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1.  CHALLENGES 

Sustainable use of natural resources is critical for 
addressing the global challenges of today, not least 
because exploitation of nature has put humanity in a 
critical situation due to severe degradation of eco -
systems (IPBES 2019). Several of the UN Sustainable 
Development Goals (SDG), such as SDG2 (zero 
hunger) or SDG6 (clean water and sanitation), directly 

depend on well-functioning ecosystems (SDG14: life 
below water; SDG15: life on land) and their services 
(Blicharska et al. 2019). Harvesting of natural re -
sources in ways that are sustainable both for the 
affected species and their ecosystems is therefore a 
win-win goal for both nature and humans. However, 
harvesting of species fluctuating in environments 
that are also systematically changing at unprece-
dented rates, presents particular challenges for sus-
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tainable management and for maintaining ecosystem 
functions. 

In stable environments, maintaining sustainable 
harvesting of individual species requires different 
strategies than those maximizing the yield (Bedding-
ton & May 1977, May et al. 1978, Lande et al. 1995, 
1997). Ecosystem-based management has been pro-
moted as the most relevant framework to account for 
interactions among species and the harvesting of 
multiple species (Levin et al. 2009, Katsanevakis et 
al. 2011, Lee et al. 2022 in this Special). Climate 
change has become a main source of environmental 
variability, and this poses challenges, as it shifts spe-
cies and ecosystems beyond known regimes of sto-
chastic fluctuations in the environment (novel climate) 
and species-interactions (novel ecosystems). Although 
these topics have received considerable attention in 
the literature, there are few integrative studies and 
large knowledge gaps remain. Understanding the 
consequences of complex interactions between dif-
ferent drivers and processes affecting dynamics of 
species and ecosystems across spatial scales requires 
large-scale integrative research projects. 

The Norwegian research initiative “Sustainable 
management of renewable resources in a changing 
environment: an integrated approach across ecosys-
tems” (SUSTAIN) was launched to fill knowledge 
gaps related to the sustainable management of pop -
ulations and ecosystems that experience climate 
change — with a particular emphasis on interacting 
factors such as population structure and species 
interactions. SUSTAIN investigated terrestrial, mar-
ine and freshwater ecosystems in boreal and Arctic 
regions (Fig. 1), and was organized around seven 
case studies within these 3 main ecosystems, includ-
ing: (1) semi-domestic reindeer in alpine and sub-arc-
tic ecosystems, (2) reindeer, rock ptarmigan and arc-
tic fox in high-arctic tundra, (3) willow ptarmigan in 
sub-arctic and low-arctic tundra, (4) increasing red 
fox populations in a tundra ecosystem, (5) moose and 
small game in boreal forests, (6) fish stocks in the 
Mjøsa lake, and (7) fish stocks in the Barents Sea. 
The work included both theoretical developments 
and empirical analyses of long-term data. This Cli-
mate Research Special contains both synthesis arti-
cles of the overall work done within SUSTAIN and 
original research articles that exemplify some of the 
approaches that were employed. 

In this introduction we highlight 4 key topics 
addressed by SUSTAIN, and also emphasized in 
the articles included in this Climate Research Spe-
cial: (i) popu lation structure, (ii) interactions between 
species, (iii) spatial processes, and (iv) adaptive 

management. These topics are fundamental to the 
un derstanding of harvested species from an ecosys-
tem perspective, and to developing ecosystem-based 
management approaches. 

2.  POPULATION STRUCTURE 

Population structure, such as age, size and sex 
structure, plays an important role in determining how 
harvesting influences population dynamics (Sæther 
et al. 2001). Different segments of a pop ulation (e.g. 
different gender, age classes) often experience dif-
ferent risks of being harvested (Markussen et al. 
2018, 2019, Stubberud et al. 2019). Such biased or 
selective harvesting is often intentional (e.g. harvest 
of individuals of specific age or size; Kuparinen & 
Festa-Bianchet 2017, Nater et al. 2020, Peeters et al. 
2022 in this Special), but can also be an unintentional 
consequence of the way harvesting is carried out 
(e.g. when harvest is concentrated in areas used by 
certain types of individuals; Ofstad et al. 2020). 
Herfindal et al. (2022a in this Special) illustrate how 
biased harvesting causes fluctuations in the popula-
tion structure from an individual-based long-term 
study of an island moose population. 

