is the electron diamagnetic drift. We can
then iterate on Eq. (5) using this lowest order approximation for the electron
�uid drift motion ue.

We can �nd the perpendicular motion using the �rst order approximated elec-
tron motion from Eq.(6) in Eq.(5), neglecting the electron inertia and assuming
only collisions with a stationary neutral gas (un ≈ 0) we get

u⊥e =
1
B

b×∇φ− Te

eB
b×∇ lnne +

meνen

eB
b×

(
1
B

b×∇φ− Te

eB
b×∇ lnne

)
which with the electron cyclotron frequency given as ωce = eB/me becomes

ue = uE + ude +
νen

ωce

Te

eB
∇⊥

(
eφ

Te
− lnne

)
(7)

For the ion motion we will assume no ion drift along the magnetic �eld lines due
to high inertia, so-called �ute modes, as well as the ions being cold, resulting
in no diamagnetic drift for the ions. The �rst order approximation of the ion
motion then becomes

ui = uE +O

(
ω

ωci

)
which iterated with Eq.(5) and assuming only collisions with a stationary neutral
gas, we get

ui = uE +
mi

qiB
b× duE

dt
+
miνin

qiB
b× uE (8)

= uE −
1

ωciB

d∇⊥φ
dt

− νin

ωci

∇⊥φ
B

where we have the ion cyclotron frequency ωci = eB/mi. We now have ex-
pressions for the ion and electron drift which we will further use in the particle
continuity and charge continuity equations in the following sections.
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2.2.2 Particle continuity

Introducing the particle continuity equation

∂nα
∂t

+∇ · (nαuα) = 0

for species α, assuming quasineutrality (ni ≈ ne = n) we can write the equation
for electron and ion continuity as

∂n

∂t
+∇ · (nuE + nude + nuce) = 0 (9)

∂n

∂t
+∇ · (nuE + nupi + nuΠ + nuci) = 0 (10)

where uce is the electron collisional drift from Eq. (7), upi is the ion polarisation
drift and uci is the ion collisional drift from Eq. (8). Subtracting Eq. (9) from
Eq. (10) gives us the charge continuity equation

∇ · (nupi + nuΠ + nuci − nude − nuce) = 0 (11)

These two equations, Eq.(9) and Eq.(11) gives us a closed two-�eld model in
terms of the particle density n and potential φ.

2.2.3 The cylindrical coordinates

We will now specify the coordinates used. Let us assume the cylindrical coordi-
nates (R,Θ, Z) where R̂ is in the outward radial direction, Ẑ is in the upward

vertical direction and Θ̂ is in the azimuthal direction. We let the magnetic �eld
be de�ned as

B =
B0R0

R
b

where B0 is the magnetic �eld strength at the radial position R0 and b = −Θ̂.
With a = (aR, 0, aZ), we introduce the divergence operator with components
only perpendicular to the magnetic �eld

∇ · a =
1
R

∂

∂R
(R aR) +

∂aZ
∂Z

(12)

and the gradient operator

∇a =
(
∂a

∂R
, 0,

∂a

∂Z

)
which gives us the perpendicular Laplace operator

∇2
⊥a =

1
R

∂

∂R

(
R
∂a

∂R

)
+
∂2a

∂Z2

Finally, we have the curl operator

∇× a =
(

0,
∂aR
∂Z
− ∂aZ

∂R
, 0
)
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2.2.4 Compression and advection of plasma

We can in the particle and charge continuity equations write for each of the
drift terms

∇ · (nu) = ∇n · u + n∇ · u = (∇n+ n∇) · u

where the �rst term in the last expression gives advection and the second term
gives compression of the plasma. Using this gives us the divergence of the ion
polarisation drift and ion collisional drift as

∇ · (nupi) = (∇n+ n∇) ·
(
mi

qiB2

d∇⊥φ
dt

)
∇ · (nuci) = (∇n+ n∇) ·

(
miνin

qiB2
∇⊥φ

)
It can be shown (given in [7]) that the contributing drift term from the viscous
stress tensor takes the form

∇ · (nuΠ) = µ∇4
⊥φ

where µ, given in Eq. (16) the following section, is a constant dependent on
several factors such as the ion temperature. The electron collision drift becomes

∇ · (nuce) = (∇n+ n∇) ·
[
νen

ωce

nTe

qeB
∇⊥

(
eφ

Te
− lnne

)]
While the electric and diamagnetic drifts are incompressible for a homogeneous
magnetic �eld (∇·uE = 0 and ∇·udα = 0), an inhomogeneous magnetic �eld as
given in Eq.(1) makes these drifts compressible. Using the cylindrical divergence
operator (Eq. 12) on the electric drift gives us

∇ · uE = ∇ ·
(

1
B

b×∇φ
)

= − 1
R

∂

∂R

(
R

B

∂φ

∂Z

)
+

∂

∂Z

(
1
B

∂φ

∂R

)
= − 2

BR

∂φ

∂Z

and similar for the diamagnetic drift

∇ · udα = ∇ ·
(
Tα
qαB

b×∇ lnn
)

= − 2Tα
nqαBR

∂n

∂Z

We note that in the limiting regime of a uniformly magnetised plasma, R→∞,
these drifts become incompressible. Using the above expressions we �nd the
terms in the particle continuity equation
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∇ · (nuE) = n (∇ · uE)− 2n
BR

∂φ

∂Z

∇ · (nude) = − 2Te

qeBR

∂n

∂Z

Using these above expressions in Eq. (11) and dividing by n, we can write it as

(∇ lnn+∇) ·
(
mi

qiB2

d∇⊥φ
dt

+
miνin

qiB2
∇⊥φ

)
+

2Te

qeBR

∂ lnn
∂Z

= µ∇4
⊥φ− (∇ lnn+∇) ·

[
νen

ωce

Te

eB
∇⊥

(
eφ

Te
− lnn

)]
(13)

and we can write Eq. (9) as

(∂t +∇ · uE) lnn− 2
BR

∂φ

∂Z
− 2Te

qeBR

∂ lnn
∂Z

= − (∇ lnn+∇) ·
[
νen

ωce

Te

eB
∇⊥

(
eφ

Te
− lnn

)]
(14)

This are our model equations in their dimensional form.

2.2.5 Normalisation by perturbation scale length

We will now turn to simplify and normalise Eq. (13) and Eq. (14) to non-
dimensional equations. The normalisation carried out in will be to the char-
acteristic blob size l and characteristic time γ: γt → t′ and R/l → R′ , thus
giving us

d

dt
→ γ

d

dt′

for the temporal scale, and

∇ → 1
l
∇′

for the spatial scales. To keep non-dimensionality, the scaling of the potential
(since velocities are normalised by γl) then becomes

φ→ B0l
2γφ′

We introduce the dimensionless vorticity as Ω′ = ∇′2⊥φ′. We will for simplicity
here assume that the convective term ∇ lnn is small compared to the compres-
sion term. The treatment of this term is included in section 2.4.

Using this in Eq. (13) gives us, dropping the primes for simplicity of notation,
the equation

dΩ
dt

+
c2s
γ2

2
R0l

∂ lnn
∂Z

=
Be

l2γmi
µ∇2
⊥Ω− νin

γ
Ω
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where we have de�ned the sound speed cs as

cs =
√
Te

mi

We can then choose to set the characteristic time γ to the ideal interchange time

γ2 = c2s
2
R0l

=
g

l
(15)

where we de�ne the e�ective gravity g = 2c2s/l. Using νi = νin/γ and the (rather
lengthy) expression given for µ in [7]:

µΩ =
µ

γl2
=

3
96

u2
tinZ

4
i e

4 ln Λ

ω2
ciγl

2π3/2ε2
0m

1/2
i T

3/2
i

(16)

with the ion gyration frequency ωci = eB/mi, uti is the ion thermal velocity, Zi

is the ion charge state, ln Λ is the Colomb logarithm and ε0 is the permitivity
in vacuum, we get the non-dimensional equation for vorticity Ω:

dΩ
dt

+
∂ lnn
∂Z

= µΩ∇2
⊥Ω− νiΩ (17)

Let us summarise the terms in this equation in order, for clarity: First term
represents the polarisation drift, while the second term is the interchange term
from the diamagnetic drift advection (∇B and curvature drift advection in the
guiding center picture). The right hand side holds the di�usive viscosity and the
ion-neutral collisional drag. Noe that the term ∂Z lnn in the vorticity equation
is the interchange term which is the driving mechanism for the propagation of
perturbations as mentioned in section 2.1.

The continuity equation (14) becomes with our normalisation

d lnn
dt
− 2
R0

∂φ

∂Z
− 1
γl2

2Te

eB0R0

∂ lnn
∂Z

=
1
γl2

νen

ωce

Te

eB

[
∇2
⊥ lnn+ (∇⊥ lnn)2

]
where we by using using

ξ =
1
γl2

2Te

eB0R0
µn =

1
γl2

νen

ωce

Te

eB

get the simpli�ed non-dimensional equation for the particle density n:

d lnn
dt
− 2
R0

∂φ

∂Z
− ξ ∂ lnn

∂Z
= µn

[
∇2
⊥ lnn+ (∇⊥ lnn)2

]
(18)

Summarising the terms in this equation in order: The �rst two terms repre-
sents the electric drift advection and compression, the third term represent the
diamagnetic drift advection (∇B and curvature drift advection in the guiding
center picture) and the right hand side represent collisional di�usion. For the
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case of the MHD ordering, we have no diamagnetic advection and thus neglect
the third term here. This also have the advantage of reducing the parameter
space.

Keep in mind that we here have used the convective derivative dt = ∂t + uE ·∇.
We can then combine this with Eq. (17) as our model equations on the form of
inhomogeneous di�usion equations

dΩ
dt

= µΩ∇2
⊥Ω− νiΩ−

∂ lnn
∂Z

(19)

d lnn
dt

= µn∇2
⊥ lnn+ µn (∇⊥ lnn)2 +

2
R0

∂φ

∂Z
+ ξ

∂ lnn
∂Z

(20)

We here identify the Rayleigh and Prandtl number expressed by the e�ective
di�usive viscosity µΩ and di�usion µn as

Ra =
1

µΩµn
Pr =

µΩ

µn

where the Rayleigh number is the ratio of e�ective buoyancy to dissipative forces
and the Prandtl number is the the ratio of viscosity to di�usion.

2.2.6 Small perturbation amplitude

Noting that for small perturbations ñ with an amplitude ∆n on a background
particle density n0: n = n0 + ∆n ñ, (that is, ñ is normalised to an amplitude of
1) we can write the driving term in the vorticity equation as

∂ lnn
∂Z

=
∂

∂Z
ln
(

1 +
∆n ñ
n0

)
=

∆n
n0

1
1 + ∆n en

n0

∂ñ

∂Z

which for ∆n� n0 gives us

∂ lnn
∂Z

≈ ∆n
n0

∂ñ

∂Z

and similar for ∂t lnn. Using this, we can de�ne the characteristic inverse time
γ∆n as

γ2
∆n = γ2

(
∆n
n0

)
=

2c2s
Rl

∆n
n0

to reduce the number of parameters in the model. The resulting equations can
then be expressed as an evolution of Ω and ñ instead of Ω and lnn, neglecting
the quadratic term in ∆n/n0:

dñ

dt
− 2
R0

∂φ

∂Z
− ξ ∂ñ

∂Z
= µn∇2

⊥ñ



14 2 TRANSPORT IN MAGNETISED PLASMAS

This results in the set of inhomogeneous di�usion equations

dΩ
dt

+
∂ñ

∂Z
= µΩ∇2

⊥Ω− νiΩ (21)

dñ

dt
= µn∇2

⊥ñ+
2ñ
R0

∂φ

∂Z
+ ξ

∂ñ

∂Z
(22)

modeling the evolution of the independent variables Ω and ñ for small pertur-
bation amplitudes on a background plasma.

We notice that this gives an important prediction of the scaling for the charac-
teristic velocity uc for small perturbation amplitudes as

uc

cs
=
(

2l
R

∆n
n0

) 1
2

which dictates that the velocity depends on the size l of the perturbation as well
as the perturbation amplitude ∆n.

2.2.7 Velocities for high collision frequencies

Using Eq. (13) for the vorticity and considering the limiting regime of a high ion-
neutral collision frequency νin, we note that we (assuming only the collisional
term and interchange term to be the two major contributing terms)

2Te

miR

∂ lnn
∂Z

∼ νin∇2
⊥φ = νin∇× uE

As the �rst term goes as
2Te

miR

∂ lnn
∂Z

∼ g

l

where g is the e�ective gravitation described earlier, and the second term as

νin∇× uE ∼
νin

l
uc

with uc being the characteristic velocity, we get the scaling for uc:

uc ∼
g

νin

indicating that for high ion-neutral collision frequencies the velocity should de-
pend inversely proportional to the ion-neutral collision frequency.

2.2.8 Radial transport of plasma

We will here replicate an argument given in [9] that the properties of the radial
convective �ux are given by the center of mass velocity, which in turn makes the
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center of mass velocity an important quantity in order to study and understand
the radial transport of plasma.

We de�ne the integrated particle density

Q =
ˆ
dR n

where n is the particle density and the integral is taken over the entire plasma.
The center of mass position and the center of mass velocity can then be found
as

RCOM =
1
Q

ˆ
dRRn uCOM =

dRCOM

dt

Now, noting that the convective drift resulting in plasma bulk motion is the
electric drift, we see that the radial and vertical components of the electric drift
can be expressed as

uE =
1
B

b×∇φ =
1
B

(
− ∂φ
∂Z

, 0,
∂φ

∂R

)
Taking the mass conservation equation assuming the electric drift to be incom-
pressible

∂n

∂t
+ uE · ∇n = 0

and multiplying each term by R and integrating over the entire domain gives us

ˆ
dRR

∂n

∂t
=

∂

∂t

ˆ
dRRn = uCOM

and ˆ
dR uE · ∇n =

1
B

ˆ
dRR

(
∂

∂Z

(
n
∂φ

∂R

)
− ∂

∂R

(
n
∂φ

∂Z

))
where the �rst term vanishes if assuming periodic boundary conditions in the
Z-direction, and using integration by parts gives us

ˆ
dR uE · ∇n =

1
B

ˆ
dR n

∂φ

∂Z

which gives us a center of mass velocity proportional to the total radial convec-
tive �ux

uCOM = − 1
B

ˆ
dR n

∂φ

∂Z

It follows that all the properties of the convective �ux due to an isolated plasma
�lament are given by the radial center of mass velocity.
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2.3 Interchange instabilities

For a magnetised plasma with a particle density perturbation ñ on a non-uniform
background particle density n0 depending on the radial distance R described as

n = n0(R) + ñ

the perturbations may give rise to linear instabilities often referred to as in-
terchange due to both positive and negative perturbations being inde�nitely
magni�ed on certain background densities n0. To investigate this, let us �rst
consider n0 as a declining particle density pro�le along the outward radial axis.

