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Abstract
In this paper we characterize the validity of the Hardy-type inequality

1w

where 0 < p < 00,0< g < 400, U, w and v are weight functions on (0, 00). It is pointed
out that this characterization can be used to obtain new characterizations for the
boundedness between weighted Lebesgue spaces for Hardy-type operators
restricted to the cone of monotone functions and for the generalized Stieltjes
operator.
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1 Introduction

Throughout the paper, we assume that  := (a,) C (0, 00). By M(I) we denote the set of

all measurable functions on I. The symbol M*(I) stands for the collection of all f € M([)

which are non-negative on I, while M*(J; | ) is used to denote the subset of those functions

which are non-increasing on I. The family of all weight functions (also called just weights)

on [, that is, locally integrable non-negative functions on (0, 00), is denoted by W(J).
For p € (0, +oo] and w € M*(I), we define the functional | - |,,,r on M(J) by

(f; f@Pw(x) dx)'?  if p < +00,

ess sup; |f (%) |w(x) if p = +o0.

W g ==

If, in addition, w € W(I), then the weighted Lebesgue space L?(w, ) is given by
LP(w, 1) = {f € M) : |Ifllpws < +00}

and it is equipped with the quasi-norm || - || ,,z.

When w =1 on I, we write simply L”(/) and || - ||,,; instead of L?(w,I) and || - ||pw.1s
respectively.

Everywhere in the paper, u, v and w are weights. We denote by

U(t) := /Ot u(s) ds, V(t):= /Otv(s) ds foreveryt e (0,00),
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and assume that U(¢) > 0 for every ¢ € (0, 00).

In this paper we characterize the validity of the inequality

” /SOO h(z)dz

where 0 <p <00, 0<g <+00, 6 =1, u, wand v are weight functions on (0, 00). Note that

< C||h||0,v,(0,oo)) (11)
g:w,(0,00)

pu,(0,t)

inequality (1.1) was considered in the case p = 1 in [1] (see also [2]), where the result was
presented without proof, in the case p = oo in [3] and in the case § =1 in [4] and [5],
where the special type of a weight function v was considered, and recently in [6] in the
case 0 <p<00,0<g<+00,1<6 <o0.

We pronounce that the characterization of inequality (1.1) is important because many
inequalities for classical operators can be reduced to this form. Just to illustrate this impor-
tant fact, we give two applications of the obtained results in Section 5. Firstly, we present
some new characterizations of weighted Hardy-type inequalities restricted to the cone
of monotone functions (see Theorems 5.3 and 5.4). Secondly, we point out boundedness
results in weighted Lebesgue spaces concerning the weighted Stieltjes transform (see The-
orems 5.6 and 5.7). Here, we also need to prove some reduction theorems of independent
interest (see Theorems 5.1, 5.2 and 5.5).

Our approach is based on discretization and anti-discretization methods developed in
[4, 7, 8] and [6]. Some basic facts concerning these methods and other preliminaries are
presented in Section 2. In Section 3 discretizations of inequalities (1.1) are given. Anti-
discretization of the obtained conditions in Section 3 and the main results (Theorems 4.1,
4.2 and 4.3) are stated and proved in Section 4. Finally, the described applications can be

found in Section 5.

2 Notations and preliminaries

Throughout the paper, we always denote by ¢ or C a positive constant, which is indepen-
dent of the main parameters but it may vary from line to line. However, a constant with
subscript such as ¢; does not change in different occurrences. By a < b (b 2 a) we mean
that a < Ab, where A > 0 depends only on inessential parameters. If a < b and b < a, we
write a & b and say that @ and b are equivalent. Throughout the paper, we use the abbrevi-
ation LHS(x) (RHS(x)) for the left (right) hand side of the relation (x). By xo we denote the
characteristic function of a set Q. Unless a special remark is made, the differential element

dx is omitted when the integrals under consideration are the Lebesgue integrals.

Convention 2.1 (i) Throughout the paper, we put 1/(+00) = 0, (+00)/(+00) = 0, 1/0 =
(+00),0/0 =0, 0 - (£00) = 0, (+00)* = +oo and a® =1 if & € (0, +00).

