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ABSTRACT 
With globalization and rapid technological-economic development accelerating the market 
dynamics, consumers' demand is becoming more volatile and diverse. In this situation, capacity 
adjustment as an operational strategic decision plays a major role to ensure supply chain 
responsiveness while maintaining costs at a reasonable norm. This study contributes to the 
literature by developing computationally efficient approximate dynamic programming 
approaches for production capacity planning considering uncertainties and demand 
interdependence in a multi-factory multi-product supply chain setting. For this purpose, the k-
Nearest-Neighbor-based Approximate Dynamic Programming (k-ADP) and the Rolling-Horizon-
based Approximate Dynamic Programming (R-ADP) are developed to enable real-time decision 
support while ensuring the robustness of the outcomes in stochastic decision environments. Given 
the market volatilities in the Thin Film Transistor-Liquid Crystal Display (TFT-LCD) industry, a 
real case from this sector is investigated to evaluate the applicability of the developed approach 
and provide insights for other industry situations. The developed method is less complex to 
implement, and numerical experiments showed that it is also computationally more efficient 
compared to Stochastic Dynamic Programming (SDP). 

Keywords: Production management, Capacity Planning, Approximate Dynamic Programming, 
Stochastic Dynamic Programming, Optimization. 
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1. Introduction 
Globalization has exacerbated market volatilities and added to supply chain management 
complexities. Modern industries are experiencing exponential growth in demand and operational 
risks, particularly driven by rapid technological and economic development. Well-informed 
supply and demand management decisions are of paramount significance to ensure a timely 
response to market volatilities. Increasing production capacity, inventory level, supply source 
redundancy, and operational flexibility are the major supply chain management strategies to 
mitigate operational risks (Chopra and Meindl 2015), which are not one-size-fits-all decisions 
and require various considerations. As a prime example, building redundant operational capacity 
improves the supply chains' resilience (Pourhejazy et al., 2017), but may not be feasible in 
capital-intensive industries like high-tech. Decision support systems are required to ensure well-
informed capacity planning decisions that account for short- and long-term considerations. 

Supply chain capacity planning is not limited to the strategic level and can be made in forms 
of tactical and operational course of managerial actions (Martinez-Costa et al. 2014), like adding 
auxiliary production tools (Chen et al. 2013), among other capacity planning strategies (Ceryan 
and Koren 2009). Changes in the current state of the controllable and uncontrollable variables 
influence their future value and the performance of the system as a whole; this kind of sequential 
effect (Pourhejazy et al., 2020) cannot be effectively captured in the static models. Dynamic 
capacity expansion models best determine policies for optimal timing and the extent of capacity 
adjustment with the overall goal of maximizing the expected profit (Wu et al. 2005). The 
decisions of when and how much capacity to build are vital to staying competitive in highly 
uncertain environments (Wu and Chuang 2010).  

Dynamic programming has been applied in various contexts, like in project management 
(Choi et al. 2004), remanufacturing (Li et al. 2009), among other examples (La Torre et al. 2019; 
Tarek et al. 2020); its applications for production capacity planning are relatively limited (Choi 
et al. 2006; Katanyukul et al. 2011). From the existing studies, backlog (Kingsman 1997) and 
workload control (Kingsman 2000) were investigated as strategic dynamic capacity planning 
decisions. (Bunn and Oliveira 2016) analyzed active trading of production facilities, analyzing 
dynamic capacity planning from an economic viewpoint and provided the theoretical basis for 
assets valuation and trading based on the strategic slack concept. System dynamic approaches 
were also employed to study the main sources of complexity (Deif and ElMaraghy 2009) and 
analyze capacity planning policies for remanufacturing facilities in reverse supply chains 
(Vlachos et al. 2007; Georgiadis 2013). (Pehlivan et al. 2014) proposed to integrate a service 
level constraint to dynamic capacity planning and location decisions. Dynamic capacity planning 
has also seen some development for cloud services (Alasaly et al. 2015).  

Dynamic capacity planning using simulation models was the first time investigated by 
(Atherton 1989). Since then, different simulation-based capacity planning methods have been 
investigated to improve solutions consistency (Seidel et al. 2019). (Pratikakis et al. 2006) 
developed a real-time adaptive dynamic programming method for planning and scheduling. 
(Pratikakis et al. 2010) studied Approximate Dynamic Programming (ADP) method to address 
the curse‐of‐dimensionality associated with multistage capacity decision problems. More 
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recently, (Lin et al. 2014) developed a Stochastic Dynamic Programming (SDP) approach for 
multi-site capacity planning in thin-film transistor liquid crystal display (TFT-LCD) 
manufacturing considering demand uncertainty. Several patents have also been registered for 
dynamic capacity planning (Sureka 2019; Dubey 2020). (Hu et al. 2020) developed a two-stage 
dynamic capacity planning approach considering demand uncertainty for a single-site capacity 
planning for maintenance of agriculture machinery. In their method, a scheduling model is 
integrated with capacity allocation decisions and queuing theory is used to determine the 
operational parameters. In the most recent study, (Voelkel et al. 2020) developed an aggregation-
based ADP for the periodic review of manufacturing systems considering random yield. They 
did not account for the stochasticity of capacity and demand transitions and the interdependence 
between demand in the early and late stages of the planning horizon. There also is a need for 
computationally efficient ADP methods that provide real-time decision support to facilitate the 
industry-scale applications of dynamic programming while addressing the above limitations for 
a more practical setting.  

Inspired by the mentioned motive, the present manuscript introduces two simulation-based 
ADPs, namely, the k-Nearest-Neighbor-based Approximate Dynamic Programming (k-ADP) and 
the Rolling-Horizon-based Approximate Dynamic Programming (R-ADP) to contribute to the 
production capacity planning literature. The developed methods are benchmarked against the SDP 
method considering various problem specifications. Given high volatilities in TFT-LCD 
industries (Lin et al. 2011), a real case from this industry is used to inform similar or more stable 
industry situations. Additionally, large-scale examples are considered to examine the 
computational efficiency of the developed methods for industry-scale applications.  

The rest of this manuscript is structured as follows. The proposed methods, k-ADP and R-
ADP are detailed in Section 2. Numerical experiment and results analysis are provided in Section 
3 followed by statistical analysis to verify the findings. Finally, the major findings, limitations of 
the study, and suggestions for future research are discussed in Section 4 to conclude this research 
work. 

2. Proposed methods 
Solving multi-period optimization problems using stochastic dynamic programming becomes 
prohibitive when real-world and complex situations consisting of many decision and state 
variables are addressed. In this situation, finding the best trajectory through full enumeration of 
the solutions is infeasible, particularly if reasonable computational time is a must for 
instantaneous decision analysis. This section presents two computationally efficient ADPs, 
named k-Nearest-Neighbor-based Approximate Dynamic Programming (k-ADP), and Rolling-
Horizon-based Approximate Dynamic Programming (R-ADP), to address the production 
capacity planning decisions in stochastic environments. The Markov Chain Monte-Carlo 
simulation (MCMCS) is used to sample the demand trajectories and an approximation algorithm 
investigates the capacity expansion trajectories through partial-enumeration of the state space 
using Forward Induction. The research framework is illustrated in Figure 1 with its major 
elements described in the following sub-sections. 
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Figure 1. Research framework 

2.1. Problem definition 

To provide a formal definition of the problem, let consider the TFT-LCD supply chain. As shown 
in Figure 2, I  array production sites produce glass substrate manufacturers to produce P  
product families, e.g., monitors and TVs. Given the forecasts based on historical demand data, a 
planning horizon of T  months is considered for strategic capacity planning based on which the 
aggregate and master production plans drive the operations. With high implied demand 
uncertainties and interdependence between demand in the early and late stages of the planning 
horizon, Markovian demand, the supply-demand mismatch is a common phenomenon. This 
imbalance often results in lost sales or excessive investment in resources. Given the 
characteristics of the product, inventory holding costs may be high, hence, is not an option to 
manage supply-demand imbalance. In this situation, capacity reallocation and expansion 
decisions are major managerial tools to alleviate the above issues. 

For TFT-LCD manufacturing, production quantities of each product group are constrained 
by two resources: bottleneck machines and auxiliary tools. While the bottleneck machine is a 
shared resource for all products, auxiliary tools are the product-group-specific resource. In the 
array process, the shared resource is the lithographic machine. The product-group-specific 
auxiliary tool, photomask, must be used by the lithographic machines for transferring a pattern 
on a substrate. Therefore, the production capacity of each array plant is determined by the 
number of bottleneck machines. This kind of capacity can be reallocated to the products of one 
factory. But the available capacity for producing each product model at each plant is determined 
by the number of auxiliary tools. This capacity is product-group-specific capacity and cannot be 
used by other products. The manufacturer can expand the production capacity of each array plant 
and the available capacity for producing each product model at each plant through purchasing 
the bottleneck machines and the auxiliary tool, respectively. Due to space limitations, it is 
difficult to purchase the bottleneck machines to expand the production capacity of the plant. 
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Consequently, this study only focuses on the investment of the auxiliary tool to expand the 
available capacity for producing each product model at each plant. 

Given the actual demand of each product model at the beginning of the planning horizon, 
various demand scenarios, the production capacity of each array plant, and the available capacity 
for producing each product model at each plant, the problem at hand consists of production 
capacity allocation and expansion decisions to determine the best product mix and quantity at 
each plant in each period of the planning horizon such that the total profit is maximized. The 
expected value and variance of the forecasted demand, as well as demand interdependence in the 
early and late stages, are considered to account for the demand uncertainties in the model. 
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Figure 2. Schematic illustration of the studied multi-site production chain 

The following information is known before starting the planning process: (1) distribution 
function of the forecasted demand and future scenarios of each product model within the 
planning horizon; (2) transition probability of demand scenarios; (3) the phase-out time, i.e., the 
time a product model is discontinued. (4) the primary production capacity of each array 
manufacturer; (5) the available capacity of each product family at each array manufacturer; (6) 
production yield rate and the economic cutting ratio of each product family at each 
manufacturing plant; (7) the allowed expansion capacity of each product family in each 
manufacturing plant, and the unit cost of purchasing the auxiliary tools.  

Given the above inputs, dynamic capacity planning is about deciding which product, where, 
and when requires capacity expansion considering the current state of interest, i.e., the 
cumulative capacity expansion in each period and the current demand situation. On this basis, 
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the purchase of auxiliary tools in period t  increases the production capacity of product family 
p . Capacity expansion decisions are strongly influenced by the investment cost, the demand 

uncertainties during the planning period, and the depreciation rate (Wu et al. 2005). Finite 
Markovian demand is considered to account for the uncertainties. Because the cost of capacity 
expansion is very high, in practice, the linear depreciation method is used to calculate the 
amortized capacity cost by considering the usable life of the auxiliary tool in the cost accounting. 
To account for the depreciation rate, one should keep in mind the products’ life cycle, in 
particular the possibility of discontinuing them from the company's portfolio. Equation (1) 
represents the linear depreciation rate of the product. As illustrated in Figure 3, if product p  

won’t be discontinued within the planning horizon, i.e. ptlf T> , depreciation amounts to the 

difference between the purchase time in period t  and the end of the planning horizon divided by 
the difference between the discontinuation time and period T . However, if the product is 
expected to be discontinued earlier than the end of the planning horizon, i.e., ptlf T< , the 

depreciation rate will be the difference between the purchase time at period t  and the 
discontinuation time.  