With a positive density perturbation ñ > 0 (a blob), the electric drift described
in the previous section will transport plasma radially outwards. However, as the
density gradient is outward declining, the density of the plasma transported out
of the local region of the perturbation will be less than of the plasma transported
into the region. This will in turn cause the perturbation amplitude to grow. For
a negative density perturbation ñ < 0 (a depletion), the plasma transport will
instead be directed inwards. This will cause a local transport of low density
plasma into the perturbation and a transport of higher density plasma out of
the perturbation. In both cases the initial perturbation is continouosly enhanced
in the absence of any additional damping e�ect applied, causing an interchange
instability of the perturbation.

For the opposite case of a increasing particle density pro�le with the radial
coordinate, the perturbations will however be damped: For the positive pertur-
bation higher density plasma will be transported out of the local region while
lower density plasma will be transported in, reducing the initial perturbation
amplitude. In a similar manner, a negative perturbation will cause lower density
plasma to be transported out while higher density plasma is transported in.

Let us now explore the stability of this system by performing linearisation
around an equilibrium state and look at the plane wave solution for the sys-
tem.

We will assume the particle density n and the electrostatic potential φ to be on
the forms

n = n0 + ñ

φ = φ0 + φ̃

where n0 and φ0 are the background particle density and potential, while ñ and
φ̃ are the small perturbation on these backgrounds. We further assume that n0

takes the form of a large scale exponential pro�le in the radial direction, with
no variations in the vertical direction

n0 = N exp
(
− R

Ln

)
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and that the background potential is zero (φ0 = 0). Using the background
particle density pro�le, we can write

lnn = lnN + ln
[
exp

(
− R

Ln

)
+
ñ

N

]
which with the assumption that |ñ/N | � 1 allows us to approximate the second
term as

ln
[
exp

(
− R

Ln

)
+
ñ

N

]
≈ − R

Ln
+ ln

(
ñ

N

)
≈ − R

Ln
+
ñ

N

We will also ignore any collisional or viscous e�ects, as these will merely provide
a dampening e�ects and thus not contribute to the mechanisms causing the
instabilities.

Linearising the equations (17) and (18) around n0 and φ0, with the second order
terms vanishing, gives us

∂ñ

∂t
− ζ ∂φ̃

∂Z
− ξ ∂ñ

∂Z
= 0

∂∇2
⊥φ̃

∂t
+
∂ñ

∂Z
= 0

where ζ = l/Ln.

Introducing the plane wave solution with the wave number k and frequency ω,
and assuming local cartesian coordinates,(

ñ

φ̃

)
=
(
n̂

φ̂

)
exp [i (k ·R− ωt)]

this then becomes

−iωn̂+ ζikZ φ̂− ξikZ n̂ = 0
ik2
⊥ωφ̂+ ikZ n̂ = 0

where k2
⊥ = k2

R + k2
Z , or on matrix form(
−iω − iξkZ iζkZ

ikZ ik2
⊥ω

)(
n̂

φ̂

)
=
(

0
0

)
which by requiring the determinant to be zero for a non-trivial solution, gives
us the dispersion relation

k2
⊥ω

2 + k2
⊥kZξω + ζk2

Z = 0

or solved for ω

ω = −1
2
kZ

(
ξ ±

√
ξ2 − ζ 4

k2
⊥

)
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For the limiting case of ξ → 0 in the MHD ordering, this reduces to the well
known growth rate for ideal interchange instability

ω = i
√
µ
kZ
k⊥

Inserted into the plane wave solution, this then gives(
ñ

φ̃

)
=
(
n̂

φ̂

)
ψ(t) exp [i (k ·R)]

where ψ(t) is an exponential growth

ψ(t) = exp
[√

κ
kZ
k⊥

t

]
which only vanishes when kZ � k⊥, that is in the case when the plane wave
has no vertical gradients in n and thus no charge or vorticity polarisation due
to ∇B and curvature drifts.

Restoring the dimensional units for the growth rate we get

ω ∼ γ
(
l

Ln

) 1
2

=
(
g

Ln

) 1
2

which is the well known growth rate for interchange instabilities.

2.4 The convective term in the vorticity equation

We have so far neglected the non-linear convective term ∇ lnn in the vorticity
equation. Although this term is in many cases dropped as it is small in magni-
tude (as in [8]), we will here explore the conditions where we can exclude this
term. The numerical implications of including this term is covered in section
3.4.

We will explore the case of a homogeneous background plasma N and a blob-like
structure of the form

n = N + ∆n exp
(
−R

2

2l

)
where∆n is the blob amplitude. We rewrite the convective and compressional
terms as

(∇ lnn+∇) · ∇⊥φ =
1
n

(∇n+ n∇) · ∇⊥φ

and note that we can write each term in order of magnitude scales as

∇n ∼ ∆n
l

n∇ ∼ N

L
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where L is here the scale length of the potential perturbations. Formally com-
paring the ratio of these two terms

∇n
n∇
∼ ∆n

N

L

l

we see that the convective term is small and can be disregarded when the ratio
of the perturbation amplitude ∆n and the background plasma N is small, that
is ∣∣∣∣∆nN

∣∣∣∣� 1

We are however still left with the case where the blob amplitude is actually not
much smaller than the background particle density. This raises the question of
the e�ect this term has for large blob amplitudes.

2.5 On quasineutrality

We will here argue for the quasineutral property of plasmas in general. This
property allow us to equate the electron particle density and the ion density
through charge neutrality and is thus commonly used to close equation sets.
This property is driven by the shielding of charges over small length scales.

For the sake of argument, we will assume a uniform magnetic �eld and no plasma
drift along the magnetic �eld. Further, we take into account that the electron
mass is nonzero.

Starting with the particle continuity equation for the electrons and ions, where
the last term is the polarisation drift of electrons and ions respectively

∂ne
∂t

+ uE · ∇ne +
mene
eB

d∇2
⊥φ

dt
= 0 (23)

∂ni
∂t

+ uE · ∇ni −
mini
eB

d∇2
⊥φ

dt
= 0 (24)

where we have neglected collisional dissipation. Introducing the space charge
density ρ through Gauss' law

ρ = eni − ene = ε0∇ · E = −ε0∇2φ

Subtracting equation (23) from (24) we get(
1 +

ρm
ε0B2

)
dρ

dt
= 0

where ρm = mene + mini is the plasma mass density. The �rst term here
describes the electric drift advection of space charge, while the second term
describes the polarisation drift. In many situations the second term is of several
orders of magnitude larger than the �rst term. This implies that we may neglect
the presence of space charges for the cross �eld plasma dynamics. The space
charge density can at any time be calculated from the divergence of the electric
�eld.
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2.6 Conservation of particles in cylindrical coordinates

In a domain where the boundaries are far away from the initial perturbation, no
loss of particles should be expected until the perturbation reach the boundaries.
Taking the equation for the particle density Eq. 22, we can �nd the particle
evolution by integrating over the entire domain D in R = (R,Θ, Z), giving us

∂N

∂t
= −

ˆ
D

dR
[

1
B

∂

∂R

(
n
∂φ

∂Z

)
− 1
B

∂

∂Z

(
n
∂φ

∂R

)]
+
ˆ
D

dR
(

2n
BR

∂φ

∂Z

)
where ∂tN is the time evolution of the integrated particle density, the �rst
integral on the right hand side is the Poisson bracket and the second integral is
the compression of electric drift. As we assume the advection process to take
place far from the boundaries, the di�usion will not give rise to any particle
loss. We have here written the Poisson bracket for the advection term uE · ∇n
as

{φ, n} =
∂

∂Z

(
n
∂φ

∂R

)
− ∂

∂R

(
n
∂φ

∂Z

)
As the magnetic �eld is radially dependent, we express it as

1
B

=
R

B0R0

Integrating the second term in the Poisson bracket over dZ gives us, with Z0

and Z1 being the boundaries in the vertical direction

ˆ
D

dR
[
R

B0

∂

∂Z

(
n
∂φ

∂R

)]
=
ˆ
DRΘ

dR dΘ

(
R2

B0

[
n
∂φ

∂R

]Z=Z1

Z=Z0

)
= 0

if we have periodicity in Z. (Note that we will through the numerical consider-
ations have periodicity in Z, which will be elaborated in chapter 3.)

We then perform integration by parts over dR on the �rst term in the Poisson
bracket, where R0 and R1 are the radial boundaries:

−
ˆ
D

dR
[

R

B0R0

∂

∂R

(
n
∂φ

∂Z

)]
= − 2

B0R0

ˆ
D

dR
(
n
∂φ

∂Z

)
+
ˆ
DZΘ

([
R2n

∂φ

∂Z

]R=R1

R=R0

)
dZ dΘ

Note that the second term on the right hand side vanish if we assume either the
particle density n or the potential derivative ∂Zφ to vanish at the boundaries.
This leaves us with a term for the integral over the Poisson bracket which is
exactly cancelled by the integral over the compression of electric drift:

ˆ
D

dR
(

2n
BR

∂φ

∂Z

)
=

2
B0R0

ˆ
D

(
n
∂φ

∂Z

)
dR
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Figure 2: Integrated particle density for two simulations in cylindrical coor-
dinates: One using the electric drift correction (continuous), the other in the
absence of this correction (dashed). Note that the integrated particle density
increases with time steps.

leaving us with the desired particle conservation, ∂tN = 0.

This result poses a requirement for us to include the electric drift compression
in the evolution equation for the particle density when solving in cylindrical
coordinates to ensure particle conservation. This is in contrast to when solving
in the rectangular coordinate system, where the electric drift is incompressible
and the electric drift advection conserves mass.

Figure 2 shows the integrated particle density for two simulations in cylindrical
coordinates: One with the compression of the electric drift included and one
without it. We see that omitting this compressing term does indeed lead to an
increased amount of particles while including it conserves it.
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3 Numerical approaches

We will in this chapter describe the numerical approaches used in the two di-
mensional advection/di�usion solver (2DADS) code. This code is also further
described in chapter 4. The discretisation used throughout this chapter is de-
scribed in section 3.1. Using this, we shall develop a combined spectral/�nite
di�erence time splitting scheme for solving the model equations in cylindrical
coordinates.

3.1 Discretisation

For the spatial discretisation, we will be using cell centered equidistant grid
points on our solution domain. With a domain length of LR and LZ , the
distance between these NR and MZ cells are given by

∆R =
LR
NR

∆Z =
LZ
MZ

With n = {0, . . . , NR + 1} and m = {0, . . . ,MZ + 1}, the grid points in the
radial direction Rn are taken at the center of these cells, placing the bound-
aries at R1/2 and RNZ+1/2, and similar for the vertical direction Zm with the
boundaries at Z1/2 and ZMZ+1/2. The points at R0, RNR+1, Z0 and ZMZ+1 are
so-called ghost points. The discretisation of R and Z takes the form

Zm = Zmin +
(
m− 1

2

)
∆Z

Rn = Rmin +
(
n− 1

2

)
∆R

where Zmin and Rmin is the position of the lower vertical and innermost radial
boundary.

The discretisation vector u for a solution U on the radial domain becomes

u = {u1, u2, · · · , un, · · · , uN−1, uN}

where the approximated discretised solution is related to the exact solution by
un ≈ U (R = Rn). Using the ghost points u0 and uN+1 in the radial direction,
we can represent the boundary conditions in the following way: Consider the
Dirichlet boundary conditions where the values on the boundary are known

U1/2 = U(R = R1/2) UN+1/2 = U(R = RN+1/2)

or the Neumann boundary conditions where the gradient (in this case the radial
derivative) is known

U ′1/2 = ∂RU(R = R1/2) U ′N+1/2 = ∂RU(R = RN+1/2)
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We then �nd the approximate ghost point values for the Dirichlet condition
using a centered �nite di�erence on the boundary as

u0 = 2U1/2 − u1 +O
(
∆2
R

)
(25)

uN+1 = 2UN+1/2 − uN +O
(
∆2
R

)
(26)

and for the Neumann condition, using interpolation and the derivative on the
boundary, as

u0 = u1 −∆RU
′
1/2 +O

(
∆2
R

)
(27)

uN+1 = uN + ∆RU
′
N+1/2 +O

(
∆2
R

)
(28)

We seek to introduce ghost points in the vertical direction as well, although the
assumed periodicity makes the point around the boundaries take another form
than for the radial direction. Periodicity ensures that

U(Z = Zm) = U(Z = Zm + LZ)

so that using the vertical discretisation vector

u = {u1, u2, . . . , um, . . . , uM−1, uM}

where the approximated discretised solution is related to the exact solution by
um ≈ U (Z = Zm), the ghost points on the exterior of a lower boundary must
be equal to the interior points on the upper boundary, and vica verca:

u0 = uM uM+1 = u1 (29)

Our temporal discretisation will be by a �xed time step ∆t, where the solution
at a given time step i will be noted with a superscript: ui = U(t = i∆t).

Combined, our discretised approximation u to the exact solution U on a two-
dimensional geometry is then given as

uim,n ≈ U(R = Rn, Z = Zm, t = i∆t)

which is the combined spatial and temporal discretisation we will use throughout
this chapter. Figure 3 illustrates the discretisation, with the ghost points in
gray and the boundary in the halfway between the ghost points and the interior
points.

3.2 Spectral transformation

The assumption of a periodic boundary condition in the vertical Z-direction
allows us to use the discrete Fourier transformation in this speci�c spatial direc-
tion. The discrete Fourier transform can be de�ned, with withm = 0, . . . ,M−1
as

ûm =
M−1∑
l=0

ul exp
(
i2πlm
MZ

)
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Figure 3: Illustration of the discretisation used. Ghost points are marked in
grey.

and the inverse transform given as

um =
1
M

M−1∑
l=0

ûl exp
(
− i2πlm

MZ

)
where um is the discretisation of the solution in the vertical direction as de-
scribed in section 3.1. This transform and inverse transform are implemented
by using the Fast Fourier Transform (FFT) algorithm.