(ii) If p € [1, +oc], we define p’ by 1/p + 1/p’ = 1. Moreover, we put p* = 1%; if p € (0,1)
and p* = +o0if p = 1.

(iii) If I = (@, b) € R and g is a monotone function on I, then by g(a) and g(b) we mean

the limits limy_, ,, g(x) and lim,_,,_ g(x), respectively.

In this paper we shall use the Lebesgue-Stieltjes integral. To this end, we recall some

basic facts.
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Let ¢ be a non-decreasing and finite function on the interval I := (4, b) C R. We assign
to ¢ the function X defined on subintervals of I by

A([e, B1) = 9(B+) = (=), (21)
A([e, B)) = 9(B-) - (), (2.2)
A((e, B]) = 9(B+) - plat), (2.3)
A, B) = (B-) - pla+). (2.4)

The function A is a non-negative, additive and regular function of intervals. Thus (¢f. [9],
Chapter 10), it admits a unique extension to a non-negative Borel measure A on I.
Formula (2.2) implies that

de = p(B-) — p(a-). (2.5)
[a,B)

Note also that the associated Borel measure can be determined, e.g., only by putting

M[y,2]) = p(z+) —@(y-) forany [y,z] C 1

(since the Borel subsets of I can be generated by subintervals [y,z] C I).
If ] C I, then the Lebesgue-Stieltjes integral f/ fdgis defined as f/ f d). We shall also use
the Lebesgue-Stieltjes integral f/ f do when ¢ is non-increasing and finite on the interval .

In such a case, we put

/}fdw _ /de(—ga).

We conclude this section by recalling an integration by parts formula for Lebesgue-
Stieltjes integrals. For any non-decreasing function f and a continuous function g on R,
the following formula is valid for —oco < & < 8 < oc0:

/[ ﬁ)f (0)d(g(®) = f(B-)g(B) —fa—)gle) + /[ ﬁ)g(t)d(—f (). (2.6)

Remark 2.1 Let] = (a,b) CR.Iff € C(I) and ¢ is a non-decreasing, right-continuous and
finite function on I, then it is possible to show that for any [y, z] C I, the Riemann-Stieltjes
integral || 0,2 f do (written usually as fy “ f dg) coincides with the Lebesgue-Stieltjes integral
f(y‘z] fdg. In particular, if f,g € C(I) and ¢ is non-decreasing on I, then the Riemann-
Stieltjes integral [ ] f dg coincides with the Lebesgue-Stieltjes integral |, . fdo for any
y,z] C I

Let us now recall some definitions and basic facts concerning discretization and anti-

discretization which can be found in [7, 8] and [4].

Definition 2.1 Let {ax} be a sequence of positive real numbers. We say that {a;} is geo-
metrically increasing or geometrically decreasing and write ax 11 or ax | | when

A+l Ak+1

inf >1 or sup <1,

kel ag keZ @k
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respectively.

Definition 2.2 Let U be a continuous strictly increasing function on [0,00) such that
U(0) = 0 and lim;_, », U(¢) = oo. Then we say that U is admissible.

Let U be an admissible function. We say that a function ¢ is U-quasiconcave if ¢ is
equivalent to an increasing function on (0, 00) and 7 is equivalent to a decreasing function

on (0, 00). We say that a U-quasiconcave function ¢ is non-degenerate if

lim ¢(¢) = lim L = lim M = lim & =

0 P = B o0 T () T s 90)
The family of non-degenerate U/-quasiconcave functions is denoted by €2;;,. We say that
@ is quasiconcave when ¢ € Q; with U(t) = t. A quasiconcave function is equivalent to a
concave function. Such functions are very important in various parts of analysis. Let us
just mention that, e.g., the Hardy operator Hf (x) = fox f(¢)dt of a decreasing function, the
Peetre K-functional in interpolation theory and the fundamental function || xg|lx, X is a

rearrangement invariant space, all are quasiconcave.

Definition 2.3 Assume that U is admissible and ¢ € Q. We say that {x}icz is a dis-
cretizing sequence for ¢ with respect to U if
(1) %o =1and U(xx) 115
(i) () 11 and 255 LL;
(iii) there is a decomposition Z = Z; U Z; such that Z; N Z;, = @ and for every

te [xk) xk+1] ’

pxp) = o(t) ifk ey,

o) _ o)
U~ U

ifk e Zz.