 

Figure 3. Linear depreciation based on the product life cycle 

( )min , 1
1

_ p

p

dep i
T tlf

rec ation value
t

tlf t
−

=
+

− +
 (1) 

The following assumptions are considered to formulate the problem. (1) It is assumed that 
demand for each product in each period can be divided into different cycles and plant areas for 
production. (2) The production lead time of each plant is assumed to be negligible. (3) It is 
assumed that the supply of key materials will not be interrupted, hence, material shortage is not 
allowed. (4) Purchasing exclusive accessory tools, masks for the bottleneck machines are 
assumed to be sufficient for expanding the production capacity of each plant. Finally, (5) the 
model only considers the production process of arrays and does neither consider the possible 
bottleneck in the assembly process nor the material-related characteristics. The following 
notations are defined to formulate the problem. 
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Indices and parameters 

i   Manufacturing plant，   1 2i , ,...,I=  

k   Product family，   1 2k , ,...,K=  

t   Time index，   1 2t , ,...,T=  

ktdeξ  Demand for product family k  in period t  (piece) 

ktpr  The profit margin of selling one unit of product k  in period t  (USD) 

kph  Phase-out (discontinuation) time of product family k  

iktca  Plant i 's initial capacity for production of product family k  in period t  (sheet) 

itcw  Plant i 's initial total capacity in period t  (sheet) 

ikcf   Capacity consumption rate at plant i  to produce product k  (per sheet) 

ikcr   Production cut-rate at plant i  to produce product k  (pieces per sheet) 

iktye  Production yield rate at plant i  for product k  in period t  (per sheet)  

iktec   Cost of purchasing one unit of the new auxiliary tool to produce product k  at 
plant i  in period t  

ikeb   The upper limit for the expansion of the overall production capacity of product 
k  at plant i  (sheet) 

ikeu  Increased capacities to purchasing one auxiliary tool of product k  at plant i   
sheet) 

ikea  Binary parameter for the expansion possibility for product k  at plant i  

ktξ   Demand state for product family k  in period t  

ikttm  Cumulative purchasing amount (capacity state) of the new auxiliary tool of each 
product k  at plant i  until period t  

tS   State variable in period t  

tA   Action taken in period t  
N   Number of demand trajectories  
M  Number of expansion trajectories 

 

Decision variables 

iktEM  Integer decision variable for capacity expansion; the number of added auxiliary 
tools at plant i  for product k  in period t . The overall value in period t  is 

( ), ,t i I k K t I K
EM EM ∈ ∈ ×

=  

iktXQ : Continuous decision variable for capacity allocation; the amount of production 
quantity at plant i  for product k  in period t . The overall value in period t  is 

( ), ,t i I k K t I K
XQ XQ∈ ∈ ×

=  (sheet) 

2.2. State, action, and state transition of the SDP model 
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Given the interdependence between early and late demand states along the planning horizon, a 
stochastic model with finite Markovian demands is used to consider the possible influence on 
capacity decisions. That is, the decision-making process considers the demand state and planning 
results of the previous period to determine the current decision. This procedure, named observe-
decide-observe-decide, continues with every progression to the next planning period. This 
feature conforms to the concept of inter-related decisions, the so-call sequential effect 
(Pourhejazy et al. 2020), in dynamic programming and represents the probability of state 
transitions between consecutive stages. 

State variables are classified into controllable and uncontrollable variables. The capacity 
planning problem decides a possible capacity expansion; hence, it is a controllable variable. 
Demand state is an uncontrollable variable that is determined considering the transition 
probability using Markov Chain. The state variable in period t  is defined by ( ),t t tS tm ξ= . 

Given ktξ  and ikttm  representing the demand state and the number of available auxiliary tools for 

the production of product k  in period t , ,t ttm ξ  are calculated using Equations (2) -(3), 

respectively. It should be noted that ktξ  accepts three values { }, ,kt H M Lξ ∈ .  

( ), ,

11 12 1

21 22 2

1 2

, ,..., ,
, ,..., ,

, 0,1, 2,...,min ,
...,

, ,...,

t i I k K t I K

t t Kt

t t Kt ikt
ikt ik

ik

I t I t IKt

tm tm

tm tm tm
tm tm tm ebtm M ea

eu
tm tm tm

         

∈ ∈ ×
=

 
       = ∈  ×            
 

 (2) 

( ) ( ), 1 21
, ,...,t k K t t t KtK

ξ ξ ξ ξ ξ∈ ×
= =  (3) 

To define the actions, i.e., the capacity expansion decisions, the array representing the 
number of auxiliary tools and the amount of input in period t  are defined using Equations (4) -
(5), respectively. 

( ), ,

11 12 1

21 22 2

1 2

, ,..., ,
, ,..., ,

, 0,1, 2,...,min ,
...,

, ,...,

t i I k K t I K

t t Kt

t t Kt ikt
ikt ikt ik

ik

I t I t IKt

EM EM

EM EM EM
EM EM EM ebEM tm M ea

eu
EM EM EM

            

∈ ∈ ×
=

 
       = ∈ −  ×           
 

 (4) 

( )
11 12 1

21 22 2
, ,

1 2

, ,..., ,
, ,..., ,

...,
, ,...,

t t Kt

t t Kt
t i I k K t I K

I t I t IKt

XQ XQ XQ
XQ XQ XQ

XQ XQ

XQ XQ XQ

 ∈ ∈ ×

 
 
 = =
 
 
 

 (5) 
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The state transition probability is defined based on Equations (6)-(8); it represents the 
transition probability to period 1t +   after a decision is made in period t  . It is assumed that the 
capacity expansion and demand states are independent of each other, hence, Equation (5) can be 
obtained by simply multiplying Equations (6) and (7). 

( ) ( ) ( )

( ) ( )

1 1 1 1

1 1

1 1

 | , ( = , | , , )

( , | , , )

| , |

t t t t t t t t t t

t t t t t

t t t t t

P S S EM P S tm S tm EM

P tm tm EM

P tm tm EM P

    ξ   ξ    

                                ξ   ξ   

                                ξ ξ

+ + + +

+ +

+ +

= =

=

= ×

 (6) 

( )

( ) ( )( )
( )( )

1

( 1) 11 12 11 1211 1 12 1

1

| ,

( , ,..., ) | ( , ,..., ), ( , ,..., )

| ,

t t t

IK t t t IKt t t IKtt t

ikt iktik t
i k

P tm tm EM

P tm tm tm tm tm tm EM EM EM

P tm tm EM

  

       

       

+

++ +

+

=

= ∏∏

 
(7) 

( ) ( ) ( ) ( )( ) ( )( )
( )( )

1 1 21 1 2 1 1

1

| , ,..., | , ,...,

|

t t t t Ktt t K t

ktk t
k

P P

P

ξ ξ ξ ξ ξ ξ ξ ξ

                  ξ ξ

+ + + +

+

=

= ∏
 

(8) 

2.3. Reward function and optimality equation of the SDP model 

Given dynamic programming equations provided in Section 2.2., a deterministic embedded 
Linear Programming (LP) model is developed to calculate one-period immediate reward 
function by Expressions (9) – (15). Equation (9) is the reward function that estimates the acquired 
profit ( , )t t tP tm ξ  from the capacity allocation plan after considering the occurring expansion cost 

( )t tC EM when action tA  is taken in state tS . Equation (10) calculates the capacity expansion 

cost ( )t tC EM  considering the planning period when the product family is discontinued from the 
company's portfolio and the time the auxiliary tool is purchased. Expressions (11) – (15) forms 
the LP model of the capacity allocation model that seeks profit maximization ( , )t t tP tm ξ , as 
shown in Equation (11).  Constraints (12) define the demand-fulfillment condition. Constraints 
(13) set a restriction on the total production capacity of each plant in period t. Constraints (14) 
determine the available capacity for each product family at each plant in period t. The available 
capacity of each product family of each plant is defined as the original capacity iktca  plus the 

cumulative expansion capacity ikt iktm eu× . Constraints (15) indicate that the production variable 
accepts non-negative values. 

( , ) ( ) ( ) ( , ) ( )t t t t t t t t t t t tR S EM P S C EM P tm C EM   ξ= − = −  (9) 

( ) ( )min , 1
( )

1
k

t t ikt ikt
i k k

ph T t
C EM EM ec

ph t

  − +
  = × ×

  − +  
∑∑  (10) 
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( )( , )t t t ikt ikt ik ikt
i k

P tm Max pr XQ cr yeξ  = × × × 
 
∑∑  (11) 

Subject to: 

( )      ikt ik ikt kt
i

XQ cr ye de k Kξ× × ≤ ∀ ∈∑  (12) 

( )ikt ik it
k

XQ cf cw      i I× ≤ ∀ ∈∑  (13) 

     ,ikt ikt ikt ikXQ ca tm eu i I k K  ≤ + × ∀ ∈ ∀ ∈  (14) 

0     ,iktXQ i I k K  ≥ ∀ ∈ ∀ ∈  (15) 

Equation (16) is the finite-horizon optimality recursive equation that determines the best 
capacity expansion and allocation decisions in each planning period to maximize net profit. In 
this equation, *( )t tV S  represents the maximum net profit in state tS  after applying iktEM . This 
value is referred to as the immediate reward that can be obtained in period t  when compared 
with period 1t + . In this equation, *( )T TV S  represents the boundary condition in period T  that is 

equal to the current net profit value ( , )T T TP tm ξ , that is no decisions will be made until period 

T , *( ) ( ) ( , )T T T T T T TV S P S P tm ξ= = .  