It is well known that for the Fourier transform, the di�erential in regular space
becomes a multiplication in Fourier space and is exact:

∂

∂Z
→ ikZ

where kZ = 2πnm/MZ , so that the Laplace operator in cylindrical coordinates
for a spectral transformation in the Z-direction for each spectral component kZ
becomes

∇2
⊥ →

∂2

∂R2
+

1
R

∂

∂R
− k2

Z (30)

Using periodic boundary conditions in the vertical direction then lets us use the
Fourier transform and exactly represent the derivatives in the Z-direction for
accuracy and further allows us to solve the model equations for each Fourier
mode separately, simplifying the solving of the elliptic and di�usion equations.
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3.3 Solving the elliptic equation

With the connection between the potential and the vorticity expressed as the
elliptic equation Ω = ∇2φ, a method for solving for the electrostatic potential
φ is required. Using the discretisation speci�ed in section 3.1, we write the
discretisations for Ω and φ as

Ω = {ω1, . . . , ωn, . . . , ωN} Φ = {φ1, . . . , φn, . . . , φN}

with the corresponding Fourier transformed variables

Ω̂ = {ω̂1, . . . , ω̂n, . . . , ω̂N} Φ̂ =
{
φ̂1, . . . , φ̂n, . . . , φ̂N

}
Using the Laplace operator in Eq. (30) and using a centered �nite di�erence
scheme gives us for each spectral component kZ

φ̂n−1 − 2φ̂n + φ̂n+1

∆2
R

+
φ̂n+1 − φ̂n−1

2Rn∆R
− k2

Z φ̂n = ω̂n

or
(1− λn) φ̂n−1 −

(
2 + ∆2

Rk
2
Z

)
φ̂n + (1 + λn) φ̂n+1 = ∆2

Rω̂n

which rewritten on a tri-diagonal matrix form becomes
. . .

. . .
. . .

(1− λn) −
(
2 + ∆2

Rk
2
Z

)
(1 + λn)

. . .
. . .

. . .

 Φ̂ = ∆2
RΩ̂ (31)

using λn = ∆R/ (2Rn). Note that λn is here dependent on Rn and thus vary
for each row n of the matrix.

Applying boundary conditions alters the �rst and last row in the matrix and
the �rst and last vector elements on the right hand side. For the Dirichlet
boundary condition, the potential φ assumes the values φ1/2 and φN+1/2 on the
boundaries. Using Eq. (25) and Eq. (26) we then get

φ̂0 = 2φ̂1/2 − φ̂1 φ̂N+1 = 2φ̂N+1/2 − φ̂N

which introduced for n = 1 gives

−
(
3− λn + ∆2

Rk
2
Z

)
φ̂1 + (1 + λn) φ̂2 = ∆2

Rω̂1 − 2 (1− λn) φ̂1/2

and for n = N

(1− λn) φ̂N−1 −
(
3 + λn + ∆2

Rk
2
Z

)
φ̂N = ∆2

Rω̂n − 2 (1 + λn) φ̂N+1/2

For the Neumann boundary condition, the radial di�erential of the potential
∂Rφ assumes the values φ′1/2 and φ

′
N+1/2 on the boundaries. Using Eq. (27) and

Eq. (28) we then get

φ̂0 = φ̂1 −∆Rφ̂
′
1/2 φ̂N+1 = φ̂N+1/2 + ∆Rφ̂

′
N+1/2
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Coe�cient K = 1 K = 2 K = 3
α0 1 3/2 11/6
α1 1 2 3
α2 0 −1/2 −3/2
α3 0 0 1/3
β1 1 2 3
β2 0 −1 −3
β3 0 0 1

Table 1: The coe�cients αk and βk for the sti�y stable time integrator scheme.

which introduced for n = 1 gives(
1 + λn + ∆2

Rk
2
Z

)
φ̂1 + (1 + λn) φ̂2 = ∆2

Rω̂1 + ∆R (1− λn) φ̂′1/2

and for n = N

(1− λn) φ̂N−1 −
(
1− λn + ∆2

Rk
2
Z

)
φ̂N = ∆2

Rω̂n −∆R (1 + λn) φ̂′N+1/2

These dependencies on the boundary conditions will alter the matrix elements
(1, 1) and (N,N) in Eq. (31) as well as include the boundary condition values

on the right hand side vector Ω̂.

3.4 Sti�y stable time integrator for the di�usion equa-

tions

With the evolution equation for the particle density and vorticity taking the
form of the inhomogeneous di�usion equation

∂tU = µ∇2
⊥U + LU

where U represents either of the dependent variables and L is a di�erential
operator on U , we can use the K-th order sti�y stable implicit/explicit scheme
on the discretisation u of U , as described in [10, 12]:

1
∆t

(
α0u

i −
K∑
k=1

αku
i−k

)
= κ∇2

⊥u
i +

K∑
k=1

βkLui−k +O
(
∆K
t

)
where the superscript on u denotes the time step. We will for simplicity of
notation assume that L is a linear operator. The coe�cients αk and βk are
given in table 1. We can rearrange this to the implicit part on the left hand
side and the explicit part on the right hand side:

(
α0 − κ∆t∇2

⊥
)
ui =

K∑
k=1

(αk + ∆tβkL)ui−k +O
(
∆K
t

)
(32)
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Using Eq.(30) for the discretisation of∇2
⊥U

i and approximating the di�erentials
by centered �nite di�erences gives us for each spectral component kZ :

∇2
⊥ûn =

ûn−1 − 2ûn + ûn+1

∆2
R

+
ûn+1 − ûn−1

2Rn∆R
− k2

Z ûn +O
(
∆2
R

)
With this, Eq. (32) then reads

−r (1− λn) ûin−1+
(
α0 + 2r + k2

Z

)
ûin−r (1 + λn) ûin+1 =

K∑
k=1

(
αkû

i−k
n + βkLûi−kn

)
(33)

using r = κ∆t/∆2
R and λn = ∆R/ (2Rn). Writing this on a tri-diagonal matrix

form gives us
. . .

. . .
. . .

−r (1− λn) α0 + 2r + k2
Z −r (1 + λn)

. . .
. . .

. . .

 ûi =
K∑
k=1

(αk + βkL) ûi−k

(34)
Note that γ is dependent on R, and thus changes for each row in the matrix,
similar to the elliptic equation (31). Applying boundary conditions alters the
�rst and last row in the matrix and the �rst and last vector elements on the
right hand side, as described in the following.

For Dirichlet boundary conditions, we assume the function values to stay �xed
on the boundaries. Using the ghost point values on u0 and uN+1 from Eq. (25)
and Eq. (26), we can write Eq. (33) for n = 1 as[

α0 + (3− λn) r + k2
Z

]
ûi1 − r (1 + λn) ûi2 = K + 2r(1− λn)U1/2 (35)

and n = N as[
α0 + (3 + λn) r + k2

Z

]
ûiN − r (1− λn) ûiN−1 = K + 2r(1 + λn)UN+1/2 (36)

where we have used the short hand notion

K =
K∑
k=1

(
αkû

i−k
n + βkLûi−kn

)
with n = 1 for Eq. (35) and n = N for Eq. (36).

For Neumann boundary conditions, we assume the gradients on the boundaries
to stay �xed. Using the ghost point values on u0 and uN+1 from Eq. (27) and
Eq. (28), we can write Eq. (33) for n = 1 as[

α0 + (1 + λn) r + k2
Z

]
ûi1 − r (1 + λn) ûi2 = K − r (1− λn) ∆RU

′
1/2

and n = N as[
α0 + (1− λn) r + k2

Z

]
ûiN − r (1− λn) ûiN−1 = K + r(1 + λn)∆RU

′
N+1/2
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where K is given as above.

As with the elliptic equation, the boundary conditions here give rise to a change
of the elements (1, 1) and (N,N) in the matrix in Eq. (34) as well as including
the boundary values on the right hand side.

3.5 The rectangular coordinate limit

When solving the elliptic equation in section 3.3 and the time splitting scheme
in section 3.4 we note that taking the limit R0 → ∞ gives us the rectangular
coordinate system solution. The radially dependent term λn used in our matrix
equations becomes

lim
R0→∞

λn = 0

Using this, the matrix equations become simple tridiagonal matrices, easily
stored and solved as the terms do not vary for each row (and column).

3.6 Initial conditions

We will assume the initial conditions to be stationary solutions of the parti-
cle density, vorticity and the potential, satis�ed by the Dirichlet or Neumann
boundary conditions at the inner and outer radial edge, along with an added
perturbation on the particle density ñ:

n(t = 0) = n0 + ñ

Ω(t = 0) = Ω0

φ(t = 0) = φ0

For our simulations, this perturbation will take the form of a gaussian of width
l and amplitude ∆n around the position R0 = (R0,Z0):

ñ(r) = ∆n exp
[
− (R−R0)2

2l2

]
The initial vorticity �eld and potential �eld are considered set to zero: Ω0 = 0
and φ0 = 0.

3.7 The algorithm

Using the time splitting scheme presented in 3.4, we can now present the algo-
rithm used to �nd the time evolution of the particle density and vorticity �eld
for each time step:

1. For time step i, the particle density ni, the vorticity Ωi and the electro-
static potential φi are given, including boundary conditions, from either
initial conditions or the previous time step.
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2. Ghost point values are constructed as described in section 3.1.

3. As described in section 3.4, the explicit parts of the evolution equation for
ni+1 and Ωi+1, such as the Poisson bracket and electric drift compression,
are calculated using ni, Ωi and φi and the solutions from the K previous
time steps.

4. The variables ni, Ωi and φi are transformed to Fourier space, n̂i, Ω̂i and
φ̂i, using FFT as described in section 3.2.

5. The time splitting scheme is then used to solve for n̂i+1 and Ω̂i+1 for each
spectral mode kZ by solving the matrix equation (34).

6. φ̂i+1 is found from Ω̂i+1 by solving the matrix equation (31) for each
spectral mode kZ .

7. The inverse Fourier transform is then performed on these �elds to yield
the �elds for time step i+ 1: ni+1, Ωi+1 and φi+1.

For the initial time steps, we have a reduced number of previous time steps
in order to construct the explicit part. For K = 1, the time splitting scheme
takes the form of the simple forward di�erence scheme, followed by the second
order sti�y stable scheme for K = 2 and then a third order sti�y stable scheme
throughout the simulation with K = 3.

It is worth noting that for this �rst time step from an initial condition of Ω0 = 0,
the vorticity equation takes the simple form, using forward di�erence for the
time di�erential of Ω:

Ω1 = −∆t∂Zn
0 = ∆t∆n(Z − Z0) exp

[
− (R−R0)2

2

]
(with time step in superscript) resulting in a dipole vorticity �eld after the �rst
time step if the initial perturbation ñ is a �blob�-like structure.

3.8 Arakawa scheme for the Poisson bracket

The non-linear advective term used for the advection with the electric drift for
the particle density or vorticity U , here noted as the Poisson bracket

{φ,U} = Ẑ · ∇φ×∇U

or on the very handy form

{φ,U} =
∂

∂Z

(
U
∂φ

∂R

)
− ∂

∂R

(
U
∂φ

∂Z

)
has to be treated with care in the numerical picture.
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Quantity Expression

Center of mass position
´
dR Rn´
dR n

Center of mass velocity d
dt

´
dR Rn´
dR n

Integrated particle density
´
dR n

Table 2: A selection of the diagnostics output from the simulation code.

The traditional scheme with centered �nite di�erences does not account for
conservation of quantities such as mean vorticity, mean kinetic energy and mean
square vorticity, and give rise to nonlinear computational instabilities unless the
scheme is restricted to a speci�c form [5].

The �Arakawa scheme� proposed by Akio Arakawa [5] does ensure the conser-

vation of these quantities: The mean kinetic energy
´
dR (∇φ)2

/2, the mean
vorticity

´
dRΩ and the mean square vorticity

´
dRΩ2. Consequently, expand-

ing the potential φ into orthogonal harmonic functions, the mean wave number
k2 is conserved since the mean kinetic energy E and mean square vorticity W
can be expressed as

E =
1
2

∑
n

k2
nÊn W =

1
2

∑
n

k4
nŴn

giving us

k2 =
∑
n k

2
nŴn∑

n Ên

which is a conserved quantity if E andW are conserved, thus severely restricting
the length scales the energy distributes to.

In addition, the Arakawa scheme does exhibit good properties regarding accu-
racy compared to other methods for solving two-dimensional advection prob-
lems, as demonstrated in [14].

The actual scheme has here been omitted for brevity but can be found in [5, 14].
Figure 4 shows a stencil diagram over the scheme for the point (n,m). Note
that the usage of ghost points greatly aid the computation of this term near the
border.

3.9 Simulation diagnostics

For each time step the simulation program outputs various diagnostic quan-
tities, used to both quantify the behavior of the physical system as well as
troubleshooting and �nding any numerical issues. While the list of quantities
output by the program is extensive, we will here list some of the most important
quantities from this thesis' perspective in table 2.

The integrated quantities are here taken as sums over the entire simulation
domain, accounting for the cylindrical coordinate system.



32 3 NUMERICAL APPROACHES

Figure 4: Stencil diagram over the Arakawa scheme for the point (n,m).

3.10 Validation of the di�usion equation

Taking the equation for the particle density (22) and disregarding the advection
with and compression of the electric drift, we end up with the di�usion equation

∂n

∂t
= µ∇2n

We can now look for a steady state solution ∂tn = 0 of this equation in cylin-
drical coordinates (R,Z,Θ). Setting µ = 1 and assuming the solution to be
azimuthally symmetric as well as invariant along the Z-axis, the solution n(R)
will depend on R only. We also assume the inner and outer boundaries, at R1/2

and Rn+1/2 respectively, to be de�ned by

n(R1/2) = n1/2 n(Rn+1/2) = nn+1/2

Using the Laplace operator for cylindrical coordinates, we then get

0 =
1
R

∂

∂R

(
R
∂n

∂R

)
=
∂2n

∂R2
+

1
R

∂n

∂R

This has the solution

n = Cn+1/2 logR+ C1/2

where the constants C0 and C1 are de�ned by the boundary conditions:

C0 =
n1/2 − nn+1/2

logR1/2 − logRn+1/2

Cn+1/2 = nn+1/2 − C1/2 logRn+1/2
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Figure 5: The steady state solution of particle density in a cylindrical coordinate
system, matching the expected steady state density pro�le.

Simulating the di�usion equation with R1/2 = 1, Rn+1/2 = 3, n1/2 = 2 and
nn+1/2 = 1 after the system has reached a steady state, as shown in �gure 5, we
get an exact match with this analytical result validating the di�usion process
and elliptic solver in our simulation code for cylindrical coordinates.