Effects of environmental variation and change on 
individuals within the population are also known to 
differ among groups of individuals (Coulson 2001, 
Sæther et al. 2013, Bleu et al. 2015). Such environ-
mental effects on population dynamics may be de-
layed when important mediators such as body condi-
tion link to weather in one season/year and to e.g. 
reproduction the next season/year (Herfindal et al. 
2015, Henden et al. 2022 in this Special, Nater et al. 
2022 in this Special). Thus, the overall impact of envi-
ronmental variation on population dynamics de pends 
on how sensitive different classes of individuals are 
to impacts of both harvesting and environmental 
changes. In some cases, harvesting targets those indi-
viduals that are also being most impacted by climate 
change; in other cases, selective harvesting biases 
population structure towards individuals that are 
more sensitive to environmental variation (Berkeley 
et al. 2004, Rouyer et al. 2011). Explicit consideration 
of such effects is crucial to avoid un wanted pop -
ulation responses due to harvesting (Gamelon et al. 
2019, Lee et al. 2022). In this context, the application 
of state-of-the art analytical techniques is essential 
for studies that consider how population structure 
and life history adaptations affect the resilience of 
species both to harvesting and to environmental 
change (e.g. Stubberud et al. 2022 in this Special). 
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3.  INTERACTIONS BETWEEN SPECIES 

Natural systems consist of many species that 
interact with each other in complex ways. Thus, the 
population dynamics and responses to harvesting and 
environmental change of one species depend on the 
dynamics and responses of other species within the 
ecosystem (Anderwald et al. 2015, Gamelon et al. 
2020). This interdependence calls for a multi-species 
or ecosystem approach to manage harvesting (Levin 
et al. 2009). Single species harvesting quotas can 
have serious and detrimental consequences in systems 
of interacting species, in particular when more than 
one species is harvested simultaneously (Lego vić et 
al. 2010). In fact, in some cases annual yields can be 
optimized when different types of harvesting strate-
gies are used on different species. Bellier et al. (2021) 
found that applying proportional harvesting to a prey 
species and proportional threshold harvesting to its 
predator gave optimal results when species-specific 
responses to the environment were ac counted for. We 
know that climate warming can change species inter-
actions and restructure food webs (Bartley et al. 2019, 
Pecuchet et al. 2020, Tanentzap et al. 2020), making 
these effects even more complex. Mellard et al. (2022 
in this Special), who provide a synthesis of SUSTAIN 
studies on Arctic harvested species, conclude that 
adding the food web dimension to predicting changes 
in harvested population sizes may or may not improve 
near-term predictions (see also Henden et al. 2020, 
Marolla et al. 2021). This may be due to data limita-
tion, for instance, leading to inadequate approxima-
tions of species interaction in the prediction models. 
Moreover, multi-driver impacts on complex commu-
nities — composed of many interacting species with 
divergent phenologies — represent a challenge for 
both establishing causality and making predictions 
(Moe et al. 2022 in this Special). 

4.  SPATIAL PROCESSES 

Spatial processes involving movement of individu-
als among localities (e.g. migration and dispersal), 
along with geographical covariation in the environ-
ment, are important for both population dynamics 
and harvesting yield. Thus, these have been key top-
ics addressed in the SUSTAIN project (Herfindal et 
al. 2022b in this Special, Melsom et al. 2022 in this 
Special). The influence of harvesting on population 
synchrony (see Herfindal et al. 2022c in this Special, 
Lee et al. 2022) is one spatial process which has only 
recently received more attention. Shared environ-

mental fluctuations, for instance in weather, are 
known to cause synchronized population dynamics, 
sometimes over large areas (Moran 1953, Koenig 
2002, Walter et al. 2017). Such patterns of spatial syn-
chrony are expected to change as the climate warms 
(Hansen et al. 2019). Since the spatial scaling of envi-
ronmental variation is different in marine, limnic and 
terrestrial systems (Herfindal et al. 2022b,c), climate 
change-induced changes in population synchrony 
may also differ among these environments. 