{ }

1

* *
1 1

*
1 1 1

( ) max ( , ) ( )

max ( , ) ( | , ) ( )

t

t
t

t t t t t t tEM

t t t t t ikt t tEM S

V S R S EM E V S

            R S EM P S S EM V S

  

    
+

+ +

+ + +

 = +  

  = + × 
  

∑
 (16) 

Given the defined reward function and the optimality equation, the computational 
complexity evaluated by the backward induction algorithm is provided as Equation (17). The 
computational complexity of the optimality equation increases when more production plants ( I
), products ( K ), length of the planning horizon (T ) are involved. By S  representing the number 

of demand states, ik
ik

ik

ebub
eu

 
=  

 
 representing the maximum number of auxiliary tools for each 

product family at each plant, and assuming that all production plants have the potential of 
expanding capacity for all product families, 1 ,ikea i k  = ∀ ,  

( ) ( ) ( ) ( )
( 1)11 12

0 0 0 0
( 1) ... 1 1 ... 1 1

I K IKubub ub ub

complexity
i j k l

f T S i j k l
−

= = = =

= − × × + × + × × + × +∑∑ ∑ ∑  (17) 

Considering 2T = , 2K = , 2I = , 2S = , 2 ,ikub i k=   ∀ , the number of function evaluations 
amounts to 2592. The computational complexity will be less if there is a restricted limitation on 
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the production capacity of a product family at a certain manufacturing plant, i.e., if capacity 
cannot be expanded. Two dynamic programming algorithms are developed in the next 
subsections to solve the problem. 

2.3. k-Nearest-Neighbor-based ADP 

For stochastic dynamic capacity planning with many factories, products, and long planning 
periods, insufficient sampling and ignoring the states with a lower likelihood of occurrence may 
result in poor judgment based on the obtained solution. We propose to integrate the k-Nearest 
Neighbor method into the Simulation-based ADP to address this shortcoming. k-ADP consists 
of three major computational steps; First, the off-line ADP takes place. Next, the out-of-sample 
demand trajectories are generated. Finally, the computation is completed by evaluating the out-
of-sample demand trajectories using the k-nearest neighbor method. We now elaborate on the 
computational procedure shown in Figure 4(a). 
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Step1 Off-Line Approximation Dynamic Programming 

Step1.1 Stochastic Simulation  

Step3  Evaluation for Out-of-Sample Demand Trajectories 
within k-Nearest Neighbor Approach

Step2 Generate Out-of-Sample Demand Trajectories Sampling

Original Transition 
Probability

 Demand 
Trajectory from 

t=1 to t=T

Markov Chain Monte 
Carlo Simulation

Step1.1.1 Generate In-Sample Demand Trajectories (Paths) 

Original Transition 
Probability

 N Demand 
Trajectories

Step1.2  Identification of the subset of state and action spaces using 
the simulation data

Markov Chain Monte 
Carlo Simulation

Step1.2.1 Identification of Restricted State Space 

Step1.3 Bellman iteration (Forward Induction)
to find near-optimal policy 

Step1.1.2 Generate Suboptimal Heuristics Policies 

M Capacity 
Expansion Policies

MILP based 
Policies

Random 
Policies

Step1.1.3 Calculate Initial (Average) Profit-to-go Value by 
Stochastic Simulation

Step1.2.2 Identification of Implicit Subaction Space 

Step1.2.3 Update Transition Probability 
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Sampling

 Step 1.1 Identification of Full Demand Scenario for Next Period 

Step 6. Planning Stopping Criteria (Whether t=T, or not)  

Yes

End  
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Step 1.2 Demand Trajectories Generation for other Period  
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Step 2.  Stochastic Simulation within Heuristics Policies
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Step 2.2 Calculate Initial (Average) Profit-to-go Value by 
Stochastic Simulation
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the simulation data

Step 3.1 Identification of Restricted State Space 

Step 3.2 Identification of Implicit Subaction Space 
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Step 5. Out-of-Sample Demand Realized Generation for time=t 
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Realized for t

Monte Carlo
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(a) k-ADP (b) R-ADP 
Figure 4. The computational procedure of the proposed methods 
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2.3.1. Off-line approximation and the simulation procedure 

This phase consists of applying random simulations guided by a heuristic, identifying the 
constrained state and sub-action spaces using the resulting simulation data, and forward 
induction via Bellman Iteration. 

The procedure begins with stochastic simulation-based optimization that generates in-
sample demand trajectories, finds the suboptimal states (decisions), and calculates the 
performance value of the resulting states. To begin with the simulation procedure, different 
parameter values are generated randomly using Markov Chain to represent unique situations in 
each period. The stochastic simulation then helps select the promising states to control the size 
of the state space. In the resulting sub-space, the optimizer finds the state with the best decision 
path. This procedure provides the Bellman Iteration procedure with the initial Profit-to-Go value, 

( )tV S . In this procedure, applying various trajectories may result in the same state with different 

performance values. To address this situation, the average of the performance values of different 
state trajectories through the state is considered as the initial value. The initial value will be then 
considered in the procedure of finding the best decision trajectory. 

First, in-sample demand trajectories should be generated. The stochastic simulation model 
in this study considers two separate modules corresponding to the demand and capacity states. 
MCMCS is used to carry out the demand transition process, the so-called in-sample demand 
trajectory. Given 1,...,j N=  demand sample paths obtained by MCMCS, a random number 

( )0,1Uniform  is used to generate the Demand Transition Matrix ( DTM ) of probabilities and 

cumulative distribution function, shown in Expressions (18) and (19), respectively, to estimate 
a new demand state. 

       

LL LM LH

ML MM MH

HL HM HH

L M H
P P P L

DTM
P P P M

HP P P

 
=  

 
  
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 (19) 

 
For example, let assume a high demand situation in the current period and the transition 

probabilities of 0.5, 0.3, and 0.2 to high, medium, and low in the next period, respectively. Given 
the cumulative vector of probabilities, [ ]0.5 0.8 0.1 , if the randomly generated number is less 

than 0.5, the demand status in the next period remains high. Else, if the random number is 
between 0.5 and 0.8, the next period's demand declines to medium and if it is between 0.8 and 
1, demand in the new period will be low. The pseudocode of this procedure is provided in 
Appendix A. 
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Next, suboptimal search policies are defined. Given the resulting demand trajectory, the 
optimum capacity expansion decision, 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖(𝑡𝑡) , can be determined by solving the LP 
formulation presented in section 2.1. For complex decision environments, the outcomes of 
deterministic mathematical programming are not robust and various values for the uncertain 
factors should be considered to find the best course of action. The set of resulting optimal 
decisions is regarded as the action pool. This research proposes to consider random actions in 
addition to the LP outcomes to diversify the results. For this purpose, the capacity expansion 
restriction in Equation (4) is considered to find random feasible decisions. Given the maximum 
capacity of plant i  for manufacturing product k, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = 0, and the unit capacity for production 

of product k at plant i, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖, the expansion upper limit is ik

ik

eb
eu

 , the non-integer part will be 

rounded-up if larger-or-equal-to 0.5 and rounded-down if it is less than 0.5. Equation (20) is 
considered for generating random capacity expansion decisions. In this equation, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = 1 if 
plant i can add the auxiliary tool for manufacturing product k and 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = 0, otherwise. The upper 
limit expansion value is deducted from the randomly generated first-period expansion decisions 
to estimate the new expansion upper limit; this procedure continues until the last planning period, 
T. 
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Finally, the Profit-to-Go value should be measured. In the simulation procedure, the total 
number of state trajectories is N M× . The Profit-to-Go value of the resulting N M×  states can 
be calculated using Equation (21). The above procedure continues until period T , as illustrated 
in Figure 5. In this approach, ( , )t t tR S EM   represents the revenue in period t  considering the 
demand scenario and the cumulative expansion of the capacity state calculated using Equation 
(7). 

( ){ } ( )
T

0
t

0
V S ( ,   )t t t t

i
V ototal future expeS cted pr fi Rt S EM  

=

≅ = ∑  (21) 
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(a). Timing diagram 

 
(b). Computation procedure 

Figure 5. Schematic illustration of the studied dynamic capacity planning 

In this procedure, the performance value may vary from one state to another if different 
expansion decisions are allowed. If the capacity expansion state transferred to the next period 
remains the same, the performance value can be different due to a possible demand state 
transition in the next period. Considering that a particular state can be repeated n times, the 

average profit, ( )
( )V S

V S

n
t

n
t n

=
∑

, will be considered to represent the initial performance value, 

which will be used as input to the Bellman Iteration procedure. 

To identify the states and actions subsets, simulation data should be used. Given various 
demand scenarios and capacity expansion decisions, one should categorize the obtained 
simulation data into different subsets, as shown in Figure 6, to reduce the space size and the 
computational time. For this purpose, the scope of the state space selected for simulation data 
should be first determined. Next, the capacity expansion decision space should be selected 
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applying a heuristic policy. Finally, the transition probability defining the Markov Chain 
procedure should be updated. 

 
Figure 6. Categorization of the state space into subsets in the reduced state space 

From the resulting N M×  state trajectories, the states associated with a very small transfer 
probability value and those resulting in poor capacity expansion decisions should be filtered from 
the simulation procedure. Besides, the states that occur multiple times should be recorded once 
after integrating them. Theoretically, sufficient simulation runs are required to evaluate all 
possible states to find the best. However, it is not feasible to enumerate all states when the state 
space of the problem is large. Therefore, an approximation strategy is needed to ignore the states 
with an unlikely transition probability. For this purpose, the Bellman Iteration is applied, which 
requires the state transition probability in each period; the transition probability value for the 
states in the reduced state space must be updated. To reduce the computational complexity of 
Bellman Iteration, each state only considers the decisions in the sub-action space, ( )X kU , such 
that the number of decision-making sub-sets is equal to the number of states in the finite state 
set, as shown in Figure 7(a). Heuristic i ( ih ) will be selected when state ( )X k  applies its capacity 

expansion decision. The resulting set is presented by 1A { ,..., }tS
ia a=  where 

{ }[ ], 1,...,i i ta h S i M N= ∀ ∈ × . 
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(a). Initiating the transition diagram. 

 
(b). Updating the transition probability after each transition. 

 
(c). Bellman iteration procedure. 

Figure 7. State transition computational procedure in k-ADP 
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Figure 7(b) illustrates the procedure of updating the transition probability value for the states 
in the reduced state space. In the illustrative example, the capacity decision in the original state 
( tS ) may be transferred to three states ( 1 2 3

1 1 1, ,t t tS S S+ + + ) with the corresponding transition 

probabilities ( )1
1 1 ,t t tP S S EM+ , ( )2

2 1 ,t t tP S S EM+ , and ( )3
3 1 ,t t tP S S EM+ , respectively. Since 2

1tS +  

is not included in the reduced state space, it is necessary to recalculate the transition probability 
of tEM  in state tS  to the next state. For this purpose, the transfer probability of 1

1tS +  and 3
1tS +  

should be updated to 
(1)

1 t+1 t t
(1) (3)

1 t+1 t t 1 t+1 t t

P (S |S ,EM )
P (S |S ,EM ) P (S |S ,EM )+

 and 
(3)

1 t+1 t t
(1) (3)

1 t+1 t t 1 t+1 t t

P (S |S ,EM )
P (S |S ,EM ) P (S |S ,EM )+

, respectively. 