3.11 Including the convective term

There are, for the convective term described in section 2.4, two concerns. First,
perhaps the easiest solved, is the added computational cost. Second, it is the
accuracy of including this term and its added time splitting of the numerical
scheme. Let us explore this further by attempting to add a similar term to the
di�usion equation and �nd a scheme for it.

The di�usion equation used in our simulations, with the added term, has the
form

(∇ lnn+∇) · ∂∇⊥φ
∂t

= µ∇2
⊥Ω

where Ω is the vorticity, φ is the potential, n is the particle density and µ is
a constant. In 2DADS this is simpli�ed by neglecting the �rst term and using
∇2
⊥φ = Ω to get

∂Ω
∂t

= µ∇2
⊥Ω
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which is easily solved. However, as we shall see, by not neglecting the term we
will get additional dependencies on the particle density and the potential which
are not as easy to solve directly. We see that we get

∇ lnn · ∂t∇⊥φ+ ∂tΩ = µ∇2
⊥Ω

and can no longer use the relation between the potential and the vorticity to
eliminate the potential as a dependence in the evolution term. In addition, the
particle density and its spatial di�erentials are included. This suggest that there
is no good implicit way of including this term, and we will have to include it
explicitly by using the calculated values of the particle density and its spatial
di�erentials and the potential for previous time steps. The question of the
solution's stability and accuracy then arises. Moreover, this term give a cubic
nonlinearity associated with the electric drift advection.

Simulations including this term explicitly are described in 5.7.
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4 Modi�cations to 2DADS

This chapter will describe the major bulk of modi�cations performed on the
original 2DADS code developed and provided by Odd Erik Garcia.

The original 2DADS Fortran code was originally written in FORTRAN 77.
Although fully functional, this old dialect of the Fortran language puts some
severe restrictions on the form of the syntax. With the bulk of the programming
languages available being more relaxed in this respect, it feels natural to move
this code to a more modern base. Due to this, the code was modi�ed into
obeying the Fortran 95 standard. As all commonly used Fortran compilers
support both versions, this poses no threat to the cross platform nature of the
original program.

In addition, Fortran modules has been introduced and used to encapsulate cer-
tain parts of the code in a step towards a more extensible format and obeying
more modern programming paradigms.

All of the modi�cations carried through is done with regard to further expansion
of the programming code to a bi-directional �nite di�erence method and other
coordinate systems.

4.1 Introduction of cylindrical coordinates

The main modi�cation of the 2DADS program is the extension of model and
parameters to support the cylindrical coordinate system (R,Z), assuming invari-
ance in the azimuthal direction. After these modi�cations, 2DADS is capable
of performing simulations in both cylindrical and rectangular coordinates.

4.1.1 Extending the matrix solver system to account for cylindrical

coordinates

2DADS uses the assumption that the matrix formulation of the time evolution
for the particle density and vorticity, as well as the elliptic Poisson equation
relating the electrostatic potential to the vorticity, being tridiagonal with the
elements being constant for all rows apart from the �rst or last row. These
matrices can easily be stored in a 3× 3 matrix containing the lower, upper and
center diagonal elements:

D1 U
L D U

. . .
. . .

. . .

L D U
L D2

→
 D1 U

L D U
L D2


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Solving for such a matrix can be performed by a simple LU-factorisation and
back-substitution, as described in [17].

In the case of a cylindrical (or other) coordinate system, these matrices change
structure, as shown in Eq.(31) for the elliptic equation and Eq.(34) for the time
evolution of the particle density and vorticity. These matrices have elements
that vary with the radius R, and thus also with the row number in the matrix.
A simple 3× 3 storage matrix is not possible for this case.

Although these matrices do keep their tri-diagonal form, it is desirable to device
a system that does not assume this matrix form, keeping further extensions in
mind.

The simplest �exible solution fell on using the LAPACK linear algebra package
for factorising these matrices and then solving them through back-substitution.
This allows the system to solve for any arbitrarily sized matrix with any arbi-
trary structure, not only tri-diagonal.

With this in place, the program is able to solve for the matrices de�ned in
Eq. (31) and Eq. (34).

4.2 Precalculating and storing of the LU-factorisation

Motivated by the execution time and memory requirement posed by arbitatily
sized simulation domains and geometry, we look towards making the matrix
solver system more e�cient.

This is primarily achieved by making a system for prefactorisation of the matri-
ces. For each time step, 3×MZ LU-factorisations of NR×NR sized matrices are
being performed, one elliptic equation and two evolution equations. (MZ is here
the resolution in the vertical direction and thus the number of vertical spectral
components, NR is the resolution in the radial direction as described in 3.1.)
However, as these matrices are constant and not time-varying, these matrices
can be pre-factorised and stored for retrieval. This requires the program to store
the LU-factorisation matrices throughout the simulation. The LU factorisation
algorithm provided by LAPACK stores both the lower matrix L and the upper
matrix U in the same NR ×NR matrix. These are then retrieved for each time
step, allowing us to solve the systems by simple back-substitution.

As the original matrices are tri-diagonal, the resulting LU-factorisation matrix
is also tri-diagonal. The majority of the matrix entries are zero. To account for
large matrices and a potential upper memory limit, a system for storing these
sparse matrices is deviced.

Each of the matrices are serialised as a two-dimensional array containing the
position and the value of each element in the matrix. We here provide an
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example tri-diagonal matrix and it's accompanying serialisation:
a b 0 0 0
c d e 0 0
0 f g h 0
0 0 i j k
0 0 0 l m

→
(
a b c d e f g · · ·
1 2 6 7 8 12 13 · · ·

)

For a 1024× 1024 solution grid, with a double precision data format (8 bytes),
this reduces the storage need of the prefactorised LU matrices from 26GB to
less than 10MB.

4.3 Data output as HDF5

2DADS outputs a large set of data, including diagnostics such as energy and
density integrals, power spectral densities and the variable �elds (particle den-
sity, vorticity and potential �elds). Motivated to make this set of data smaller
and easier to handle, the major part of output has been changed to the HDF5
format.

HDF5 (Hierarchical Data Format 5) is an open format created and maintained
by the HDF Group [1] aimed at producing a compact and �exible data format
for complex data structures in science and engineering.

The existing output format of 2DADS is a text-based format. Introducing HDF5
as 2DADS main output format has the bene�ts of reducing the output processing
overhead as well as the output data �le sizes. The HDF5 API also ensures that
the data output will be compressed, further reducing the storage requirements.
The largest gain is experienced for the output of the particle density, vorticity
and potential �elds, which for resolutions of 1024 × 1024 reduces the storage
requirements by a factor of 20.

Since the format has such widespread support in program packages such as
MATLAB, Mathematica and Octave (to mention a few), an additional motiva-
tion factor is the increased ease of import and manipulation of data using these
packages.

4.3.1 The hierarchical organisation of the data

Many output �les for each time step has been merged and contained in one
individual �le using an internal hierarchy. As an example, the three �elds output
at regular intervals as well as their derivatives is now output in one single �le
fields.nnn.h5, where nnn indicates the output time step, instead of individual
�les for each �eld and its derivatives.

We here illustrate the structure of this �le:
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fields.nnn.h5

TIME (1)

OMEGA (Nx+2, My+2)

OMEGAX (Nx+2, My+2)

OMEGAY (Nx+2, My+2)

STRMF (Nx+2, My+2)

STRMFX (Nx+2, My+2)

STRMFY (Nx+2, My+2)

THETA (Nx+2, My+2)

THETAX (Nx+2, My+2)

THETAY (Nx+2, My+2)

TIME is here the output time for this �eld, while OMEGA, OMEGAX and OMEGAY con-
tains the vorticity �eld Ω and its di�erentials ∂xΩ and ∂yΩ respectively. STRMF
and THETA contains the potential φ and particle density n. Their di�erentials
are contained in a similar manner as for the vorticity.

4.4 Parallel computing using OpenMP

Motivated by reducing the computing time spent on simulations using 2DADS, it
has been desirable to implement a parallel computing scheme as the simulations
are to be executed on the Stallo cluster. The cluster consists of 704 servers,
each using two quad-core processors[4]. The two parallel schemes possible were
MPI and OpenMP.

MPI (Message Passing Interface) is an API designed for parallel or distributed
computing on multiple servers[2]. OpenMP on the other hand is a compiler-
level implementation aimed at utilising multiple processors or cores on a single
server[3].

The choice fell on OpenMP as the parallel computing scheme used for 2DADS,
mainly because of its ease of implementation compared to MPI. The drawback
is that the OpenMP implementation can only utilise up to the eight cores of a
single Stallo server for each simulation. Although this puts an upper limit on
the performance gain through the use of OpenMP, it still provides a signi�cant
reduction of execution time as many of the individual tasks in 2DADS are easily
parallelised.

The libraries available on Stallo, such as LAPACK, BLAS and HDF5, are com-
piled with support for parallel computing.

4.4.1 Implementing OpenMP

Most commonly used Fortran 90 compilers such as GNU Fortran and Intel
Fortran do support the OpenMP implementation. In addition, OpenMP works
by utilising compiler directives in the source code masked as comments for
compilers without OpenMP support. This maintains the portability between
platforms.
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The compiler directives are used around blocks of parallelisable code, such as
loops or array operations and assignments. The compiler then uses this to
generate the parallelised code, using the maximum number of available cores
or processors available. Fortran in particular is well suited for such automated
parallelism, as the language has support for array and matrix operations which
often easily can be automatically parallelised.

OpenMP uses a shared memory model where the executed threads can access
to the same memory spaces. Although the parallelisation itself is automated
by the compiler, care has to be taken when specifying which variables that are
shared or to be kept isolated for each thread. To ensure that no variables remain
unspeci�ed in behavior between threads which easily can (and did) give elusive
program bugs, a compiler directive to force the behavior of each variable to be
speci�ed has been used.

An example of the implementation can be seen in the �le stiff.f90:

!$OMP PARALLEL DEFAULT(NONE) SHARED(R, Nx, My, A, F, eqStiffAlpha , &

!$OMP eqStiffBeta , deltat , itl , bndvl) PRIVATE(m, n)

!$OMP WORKSHARE

R = 0D0

!$OMP END WORKSHARE

!$OMP DO SCHEDULE(DYNAMIC)

do n=1,Nx

do m=1,My

do k=1,itl -1

R(m,n) = R(m,n) + eqStiffAlpha(k,itl -1) &

* A(m,n,k) + deltat * eqStiffBeta(k,itl -1) * F(m,n,k)

enddo

enddo

enddo

!$OMP END DO

! fill in ghost points since spectral transform start at zero index

!$OMP WORKSHARE

R(0, 1:Nx) = R(My , 1:Nx)

R(My+1, 1:Nx) = R(My+1, 1:Nx)

! add the contribution of boundary conditions to the explicit part

R(0:My+1, 1) = R(0:My+1, 1) + bndvl (1)

R(0:My+1, Nx) = R(0:My+1, Nx) + bndvl (2)

!$OMP END WORKSHARE

! make spectral transformation of the array

!$OMP DO SCHEDULE(DYNAMIC)

do n=1,Nx

call rlfft(R(0:My+1, n),My ,+1)

enddo

!$OMP END DO

!$OMP END PARALLEL

While this part of the program does not give any large increase of performance
due to the small number of operations that are parallelised, it still provides an
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illustration on the usage of the various compiled directives and how they tie in
with the program code.

We see here how the entire parallel blocks is encapsulated by starting and end-
ing directives in the form !$OMP. The variables are then speci�ed either as
shared between threads or private for each thread, using the SHARED() and
PRIVATE() directive. The contained blocks are then speci�ed as either do-loops
with the DO SCHEDULE(DYNAMIC) directive, allowing the compiler to allocate
the do-iterations to the available processors on a �rst-come-�rst-serve basis, or
as WORKSHARE blocks, which automatically split the vector or matrix operations
between the available processors.

4.5 Notes on computational complexity

The computational complexity of the algorithms directly a�ect the execution
time for simulations. Due to this we will here give a brief overview of the core
algorithms and the governing complexities in big-O notation as described in
literature such as [17].

The spectral methods (using FFT) used in 2DADS is, although a core mecha-
nism in the computation, computationally inexpensive with a cost of O(n lnn).
This low cost, combined with providing a high accuracy for derivatives, makes
spectral methods desirable for this kind of simulations. This does however
require periodic boundary conditions to avoid ringing e�ects such as Gibbs phe-
nomena on the boundaries. In 2DADS this periodic direction is the vertical
Z-direction.

The main bulk of the computation time is spent on the rather expensive solv-
ing of n matrices of dimension n × n for the �nite di�erence scheme of the
inhomogeneous di�usion equation. Although we do employ a strategy of pre-
factorisation the matrices into LU (Lower/Upper) matrices and solving through
back-substitution, this backsubstitution has a computational complexity ofO(n2)
for each matrix, resulting in O(n3) for each time step. The advantage is that
we can employ boundary conditions in the direction �nite di�erence is used. In
2DADS we employ this scheme for the radial direction.

4.6 Notes on 2DADS

The modi�ed 2DADS code used in this thesis is available for download at

http://www.student.uit.no/~per024/2dads.per024.tgz

The package contains the source code and make�les for compiling and running
the simulation code on Stallo, but can easily be modi�ed for any Linux dis-
tribution or other platform as the Fortran 90 code used is a well-known and
well-supported standard.
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When compiling the simulation code, the pre-compiled libraries for HDF5 sup-
port, LAPACK and BLAS must be available for linking, either dynamically
during runtime or during compile-time. This is controlled in the make�le.

The parameters are controlled by the �le input.ini and the output is put in a
subdirectory called run/ under the folder the program is executed from.

Although the code is commented, a few notes on the syntax might be brought
to attention. First, the code is written for both rectangular and cylindrical
coordinates. Due to this the radial direction is denoted X and the vertical direc-
tion is denoted as Y. Second, the particle density (or more generally the particle
density) n is in the code represented as THETA. The vorticity is represented as
OMEGA, and the potential (or stream function) is STRMF. Every di�erential is
noted as a su�x on the independent variable, for example THETAX and THETAXX

for ∂Rn and ∂RRn.

The core routines of the program is located in the �les 2dads.f90 and stiff.f90,
containing the main time step algorithm and the solving of the sti�y stable
scheme respectably. The right hand side contributions for the di�usion equa-
tions are calculated in theta.f90 and omega.f90 for n and Ω, and the Poisson
bracket is represented using the Arakawa scheme in arakawa.f90.
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5 Simulations

We will in this chapter re-create previous simulations of plasma blob dynamics
to validate the code, as well as explore variations of parameters such as blob
amplitude and ion-neutral collision frequency.