Let us recall [7, Lemma 2.7] that if ¢ € €, then there always exists a discretizing se-

quence for ¢ with respect to U.

Definition 2.4 Let U be an admissible function, and let v be a non-negative Borel mea-

sure on [0, 00). We say that the function ¢ defined by

B dv(s)
p(t) = U(2) /[Om) Ue) + U@’ t € (0,00),

is the fundamental function of the measure v with respect to UJ. We also say that v is a
representation measure of ¢ with respect to U.
We say that v is non-degenerate with respect to U if the following conditions are satisfied

for every t € (0, 00):

dv(s) = 0o.

/ L(s) <00, te(0,00) and v(s) =
[0,00) U(s) + U(2) o0 UE)  Jieo
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We recall from Remark 2.10 of [7] that

o(t) ~ /[0 ]dv(s) + U(¢) U(s) ™ dv(s), ¢te(0,00).

[t,00)
Lemma 2.1 ([8, Lemma 1.5]) Let p € (0,00), u, w be weights and ¢ be defined by

@(t) = esssup U(s)llﬂ ess sup W(T)l , te(0,00). (2.7)

s€(0,t) T€(s,00) L[(-()E

1
Then ¢ is the least U? -quasiconcave majorant of w, and

1 t o0 yZ 1%
s 005 [ ([ wera) woras)
1 t [e’e] p ,l,
- I h(z)d d.
esssuputd)( g5 [ [ o) wo )

for any non-negative measurable h on (0,00). Further, for t € (0,00),

o(t) = esssupw(r) min{l, ( u® )p } = U(t)% ess sup 1 - esssup w(t),

7€(0,00) U(r) se(t,oo) U(s)P te(0.s)
1
U(t) Z
@(t) ~ esssup w(s) <7> .
5€(0,00) U(s) + U(2)

Theorem 2.1 ([7, Theorem 2.11]) Letp,q,r € (0,00). Assume that U is an admissible func-
tion, v is a non-negative non-degenerate Borel measure on [0, 00), and ¢ is the fundamental
function of v with respect to U? and o € Qup. If {xi} is a discretizing sequence for ¢ with
respect to U4, then

=~

—dv(t) ~
) o(t)? ez 0 (xx)

o)™ ()
/[O,oo Z

TR

Lemma 2.2 ([7, Corollary 2.13]) Let g € (0,00). Assume that U is an admissible function,
f € Qu, v is a non-negative non-degenerate Borel measure on [0,00) and ¢ is the funda-

mental function of v with respect to U4. If {xx} is a discretizing sequence for ¢ with respect
to U1, then

&)q )%( (f(x@)q >;
(/[o,oo)<l,1(t) dv(®) I(EZZ U(x) o) | -

Lemma 2.3 ([7, Lemma 3.5]) Let p,q € (0,00). Assume that U is an admissible function,
¢ € Qua and g € Qup. If {xi} is a discretizing sequence for ¢ with respect to U4, then

1 1

e plx)?
sup — A sup —.
te(0,00) g(t)ﬁ keZ g(xk)f’

Page 5 of 29
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We shall use some Hardy-type inequalities in this paper. Define

v(a, b) := esssupv(s) ™,

sel
b
/ h(z)dz

Lemma 2.4 We have the following Hardy-type inequalities:

(2.8)

B(a,b) .= sup
he M*(I)

SRl
pul

(a) Let 1 < p < 0co. Then the inequality

/Sb h(z)dz

holds for all h € M*(I) if and only if

1
. 1
sup (/ u(z) dz)pz(t, b) < o0,
tel a

and the best constant c = B(a, b) in (2.9) satisfies

<cllhllyns (2.9)
pul

B(a,b) ~ sup </t u(z) dz) Ey(t, b). (2.10)

tel

(b) Let 0 < p < 1. Then inequality (2.9) holds for all h € M*(I) if and only if

b t p* p%
< f ( / u(z)dz) u(t)y(t,b)p*dt> < 0,

and

1
£

b t *
Bla, b) ~ ( / ( / u(2) dz)p uO)u(t, by dt)p .