As a final procedure in Step 1, Bellman Iteration is used to calculate the optimal Profit-to-
Go function, ( )tV S . The Forward Induction method helps update the performance value in each 

state, which is different from the traditional dynamic programming that starts from the last period 
in Backward Induction. Bellman Iteration only calculates the Profit-to-Go value of the states 
included in the reduced state space. That is, the decision subspace in tSA  is identified from the 
set of best decisions instead of the entire decision space. The expected performance value of each 
state decision is finally calculated considering the probabilities resulting. Equation (22) is used 
to find the best decision considering various conditions in each period. The Bellman Iteration 
procedure continues until Vi  reaches a convergent state and the procedure terminates when the 
condition in Equation (23) is met. This procedure is visualized in Figure 7(c). 
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2.3.2. Generating out-of-sample demand trajectories  

Given the state and decision sub-sets defined and the best decision identified by the Bellman 
Iteration, MCMCS is applied to sample the demand path with the exception that the number of 
samples this time is greater than the number of samples in Step 1. The purpose is to investigate 
whether the best solution obtained through Step 1 is the same considering other situations, i.e., 
demand scenarios. 

2.3.3. Evaluating out-of-sample demand trajectories using the k-Nearest Neighbor method 

The Bellman Iteration method was applied to determine the best decision from the states that are 
present in the reduced state space in Step 1. However, it is not certain to know if better decisions 
can be identified from the non-present states. This study proposes to apply the k-Nearest 
Neighbor Approximation considering a two-stage method to address this shortcoming.     

k neighboring states of the existing states, which have similar characteristics, are first 
identified to help estimate the state(s) that may occur but has no decision information. 
Considering a distance parameter, δ, Equation (24) determines the area within which these 
neighbor states are situated. 



19 
 

{ }: ( ) ( )T
in sub in out in outk s S d s s s s δ= ∈ = − − <  (24) 

In this equation, inS  is the demand state from the set of existing states and outS  represents the 
demand state outside the reduced set of the states. Let consider an illustrative example of 2 plants, 
2 products, and two possible states of High-demand (H) and Low-demand (L). Assuming the 
initial state of ( )0,0,0,0 , the transitions and their corresponding decision in the reduced state 

space are 
No. State Action 

1 0 0 0 0 
0 0 0 0 
0 0 0 1 

2 0 0 1 0 1 0 0 0 
3 1 0 0 1 0 0 0 0 
4 1 0 1 0 0 1 0 0 
5 1 1 1 0 0 0 0 1 
6 1 1 1 1 0 0 0 0 

, where the actions associated with the demand state (0,0,0,0) are (0,0,0,0) and (0,0,0,1) and the 
other states correspond to only one action. 1.5δ =  is considered to search for the neighbor states 
considering the existing state. Assuming a high demand for the current period, the initial decision 
can be regarded as ( ),0,0,0,0H . In this situation, 4k =  results in the following set of neighbor 

states, { }(0,0,0,0), (0,0,1,0), (1,0,0,1), (1,0,1,0) . There may be situations in which no 

neighboring states can be found considering distance δ, hence, the decision remains unchanged. 
In doing so, accumulating the performance value of the selected state in period t  to the last 
period and reducing the corresponding cost results in the expected net profit value under the 
current demand trajectory. 

The next step is to evaluate the identified sub-action, i.e., the states that do not belong to the 
reduced state space under the current demand scenario, outS . Assuming that the decision is to 

expand the capacity in the current period, 1 ,t t tR S S EM+    represents the profit obtained after 

capacity allocation in the next immediate period and [ ],t tC S EM  is the capacity expansion cost. 

In this stage, the greatest profit can be identified using Equation (25). 
( ) [ ] [ ]{ }ttttt

AEM
t

estB EM,S|SREM,SCEmaxrgASA
tS

t
1+

∈
+=  (25) 

2.4. Rolling-Horizon-based Approximate Dynamic Programming 

As stated earlier in the section, insufficient sampling in approximate dynamic capacity planning 
for solving real-world problems may result in a poor estimation of the best decision, sub-optimal 
solutions. In this section, we propose the concept of Next-Period-Full-Demand-Sampling 
(BPFDS) based on which the R-ADP method is developed. R-ADP with Next-Period-Full-
Demand sampling combines both in-sample and out-of-sample (realized demand) to find 
solutions for robust capacity expansion and allocation decisions on a rolling-horizon basis. In 
this concept, demand appears as the state of measure in planning once it is realized. To reflect 
on this concept, at period t, all possible demand states are considered in the calculations when 
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the time is one period ( 1t + ) away from the current period while the in-sample demand state in 
the remainder of the periods (i.e., after 2t + ) is determined using MCMCS sampling. Then, once 
the period is transferred from t  to 1t +  and a specific out-of-sample demand scenario is realized 
in period 1t + , other demand scenarios that did not come to realization will no longer be 
considered in the new calculations. This approach not only reduces the state space but also 
ensures the validity of decisions in each period. The concept of Next-Period-Full-Demand-
Sampling is illustrated in Figure 8. 

 

  
(1) All possible demand states are considered in period t=1 (2) In-sample demand trajectory for the remaining periods using 

MCMCS sampling 

  
(3) Move to t=1 and a specific out-of-sample demand scenario H is 

realized 

(4) All possible demand states are considered in period t=2 and in-
sample demand trajectory for the remaining periods using MCMCS 

sampling 

Figure 8. Demand transition procedure of R-ADP in the rolling-horizon basis 
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In this example, it is assumed that the state of realized demand in 𝑡𝑡 = 1 is High, hence, all 
possible demand scenarios, i.e., {𝐿𝐿,𝑀𝑀,𝐻𝐻}  are considered for 𝑡𝑡 = 2 . Once the period is 
transferred from 𝑡𝑡 = 1 to  𝑡𝑡 = 2, the demand scenarios that did not occur are not considered in 
the new calculations. As shown in the figure, the demand state sampling from 𝑡𝑡 = 3 to 𝑡𝑡 = 6 is 
performed considering the possible scenarios and probabilities. The best decision under the high 
demand in 𝑡𝑡 = 1 can be obtained by measuring the performance value of each demand trajectory 
and selecting the best state. R-ADP consists of six major computational steps shown in Figure 
4(b). 

2.4.1. Stochastic simulations applying the concept of Next-Period-Full-Demand-Sampling 

First, the set of demand states in the period is defined. Considering the demand state as an 
uncontrollable variable, it is not possible to be certain about a particular scenario in the next 
period. To ensure the robustness of planning, exhausting all the possible scenarios in period 1t +  
is considered. In our example, three scenarios { }, ,L M H  will be considered to determine the 

demand state of the next period. Then, a demand trajectory for the remaining periods is 
generated. MCMCS is applied for sampling N demand trajectories in periods 2t +  until t T=  
based on the current situation, i.e., the demand state of period t . In this procedure, the states with 
a low probability of occurrence will not be included. 

2.4.2. Stochastic simulation applying heuristics policies 

The next step is to generate local heuristics policies. For this purpose, an LP-based relaxation 
policy and a policy based on selecting random actions are considered. This procedure is similar 
to that of k-ADP (Step 1.1.2). Then, the Profit-to-Go value should be calculated by applying the 
procedure detailed in Step 1.1.3 of k-ADP. 

2.4.3. Identifying the reduced state and sub-action spaces 

Applying a similar procedure to that of k-ADP (Step 1.2), Step 3 of R-ADP consists of (1) 
defining the scope of the reduced state space for simulations; (2) determining the capacity 
expansion decision space selected by the heuristic policy, and (3) updating the transfer probability 
values. 

2.4.4. Applying Bellman Iteration 

The Bellman Iteration procedure explained in subsection 2.3.3 is applied. In this procedure, the 
Profit-to-Go value of the finite state set resulting from Step 3 will be calculated. This process is 
limited to the sub-action space, ( )X kU , to search among the best set of decisions instead of 
enumerating all the possible decisions. In doing so, Bellman Iteration finds the best decision 
across different situations in each period using Equation 28. 

2.4.5. Generating the realized demand (out-of-sample) for the new period 

MCMCS is applied for sampling the demand scenarios for 1t + . Random numbers generated 
using ( )0,1Uniform  are used to determine the cumulative distribution function for determining 

the demand transition probability. 

2.4.6. Evaluating the termination criterion. 
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If t T< , proceed to the next period ( 1t t= + ) and repeat the computational procedure explained 
in subsection 2.4.1. Otherwise, i.e., t T= , the termination condition is met, and the algorithm 
process should be terminated. 

3. Numerical analysis 
This section considers instances of various configurations to evaluate the performance of k-ADP 
and R-ADP comparing them with the SDP approach as the baseline algorithm. All the 
experiments are conducted using C programming language and CPLEX on a personal computer 
with the following specs: Intel® Core (TM) i7-6700 CPU 2.8GHz, 4 GB of RAM, and Windows 
10 operating system. The numerical analysis begins with explaining the data set and the 
performance measures used for benchmarking the algorithms; continues with the analysis of the 
results and concludes the section with statistical analysis to confirm the findings. 

3.1. Performance measures 

The performance measures considered in this study are categorized into in-sample and out-of-
sample to evaluate the quality of the solutions. The in-sample measures consider Optimum Profit 
(OP ), Performance Gap ( PG ), Explored Space ( ES ), and the computational time ( CPU ). The 
out-of-sample measures take into account the Average Profit ( AP ), Performance Gap ( PG ), 
Standard Deviation ( StD ), and Policy Difference ( PD ). Profit is considered as the main 
operational measure to compare the resulting financial outcomes from the dynamic programming 
approaches. AP  is the average profit value over 100 sets of demand scenarios, which are 
estimated using Monte Carlo simulations. PG  determines the relative difference between the 
best results obtained by SDP with that of k-ADP and R-ADP, which can be calculated using 
Equation (26) where ADPP  demonstrated the optimum profit obtained by the developed k-ADP 
and R-ADP algorithms. The optimum solutions may recommend various strategies, i.e., through 
capacity expansion, to meet the market demand and maximize profit. The mean square of the 

difference between k-ADP and SDP strategies, ( )2

1:

kNNADP SDP

d Dime o
d

nsi n
dPD S S

=

= −∑ , is 

considered to analyze the trade-off between various optimal solutions and evaluate their quality. 

ADP SDP

SDP

P PPG
P

−
=  (26) 

From a computational perspective, ES  determines the effectiveness of the algorithm 
considering the total number of states it has searched to arrive at the result. Besides, CPU time 
is used to compare the efficiency of the solution algorithms. Given the stochasticity of the results 
obtained by k-ADP and R-ADP and the dependence of the procedure on the simulation outcomes, 
100 independent runs are considered for out-of-sample experiments to analyze the results. For 
this purpose, average ( Ave ), minimum ( Min ), and maximum ( Max ) values determine the average, 
worst, and best outcomes obtained in the random process, respectively. 