5.1 Common parameters

All simulations presented in this chapter use the same set of parameters given
in this section. Any deviations from these are stated explicitly.

We initially use the model equations with linearised interchange term from 2.2.5

dΩ
dt

+
∂ñ

∂Z
= µΩ∇2

⊥Ω− νiΩ

dñ

dt
= µn∇2

⊥n

in the rectangular coordinate limit of R = (R,Z) ≈ x = (x, y). The boundary
conditions in the radial direction for the particle density ñ, vorticity Ω and the
electrostatic potential φ are all set to the Dirichlet conditions

ñ(x = xmin) = ñ(x = xmax) = 0
Ω(x = xmin) = Ω(x = xmax) = 0
φ(x = xmin) = φ(x = xmax) = 0

The initial conditions are then speci�ed as

ñ(t = 0) = exp
[
− (x− x0)2

]
Ω(t = 0) = 0
φ(t = 0) = 0

where ñ take the blob-like shape around an initial position x0 with a pertur-
bation amplitude ∆n = 1. We use the di�usion coe�cient µn = 10−2 and
viscousity coe�cients µΩ = 10−2 (which gives us the default Rayleigh number
Ra = (µnµΩ)−1 = 104 and Prandtl number Pr = µΩ/µn = 1). The choice on
these parameters will give behavior near the ideal regime with a close to max-
imum center of mass velocity, as demonstrated in [9]. In addition, we specify
the ion-neutral collision frequency to νi = 0.

The dimensions of the domain default to a 50 × 50 in size, with the center in
origo for rectangular coordinates and R0 in cylindrical coordinates, giving us

xmin = ymin = −25
xmax = ymax = 25
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The spatial resolution defaults to Nx = My = 1024 and the time step size
to ∆t = 5 × 10−2. Recall that the velocity scaling with the normalisation of
perturbation length l and ideal interchange time γ∆n goes as

uc ∼ γ∆nl =
(g
l

) 1
2

= cs

(
2l
R0

)
as described in section 2.2.6.

5.2 Re-creating previous simulations for veri�cation

In [9] a series of simulations using the same two-�eld model in rectangular co-
ordinates are carried through using a simulation code that is periodic in both
directions. We will here present the re-creation of these simulations to verify the
behavior of the simulation code used in this thesis after modifying it to accom-
modate for cylindrical geometry. The simulations of interest are variations of
the di�usion and viscousity coe�cients (and consequently Rayleigh and Prandtl
numbers), given in table 3.

Simulation µΩ µn Ra Pr
1 10−2 10−2 104 1
2 5× 10−3 2 102 4× 102

3 5× 10−1 2× 10−2 102 4× 10−2

Table 3: Simulations of varying Ra and Pr with spatial and temporal resolutions.

The simulations are shown in �gures 6 to 8. Compared to �gure 5, 12 and
13 in [9], these are near identical apart from simulation 3 presented in �gure
8. We note that while the bi-periodic simulation code allows the di�used blob
to propagate past the outer rightmost border, the boundary conditions in the
simulation code used here force the particle density and vorticity to zero at this
outer edge, e�ectively transporting plasma through the border.

5.3 Variation of major radius in (R,Z)

Interested in seeing the e�ects of the transition from a rectangular coordinate
system (x, y) to the cylindrical coordinate system (R,Z), we here present sim-
ulations carried through in (R,Z) with a variation of major radius R0, using
otherwise default parameters. The variations in R0 (normalised by the initial
blob size l) for each of the simulations is given in table 4. Note that for sim-
ulation 4 we let R0 → ∞, accomplished by using the rectangular coordinate
system (x, y).
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Figure 6: Evolution of simulation with Ra = 104, Pr = 1 at time t = 15 in the
top row and t = 20 in the bottom row. Left column displays the particle density
n, right column displays the vorticity Ω.
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Figure 7: Evolution of simulation with Ra = 102, Pr = 4 × 102 at time t = 10
in the top row and t = 50 in the bottom row. Left column displays the particle
density n, right column displays the vorticity Ω.
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Figure 8: Evolution of simulation with Ra = 102, Pr = 4× 10−2 at time t = 10
in the top row and t = 50 in the bottom row. Left column displays the particle
density n, right column displays the vorticity Ω.

Simulation R0

1 25
2 50
3 100
4 ∞

Table 4: Simulations of varying major radius R0 in (R,Z).

In �gure 9 we see the evolution of the center of mass velocity normalised by the
major radius to the left, as the velocity scales as

uc ∼
(

1
R0

) 1
2

To the right is the evolution of center of mass velocity kept in the same scale,
e�ectively keeping the e�ective gravity g constant. The rectangular coordinate
limit is included for reference. We here observe that the velocities converge
toward the velocities in rectangular coordinates as R0 increases. We also note
that the center of mass velocity has trailing e�ects after the maximum that are
higher for small values of R0. These are essentially the e�ects of the electric
drift compression which diminishes as R0 increases..
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Figure 9: Scaled center of mass velocity scaled (left) and center of mass velocity
with a constant e�ective gravity (right) for simulations with varying major ra-
dius R0. We here note how a lower R0 leads to a higher center of mass velocity
as well as a higher trailing velocity after the maximum has been reached.
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Figure 10: Center of mass for two selected simulations of νi = 10−1 and νi =
5× 10−1.

5.4 Varying ion-neutral collision frequency νi

We move on to study how the systems behaves under a variation of the ion-
neutral collision frequency νi. This appears in the vorticity equation (19) as a
friction term for vorticity and is treated implicitly in the simulation code.

Using otherwise default parameters, we here vary the collision frequency νi in a
range from 10−2 to 101 in a rectangular coordinate system (x, y).

The center of mass evolution for two selected collision frequencies is shown in
�gure 10. In �gure 11 the maximum center of mass velocity for each of the
simulations is plotted as a function of νi. We note that the center of mass
velocity tends towards the dimensionless characteristic speed uc = 1 for the
collisionless limit, while we see the velocity approaching a velocity scaling as
1/νi for the collisionally dominant regime of νi > 1.

Also of interest is noting that, apart from the impact on velocity, νi also has an
impact on the so called mushroom-like shape of the propagating blob structure.
Figure 12 shows snapshots of two simulations for νi = 0.1 and νi = 0.5 for
t = 20, both the particle density n and vorticity Ω. The here see that a higher
νi = 0.5 leads to a more simple blob-like structure while νi = 0.1 retains several
characteristic traits of the mushroom structure. This transition from mushroom-
like to circular blob structure is equally visible in the entire range of νi but have
here been omitted for brevity.
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Figure 11: logarithmic plot of maximum radial center of mass velocity for vary-
ing ion-neutral collision frequency νi in rectangular geometry (x, y). Note that
the maximum center of mass velocity approaches the characteristic speed uc as
the friction takes on lower values.

We shall brie�y set this simulation in a context to emphasise it: The velocity
of propagating depletions is described in [16] with the expression

u =
1
8
Rdep

[(
ν2

in +
16gE

Rdep

) 1
2

− νin

]
(37)

where Rdep in this case is the radius of the depletion front, νin is the ion-neutral
collision rate and gE is the Earth's gravity (analogue to the e�ective gravity
in the 2-�eld model), we note that the results is a qualitative match with the
simulation results. By �tting the parameters Rdep and gE we can get a matching
curve, as demonstrated in �gure 13. This is further discussed in chapter 8.

5.5 Variation of blob centering

So far we have used a centered perturbation in a large box where the e�ects of
the borders have been negible in the time frames used. We will here compare
how blobs placed at the innermost wall will propagate and evolve.

Using otherwise default parameters, we compare three simulations with blob
centering x0 = (x0, 0), where x0 = 0, x0 = −24 and x0 = −23.
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Figure 12: The particle density (left) and vorticity (right) for two simulations at
νi = 0.1 (top) and νi = 0.5 (bottom), time t = 20. Note here that the simulation
for the lower νi yields a structure resembling more of a mushroom shape, while
for the simulation with higher νi there is a more coherent blob-like structure.
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Figure 13: The radial center of mass velocity for varying ion-neutral collision
frequency νi, as in �gure 11, plotted against a �t for an expression (Eq. (37))
for the velocity.
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Figure 14: Center of mass velocity (left) and left boundary �ux of the particle
density n (right) for varying blob centerings x0. We note the loss of n through
the left boundary for blobs centered close to the border, causing the overall
reduced center of mass velocity.

Figure 14 shows how the center of mass velocity is a�ected by this di�erence
in centering and the boundary �ux of the particle density on the innermost
boundary. We see that the initial center of mass velocity is much higher for a
blob close to the boundary than for a centered blob, but quickly drops below
the velocity of the centered blob before t = 1. The continued propagation of
this blob is then lower for blobs closer to the boundary for the duration of the
simulation. Looking at the boundary �ux, we see that for the blobs near the
boundary there is a large loss of the particle density n, causing the amplitude
of the blob structure to decrease and possibly account for the then lower center
of mass velocity.

Looking at the particle density and the potential �eld for x0 = 0 and x0 = 24
at t = 5 in �gure 15 we see that the blobs are similar in structure, although
for x0 = 24 we see that the potential �eld is clearly in�uenced by the boundary
conditions of the electrostatic potential.
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Figure 15: The particle density n (left) and velocity potential φ (right) for a
blob centered around x0 = 0 (top) and x0 = −24 (bottom). We see here the
tilted potential for when the blob is positioned close to the border.

5.6 Variation in ion-neutral collisions and blob amplitude

Using the logarithmic formulation of the particle density, described in section
2.2.5,

dΩ
dt

= µΩ∇2
⊥Ω− νiΩ−

∂ lnn
∂Z

d lnn
dt

= µn∇2
⊥ lnn+ µn (∇⊥ lnn)2 +

2
R0

∂φ

∂Z

we can perform simulations over a range of perturbation amplitudes as well as
ion-neutral collisions in order to investigate how these parameters a�ect the
transport of plasma. Note that the normalisation here is given by the blob size
l and the inverse interchange time γ = (g/l)1/2.

Figure 16 shows the dependence of the maximum radial center of mass velocity
on both the relative perturbation amplitude η = ∆n/n0 and ion-neutral collision
frequency νi, with η ranging from 3 to 12 and νi ranging from 10−3 to 10 and
otherwise default parameters. It is clear that the maximum center of mass ve-
locity exhibits a similar pro�le with regard to its dependence on the ion-neutral
collision frequency regardless of perturbation amplitude. We also see that the
center of mass velocity is also dependent on the perturbation amplitude, where
a higher perturbation amplitude yields a higher velocity, close to proportional
to the relative perturbation amplitude η.
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Figure 16: Maximum center of mass velocity as a function of ion-neutral collision
frequency (logarithmic, left) and perturbation amplitude (right), clearly showing
the dependence of νi and η for the center of mass velocity.

5.7 The convective term

Although the convective term in Eq. (13) is assumed to be negible for small
perturbations as described in section 2.4, the e�ects it has on larger perturba-
tions is not known. This term has here been implemented into the time splitting
scheme as an explicit term to quantify the e�ects it has on the center of mass
velocity.

Figure 17 shows a simulation with a relative perturbation amplitude of η = 12
with and without the convective term. We see that although the maximum
velocity is higher for simulations including the convective term, it has a small
e�ect on the center of maximum mass velocity.

5.8 On numerical instabilities

The simulations carried out may become, unless parameters are chosen carefully,
numerically unstable. We will here present conditions where this might happen
and how these numerical instabilities manifest themselves.

A stability constraint for the di�usion equation is

c∆t

∆2
x

< 1
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Figure 17: Simulations with and without the convective term, for η = 25 for
varying νi. We note the slightly higher radial center of mass velocity when
including the convective term.

where c is a constant. Although this is a necessary condition, it might not be
su�cient for numerical stability. The value of c can be thought as the speed of
propagation through the system, e�ectively setting a constraint on the relation
between the spatial and temporal discretisation as well as relating it to the
velocity. [17, 18]

In our simulations, the value of c will for diagnostic purposes be the maximum
velocity in the system umax, and we will refer to this as the CFL number:

CFL number =
umax∆t

∆2
x

Providing an example is a simulation for a box size of 8× 10 with a resolution
Nx = Ny = 1024 and a time step size of ∆t = 10−2, using the logarithmic
formulation of the particle density and a perturbation amplitude of ∆n = 16.
For this speci�c example, Ra = 104 and Pr = 1.

Figure 18 demonstrates one such numerical instability forming between the time
step t = 2.20 and t = 2.30. We clearly see the jagged gradient pro�le giving
a non-physical oscillation which grows quickly. As seen in �gure 19 the CFL
number, indicating that the system is indeed becoming numerically unstable,
as well as the physical quantities such as the integrated particle density, mean
energy and �uctuation energy instantly growing towards unrealistic numbers.
The mean energy and �uctuating energy are here the de�ned as the respective
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Figure 18: Pro�le cut of the particle density at the center line y0 = 0 for a
simulation becoming numerically unstable between time steps t = 2.20 and
t = 2.30. Note the formation of non-physical oscillations.
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∂φ

∂Z

] ˆ
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2

(
∂φ

∂R

)2

Note that the growth of these physical quantities lag behind the actual formation
of the instability.

Parameters that often cause numerical instability in our system includes large
relative perturbation amplitudes η and high Rayleigh numbers (106 and above)
that leads to steep gradients in particle density. Care must be taken when
simulating such conditions to accommodate for them with high enough spatial
and temporal resolutions.
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6 Experiments on the VTF

We will in this �rst section present the paper �Experiment on propagation of
plasma �laments� [13] and its �ndings. In the second section we take a closer
look at the data sets from these experiments.

6.1 Experiments on the propagation of plasma �laments

The contents of the following section is taken from [13] in its entirety unless
otherwise noted. This includes �gures 20, 21 and 22 which has been reproduced
by kind permission of Noam Katz. Note that the numbering of �gures is altered
to match the numbering in this thesis.