These well-known results can be found in Maz’ya and Rozin [10], Sinnamon [11], Sin-
namon and Stepanov [5] (cf also [12] and [13]).
We shall also use the following fact (cf. [14, p.188]):

C(a,b):= sup

Al /Al = v(a, b). (2.11)
he M*(I)

(

Finally, if g € (0, +o0] and {wy} = {wi}kez is a sequence of positive numbers, we denote
by £4({wr}, Z) the following discrete analogue of a weighted Lebesgue space: if 0 < g < +00,
then

1
q
e({wi), Z) = {{dk}kezt llaxllea(wer,z) == (Z |ﬂ/<Wk|q) < +00}

keZ

and

> ({wih, Z) = {{ﬂk}kezi laxll e ((y),2) = sup larwe] < +OO}-
keZ

Page 6 of 29
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If wy =1 for all k € Z, we write simply £9(Z) instead of £9({wy}, Z).

We quote some known results. Proofs can be found in [15] and [16].

Lemma 2.5 Let g € (0, +00]. If {tk}kez is a geometrically decreasing sequence, then

“Yan

m=<k

~ | tkak|lea(z)
)

and

Tk supa H ~ || tralleaz
H mek . Nea@) @

for all non-negative sequences {ay}icz.-
Let {ox}rez, be a geometrically increasing sequence. Then

Gkde

m>k

~ |lokak|lea(z)
a(z)

and

”Uk SUp sy ” R |lorakllea(z)
m>k Zq(Z)

for all non-negative sequences {a}xez.

We shall use the following inequality, which is a simple consequence of the discrete

Holder inequality:
“ {“kbk}”zq@) = ” {“k}||ep(z> “ {bk}“w(ZV (2.12)

where L = (£ - 1), 2
P tq p
Given two (quasi-)Banach spaces X and Y, we write X <— Y if X C Y and if the natural
embedding of X in Y is continuous.
The following two lemmas are discrete versions of the classical Landau resonance the-

orems. Proofs can be found, for example, in [7].

Proposition 2.1 ([7, Proposition 4.1]) Let 0 < p,q < 00, and let {vi}kez and {wi}kez be two

sequences of positive numbers. Assume that
(v}, Z) — 01({we}, Z). (2.13)
(i) If0<p < q < o0, then
[{wivi'} ”490(2) =G

where C stands for the norm of inequality (2.13).

Page 7 of 29


http://www.journalofinequalitiesandapplications.com/content/2013/1/515

Gogatishvili et al. Journal of Inequalities and Applications 2013, 2013:515
http://www.journalofinequalitiesandapplications.com/content/2013/1/515

(i) If 0 < g < p < 00, then

” {kalzl} vy =6

where 1/r := 1/q — 1/p and C stands for the norm of inequality (2.13).

3 Discretization of inequalities
In this section we discretize the inequalities

©/ 1 ¢ 00 p # % o0
(/O (m/() (/S h(Z)dz) u(s)ds) w(t)dt) EC/O h(z)v(z) dz

and

tes(g;:o) w(t)(ﬁ /:(/Sooh(z) dz)pu(s) ds)p < c/oooh(z)v(z) dz.

We start with inequality (3.1). At first we do the following remark.

Remark 3.1 Let ¢ be the fundamental function of the measure w(t) dt with respect to U Z ,

that is,
o q
o) := / U(x,s)P w(s)ds forall x € (0, 00),
0

where

U(x)

U(x, t) = m

(3.3)

q
Assume that w(f) dt is non-degenerate with respect to U?. Then ¢ € Q g, and there-
u

q
fore there exists a discretizing sequence for ¢ with respect to 7. Let {x;} be one such

sequence. Then ¢(xx) 11 and @(x)U 5 1 }. Furthermore, there is a decomposition Z =
71U Zy, Zy N Zy = ¥ such that for every k € Z; and £ € [xg, %¢41], ¢(xx) = ¢(£) and for every

k € Zy and t € [, 351, () U) 7 ~ @(OU(E) 7.

Next, we state a necessary lemma which is also of independent interest.