3.2. Results analysis 
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Five instances are considered to evaluate the performance of the developed algorithms against 
the baseline algorithm, SDP. Specifications of the test instances are summarized in Table 1. First, 
the outcomes of an illustrative small instance are analyzed in detail. A real-world example comes 
next to evaluate the models' practicability. Finally, three large-scale exemplary instances are 
presented to shed light on the computational capabilities of the developed dynamic programming 
approaches in real-time capacity planning for industrial applications. The model parameters 
summarized in Table 2 are considered to analyze the results and discuss their implications. 

Table 1. Specification of the test instances. 

Instance 
Setting 

( , , )f p t  
Demand Over 

Periods 
Demand 

State 
Capacity 
Variable 

Capacity 
State 

Total no. of 
states 

No. of 
actions 

1 2,2,4 Homogenous 2 4 16 96 16 
2 2,5,6 Homogenous 3 10 7.87×103 1.18×106 7.87×106 
3 2,5,6 Heterogenous 3 10 7.87×103 9.57×107 7.87×106 
4 3,6,6 Homogenous 3 18 5.17×108 7.75×109 5.17×108 
5 3,7,6 Homogenous 3 21 1.39×1010 2.09×1011 1.39×1010 

Table 2. Experimental factors considered to solve the capacity planning problem. 
Instance Factor  Level 

Small 

Number of Demand Trajectory NDT 2 6 10 14 18 
Number of Expansion Trajectory  NET 2 6 10 14 18 

Search Distance of k-Nearest Neighbor δ 1 2 3 4 5 
The policy of Expansion Trajectory PET LPR RND Mix - - 

Large 

Number of Demand Trajectory NDT 10 20 30 40 50 
Number of Expansion Trajectory NET 10 30 50 70 90 

Search Distance of k-Nearest Neighbor δ 1 2 3 4 5 
The policy of Expansion Trajectory PET LPR RND Mix - - 

3.2.1. Illustrative instance 

The first case consists of two array manufacturing plants each of which producing two product 
families, A and B. With the demand becoming known within the planning period, the capacity 
allocation and expansion decisions should be adjusted dynamically to maximize the net profit. 
The course of the planning period is three months, i.e., { }0,1,2,3T = . Two scenarios of more-

than-average (High; H ) and less-than-average (Low; L ) demand intensity is considered for 
each period, where homogenous demand changes for the product families are assumed, that is 

{ }, , t Tt H Lξ ∈ ∀ ∈ . The state transition and the computational complexity are described below.  

Assuming a high-demand situation for the current period, demand for the next period 
remains high with a probability of 0.7 and may degrade to low with a probability of 0.3. 
Alternatively, if the current period is demonstrating a low-demand situation, the next period's 
demand may remain low with a likelihood of 0.8 or change to high with a likelihood of 0.2. From 
the supply viewpoint, if plant 1 increases its capacity for producing product A during period t , 
the production capacity increases starting from the next period. It is assumed that the production 
capacity cannot decrease after a capacity expansion decision. It is also assumed that the 
production capacity of one product at one plant can be expanded only once, that is 

{ } TtKk EM ikt ∈∀∈∀∈∀∈ ,I,i  1,0 . Given 4 capacity expansion situations for each of 2 plants 
and 2 product families, 2 demand change scenarios in each period, and 3 planning periods, a total 
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of 4 2 2 2 3× × × × =  96 states have resulted. The computational complexity of the instances can 
be calculated using Equation (17); this value for the illustrative small instance amounts to 486.  

Rollout and Bellman’s approaches are considered to solve this instance using k-ADP and R-
ADP. Table 3 summarizes the results for in-sample and out-of-sample experiments considering 
the small-scale instance. It is observed that k-ADP, using the Bellman approach, obtained an 
optimal solution like that of SDP while searching a small fraction, about 13 percent, of the 
solution spaces; k-ADP required one-third of the computational time required by SDP. k-ADP 
using the Rollout approach also searches about 13 percent of the solution space and demonstrated 
a computational time of about two-thirds of SDP. Considering the out-of-sample instances, both 
k-ADP and R-ADP obtain the same results as SDP and represent no Policy Differences. 

Table 3. Results of solving the illustrative instance (in-sample and out-of-sample). 
Category Method OP PG (%) ES % ES CPU (sec) 

In
-s

am
pl

e SDP 
- 49568 0.00 96 100.00 3 

k-ADP Bellman 49568 0.00 13 13.54 1 
Rollout 49894 0.66 13 13.54 1 

O
ut

-o
f-

sa
m

pl
e Method AP PG (%) StD PD 

SDP - 48,938  -  2,904  - 
k-ADP Bellman 48,938 0.00 2,904   0.000  

Rollout 48,938 0.00 2,904   0.000  
R-ADP Bellman 48,938 0.00 2,904   0.000  

Rollout 48,938 0.00 2,904   0.000  
OP = Optimum Profit; EP = Average Profit; PG = Performance Gap; StD = Standard Deviation; PD = Policy Difference. 

Table B1 in Appendix B provides a detailed analysis of in-sample and out-of-sample 
solutions obtained by k-ADP considering various demand and expansion trajectories. For the in-
sample case, it is observed that with an increase in the demand trajectory, the Average Profit of 
the solution obtained by k-ADP approaches that of SDP, hence, the Solution Gap approaches 
zero. From a computational perspective, the changes in the number of searched states resulting 
from an increase in the number of demand trajectories depend on the applied search policy. For 
example, under the LP-relaxation policy, the number of searched states increases with an 
increase in the number of demand trajectories and gets converged after a certain point. 

It is also observed that the Average Profit resulting from k-ADP approaches that of the best 
solution obtained by SDP when an increase in the number of capacity expansion trajectories is 
accompanied by a suitable search policy, i.e., LP-relaxation or mixed. Another notable 
observation is that applying the mixed policy, i.e., LP-relaxation and Random explores more 
states than applying LP-relaxation or Random policies. Overall, an increase in the number of 
capacity expansion trajectories increases the total number of searched states while under the LP-
relaxation policy, this value remains the same. Considering the search approach, if LP-relaxation 
or mixed policies are used, k-ADP obtains the same optimal solution found by SDP. However, 
there is a gap between the optimal solutions obtained by k-ADP and that of SDP when the 
Random policy is applied; this gap is smaller when greater demand or capacity expansion 
trajectories are considered.  
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In out-of-sample experiments, the optimal solutions found by k-ADP using both Bellman 
and Rollout approaches have the same Average Profit as that of SDP. Regardless of the number 
of demand trajectories, k-ADP under LP-relaxation or Mixed policies obtains the same Average 
Profit as SDP. However, using a Random policy for sampling the capacity expansion trajectory 
results in a Performance Gap of 0.57 percent where the demand trajectory is increased to its 
highest. Besides, it is observed that using LP-relaxation or Mixed approaches results in no Policy 
Differences regardless of the number of demand trajectories, meaning that the capacity 
expansion decisions found by k-ADP have the same quality as that of SDP. The resulting 
capacity expansion decision appears to be different and less likely to be optimum when the 
Random approach for sampling the capacity expansion trajectories is applied. 

Considering various capacity expansion trajectory numbers, k-ADP obtains solutions with 
an Average Profit equal to that of SDP in all the configurations under LP-relaxation and Mixed 
policies. In cases of applying a Random policy, the Performance Gap between k-ADP and SDP 
decreases to a negligible value as the number of capacity expansion trajectories increases. In 
terms of Policy Difference, the configurations under LP-relaxation and Mixed policies obtain 
solutions as good as the solutions obtained by SDP regardless of the number of capacity 
expansion trajectories. Applying Random policy results in a non-zero Policy Difference that 
declines with an increase in the capacity expansion trajectories. Overall, using LP-relaxation or 
Mixed policies, k-ADP finds high-quality solutions while the Random policy results in less-
favorable solutions.  

In the analysis of results considering the Search Distance of k-ADP in Table 4, a larger δ 
value indicates that there are more neighboring states to the optimum result, hence, more options 
are available for the decision-maker. The k-ADP obtained an optimal solution similar to SDP in 
in-sample experiments when LP-relaxation and mix heuristic policies are applied, while the out-
of-sample experimental outcomes are not influenced by the δ values. Applying a random 
heuristic policy in either experiment makes it unlikely to obtain good solutions because it selects 
the upper limit of the capacity expansion trajectory. Considering the out-of-sample demand path, 
larger δ values demonstrate a higher likelihood of finding the best decision. It is also observed 
that the Performance Gap and Policy Difference become smaller with an increase in δ values. 
Analyzing the performance of R-ADP in out-of-sample experiments, which is presented in Table 
5, we observed that it finds the same average profit, 48938, with a standard deviation of 2.904 
regardless of the number of demand and expansion trajectories.  

Table 4. Results of the illustrative instance solved by k-ADP for various search distances. 
Specification Performance 

PEP SD AP StD PG (%) PD 
Random 1 48,739 2,904 0.408 1.00 
Random 2 48,839 2,857 0.204 0.50 
Random 3 48,839 2,857 0.204 0.50 
Random 4 48,839 2,857 0.204 0.50 
Random 5 48,839 2,857 0.204 0.50 

LPR 1 48,938 2,904 0.000 0.00 
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LPR 2 48,938 2,904 0.000 0.00 

LPR 3 48,938 2,904 0.000 0.00 

LPR 4 48,938 2,904 0.000 0.00 

LPR 5 48,938 2,904 0.000 0.00 

Mix 1 48,938 2,904 0.000 0.00 
Mix 2 48,938 2,904 0.000 0.00 
Mix 3 48,938 2,904 0.000 0.00 
Mix 4 48,938 2,904 0.000 0.00 
Mix 5 48,938 2,904 0.000 0.00 

PEP = Policy of Expansion Path; SD = Search Distance; AP = Average Profit; StD = Standard Deviation; PG = Performance Gap; PD = Policy 
Differences; Mix = Combination of Random and LP-relaxation. 
 

Table 5. Result analysis of the illustrative instance considering various trajectories (R-ADP). 
Factor No. NDT NET AP StD PG PD 

N
D

T 
ch

an
ge

s 1 2 2 48,938  2,904  0.0000 0.00  
2 6 2 48,938  2,904  0.0000 0.00  

3 10 2 48,938  2,904  0.0000 0.00  
4 14 2 48,938  2,904  0.0000 0.00  

5 18 2 48,938  2,904  0.0000 0.00  

N
ET

 c
ha

ng
es

 1 6 2 48,938  2,904  0.0000 0.00  
2 6 6 48,938  2,904  0.0000 0.00  

3 6 10 48,938  2,904  0.0000 0.00  
4 6 14 48,938  2,904  0.0000 0.00  

5 6 18 48,938  2,904  0.0000 0.00  
NDT = Number of Demand Trajectory; NET = Number of Expansion Trajectory; AP = Average Profit; StD = Standard Deviation; PG = 
Performance Gap (%); PD = Policy Differences. 