The experiment is described as follows:

The basic experimental setup in Fig. 20 shows how a reproducible
blob is created. The imposed toroidal magnetic �eld varies as 1/R
and has the value B0 = 40 mT at R0 = 1 m (where R is the major
radius). The breakdown is driven by a 60 µs pulse of microwaves at
a frequency of 2.45 GHz and power of 15 kW. Near the inner wall,
the 1/R main �eld is enhanced by a toroidal solenoid (Fig. 20 at
left) such that the �eld strength at this location reaches the 87 mT
required for electron-cyclotron resonant breakdown. Even though
the rf power is injected by a single horn antenna, the microwave
re�ections of the chamber walls give axially symmetric breakdown.
Since the �eld is purely toroidal, there are no �eld lines terminating
at the wall and therefore no sheaths to drain current along the �eld.

The plasma [...] consists mainly of singly charged argon ions and is
created in a chamber �lled with argon gas at 10−5�10−4 torr. Since
the plasma density is typically 2× 1016 m−3, the ionization fraction
is only about 1%, and there is a constant background of neutrals
even after breakdown.

The plasma is tracked by an array of 200 Langmuir probes. The tip
spacing is 7 cm horizontally and 7 cm vertically, with triple resolution
(horizontally) near the center. The main Langmuir probe array is
located at a single toroidal angle, but other Langmuir probes are
used to verify the azimuthal symmetry of the blobs.

Further, it is stated that:

We observe experimentally for the �rst time the mushroom blob
shape, which has been seen in many simulations [...]. This shape is
displayed in Fig. 21, which shows the propagation of a typical blob
in poloidal cross section. The time step between adjacent density
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We investigate experimentally the motion and structure of isolated plasma filaments propagating
through neutral gas. Plasma filaments, or ‘‘blobs,’’ arise from turbulent fluctuations in a range of plasmas.
Our experimental geometry is toroidally symmetric, and the blobs expand to a larger major radius under
the influence of a vertical electric field. The electric field, which is caused by rB and curvature drifts in a
1=R magnetic field, is limited by collisional damping on the neutral gas. The blob’s electrostatic potential
structure and the resulting E�B flow field give rise to a vortex pair and a mushroom shape, which are
consistent with nonlinear plasma simulations. We observe experimentally this characteristic mushroom
shape for the first time. We also find that the blob propagation velocity is inversely proportional to the
neutral density and decreases with time as the blob cools.
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Plasma filaments, or ‘‘blobs,’’ are coherent structures,
characterized by enhanced density relative to the back-
ground plasma. Their motion is convective rather than
diffusive, and they may differ from the background plasma
in temperature and composition; typically they are aligned
with the magnetic field. The propagation of plasma blobs is
important to the overall dynamics in a variety of plasmas,
both in space and in fusion laboratory experiments. For
example, propagating filaments are observed in the solar
photosphere [1] and in the F layer of the ionosphere [2– 4],
where there is non-negligible neutral density.

Blobs are also observed near the edge of many labora-
tory plasmas, including experiments with linear and toroi-
dal geometries [5–8]. In tokamaks, for example, density
fluctuations tend to be larger near the plasma edge, where
the magnetic field lines terminate at a metal surface and the
neutral density becomes significant [9,10]. Field-aligned
blobs can be identified among these fluctuations, and their
convection leads to nondiffusive transport [10]. Blobs in
tokamaks are driven by magnetic field curvature, and this
drive—which is proportional to electron temperature—
competes with a variety of forces that slow and break up
the blobs. The theory of convective blob transport in
tokamaks is relatively well developed (see, for example,
[11,12], or for geometry similar to ours [13]). In particular,
the scaling of the blob velocity with various parameters has
been studied intensively, because this velocity is thought to
be important for the plasma confinement [12]. In experi-
ments, however, the plasma conditions often prevent de-
tailed internal probing, and spectroscopic methods are
favored (e.g., [6]).

In this Letter we describe experiments in the Versatile
Toroidal Facility (VTF) to measure the propagation and
structure of isolated blobs using internal probes. The blobs
propagate across the magnetic field in a gas of neutrals; our
results demonstrate the importance of these neutrals in
regulating blob propagation and structure.

The basic experimental setup in Fig. 1 shows how a
reproducible blob is created. The imposed toroidal mag-
netic field varies as 1=R and has the value B0 � 40 mT at
R0 � 1 m (where R is the major radius). The breakdown is
driven by a 60 �s pulse of microwaves at a frequency of
2.45 GHz and power of 15 kW. Near the inner wall, the 1=R
main field is enhanced by a toroidal solenoid (Fig. 1 at left)
such that the field strength at this location reaches the
87 mT required for electron-cyclotron resonant break-
down. Even though the rf power is injected by a single horn
antenna, the microwave reflections off the chamber walls
give axially symmetric breakdown. Since the field is purely
toroidal, there are no field lines terminating at the wall and
therefore no sheaths to drain current along the field.

The plasma, similar to that studied in [14], consists
mainly of singly charged argon ions and is created in a
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FIG. 1. A poloidal cross section of the experimental setup. At
right is the rf horn. At left is the solenoid (circle), with toroidal
magnetic field into the page. The dots represent Langmuir
probes. There is also a background toroidal magnetic field
(into the page). Note that the horn and Langmuir probes are
not at the same toroidal angle.
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Figure 20: A poloidal cross section of the experimental setup. At right is the
rf horn. At left is the solenoid (circle), with toroidal magnetic �eld into the
plane. The dots represent Langmuir probes. There is also a background toroidal
magnetic �eld (into the page). Note that the horn and Langmuir probes are not
at the same toroidal angle. [13]

plots is 100 µs, and the �rst plot occurs 25 µs after the microwaves
are turned o�. [...]

The propagation seen in Fig. 21 can be quanti�ed and it is found to
depend on the neutral pressure in the chamber. This dependence is
explored in separate plasma discharges covering a range of neutral
pressures. As Fig. 22 shows, we �nd that the blob's center-of-mass
speed is inversely proportional to the neutral pressure. [...]

6.2 Further observations

The following section is based on �ndings from the actual data sets from these
experiments presented in [13], kindly provided by Noam Katz.

Data from �fteen experiments were provided, where a plasma blob was recorded
propagating in a toroidal magnetic �eld at neutral pressures Pn ranging 0.412×
10−4 � 4.54× 10−4 torr, as described in the previous section.

The data sets consists, for each experiment, of a grid of measured ion saturation
currents jsat on the Langmuir probes for a single azimuthal angle and a time
record of the microwave pulse used to create the blob structure. The �oating
potential measurements described in [13] has not been provided to us in these
data sets.

The relation between electron density ne and jsat is, by assuming cold ions as
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chamber filled with argon gas at 10�5–10�4 torr. Since the
plasma density is typically 2� 1016 m�3, the ionization
fraction is only about 1%, and there is a constant back-
ground of neutrals even after breakdown.

The plasma is tracked by an array of 200 Langmuir
probes. The tip spacing is 7 cm horizontally and 7 cm
vertically, with triple resolution (horizontally) near the
center. The main Langmuir probe array is located at a
single toroidal angle, but other Langmuir probes are used
to verify the azimuthal symmetry of the blobs. The other
probes (not shown in Fig. 1) include 3 vertical lines of
stainless-steel cylinders and a horizontal line of cylindri-
cally shaped, heated tungsten filaments. These filaments
are used to measure the full I-V characteristic (analyzed by
taking into account finite sheath size, i.e., using ABR
theory [15]), and hence the electron temperature and
plasma potential. Heating the filaments between discharges
eliminates important surface contamination effects, and
prevents overestimation of the electron temperature (see,
e.g., [16,17]).

We observe experimentally for the first time the mush-
room blob shape, which has been seen in many simulations
(e.g., [13,18]). This shape is displayed in Fig. 2, which
shows the propagation of a typical blob in poloidal cross
section. The time step between adjacent density plots is
100 �s, and the first plot occurs 25 �s after the micro-

waves are turned off. The blob shape exhibits ‘‘wings,’’
which develop about a blob length away from the creation
region. The right-hand part of Fig. 2 shows the floating
potential with some overlaid density contours. The poten-
tial is obtained by combining data from a vertical array and
a horizontal array.

The propagation seen in Fig. 2 can be quantified and it is
found to depend on the neutral pressure in the chamber.
This dependence is explored in separate plasma discharges
covering a range of neutral pressures. As Fig. 3 shows, we
find that the blob’s center-of-mass speed is inversely pro-
portional to the neutral pressure. The speed measurement is
based on a time-of-flight calculation using density traces at
multiple probes. Also plotted is a line indicating that the
sound speed (cs �

�������������
Te=mi

p
� 2� 103 m=s assuming 2 eV

electrons) is an upper bound on the blob velocity. However,
the three low-pressure points that give evidence for this
bound are from blobs with different shape and very low
density.

To describe the blob propagation, we use the standard
vorticity equation [19] derived from MHD, with the addi-
tion of a neutral-collision term,

 r �
min

B2

Dr?�
Dt

�rkJk�
2

B
b�� �rp�r �

min

B2 �r?�;

(1)

where ? and k are defined with respect to the magnetic
field, D=Dt � @=@t� v � r, b � B=B, � � b � rb is the
magnetic curvature, � is the ion-neutral collision fre-
quency, and we have assumed v� cs and jB=rBj 	
jn=rnj 
 jv=rvj. The vorticity is given by r� v �
r2�=B (where v � �r�� B=B2). Equation (1) may be
simplified for our experimental geometry. We have purely
toroidal magnetic field B � Be� / 1=R, so that b � e�
and � � �eR=R. We then neglect rkJk, since the toroi-

FIG. 2 (color). Poloidal cross section of typical blob at 3
different times (�t � 100 �s), showing characteristic mush-
room shape. The density is calculated from ion saturation cur-
rent; its decrease is consistent with the expansion of the blob.
The blob propagation is consistent with the vertical electric field,
which is reflected in the potential structure at right. The overlaid
E�B velocity arrows show the velocity field of a vortex pair.
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FIG. 3. Blob center-of-mass speed versus neutral pressure
(Pn). The speed scales inversely with the pressure, but this
scaling appears to break down at low pressure. The error in
speed is approximated by the standard deviation of the inferred
blob speed as it fluctuates in time.
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Figure 21: Poloidal cross section of typical blob at 3 di�erent times (∆t = 100
µs), showing characteristic mushroom shape. The density is calculated from ion
saturation current; its decrease is consistent with the expansion of the blob. The
blob propagation is consistent with the vertical electric �eld, which is re�ected
in the potential structure at the right. The overlaid E×B velocity arrows show
the velocity �eld of a vortex pair. [13]

chamber filled with argon gas at 10�5–10�4 torr. Since the
plasma density is typically 2� 1016 m�3, the ionization
fraction is only about 1%, and there is a constant back-
ground of neutrals even after breakdown.

The plasma is tracked by an array of 200 Langmuir
probes. The tip spacing is 7 cm horizontally and 7 cm
vertically, with triple resolution (horizontally) near the
center. The main Langmuir probe array is located at a
single toroidal angle, but other Langmuir probes are used
to verify the azimuthal symmetry of the blobs. The other
probes (not shown in Fig. 1) include 3 vertical lines of
stainless-steel cylinders and a horizontal line of cylindri-
cally shaped, heated tungsten filaments. These filaments
are used to measure the full I-V characteristic (analyzed by
taking into account finite sheath size, i.e., using ABR
theory [15]), and hence the electron temperature and
plasma potential. Heating the filaments between discharges
eliminates important surface contamination effects, and
prevents overestimation of the electron temperature (see,
e.g., [16,17]).

We observe experimentally for the first time the mush-
room blob shape, which has been seen in many simulations
(e.g., [13,18]). This shape is displayed in Fig. 2, which
shows the propagation of a typical blob in poloidal cross
section. The time step between adjacent density plots is
100 �s, and the first plot occurs 25 �s after the micro-

waves are turned off. The blob shape exhibits ‘‘wings,’’
which develop about a blob length away from the creation
region. The right-hand part of Fig. 2 shows the floating
potential with some overlaid density contours. The poten-
tial is obtained by combining data from a vertical array and
a horizontal array.

The propagation seen in Fig. 2 can be quantified and it is
found to depend on the neutral pressure in the chamber.
This dependence is explored in separate plasma discharges
covering a range of neutral pressures. As Fig. 3 shows, we
find that the blob’s center-of-mass speed is inversely pro-
portional to the neutral pressure. The speed measurement is
based on a time-of-flight calculation using density traces at
multiple probes. Also plotted is a line indicating that the
sound speed (cs �

�������������
Te=mi

p
� 2� 103 m=s assuming 2 eV

electrons) is an upper bound on the blob velocity. However,
the three low-pressure points that give evidence for this
bound are from blobs with different shape and very low
density.

To describe the blob propagation, we use the standard
vorticity equation [19] derived from MHD, with the addi-
tion of a neutral-collision term,

 r �
min

B2

Dr?�
Dt

�rkJk�
2

B
b�� �rp�r �

min

B2 �r?�;

(1)

where ? and k are defined with respect to the magnetic
field, D=Dt � @=@t� v � r, b � B=B, � � b � rb is the
magnetic curvature, � is the ion-neutral collision fre-
quency, and we have assumed v� cs and jB=rBj 	
jn=rnj 
 jv=rvj. The vorticity is given by r� v �
r2�=B (where v � �r�� B=B2). Equation (1) may be
simplified for our experimental geometry. We have purely
toroidal magnetic field B � Be� / 1=R, so that b � e�
and � � �eR=R. We then neglect rkJk, since the toroi-

FIG. 2 (color). Poloidal cross section of typical blob at 3
different times (�t � 100 �s), showing characteristic mush-
room shape. The density is calculated from ion saturation cur-
rent; its decrease is consistent with the expansion of the blob.
The blob propagation is consistent with the vertical electric field,
which is reflected in the potential structure at right. The overlaid
E�B velocity arrows show the velocity field of a vortex pair.
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FIG. 3. Blob center-of-mass speed versus neutral pressure
(Pn). The speed scales inversely with the pressure, but this
scaling appears to break down at low pressure. The error in
speed is approximated by the standard deviation of the inferred
blob speed as it fluctuates in time.
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Figure 22: Blob center-of-mass speed versus neutral pressure (Pn). The speed
scales inversely with the pressure, but this scaling appears to break down at low
pressure. The error in speed is approximated by the standard deviation of the
inferred blob speed as it �uctuates in time. [13]
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described in [6], given by

jsat = −e
(
Te
mi

) 1
2

ne (38)

where e is the electron charge, Te is the electron temperature and mi is the
ion mass. Assuming quasineutrality (n = ne ≈ ni) and ignoring temperature
�uctuations, the negative current is then proportional with the particle density
n. According to personal communication with Katz, the maximum particle
density in each experiment is assumed to be nmax = 1016 m−3.