Lemma 3.1 Let0<g<o00,0<p<oo,1/p=Q1/q-1),, and let u, v, w be weights. Assume

that u is such that U is admissible and the measure w(t) dt is non-degenerate with respect

to Ur. Let {xx} be any discretizing sequence for ¢ defined by (3.3). Then inequality (3.1)

holds for every h € M™(0,00) if and only if

n +| {w(xk)%C(xk,xm)} lgozy < 005

A= H{ P ()7 B(xk_l,xk)}
U(xi)?

LP(Z)

and the best constant in inequality (3.1) satisfies

crRA.

(3.4)

Page 8 of 29
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Proof By using Lemma 2.2 with

av(t)=w(t)dt and f(¢)= /t(/ooh(z) dz)pu(s) ds,
0 s

we get that

w(xk)é }

LHS(3.1) ~ H { :
pa0x) U (%) P

/SOO h(z)dz

Moreover, by using Lemma 2.5,

01(2)

1

enE

1

padi U(x)P

1
xk o0 a
/ hz)dz + / nds| L }
s *k padi U (xg)?
*k
/ h(z) dz :
s padi U (x)P

© w(xk)%f
+ {/xk h(z)dz }

pand U (xk)llf’
*
/ h(z)dz

¢mﬁ}
N { / h(z)dznlnp,u,zk&k)i}

1
padie U (%) P
k U (xr)?

LHS(3.1) ~ /00 h(z)dz

04(Z)

Q

4(7)

w(xk)%f

P

4(Z)

£4(Z)

P

4(z)

0(Z)

where Ij := (x¢_1,%x), k € Z. By now, using the fact that

xK
mum:f u(s) ds = Ulxg) — Ulxr) ~ Ulxe),

Xk-1

we find that

+
(Z)

w(xk)%f }

LHS(3.1) ~ H { .
padi U (x) P

/S b h(z)dz

Consequently, by using Lemma 2.5 on the second term,
1
p(xi)a }

K
/ h(z)dz :
s paudi U(x)P

kmﬁ/mhwﬂ}
xx

{mmﬁ/ M@ﬁ}
£

L4(Z)

LHS(3.1) H {

()

+ =1+1I (3.5)

0(Z)
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To find a sufficient condition for the validity of inequality (3.1), we apply to I locally (that
is, for any k € Z) the Hardy-type inequality

/S * h(z)dz

Thus, in view of inequality (2.12), we have that

< Bi_v, ) llLvg, e MT(I). (3.6)
pudi

1
X1 )4

]S {B(xk—l:xk) (p( k)l ”h”l,v,lk}
U(xr)?

L4(Z)

IA

{B(xk-bxk) <p(xk)?11 }
U (x)?

= {B(xk—l:xk) w(xk)i }
U(xi)?

” { ”h”Lka} ”el(Z)
e (Z)

172111,v,0,00)- (3.7)
0 (Z)

For II, by inequalities (2.11) and (2.12), we get that

1= H {(p(xk)‘li f @ dz}

k

04(7)
< {07 Ceeo e 1l o

[l
[ o7 Cosxn)} | oy | {1 st

IA

1
= | {o(x) 1 Cloair x041) ) ||ep(Z)||h||l,v,(0,oo)' (3.8)
Combining (3.7) and (3.8), in view of (3.5), we obtain that

LHS(3.1)

([
U(xi)?

oot GO ) RS, 39)

LP(Z)

Consequently, (3.1) holds provided that A < oo and ¢ < A.

Next we prove that condition (3.4) is also necessary for the validity of inequality (3.1).
Assume that inequality (3.1) holds with ¢ < co. By (2.8), there are i € M*(Ix), k € Z, such
that

Il =1 (3.10)
and

for all k € Z. (3.11)

/Sxk hi(z) dz

Define gi, k € Z, as the extension of /i by 0 to the whole interval (0, c0) and put

1
—B(xk-1, %) <
2 punsdy

€= ag (312)

keZ

Page 10 of 29
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where {ay}rez is any sequence of positive numbers. We obtain that

1
Xk 5
LHS(3.1) > H { / > g ¢ () : }
5 mel padi U(xr)? ) ea(z)
1
(xx) @
b ‘ {“kB(xkbxk) 4 : . (3.13)
Ux)? ) ey
Moreover,
RHS(3.1) = c|| Y _ amgm = c|{a}] - (3.14)
meZ, 1,,(0,00
Therefore, by (3.1), (3.13) and (3.14), we arrive at
(501
P xr)1
e 615)
( 04(Z)

{ aiB(X-1, %K) T
U(xi)?

and Proposition 2.1 implies that
(207
X1 )4
H{ LGS T B(xk_l,xk)} <c. (3.16)
U(xi)? P (Z)
On the other hand, there are Y, € M*(Iy), k € Z, such that
1rllipr =1 (3.17)
(3.18)

and

1
il = EC(xk,xkn) forall k € Z.