Increased population synchrony enhances the 
global extinction risk (Heino et al. 1997, Earn et al. 
2000). However, even if species within a given area 
and system are experiencing the same environmen-
tal conditions, they do not necessarily show the same 
degree of population synchrony. Differences in the 
degree of spatial synchrony in population fluctua-
tions are related to dispersal (Lande et al. 1999), life 
history strategy (Marquez et al. 2019), interspecific 
interactions (Lee et al. 2020), age structure (Marquez 
et al. 2021) and sensitivity to environmental variables 
(Hansen et al. 2019, Herfindal et al. 2020). In addi-
tion, the choice of harvesting strategy can strongly 
influence the patterns of synchronized fluctuations in 
the size of populations separated in space, sometimes 
increasing (Engen et al. 2018a,b, Jarillo et al. 2018) 
and sometimes reducing it (Engen et al. 2018a). Fur-
thermore, population synchrony is influenced by 
species interactions, and harvest effects on one spe-
cies can influence the population synchrony of inter-
acting species (Jarillo et al. 2018, 2020), even if they 
are not harvested (Jarillo et al. 2018). Reviewing dif-
ferent harvest strategies, Lee & Sæther (2022 in this 
Special) suggest that proportional threshold har-
vesting may be a good starting point for adapting 
harvesting strategies in the context of populations 
and ecosystems subjected to climate change. 

5.  ADAPTIVE MANAGEMENT 

Adaptive management will become increasingly 
important as climate change causes regime shifts 
in  many ecosystems (Walters 2007). SUSTAIN case 
studies have dealt with several essential elements of 
adaptive management, such as strategies for imple-
menting and estimating the effects of management 
interventions (Marolla et al. 2021, Henden et al. 
2022, Nater et al. 2022, Peeters et al. 2022), adapting 
harvesting strategies to a changing climate (Gamelon 
et al. 2019, Lee & Sæther 2022, Lee et al. 2022) and 
the important dialogue between researchers, man-
agers and other stakeholders (Henden et al. 2020, 
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Mellard et al. 2022). With respect to the latter point, 
SUSTAIN implemented a Strategic Foresight Protocol 
(Cook et al. 2014) in its case studies and Hamel et al. 
(2022 in this Special) summarize the experiences with 
this protocol. Experience with the Strategic Foresight 
Protocol demonstrates that the success of such an 
endeavor depends on the willingness of the people 
involved, which in turn depends on their availability 
and opportunities to meet on common ground (both 
geographically and otherwise). In addition, building 
social capital among all directly involved participants 
from the beginning of the process is essential for 
building the trust needed to ensure an effective func-
tioning among social groups with different interests 
and values, as has been the case with SUSTAIN. In 
the most successful cases (e.g. Henden et al. 2020), 
such a structured way of interacting with stake-
holders has had significant influences on the re -
search, and increased the likelihood that SUSTAIN’s 
science will be helpful to the management of species 
and ecosystems subjected to climate change. 

6.  THE BROADER CONTRIBUTION OF SUSTAIN 

The integrated approach of SUSTAIN clearly shows 
that management strategies for exploited species 
must take the expected climatic changes into ac -
count. SUSTAIN has, through its comparisons across 
ecosystems, identified some general points that 
should be included in developing such sustainable 
management principles. First, it is necessary to dis-
entangle the effects of harvest from the effects of 
variation in environmental conditions on population 
dynamics. Climate change complicates this, requiring 
more detailed analyses and even better data than 
previously collected to reduce unintended negative 
consequences of harvesting, such as population col-
lapse or increased variability in annual yields. Sec-
ond, alterations of the geographical distribution of 
exploited species, e.g. caused by changes in climate, 
can influence species interactions and population 
fluctuations over large areas. The results from SUS-
TAIN clearly indicate that an ecosystem-based man-
agement strategy must include a spatial perspective 
that also incorporates non-harvested species. Finally, 
because future management plans for exploited 
species must respond to potential environmental 
changes, adaptive management is key. This ap -
proach requires stronger interactions be tween man-
agers, end-users, and researchers. The Strategic 
Foresight Protocol used in SUSTAIN illustrates one 
way to formalize such interactions. 
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