Positive records of jsat is contained in the data sets which through Eq. (38)
would yield a un-physical negative plasma densities. The ion current density
measured by the Langmuir probes is assumed to be inaccurate for low plasma
densities. Due to this, we assume these measurements to indicate no plasma or
a near-zero particle density.

6.2.1 Inspecting the experiments

The quality of the experiments with respect to how well they generate and lead
to propagation of one single blob varies. We will in this section present con-
siderations from inspecting the experiments individually. Several of the �gures
presented here have not been published previously.

The microwave pulses used to generate a plasma are typically 60 µs in length.
The pulse starts and ends at the approximate same time steps for all experiments
except at the upper neutral pressure range where variations in pulse length are
seen.

For the lower range of Pn from 0.412 × 10−4 to 0.724 × 10−4 torr, multiple or
complex structures are being formed and propagated, as shown in �gure 23. We
note strong radial dispersion as the structures are propagated outwards.

For the medium pressure range from 0.852 × 10−4 to 2.84 × 10−4 torr we see
one clear blob-like structure forming and propagating, as shown in �gure 24.
Only for the higher range from Pn, 2.13× 10−4 to 2.84× 10−4 torr do we see a
mushroom-like shape being formed and propagated, shown in �gure 25. Figure
27 shows the early formation of these mushroom structures at Pn = 2.13×10−4

torr in a higher temporal sampling.

For the highest neutral pressure range from 3.69×10−4 to 4.54×10−4 torr we see
two blob-like structures forming and propagating outwards. The experiments
are summarised in table 5.
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Figure 23: Experiments at neutral pressure Pn being 0.412×10−4, 0.568×10−4

and 0.724 × 10−4 torr (vertically). The snapshots are taken at t = 20µs after
the end of the microwave pulse, and in increments of 50µs (horisontally). We
note the formation of complex structures and strong dispersion. Not previously
published.
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Figure 24: Experiments at neutral pressure Pn being 0.852×10−4, 0.994×10−4

and 1.11 × 10−4 torr (vertically). The snapshots are taken at t = 20µs after
the end of the microwave pulse, and in increments of 50µs (horisontally). We
note a single blob structure forming and propagating outwards. Not previously
published.
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Figure 25: Experiments at neutral pressure Pn being 2.13 × 10−4, 2.13 × 10−4

and 2.84× 10−4 torr (vertically). The snapshots are taken at t = 20µs after the
end of the microwave pulse, and in increments of 50µs (horisontally). We note
a single blob structure forming and propagating outwards while giving rise to a
mushroom shape. Not previously published.
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Figure 26: Experiments at neutral pressure Pn being 3.69 × 10−4, 4.54 × 10−4

and 4.54 × 10−4torr (vertically). The snapshots are taken at t = 20µs after
the end of the microwave pulse, and in increments of 50µs (horisontally). We
note two blob structures forming and propagating outwards. Not previously
published.
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Figure 27: Initial times of experiment with neutral pressure Pn = 2.13 × 10−4

torr at time t = −20µs before the microwave pulse end and in increments of
10µs, showing the early formation of the mushroom structure. Not previously
published.
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Pn(10−4 torr) Experiments Description
0.412�0.724 3 Multiple blobs, strong dispersion
0.852�1.41 5 Single blob
2.13�2.84 3 Single blob, mushroom shape
3.69�4.54 4 Multiple blobs

Table 5: Neutral pressure range (Pn), number of experiments and structure
description for the experiments.

6.2.2 Center-of-mass velocity for the experiments

The radial center of mass coordinate RCOM for each experiment is calculated
by the integrals in cylindrical geometry

RCOM =
´
nRdR´
ndR

=
´
jsatRdR´
jsat dR

for each time step. We can �nd the center of mass velocity

VCOM =
dRCOM

dt

by �tting the center of mass position to a straight line from when the pertur-
bation starts propagating after the microwave pulse has ended to the maximum
radial position, which can be when the blob structure hits the chamber wall.
The average center of mass velocity can then be taken as the slope of this line.
This is demonstrated in �gure 28 where we see the �tting curve on the center
of mass position after the microwave pulse has ended. This evolution of center
of mass coordinates is typical for all experiments.

This approach is in agreement to the method employed by [13]. The resulting
�g. 29 shows the average center of mass velocity as a function of the neutral gas
pressure. A �tted curve proportional to 1/Pn is also plotted, along with the
estimated sound speed cs.

Note that in this plot we have not included the average center of mass velocities
for very low neutral pressures (0.412 × 10−4 to 0.724 × 10−4 torr) as these are
not coherent blob structures.
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Figure 29: Average center of mass velocities as a function of neutral pressures Pn

from the VTF experiments. The horisontal line indicates the estimated sound
speed cs = 2× 103m/s. The diagonal line is proportional to 1/Pn.
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7 Simulations of plasma �lament structures

We will now turn to numerical simulations of the plasma dynamics in the ex-
periment described in chapter 6. We will �nd the simulation parameters and
the scaling that �ts best with the physical environment. By doing this we will
test the measured relation between the neutral gas density and the outward blob
propagation velocity. The qualitative behavior of reduced propagation speed for
increased ion neutral collisions in the vorticity equation is already demonstrated
to hold for the simulations in section 5.

7.1 Setting the parameters

The experiment has a machine cross section of 60 × 80 cm with a blob size of
l = 0.075 m. The major radius of the torus is R0 = 0.90 m. Normalising this
to the blob size we get the geometrical parameters for our simulation; box size
in the radial and vertical direction as LR = 8, LZ = 5 and major radius to the
center of the box as R0 = 12. This also places the starting position of the blob
at the innermost edge; using the position vector r = R−R0 where R = (R,Z)
and R0 = (R0, 0) is the center of the cross section, we have the blob at the
initial radial starting point r0 relative to R0 as r0 = (R0 − r0, 0) = (−3, 0).

The ion-neutral collision frequency depends on the neutral gas particle density
ng as well as the thermal speed uti of the ions, as

νin = utiσng (39)

where σ is the collisional cross section of ions, set to σ = 58 × 10−20 m2 [13].
Referring to [13], the temperature of the ions Ti is estimated to 1 eV, giving us
the thermal speed for ions as

uti =
√
Ti

mi
≈ 2.5× 103 m/s

where mi is the argon ion mass. We can express the neutral gas density by the
neutral pressure pn, assuming the ideal gas law on the form pn = ngT with T
being the neutral gas temperature. We assume the neutral gas temperature to
be T ≈ 300 K. With this, the neutral gas density becomes

ng = 3.2× 1018 m−3

assuming the pressure to be pn = 10−4 torr, characteristic for the experiments.
The conversion factor between torr and Pascal is 1 Pa ≈ 7.5× 10−3 torr.

For the model interchange time γ, with the sound speed as cs = 2.2× 103 m/s
for the electron temperature Te = 2 eV, we get

γ = cs

(
2
Rl

) 1
2

≈ 1.2× 104 s−1
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which gives us the simulation model parameter νi by

νi =
νin

γ
≈ 4× 10−1

As this is the parameter for a characteristic neutral gas pressure, our parameter
scan in the ion collisional parameter ranges from 10−3 to 10. For the pressure
ranges used in the VTF experiments (4.1 × 10−5 torr to 4.5 × 10−4 torr) the
range of νi is 0.16 to 1.8.

We will now seek to �nd an estimate for the collisional di�usion. With the
normalised collisional di�usion for the particle density given as

µn =
νen

ωce

Te

eB

1
γl2

as shown in section 2.2.5 we assume the electron-neutral collision frequency to
take the same form as the ion-neutral collision frequency in Eq. (39), with the

thermal velocity of electrons as ute = (Te/me)
1
2 . With B ≈ B0 = 40 mT this

then gives us the approximate value of µn ≈ 10−6. Using the expression for the
viscosity Eq. (16), with ln Λ ≈ 10, we �nd that the di�usive viscosity coe�cient
µΩ ≈ 2 × 10−2. These gives us a Rayleigh number of Ra ≈ 5 × 107. Due to
numerical considerations, discussed further in section 7.4, we choose a lower
Ra = 104, with the corresponding Pr = 1, as these are easier to simulate and
provide results similar to higher values of Ra as shown in [9]. This gives us the
same parameters in di�usion and viscosity that is mapped out in chapter 5. We
have shown that perturbations with these parameters will develop mushroom-
like shapes.

The background particle density is unknown, which motivates a scan of a given
range for the initial perturbation amplitude parameter η = ∆n/n0 in a range
from 3 to 50. A parameter scan for higher amplitudes would also be desirable,
although this gives numerical limitations due to high computational cost as
described in section 7.4.

On the inner and outer boundary conditions in the radial direction for the
particle density n, vorticity Ω and the electrostatic potential φ are all set to the
Dirichlet conditions, assuming the chamber walls of the box to be electrically
grounded:

n(R = Rmin) = n(R = Rmax) = n0

Ω(R = Rmin) = Ω(R = Rmax) = 0
φ(R = Rmin) = φ(R = Rmax) = 0

The initial conditions are taken from a system initially at rest, and are speci�ed
as

n(t = 0) = n0 + ñ

Ω(t = 0) = 0
φ(t = 0) = 0
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where n0 = 1 is the unknown reference background particle density and ñ takes
the blob-like shape around the initial position r0, given by

ñ =
∆n
n0

exp

[
− (r− r0)2

2

]

The spatial resolution for these simulations are chosen as Nx = Ny = 1024 and
the time step size to ∆t = 10−3.

7.2 On the accuracy of simulations

Positioning the initial blob perturbation at the innermost chamber wall in our
simulations can give rise to inaccuracies, as we force the Dirichlet boundary
condition n = 0 on the boundaries. With a high relative amplitude of the blob,
strong gradients are formed from the boundary to the center of the perturba-
tion. The accuracy of the solver depends on the chosen spatial and temporal
resolution.

With precalculation of the LU factorisation, the complexity of the algorithm
is O(n3), easily raising the computational cost above practical limitations. In
addition, an increased spatial resolution also dictates higher requirements on
the temporal resolution through the CFL condition described in section 5.8.

With this in mind, we seek to quantify the errors in a range of temporal resolu-
tions with the spatial resolution set to LR = LZ = 1024, as the computational
time scales linearly with the temporal resolution as it merely increases the num-
ber of time steps to reach a given time.

Simulations are performed with the temporal resolution ∆t ranging from 10−2 to
10−4 separated by a factor of 5, and the relative amplitude of the perturbation
to ∆n/n0 = 16, otherwise default parameters are as described in Section 7.1.

Figure 30 shows a particle density pro�le cut of n(R,Z) at t = 5 and Z = 0
for ∆t = 10−4 as well as the relative di�erence between this pro�le and the
pro�les at ∆t = 10−3 and ∆t = 5 × 10−4. We see that the maximum relative
di�erence between the higher resolution (∆t = 10−4) and the lower (∆t = 10−3)
in the perturbation amplitude here is 0.04. The lower resolutions (∆t = 10−2,
∆t = 5×10−3) are not shown here but their relative di�erence are much higher.
We also see that the solutions converge as the temporal resolution increases.

Figure 31 shows the relative di�erence between a reference ∆t = 10−3 and
∆t = 5× 10−4, ∆t = 10−4 for the maximum velocity and the maximum center
of mass velocity. While the relative di�erence here is smaller than for the particle
density pro�le, we see that for a higher temporal resolution the initial velocity
as well as center of mass velocity is lower than for lower resolutions. This is due
to boundary e�ects where the particle density is forced to zero. We see again
that the increased temporal resolution cause the solutions to converge.
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Figure 32: Average center of mass velocity for varying neutral pressure Pn and
perturbation amplitude η = ∆n/n0. The experimental results are also plotted
along with a �tted line proportional to 1/Pn. We see the dependence of pertur-
bation amplitude for the center of mass velocity as well as its dependence on
the slope in the collisionally dominated regime.

Accounting for these relative di�erences, the computational cost of choosing the
lower range of resolutions for our simulations is considered a practical solution.
Based on this, we consider the choice of ∆t = 10−3 a good balance between
computational cost and accuracy.

7.3 Simulation results

Figure 32 shows the average center of mass velocity as a function of the neutral
gas pressure for the simulations at relative perturbation amplitudes η = ∆n/n0

between 3 and 50. We see the �bend� on the curve for the average center of mass
velocities at approximately 10−4 torr, and a function line going as 1/Pn has been
drawn to use as a comparison for the declining slopes for neutral pressures above
10−4 torr.

We see the clear dependence on perturbation amplitude for the center of mass
velocity as well as its dependence on the neutral gas pressure Pn. Although
the perturbation amplitudes are not high enough to reach the average center
of mass velocities in the experiments, we note that the �tted line matches the
slope of the simulations for higher perturbation amplitudes.
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7.4 Numerical issues

Simulating higher relative perturbation amplitudes poses a challenge. For our
standard spatial resolution of 1024× 1024, amplitudes above 50 tend to quickly
become numerically unstable and within a few time steps give in�nite values.
This can partially be remedied by increasing the temporal resolution, but only
to a certain extent. However, increasing the spatial resolution has a large com-
putational cost attached to it as the algorithm, by solving n pre-factorised LU-
factorisations, scales as O(n3). The increased spatial resolution also requires
a higher temporal resolution by the CFL requirement (section 5.8), further in-
creasing the computational time.

The increased perturbation amplitude in our case also has a problem with break-
ing the initially assumed periodic boundary conditions in the vertical direction.
As we use a gaussian to represent our plasma blob, for high enough amplitudes
the derivative of particle density on the vertical boundaries is discontinuous.
The solution to this is to either use another shape of with stronger gradients as
the initial perturbation so that the particle density goes to zero in the vertical
direction or to introduce �nite di�erences in two dimensions allowing us to set
non-periodic boundary conditions in the vertical direction. The problems with
using stronger gradients in the initial perturbation is that the spatial resolution
has to be increased to acomodate for this, further increasing the computational
cost. On the other hand a bi-directional �nite di�erence method would, using
prefactorisation into a LU matrix problem, be an algorithm of O(n4) as the
single matrix would be n2 × n2 in size.

Although the simulations show a similar bend and ramping of the maximum and
average center of mass velocities, we have in our simulations not been able to
reach the center of mass velocities described experimentally. This is due to the
numerical challenge of simulating perturbations with a very high relative blob
amplitude. If the assumption of a near zero background plasma is to hold, the
relative blob amplitude must be very high to replicate the same velocities. This
is not without numerical issues: A high relative blob amplitude will generate
strong gradients on the particle density, which dictates higher requirements on
the spatial and temporal resolution to keep numerical stability, as described in
section 7.4. Using the observation from section 16 where we see that the blob
velocity is proportional to the relative blob amplitude we can conclude that
the required relative amplitude to reach velocities comparable to the measured
velocities is around 500.