Define f, k € Z, as the extension of v by 0 to the whole interval (0, c0) and put
(3.19)

= bif

keZ
where {bi}rez is any sequence of positive numbers. We obtain that

ot [ xkﬂmefm}

LHS(3.1) > H {
*k meZ

Z ” {bkgo(xk)% C(xerk+l)} ||lq(Z)'

L4(Z)

Note that
= CH {bi} ”ll(Z)’

2 b

meZ

L,v,(0,00)

RHS(3.1)=c¢
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Then, by (3.1) and previous two inequalities, we have that

” {bk‘p(xk)% C(xk’xk”)} ”M(Z) S c|| {bi} “Zl(Z)'

Proposition 2.1 implies that

1

o) T e, xiean) } ||MZ) <c. (3.20)

Inequalities (3.16) and (3.20) prove that A < c. O
Before we proceed to inequality (3.2), we make the following remark.

Remark 3.2 Suppose that ¢(x) < oo for all x € (0, 00), where ¢ is defined by (2.7). Let ¢ be
1
non-degenerate with respect to 7. Then, by Lemma 2.1, ¢ € Qu 1 and therefore there

exists a discretizing sequence for ¢ with respect to U !l’. Let {xx} be one such sequence.
Then ¢(x) 11 and go(xk)l,f% 1 ). Furthermore, there is a decomposition Z = 7Z; U Z,,
Zy N Zy = § such that for every k € Z; and t € [xg, xx1], ¢(xx) = ¢(¢) and for every k € Z,
and ¢ € [x, %], (e UGe) 7 ~ (U 7.

The following lemma is proved analogously, and for the sake of completeness, we give
the full proof.

Lemma 3.2 Let 0 < p < 00, and let u, v, w be weights. Assume that u is such that ur is
1

admissible. Let ¢, defined by (2.7), be non-degenerate with respect to U? . Let {x;} be any

discretizing sequence for ¢. Then inequality (3.2) holds for every h € M*(0, 00) if and only

if

+ o) Ce x| oo ) < 00 (3.21)

D:= H { MB(xk_l,xk)}
£X(Z)

U(xi)?

and the best constant in inequality (3.2) satisfies ¢ ~ D.

Proof Using Lemma 2.1, Lemma 2.3, Lemma 2.5, we obtain for the left-hand side of (3.2)

that
o0
f h(z)dz
s

t
LHSG2) = sup & )1
te(0,00) U(t)f

P (0,2)

[o¢]
~ <ﬂ(xk)1 / h2) de }
U(x)? I1Ys pun0) ) lleo(z)
[o¢]
~ || 2 h(z) dz }
U(xp)r I1Vs pudi ) 11°(2)
xk
~ "’("k)l h(z) dz }
U(xg)? 15 pauii ) leo(z)
Xk+1
+ {(p(xk)/ h(z)dz} =MI+1V. (3.22)
X £2°(2)
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To find a sufficient condition for the validity of inequality (3.2), we apply to III locally
Hardy-type inequality (3.6). Thus

I < {B(xk—l,xk) Al )1 ”h”lvlk}
U(xp)? £°(2)
< {B(xkl,xk) (p(xk)l} “{”h”LV’Ik}”ll(Z)
Ux)? Ve
- ' {B(xkl,m ol k)l} 1l 0,000 (3.23)
U V@)
For IV we have that
v = H {(p(xk) / ) dz}
x =)
< [ {e @) Clx ) 1Al 100} o
< [{e@) Coo ) Hl oy H 1wt 12
(3.24)

{0 (ex) C s wc41) } ||lcx> 172111,0,(0,00)-

Combining (3.23) and (3.24), in view of (3.22), we get that

LHS(3.2)

(”{B(xk 1:xk) $ a0t }
U(xk)”

Consequently, inequality (3.2) holds provided that D < oo and ¢ < D.
Next we prove that condition (3.21) is also necessary for the validity of inequality (3.2).