3.2.2. Real-world instance 

The real-case example is a supply chain from the TFT-LCD industry with 2 Array manufacturers 
that accommodates 5 product families, A, B, C, D, and E. Specifications of the case study are 
summarized in Table 6. A planning period of 6 months is considered, and demand is divided into 
high- (H), moderate- (M), and low-demand (L). The probability of high demand remaining high 
is 0.6, while it may transition to moderate and low with probabilities of 0.3 and 0.1, respectively. 
The demand states and the transition probabilities are assumed to be similar for all product 
families within each planning period. Given two factories and five product families, there are 
2 5× = 10 capacity variables in each state. Each factory can expand the production capacity up 
to 2 sets of masks for each product family with an exception for the first array manufacturer that 
can expand the production capacity of product family D to 3 sets. Capacity expansion cost for 
every product/array case is estimated at 400,000 USD per mask. Given four options for the 
capacity variable, i.e., an expansion for 1,2, or 3 units, there are 9 13 4× = 78,732 capacity states. 
Considering three demand states makes a total of 78732 3× = 236,196 combinations for each 
period and a total of 236196 5× = 1,180,980 states for the entire planning course. 
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Table 6. Specifications of the TFT-LCD case company. 
Input Factory Product 1 2 3 4 5 6 

Pr
of

it 
M

ar
gi

n 
(U

SD
) 

in
 th

e 
pa

st
 m

on
th

s 

Array 1 

14.1" (A) 18 18 18 18 18 18 

20.1" (B) 18 18 18 18 18 18 

22.0" (C) 20 20 20 20 20 20 

32.0" (D) 20 20 20 21 21 21 

37.0" (E) 18 18 18 19 19 19 

Array 2 

14.1" (A) 18 18 18 18 18 18 

20.1" (B) 18 18 18 18 18 18 

22.0" (C) 20 20 20 20 20 20 

32.0" (D) 20 20 20 21 21 21 

37.0" (E) 18 18 18 19 19 19 

Pr
od

uc
tio

n 
C

ap
ac

ity
 (S

he
et

) 
in

 th
e 

pa
st

 m
on

th
s Array 1 

14.1" (A) 16,000 16,000 16,000 16,000 16,000 16,000 

20.1" (B) 12,000 12,000 12,000 12,000 12,000 12,000 

22.0" (C) 12,000 12,000 12,000 12,000 12,000 12,000 

32.0" (D) 0 0 0 0 0 0 

37.0" (E) 12,000 12,000 12,000 12,000 12,000 12,000 

Array 2 

14.1" (A) 18,000 18,000 18,000 18,000 18,000 18,000 

20.1" (B) 16,000 16,000 16,000 16,000 16,000 16,000 
22.0" (C) 16,000 16,000 16,000 16,000 16,000 16,000 
32.0" (D) 18,000 18,000 18,000 18,000 18,000 18,000 

37.0" (E) 16,000 16,000 16,000 16,000 16,000 16,000 

 
Table 8 summarizes the results from the in-sample experiment. The SDP algorithm had to 

search from 1,180,980 feasible states with 67 10×  function evaluations to find the best solution. 
The experiments show that k-ADP finds a solution very similar to that of SDP by searching only 
0.05 percent of the state space, resulting in the average CPU Time of 51 seconds, which is 1.52 
percent of the computational time required by SDP. Applying Rollout, k-ADP does not estimate 
the expected performance under various decisions, hence, the result is worse than applying 
Bellman. Table 7 also presents the out-of-sample experimental results. Regardless of applying 
Bellman or Rollout approaches, k-ADP obtains an average profit similar to that of SDP. The 
worst results from the Bellman approach are slightly better due to the applied repetitive searches. 

 
Table 7. Performance analysis for in-sample and out-of-sample of the real-world instance. 

Experiment Method Measure OP PG ES % CPU 

In
-s

am
pl

e 

SDP - - 119,885,311 -  1,180,980 -  3353 
k-ADP Bellman Ave. 120,139,859 4.71 555  0.05 44  

Max 128,915,871 7.27 598  0.05 47  
Min 107,228,869 10.56 501  0.04 37  

Rollout Ave. 119,865,518 0.29 555  0.05 46  
Max 120,961,400 0.90 598  0.05 51  
Min 118,528,944 1.13 501  0.04 42  

O
ut

-
of

-
sa

m
p

le
 Method Measure AP PG StD PD 

SDP - - 116,273,848 - 10,129,902 - 
k-ADP Bellman Ave. 116,223,198 0.052 10,121,604 1.516 
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Max 116,273,848 0.000 10,129,902 0.000 
Min 116,166,662 0.110 10,093,544 2.000 

Rollout Ave. 116,256,372 0.042 10,131,198 1.245 
Max 116,273,848 0.000 10,129,902 0.000 
Min 116,193,264 0.092 10,136,479 2.000 

R-ADP Bellman Ave. 118,078,861 1.592 10,083,269 2.460 
Max 119,320,627 2.620 10,067,413 2.449 
Min 116,212,500 0.046 10,094,447 2.269 

Rollout Ave. 116,211,860 0.053 10,092,854 2.370 
Max 116,221,340 0.045 10,093,183 2.279 
Min 116,201,474 0.062 10,093,178 2.436 

OP = Optimum Profit; PG = Performance Gap in percentage; ES = Explored States; AP = Average Profit; PD = Policy Difference; OP = Optimum 
Profit; CPU = Computational time in seconds. 

More details concerning the performance of k-ADP are provided in Table B2 of Appendix 
B. Assuming that the capacity expansion trajectory is a constant at 90 sets, the results approach 
those of the SDP when the demand path trajectory increases. In this situation, the mixed search 
policy results in the best outcomes, while applying LP-relaxation or Random search policy alone 
widens the gap between the obtained average profit and the best solution. Besides, an increase 
in the number of demand path trajectories results in longer computational times due to wider 
search scopes. It is worthwhile noting that the number of searched states and the computational 
time in the case of applying LP-relaxation is significantly shorter than mixed and random 
situations. 

Considering a constant value for the number of demand trajectories while applying a mixed 
search policy, the quality of the obtained solution approaches that of the best solution obtained 
by SDP as the number of capacity expansion paths increases. When LP-relaxation is applied, the 
search procedure is not influenced by random sampling, hence, the obtained solution does not 
show significant differences as the number of capacity expansion trajectories increases. By 
applying the random policy, the chance factor has an impact on the search procedure and results 
in an unstable pattern. Concerning the number of search states and the computational time, 
applying LP-relaxation is more efficient than the Mixed and Random policies because an 
increase in the number of samples extends the search procedure. 

Table 8 summarizes the optimal expected profit obtained under various search policies. The 
results under the Random policy are relatively worse compared to the other two approaches. 
Random search policy generates random solutions given the constraints, while LP-relaxation 
considers the demand trajectory extracted by simulations and applies the linear programming 
approach, hence, the solutions obtained are closer to those obtained by SDP. With an increase in 
the number of samples, the solution gap under LP-relaxation becomes smaller and approaches 
that of SDP. The Mixed policy results in better outcomes compared to the LP-relaxation 
approach because it combines the strength of LP-relaxation with the exploration capability of 
Random policy, which enables the algorithm to search for decisions that were ignored using the 
LP-relaxation approach. 

Table 8. Result analysis of the real-world instance considering search distance (k-ADP). 
Specification Performance 

PEP SD AP StD PG (%) PD 
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Random 1 115,606,344  10,135,741  0.574 5.45  
Random 2 115,606,344  10,135,741  0.574 5.45  

Random 3 115,606,344  10,135,741  0.574 5.45  
Random 4 115,606,344  10,135,741  0.574 5.45  

Random 5 115,606,344  10,135,741  0.574 5.45  

LP-relaxation 1 116,166,662  10,136,479  0.092 2.00  

LP-relaxation 2 116,166,662  10,136,479  0.092 2.00  

LP-relaxation 3 116,166,662  10,136,479  0.092 2.00  

LP-relaxation 4 116,166,662  10,136,479  0.092 2.00  

LP-relaxation 5 116,166,662  10,136,479  0.092 2.00  

Mix 1 116,005,884  10,508,970  0.230 3.26  
Mix 2 116,079,474  10,514,495  0.167 3.00  

Mix 3 116,124,555  10,515,534  0.128 2.82  
Mix 4 116,158,999  10,471,488  0.099 2.77  

Mix 5 116,158,999  10,471,488  0.099 2.01  
PEP = Policy of Expansion Path; SD = Search Distance; AP = Average Profit; StD = Standard Deviation; PG = Performance Gap; PD = Policy 
Differences; Mix = Combination of Random and LP-relaxation. 

Analyzing the out-of-sample experimental results demonstrates that an increase in the 
number of demand trajectories narrows down the gap between the average profit obtained by k-
ADP and SDP when the capacity expansion trajectory is fixed at 90 sets and the Mixed and LP-
relaxation search policies are applied. In the case of fixing the demand trajectory at 20, the results 
obtained by LP-relaxation and Mixed search policies are not influenced by the number of 
samples for the capacity expansion trajectory but improve the performance of the Random search 
policy. It is also observed that an increase in the number of demand trajectories or the number 
of the capacity expansion trajectory decreases the policy difference when a mixed search 
approach is applied. In this situation, it may be plausible to increase the net profit by purchasing 
more capacity expansion masks for different factories and products. From a search policy 
perspective, k-ADP's performance with the Mixed search approach is closer to that of SDP, and 
the Random approach results in the least stable outcomes due to the use of random numbers. The 
results considering changes in the Search Distance are reported in Table 9. It is observed that 
selecting a larger δ in k-ADP results in a greater number of neighbor states in the initial Markov 
Chain Monte Carlo Simulation. However, the difference between the neighboring states and the 
ignored state will be larger, and the decision may not be suitable for the ignored state. Overall, 
setting a suitable Search Distance is of high significance for an effective and efficient solution 
procedure. 

This section considers 2 plant areas, 5 product families, and 6 phases during the planning 
period, and SDP can still find the best solution for capacity planning. Compare it with the results 
of the R-ADP proposed in Chapter 4 of this research. The purpose is to verify the model. It lies 
in the effectiveness and robustness of solving practical problems. The conclusions obtained from 
the experiment are as follows. Results obtained by R-ADP are provided in Table 9. Given a fixed 
number of samples for the capacity expansion trajectory, the average net profit value obtained 
by R-ADP gradually approaches that of SDP with an increase in the number of samples for 
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demand trajectory and shows a state of convergence when it reaches 50. Under the same 
condition, Policy Difference gradually decreases. It is also evident that an increase in the number 
of samples for demand trajectory under fixed expansion trajectory increases the computational 
time. Considering changes in the number of samples for capacity expansion trajectories when 
the demand path is fixed at 50, the average net profit value obtained by R-ADP gradually 
approaches that of SDP and the Policy Difference decreases. Expectedly, an increase in the 
number of samples for capacity expansion trajectories imposes a longer computational time. 