High values for the Rayleigh number also pose problems as they require higher
spatial and temporal resolutions. Increasing the Rayleigh number from 104 to
106 requires a doubling the resolution and consequently increasing the temporal
resolution. However, for Ra = 104 we are nearing the ideal di�usion-less regime
for νi = 0, with the evolution of the center of mass velocities being very similar
to the evolutions of center of mass velocities for higher Rayleigh numbers, as
demonstrated in the parameter study performed in [9]. Note that for larger
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Rayleigh numbers we would stay in the ideal regime for higher values of νi, thus
larger Ra should in principle be explored.
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8 Discussion

We have in this thesis seen that the ∇B and curvature drifts give rise to charge
polarisation on perturbations on a background plasma, further resulting in a
vertical electric �eld and thus electric drift causing the perturbation to propa-
gate across the magnetic �eld lines. The dynamic balancing of charge by the
polarisation drifts further cause vortices to be created on these perturbations
as described in 2.1.

For small perturbation amplitudes, we have an ideal scaling for the velocity uc

as
uc

cs
=
(

2l
R

∆n
n0

) 1
2

where cs is the sound speed, l is the blob size, R is the radius and ∆n/n0 is the
relative blob amplitude. This gives that the blob velocity increases with blob
size and the perturbation amplitude, as described in section 2.2.6. For larger
perturbation amplitudes, this relation takes instead the form

uc

cs
=
(

2l
R

) 1
2

where the perturbation amplitude does not enter the scaling. This introduces
the perturbation amplitude as an additional parameter that a�ects the velocities
in the simulations.

The experiments presented in chapter 6, demonstrating the propagation of blobs
perpendicular to the magnetic �eld lines in a toroidal chamber, show that the
center of mass velocity for a propagating blob is inversely proportional to the
neutral pressure Pn

uCOM ∼
1
Pn

Indeed, from the model equations we have seen, in section 2.2.7, that the depen-
dence of ion-neutral collisions for the velocity (for regimes of high ion-neutral
collision frequencies) can be described as inversely proportional:

uc ∼
g

νin

From this we have motivated the simulation of propagating perturbations, or
�blobs�, for a range of collisional frequencies (proportional to the neutral gas
pressure) and perturbation amplitudes. We will now turn to comparing the
VTF experiments with our simulated experiments more in-depth.

8.1 Comparison with VTF blob experiments

Since the outward particle �ux is proportional to the center of mass velocity,
as described in section 2.2.8, quantifying the general transport of plasma can
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be achieved by measuring the center of mass velocity. This velocity is demon-
strated to be dependent on the Rayleigh and Prandtl numbers [9] as well as the
perturbation amplitude and ion-neutral collision rate as described in section
5.6. We will here discuss the e�ects of these last two parameters. It is worth
mentioning that this velocity also depends on the domain size, although this is
�xed in the experiments.

As a result of the experiments in [13] it is stated that the average center of
mass velocity for a perturbation propagating across the magnetic �eld is scaling
inversely with the neutral gas pressure: uCOM ∼ 1/Pn.

In section 5.4 we show how the ion-neutral collision rates a�ects the maximum
center of mass velocity: A higher ion-neutral collision rate νi decreases the
velocity uCOM. Figure 11 shows the maximum center of mass velocity as a
function of the ion-neutral collision rate in a logarithmic plot. With a �bend�
around νi = 10−1, we see that in the inertia dominated regime (for lower values
of νi) the maximum center of mass velocity is near constant and thus not a�ected
by the ion-neutral collision rate. However, for the collisionally dominated regime
(values of νi > 10−1) we see the maximum center of mass velocities decreasing,
very similar to the measured uCOM ∼ 1/Pn (since Pn is proportional to νi).

In [16] an expression for the propagation velocities u of the depletion bubbles
in ESF phenomenas was presented, here given for reference:

u =
1
8
Rdep

[(
ν2

in +
16gE

Rdep

) 1
2

− νin

]
(40)

where Rdep is the radius of the depletion front, νin is the ion-neutral collision
rate and gE is the Earth's gravity. As the interchange mechanisms driving these
phenomenas are the same as used in the 2-�eld model, the close �t between this
expression and the simulated results given in 11 is of high interest. The �tted
curve is for Rdep = 11.5 and gE = 0.24. We remind the reader that the plasma
perturbations show varying degrees of mushroom-like shapes, which may serve
as analogues to the compressed depletion bubble fronts and thus gives us an
Rdep much larger than the actual blob (or bubble) size.

However, although the expression gives a qualitative match, the methods used
in [16] might not be applicable for plasma perturbations as several of the as-
sumptions break with the dynamics observed in the simulating perturbations
such as assuming the stream function (and consequently the potential) to be
zero on the edges of the perturbation. As observed, this is indeed not the case
for the perturbation dynamics we have simulated where charge build up on both
sides of the perturbation, driving the electric drift.

Nevertheless, it serves a good match with respect to demonstrating how the
velocity of perturbations are divided into inertia dominated and collisionally
dominated regimes characteristic for di�usion processes. Indeed, we can easily
see that for the collisionless limit νin → 0 Eq. (40) gives the constant solution
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u = (Rdepg)1/2/2 while for the collisionally dominant limit νin � 1 we have the
inversely proportional solution u = g/νin in accordance to the simulated results.

This is further shown in section 5.6 where simulations varying νi and the relative
blob amplitude showing that this bend from νi = 10−1 to νi = 1 remains for
the di�erent simulated relative blob amplitude variations in the range between
from 3 to 50. This is an indication that this �bend� separating the collisionally
and inertia dominated regimes persist also for higher relative amplitudes and
its relation to νi is independent on the relative blob amplitude.

In section 7.3 where we have simulated conditions close to the experiments
presented in [13], we see in �gure 32 the variation of maximum and average
center of mass velocities with νi and the relative blob amplitude. We see in this
case the same indications of a �bend� around the neutral pressure Pn ≈ 10−4 torr
(corresponding to νi ≈ 4×10−1), while for higher neutral pressures (Pn > 10−4)
the center of mass velocity declines as the neutral pressure increases.

Let us now address the proposed dependency uCOM ∼ 1/Pn. For higher relative
blob amplitudes (η = 25 and η = 50) in the range from Pn = 4 × 10−4 torr to
Pn = 4 × 10−3 torr the slope of the declining average center of mass velocity
uCOM does indeed �t the description of being proportional to 1/Pn. For lower
relative blob amplitudes this is not the case, as can be easily seen in �gure 32.

For lower neutral pressures uCOM reaches the �ramp� at a maximum velocity
in the inertia dominated regime. This ramp is suggested in [13] as the sound
speed cs, although for our simulations this ramp value is clearly dependent on
the relative blob amplitude η. While the sound speed cs is the same for all
relative blob amplitude simulations, the maximum velocity is not. This does
not exclude that the sound speed may be an upper bound on uCOM for higher
perturbation amplitudes (indeed, through the scaling γ ∼ cs it follows that the
a higher sound speed in our model parameters should give higher velocities)
although it is not the governing restriction when simulating lower perturbation
amplitudes.

We will now turn to discussing the disparity between the experimental and
simulated results shown in �gure 32 where we have the average center of mass
velocity for the perturbation amplitudes η = 25 and η = 50 plotted against the
experimental average center of mass velocities. We notice that the experimen-
tal results are not perfectly matched to the simulations but is slightly shifted,
both upwards on the velocity scale and left on the collision scale. The func-
tional dependence is very similar. This shift can be explained by inaccuracies
in parameters we will map out in the following two paragraphs.

The velocity scale is dependent on the sound speed as well as the scaling param-
eter between blob amplitude and the major radius as we have uc/cs ∼ (2l/R)1/2

(Eq. (15)), which is further dependent on the electron temperature. This indi-
cates that we would get higher uCOM for higher electron temperatures (and
consequently cs) as well as larger blob sizes l. Inaccuracies in both these pa-
rameters will therefore yield a di�erent velocity scaling. Indeed, we have here
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assumed a constant electron temperature although in [13] it is stated that the
electron temperatures in these experiments vary in the range between 1− 3 eV.
We have also shown that uCOM depends on the initial perturbation amplitude
η = ∆n/n0, although increasing the amplitude in our simulations yields numer-
ical challenges as described in section 7.4.

As for the scaling along the ion-neutral collision scale, the scale is primarily de-
pendent on the ion temperature, neutral gas temperature (relating the neutral
pressure to neutral density as well as νi) and the sound speed cs as described
in section 7.1. An increased ion temperature would shift the simulated velocity
curves in 32 to the left towards lower νi, while a change in electron tempera-
ture (and consequently the sound speed) would shift the velocity curves to the
right. It is worth noting that the neutral gas temperature is not speci�ed in
the experiments although assumed to hold a room temperature. There is also
a large experimental uncertainty for the ion temperature. In addition several
dominant collisional cross sections are possible such as elastic collisions or charge
exchange.

In the simulations the Rayleigh number Ra = 104 was used since higher values
are harder to simulate without encountering numerical instabilities. According
to [9], the center of mass velocity evolution for Ra > 104 are very similar to
Ra = 104 and thus well suited as an approximated parameter for our simulations
to account for the numerical challenges of higher values of Ra, as described in
7.4. However, an increased Ra would likely increase the velocity for higher νi

until the ideal regime is recovered.

Summarising the points of importance, we have seen that the simulated results
give propagation speeds in two regimes: One inertia dominated and one col-
lisionally dominated where the average center of mass velocity scales as 1/Pn.
These regimes are independent of the perturbation amplitude. Further we have
seen the qualitative agreement with the experimental results and mapped out
which parameters that can be used to provide a closer match between simula-
tions and experiments.

8.2 The �mushroom� shapes

In [13] the propagating blobs are reported to take on �mushroom� shapes simi-
lar to the shapes described in simulations presented in [9]. The dipole vorticity
�eld, as a consequence of the dipole electrostatic potential �eld, gives rise to the
mechanism that drives the center of the perturbation faster than the top and
bottom edges, as well as curling the edges backward. This has been demon-
strated for a range of varying Rayleigh and Prandtl numbers in the simulations.

For our chosen parameters of Ra = 104 and Pr = 1, the perturbation takes
the form previously illustrated in �gure 6, a de�nite mushroom-like shape with
vortices at the top and bottom. For a higher Prandtl number Pr = 4×102 where
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the viscosity is dominating over the di�usion we see, in �gure 7, a mushroom
shape without the vortices and less dispersion.

On the other hand we are aware of e�ects that will reduce this mushroom form:
In �gure 8 we see a simulation for where the di�usion dominates over viscousity,
resulting in a more circular shape. The inclusion of ion-neutral collisions also
reduces this shape, as described in section 5.4, where a high neutral pressure
leads to a high ion-neutral collision frequency which in turn leads to a more
coherent blob-structure.

Through inspection of the data sets from the experiments performed in [13], it
is apparent that this mushroom shape is not characteristic for the majority of
the experiments. Only for the three experiments in the neutral pressure range
2.13×10−4 to 2.84×10−4 torr is an actual mushroom shape observed. The other
experiments, either below or above this neutral pressure range, exhibit no such
apparent behavior. For the lower pressure range 0.412 × 10−4 to 1.41 × 10−4

torr circular or radially elongated dispersed structures are observed, while for
the high pressure range 3.69× 10−4 to 4.54× 10−4 torr multiple circular blobs
are observed.

Noting that an increased ion-neutral collision rate should reduce this mushroom-
like shape, it is expected to be more prominent in the lower neutral gas ranges.
This does not agree with experimental measurements.

Examining the experiments for where the perturbation assumes a mushroom-
like shape in a higher temporal sampling (�gure 27, for neutral pressure ng =
2.13 × 10−4) we note that in the early creation of the perturbation there is
indeed several �blobs� created: One ahead of the main perturbation and one
down to the left. As the amplitude of the main perturbation increases it clearly
dominates the overall structure. However, the remnants from the lower left blob
is present, lagging behind the main structure and possibly contributing to the
observed mushroom-like shape.

Along with the lack of mushroom shapes at lower neutral pressures this suggests
that, while it still may be a contributing mechanism, the mushroom shapes
observed might not originate from the same dynamics in the two-�eld model.
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9 Conclusion

We have in this thesis explored the propagation of coherent structures in mag-
netised plasmas, so-called �blobs�, in toroidal chambers such as presented in the
VTF experiments [13].

The relation between the propagation velocity and the perturbation amplitude
as well as the neutral gas pressure has been explored through simulations. We
have seen that the velocity increases near proportionally with the perturbation
amplitude for large amplitudes, while the dependency on the neutral gas pres-
sure separates into two regimes: One inertia dominated and one collisionally
dominated where the average center of mass velocity scales as 1/Pn. These
regimes have been shown to be independent of the perturbation amplitude.

Furthermore, results from the experiments at the VTF has been reviewed. The
average velocities measured in these experiments has been shown to qualita-
tively match simulations performed to match these experiments. Experimental
parameters a�ecting the the match between simulated results and experimental
results have also been mapped out.

In addition, the formation of mushroom-like structures observed in [13] has been
found not to be primarily generated by the dipole vorticity �eld around the per-
turbation. This is supported by observations made on variation of parameters
in simulations and their e�ect on the creation of mushroom-like structures.

9.1 Future work

We propose further work by performing simulations on the the perturbation
amplitudes and the required higher Rayleigh number to represent the exper-
iment more acurately. The perturbation should if so be modelled to �t the
experimental perturbation pro�le more acurately.

It is also desirable to further develop the simulation code to be able to ac-
count for �xed boundary conditions in the vertical direction in addition to the
current periodic condition to accommodate for the higher perturbation ampli-
tudes needed. Doing this requires the development of a two dimensional �nite
di�erence solver.

In both these future work cases mentioned above, it is greatly encouraged to
implement a more versatile parallelism, like MPI, in the simulation code to take
advantage of being executed on several nodes on high performance computing
systems such as Stallo. Although the current code is parallelised using OpenMP,
this is restricted to using the processors or cores on a single node only.

We also propose that the observed separation of inertia and collisionally dom-
inated regimes independent of perturbation amplitudes should be tested ex-
perimentally as well as the proportional scaling for perturbation velocity to
perturbation amplitude for high amplitudes.
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