Assume that inequality (3.2) holds with ¢ < co. By (3.10), (3.11) and (3.12), we obtain that

+ {7 Cloi i) Hzoo@)) RHS(3.2).

£(2)

LH832)>“{ / Z Gt sv(xk)l}
5 meZ ple U(x)? ) e (z)
2 {“kB(xk—lyxk) A } . (3.25)
L[(xk)l’ £(Z)
Moreover,
RHS(3.2) =¢| > amgm = c{a} ] oz (3.26)
me7Z 1,v,(0,00)
Therefore, by (3.2), (3.25) and (3.26),
@(xk)
{ﬂkB(xkbxk) 7 } < {ﬂk}”gl(z)’ (3.27)
U(x)? ) lee@)
and Proposition 2.1 implies that
H{ pla) xk_l,xk)} <e (3.28)
Ll(xk)l’ £>(Z)
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On the other hand, accordingly to (3.17), (3.18) and (3.19), we obtain that

> bt

meZ

Z || {bk(p(xk)c(xk’ xk+1)} ”500(2)'
£20(Z)

LHS(3.2) 2 H {w(xk) / A

Since

RHS(3.2) = ¢

2 b

mel

= C” {bk}Hel(Z)'
1,v,(0,00)

in view of (3.2) and previous two inequalities, we have that
[ {2 (e1) C ot )} ”EOO(Z) Seltbi) ||£1(Z)'

Proposition 2.1 implies that

[{e@) Clorn i)} | ooy S € (3.29)
Finally, inequalities (3.28) and (3.29) imply that D < c. O

Remark 3.3 In view of (2.11) and Lemma 2.5, it is evident now that

[ 0@ Caeko e} 1oy ~ {0007 200} | 1y > {00007 20000} [ -

Monotonicity of v(¢, 0o) implies that
1 1 .
@0 1w x| ) = [{0@)7 ]z Jim w2, 00).
1
Since {@(xx) 7} is geometrically increasing, we obtain that

{607 vk, 26} 1y = 0(00)7 lim w(,00).

This inequality shows that lim;_, « ¥(¢,00) must be equal to 0, because ¢(c0) is always
equal to oo by our assumptions on the function ¢. Therefore, in the remaining part of the
paper, we consider weight functions v such that

tl_i)noloz(t, o0) = 0.
4 Anti-dicretization of conditions
In this section, we anti-discretize the conditions obtained in Lemmas 3.1 and 3.2. We dis-
tinguish several cases.
The case 0 < p <1, 0 < g < 00. We need the following lemma.

Lemma 4.1 Let0<g<00,0<p<1,1/p=(1/q-1),, and let u, v, w be weights. Assume

that u is such that U is admissible and the measure w(t) dt is non-degenerate with respect
q

to Ur. Let {xi} be any discretizing sequence for ¢ defined by (3.3). Then

AR Ay,
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where

% X (ot v o
H{ T </ (/ u(s) ds> u(£)w(t, o0)” dt> }
U(xp)r \Ix Xp-1

£0(2)
Proof By Lemma 2.4, in this case it yields that
X t P* L*
B(xg_1, %) ~ </ (/ u(s) ds) u(E)v(t, %) dt)
Xk-1 Xk-1
Therefore, in view of (2.11), Lemma 3.1, we have that
QD(xk) q x t P %«
ax (g (L (L o) oty ar)”}
L[(xk)l’ Fh-1 \Y xp1 £P(Z)
+ ” {‘P(xk) §Z(xk,xk+l)} ||[p(Z)
It is easy to see that
1 * 1
7 X t p P*
WS S (] ) s )
U(xr)? k1 N er(Z)