Table 9. Result analysis of real-world instance considering various trajectories (R-ADP). 
Factor No. NDT NET AP StD PG PD CPU 

N
D

T 
ch

an
ge

s 1 10 90 116,218,572 10,082,420 0.048% 2.450 22206 
2 20 90 116,220,662 10,100,319 0.046% 2.298 28920 

3 30 90 116,225,517 10,097,355 0.042% 2.294 39720 
4 40 90 116,225,694 10,094,124 0.041% 2.224 50460 

5 50 90 116,227,040 10,096,895 0.040% 2.211 60900 

N
ET

 c
ha

ng
es

 1 50 10 116,186,233 10,079,647 0.075% 2.402 33600 
2 50 30 116,196,619 10,090,116 0.066% 2.401 38820 

3 50 50 116,201,533 10,095,475 0.062% 2.365 45531 
4 50 70 116,216,478 10,106,088 0.049% 2.255 56742 

5 50 90 116,227,040 10,096,895 0.040% 2.211 60900 
NDT = Number of Demand Trajectory; NET = Number of Expansion Trajectory; AP = Average Profit; StD = Standard Deviation; PG = 
Performance Gap (%); PD = Policy Differences; CPU = Computational time (Sec). 

When comparing the performance of the developed ADP methods, R-ADP outperforms k-
ADP for the number of samples under a certain value regardless of changes in the demand or 
capacity expansion trajectories. When the number of samples goes beyond a certain value, k-
ADP performs significantly better than R-ADP. Overall, performance improvement in k-ADP 
with changes in parameters is more apparent, that is, R-ADP is less sensitive to parameter 
changes when compared to k-ADP. 

3.2.3. Large instances 

Results analysis of the large instances is provided in Table 12. Investigating the first large 
instance with 2 factories, 5 product families, 6 planning periods, and independent demand status, 
it took about 2.5 days for SDP to find the best solution, while the R-ADP and k-ADP needed 
1.31 and 0.29 days, respectively, to obtain a very close approximation to the optimal capacity 
expansion solution. It is observed that k-ADP performs better in terms of Performance Gap and 
Policy Difference when compared to R-ADP. The experiments also revealed that SDP is not 
capable of solving instances with six and more than six products in a reasonable time. 

 
Table 10. Numerical results of the solved large-scale instances. 

Instance Method AP PG (%) StD PD CPU 

A 
SDP 123,353,000 - 95,659,380 - 262,656 

k-ADP 123,185,120 0.015 4,477,929 1.821 25,760 
R-ADP 122,971,353 0.189 4,431,834 2.876 114,008 
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B 
SDP N/A - N/A - >1 week 

k-ADP 155,733,795 - 19,033,661 - 5,036 
R-ADP 155,224,449 - 18,817,809 - 116,812 

C 
SDP N/A - N/A - >1 week 

k-ADP 177,121,930 - 20,823,590 - 13,896 
R-ADP 169,524,771 - 20,823,590 - 201,600 

AP = Average Profit; PG = Performance Gap; StD = Standard Deviation; PD: Performance Difference; CPU = Computational time in seconds. 

The computational complexity of the test instances and the performance of the algorithms 
in terms of computational time are analyzed in Table 11. The analysis shows that SDP requires 
extensively more computational time compared to k-ADP and R-ADP in all the test instances. It 
is observed that growth in the number of states and decision variables makes it prohibitive to 
find an optimal solution using SDP. Taking the case comprising 2 plants, 5 product families, and 
6 planning periods with heterogeneous demands as an example, SDP required approximately 2.5 
days to find the optimum solution in a full-enumeration method. Searching only 0.031 percent 
of the entire solution space, the k-ADP method required less than 0.1 percent of the time required 
by SDP to find the best solution. In larger instances, SDP is no longer capable of obtaining the 
optimum result in a reasonable time. Given the situation with 3 production sites, 6 product 
families, and 6 planning periods with homogeneous demands, where a total of 97.75 10×  states 
were identified, it takes about 1.4 hours for k-ADP to obtain a set of near-optimal capacity 
expansion solutions. Finally, considering the problem of 3 plants, 7 product families, 6 planning 
periods, and homogeneous product demands, which results in a total of 112.09 10×  states, k-ADP 
yielded the near-optimum solution in 3.86 hours and SDP failed to finish computations in a 
reasonable time. For solving the largest instance comprising 3 factories, 7 product families, and 
6 planning periods, R-ADP required 2.33 days of computation time while k-ADP yields a slightly 
better solution in only 0.16 days. Overall and considering k-ADP and R-ADP’s performance, 
one can conclude that the developed dynamic programming approaches are superior to SDP.  

Table 11. Computational performance analysis of the algorithms (best in bold). 

Instance 

Configuration 
(Site, product, 

period, 
demand) 

State 
Space 

Action 
Space 

Computational 
complexity 

Computational time (Sec) 

SDP k-ADP R-ADP 

1 2,2,4, 
Homogeneous 96 16 486 3 1 30 

2 2,5,6, 
Homogeneous 1.18×106 7.87×103 7.00×106 3,353 46 28,920 

3 2,5,6, 
Heterogeneous 9.57×107 7.87×106 5.67×108 262,656 25,760 114,008 

4 3,6,6, 
Homogeneous 7.75×109 5.17×108 1.18×1013 >1 

week 5,036 116,812 

5 3,7,6, 
Homogeneous 2.09×1011 1.39×1010 2.54×1015 >1 

week 13,896 201,600 

3.3. Statistical results 

The developed approximation algorithms, k-ADP and R-ADP, demonstrated to be significantly 
more efficient than SDP. It is also observed that k-ADP requires a shorter computational time 
compared to R-ADP. Statistical analysis is conducted to investigate whether the solutions' quality 
of k-ADP and R-ADP are significantly different considering various situations. For this purpose, 
a statistical test of significance is applied considering various dimensions, i.e., demand changes, 



32 
 

initial production capacity, and expansion cost. Statistical results are illustrated in Table 14. In 
situations characterized by low and high-profit margins, there is a significant difference between 
the performance of the algorithms with k-ADP obtaining better results compared to R-ADP. 
Considering the initial capacity as the gauge in Table 12, it is confirmed that k-ADP outperforms 
R-ADP. The same claim is true when low and high-capacity expansion costs are considered. The 
resulting p-values confirm the above assertions. 

Table 12. Computational performance analysis of the algorithms (best in bold). 

Consideration Instance 
Paired difference (k-ADP Vs. R-ADP) 

T p-value 
N Mean StD SEM 

Profit  
Margin 

Low 1200 121667 325909 9408 12.93 0.000 

High 1200 31149.9 162451.5 4689.6 6.64 0.000 

Initial 
Capacity 

Low 1200 70626.1 229091.2 6613.3 10.68 0.000 

High 1200 82190.8 290098.9 8374.4 9.81 0.000 

Expansion 
Cost 

Low 1200 17281.7 49592.5 1431.6 12.07 0.000 

High 1200 135535 356721 10298 13.16 0.000 

Demand 
Transition 

Stable 1200 -6829 71640.4 2532.87 -2.7 0.007 

Negative 1200 132848 394079 13933 9.53 0.000 

Positive 1200 -167.9 94825.6 3352.6 -0.05 0.960 

Paired t-test results in the Table also confirm that there is no significant difference between 
the performance of k-ADP and R-ADP when dealing with industry situations with positive 
demand transitions. This result highlights the role of randomness in planning unstable market 
situations. Given that the results obtained by k-ADP are generally better than those of R-ADP, 
one can conclude that k-ADP is more effective and computationally more efficient. k-ADP can 
be considered as a strong benchmark for further developments and dynamic programming 
applications in other strategical, tactical, and operational decisions in the supply chain.  

Our findings have several implications for the manufacturing supply chains. With the 
customers expecting more diverse products that are cheaper, delivered on time, and are often 
ordered more frequently and in smaller quantities, companies are increasingly under pressure to 
adjust the product mix and pursue just-in-time production. In this situation, market volatilities 
make capacity adjustment decisions inevitable. Production managers need flexible capacity 
planning platforms for timely adjustment in the number of workforce and machinery. The major 
value of the proposed approach is in its ability to solve large-scale problems much more 
efficiently compared to the state-of-the-art. Besides, the robustness of the approach improves the 
reliability of the outcomes for well-informed capacity management decisions.  

Production capacity planning for a system that is horizontally integrated and has a rather 
high demand mix helps reduce the chances of sub-optimal decisions. As a prime example of 
having horizontally integrated systems, while a larger capacity for one machine or production 
plant may result in better local outcomes, it may not necessarily result in a global best. Having 
that said, the timely adjustment of the production capacity across distributed manufacturing 
systems not only reduce the odds of lost orders and backlogs, but also improves cost-efficiency, 
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particularly for inventory management and inbound logistics. On the other hand, it can reduce 
the workload for better production scheduling outcomes and shorter cycle times, while ensuring 
high utilization of the resources. Besides, with Industry 5.0 emphasizing more sustainable and 
human-centric production solutions, a robust production capacity planning platform will have 
implications for reducing the overtime work that is inevitable in overly tight production 
capacities. In this situation, a combination of flexible production capacity with new technologies 
may be crucial for manufacturers that face high demand volatilities. Concerning demand mix 
volatilities, taking into account the similarities between products may further improve the 
outcomes of production capacity planning decisions. For this purpose, learning-based techniques 
can help improve the realization of these similarities and facilitate well-informed capacity 
allocation decisions. 

4. Concluding remarks 

As a major supply chain decision, production capacity planning and allocation establish the 
tactical frame for the company's mid- to long-term operations. Taking into account the 
uncertainties and volatility of markets, capacity adjustment as an operational strategic decision 
enables the company to stay competitive regardless of the sort of competitive strategy they 
pursue. This study explored the capacity planning decisions by developing two computationally 
efficient ADP methods. Using real data from the TFT-LCD industry and several large-scale 
instances, the efficiency of the proposed approaches for saving computational resources and real-
time decision analysis were examined.  

Considering 100 sets of out-of-sample demand scenarios each of which featuring a 
complexity of 85.67 10×  function evaluations, k-ADP and R-ADP algorithms explored only 
0.031% of the solution space to find the (near-) optimal outcome requiring 9.81 and 43.41 
percent of the computational time required by the benchmark algorithm, respectively. We 
observed that with an increase in the search distance up to a certain extent, k-ADP's result 
approaches the true average net profit value obtained by the full-enumeration approach. We also 
showed that the developed methods can effectively solve the instances that cannot be solved 
using SDP. Overall, the numerical results indicated that k-ADP and R-ADP are significantly 
more effective than SDP. Besides, R-ADP is less sensitive to parameter changes, which makes 
it a more robust approach. 

This study can be extended in several directions. The present study considered the price of 
each product family as a fixed value, while in practice product margins may vary according to 
demand, which may result in overly optimistic or pessimistic capacity planning decisions. As 
the first possible direction for future research, one can consider price uncertainty to explore the 
influence of the demand-price relationships on production capacity decisions. From the 
Operations Research viewpoint, the model's performance value can account for risk-related 
measures. As a second suggestion for future research, the minimum profit that can be obtained 
from the capacity planning decision to measure different external factors considering a tolerable 
confidence level. In this situation, the simulation results under the mutated environment improve 
the robustness of the model. Finally, the Concept of Stratification and Incremental Enlargement 
can be tested and compared to the ADP approaches developed in this study. 
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Appendices 

Appendix A 

 

Figure A1. Pseudocode of the Markov Chain Monte Carlo Simulation module. 
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Appendix B 

Table B1. Results analysis of the illustrative instance solved by k-ADP for various trajectories. 

Fa
ct

or
 In-sample Out-of-sample 

State Performance State Performance 

No. NDT NET PEP EP PG ES ES % CPU No. NDT NET PEP AP StD PG PD 

N
D

T 
ch

an
ge

s 

1 2 10 RND 46335 6.522 28 29.167 1 1 2 10 RND 48,490 2,904 0.917 1.41 

2 6 10 RND 50925 2.738 26 27.083 1 2 6 10 RND 48,558 2,911 0.778 2.73 

3 10 10 RND 49225 0.692 33 34.375 1 3 10 10 RND 48,651 2,904 0.587 2.00 

4 14 10 RND 49424 0.291 27 28.125 1 4 14 10 RND 48,666 2,904 0.557 1.00 

5 18 10 RND 49457 0.224 37 38.542 1 5 18 10 RND 48,601 2,915 0.690 1.73 

6 2 10 LPR 49291 0.559 5 5.208 1 6 2 10 LPR 48,938 2,904 0.000 0.00 
7 6 10 LPR 49568 0.000 13 13.542 1 7 6 10 LPR 48,938 2,904 0.000 0.00 
8 10 10 LPR 49568 0.000 13 13.542 1 8 10 10 LPR 48,938 2,904 0.000 0.00 
9 14 10 LPR 49568 0.000 13 13.542 1 9 14 10 LPR 48,938 2,904 0.000 0.00 

10 18 10 LPR 49568 0.000 13 13.542 1 10 18 10 LPR 48,938 2,904 0.000 0.00 

11 2 10 Mixed 49568 0.000 41 42.708 1 11 2 10 Mixed 48,938 2,904 0.000 0.00 
12 6 10 Mixed 49568 0.000 43 44.792 1 12 6 10 Mixed 48,938 2,904 0.000 0.00 
13 10 10 Mixed 49568 0.000 45 38.542 1 13 10 10 Mixed 48,938 2,904 0.000 0.00 
14 14 10 Mixed 49568 0.000 49 51.042 1 14 14 10 Mixed 48,938 2,904 0.000 0.00 

15 18 10 Mixed 49568 0.000 55 57.292 1 15 18 10 Mixed 48,938 2,904 0.000 0.00 

N
ET

 c
ha

ng
es

 

1 14 2 RND 49189 0.765 11 11.458 1 1 14 2 RND 48,558 2,911 0.778 2.73 

2 14 6 RND 50881 2.649 19 19.792 1 2 14 6 RND 48,720 2,911 0.447 2.83 

3 14 10 RND 50925 2.738 26 27.083 1 3 14 10 RND 48,763 2,915 0.360 2.41 

4 14 14 RND 50916 2.719 32 33.333 1 4 14 14 RND 48,761 2,904 0.363 1.41 

5 14 18 RND 49350 0.440 53 55.208 1 5 14 18 RND 48,877 2,921 0.125 1.41 

6 14 2 LPR 49568 0.000 13 13.542 1 6 14 2 LPR 48,938 2,904 0.000 0.00 

7 14 6 LPR 49568 0.000 13 13.542 1 7 14 6 LPR 48,938 2,904 0.000 0.00 

8 14 10 LPR 49568 0.000 13 13.542 1 8 14 10 LPR 48,938 2,904 0.000 0.00 

9 14 14 LPR 49568 0.000 13 13.542 1 9 14 14 LPR 48,938 2,904 0.000 0.00 

10 14 18 LPR 49568 0.000 13 13.542 1 10 14 18 LPR 48,938 2,904 0.000 0.00 

11 14 2 Mixed 49568 0.000 25 26.042 1 11 14 2 Mixed 48,938 2,904 0.000 0.00 

12 14 6 Mixed 49568 0.000 35 36.458 1 12 14 6 Mixed 48,938 2,904 0.000 0.00 

13 14 10 Mixed 49568 0.000 43 44.792 1 13 14 10 Mixed 48,938 2,904 0.000 0.00 

14 14 14 Mixed 49568 0.000 57 59.375 1 14 14 14 Mixed 48,938 2,904 0.000 0.00 

15 14 18 Mixed 49568 0.000 55 57.292 1 15 14 18 Mixed 48,938 2,904 0.000 0.00 
NDT = Number of Demand Trajectory; NET = Number of Expansion Trajectory; PEP= Policy of Expansion Path; EP = Expected Profit; PG = 

Performance Gap (%); ES = Explored States; CPU = Computational time (Sec); AP = Average Profit; StD = Standard Deviation; PD = 
Policy Differences; LPR = LP-relaxation; RND = Random; Mixed = combination of Random and LP-relaxation.  
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Table B2. Result analysis of the real-world instance considering various trajectories (k-ADP). 
Fa

ct
or

 In-sample Out-of-sample 

State Performance State Performance 

No. NDT NET PEP EP PG ES % ES CPU No. NDT NET PEP AP StD PG PD 

N
D

T 
ch

an
ge

s 

1 10 90 RND 121,541,282 1.381 678 0.057 64 1 10 90 RND 115,704,885 10,097,238 0.489 5.29 

2 20 90 RND 118,812,298 0.895 766 0.065 70 2 20 90 RND 115,549,329 10,135,741 0.623 5.00 

3 30 90 RND 119,089,130 0.664 760 0.064 75 3 30 90 RND 115,472,451 10,135,741 0.689 5.02 

4 40 90 RND 119,253,354 0.527 754 0.064 79 4 40 90 RND 115,636,131 10,137,162 0.549 5.97 

5 50 90 RND 119,320,627 0.471 808 0.068 83 5 50 90 RND 115,703,636 10,136,479 0.490 6.24 

6 10 90 LPR 123,105,886 2.686 55 0.005 8 6 10 90 LPR 116,166,662 10,136,479 0.092 2.00 

7 20 90 LPR 120,505,024 0.517 73 0.006 13 7 20 90 LPR 116,248,346 10,126,087 0.022 1.09 

8 30 90 LPR 120,338,437 0.378 100 0.008 15 8 30 90 LPR 116,273,848 10,129,902 0.000 0.00 

9 40 90 LPR 119,195,537 0.575 121 0.010 22 9 40 90 LPR 116,273,848 10,129,902 0.000 0.00 

10 50 90 LPR 119,364,020 0.435 124 0.010 25 10 50 90 LPR 116,273,848 10,129,902 0.000 0.00 

11 10 90 Mix 120,550,965 0.555 646 0.055 65 11 10 90 Mix 116,168,258 10,455,603 0.091 3.02 

12 20 90 Mix 119,825,254 0.050 805 0.068 79 12 20 90 Mix 116,259,909 10,114,886 0.012 1.52 

13 30 90 Mix 119,918,023 0.027 883 0.075 90 13 30 90 Mix 116,273,848 10,129,902 0.000 0.00 

14 40 90 Mix 119,778,653 0.089 880 0.075 94 14 40 90 Mix 116,273,848 10,129,902 0.000 0.00 

15 50 90 Mix 119,861,817 0.020 901 0.076 108 15 50 90 Mix 116,273,848 10,129,902 0.000 0.00 

N
ET

 c
ha

ng
es

 

1 50 10 RND 117,521,500 1.972 124 0.010 18 1 50 10 RND 115,319,069 10,137,162 0.821 5.74 

2 50 30 RND 120,589,522 0.587 304 0.026 31 2 50 30 RND 115,526,955 10,137,162 0.642 7.89 

3 50 50 RND 120,108,281 0.186 469 0.040 45 3 50 50 RND 115,544,755 10,120,894 0.627 8.24 

4 50 70 RND 119,971,671 0.072 586 0.050 59 4 50 70 RND 115,578,235 10,135,741 0.598 6.38 

5 50 90 RND 119,320,627 0.471 808 0.068 83 5 50 90 RND 115,549,329 10,135,741 0.623 5.00 

6 50 10 LPR 120,338,437 0.378 124 0.010 25 6 50 10 LPR 116,243,079 10,129,902 0.027 1.00 

7 50 30 LPR 120,338,437 0.378 124 0.010 25 7 50 30 LPR 116,248,346 10,126,087 0.022 1.09 

8 50 50 LPR 120,338,437 0.378 124 0.010 25 8 50 50 LPR 116,248,346 10,126,087 0.022 1.09 

9 50 70 LPR 120,338,437 0.378 124 0.010 25 9 50 70 LPR 116,248,346 10,126,087 0.022 1.09 

10 50 90 LPR 120,338,437 0.378 124 0.010 25 10 50 90 LPR 116,248,346 10,126,087 0.022 1.09 

11 50 10 Mix 121,155,711 1.060 211 0.018 30 11 50 10 Mix 116,159,762 10,454,530 0.098 3.05 

12 50 30 Mix 120,012,121 0.106 436 0.037 41 12 50 30 Mix 116,166,662 10,136,479 0.092 2.00 

13 50 50 Mix 119,699,212 0.155 583 0.049 52 13 50 50 Mix 116,250,348 10,091,756 0.020 1.46 

14 50 70 Mix 119,949,134 0.053 787 0.067 82 14 50 70 Mix 116,243,079 10,129,902 0.027 1.00 

15 50 90 Mix 119,861,817 0.020 901 0.076 108 15 50 90 Mix 116,259,909 10,114,886 0.012 1.52 

NDT = Number of Demand Trajectory; NET = Number of Expansion Trajectory; PEP= Policy of Expansion Path; EP = Expected Profit; PG = 
Performance Gap (%); ES = Explored States; CPU = Computational time (Sec); AP = Average Profit; StD = Standard Deviation; PD = Policy 
Differences; LPR = LP-relaxation; RND = Random; Mix = Combination of Random and LP-relaxation. 
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