o) 4 %k ([t P ) A }
, d d
NWJWWQKLM0<M

w(xkﬁ( ( f )P )}
= 1 (s)d @E)v(t, )P dt
H { U(xr)? ‘/xk—l /xk_l )RR 0 (2)
H{ o) . oo)( /xk (0 dt)p}
)17 Xh1 P(Z)
~ w(xk)q ( k ( ! d )P* (e, p* dt)l*}
H { L[(xk)r% '/xk—l /xk_l ue)ds | etz e (2)
+ {‘P(xk)%K(xk, 00)} ||ep(Z)
N w(xk)é< xk( f ) >—}
~ T (s)d. (E)v(t, ) dt
H { U (xi)? /xkl -/xkl KO ) RS P (Z)
+ [ {6 T v, x01)) leoizy = A-
On the other hand,
H{ w(xk) < (/t u(s) ds)p u(t)v(t, x ) dt)w}
u (xk)ﬂ H-1 \J X1 e9(2)
+ o7 xe)] | o)
[ (] e o )
~ T (s)d )it %) dt
H{LI(xk)F /;k_l /xk_lus ’ & ()

P(2)
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”{ xk)q( x ( / t u(s)ds)p u(t)g(t,oo)fdt)”_* }
U(xr)? \ara \xg

Lemma 4.2 Assume that the conditions of Lemma 4.1 are fulfilled. Then

+H{¢(xk)iz(xk,xk+l)( [ ( [ t u(s)ds)p (t)dt)_*}

LP(Z)

e (z)

Al %A21

where

Ay = H{g"(xk) (f U@ u(t)u(t, 0o)” dt>*}
U(xk)f’

e (Z)

Proof Evidently, A; < A,. Using integrating by parts formula (2.6), we have that

Ar~ H{ plar)? (/ v(t, 00 d(U(D)'7 ))_*}
Uxp)? N\ o)

([ uoFaeeco))” )
U(x)? \Y o)

+ | {fﬂ(xk)%Z(xk_r )} 4o z)

LP(Z)

LP(Z)

k([ ([ s s |
= ‘H (xk)% /[xk-Mk) /xk-l s (e o)) e(Z)
H{ (ﬂ(xk)q Ko 1)%; <f d(_Z(t—, OO)p*)>p*}
L[(xk)ﬁ [Xk-1,%k) (Z)
+ ” {‘p(xkﬁ!(xk_’ OO)} ”eﬂ(Z)
w(xkﬁ( ( f d)’fd_ i )}
= “{LI(xk)% ‘/[xk—l’xk) /’;k—l uls) ds ( 2t 00) ) 2P (Z)
+ H{ P ) vl oo)}
U (x)? (Z)
+ ot v 00} v
< ﬂxk);( ( t d)%d— t—, co)" )”L}
N“{U(xk)}’ /[xkbxk) -/xkl o (= 00F) € (2)

+ o) 1va-000 g + | @0 71000} o s

N )1 ( ( ! )
~ 1 ( )d
“ { u(xk);? /[‘xkl,xk) ‘/xkl e :

+ | {fﬂ(xk)%Z(xk_r )} o z)

1

s oo)p*))p* }

~[S

LP(Z)

=A;.

O
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Again integrating by parts, we have that

A < H{ o(xk) ‘_1l (/‘xk Yie, oo)p*d(/t s ds)
P X1 Xk-1

+ H {(p(xk)%z(xk_’ 00)} Heﬂ(Z)

o ([ () o) )
- (s)d (O)v(t—, 00)" dt
H { —— / /xkl u(s)ds | u(t)y

+ {go(xk)@(xk—, )} oz

r*
?

LP(Z)

Q=

S =

LP(Z)

1
= A1+ |[{o@0) 7 v(xr= 00)} 1
Since

[ o7 v 00} | 1

= o) T 1= 00} 1

2 [ (] o) |
{U(xk_l);uxkl 00) f f uls)ds) u(t) »
< M( x“( t ()d)p* (¢, oo)dt)L*}
- {U(xk_l)zl’ /xkz /xkzus T) °(Z)
_ {"’(xk)i ( / * < / t u(s)ds)p w(t)v(t—, o) dt)_*} “ A, (4.1)
U(x)? \Yxi \ag r(Z)
we obtain that
Ay S A O

Lemma 4.3 Assume that the conditions of Lemma 4.1 are fulfilled. Then
Ay~ Az,

where

As = H { g"("")f ( / U(t)p?*d(—y(t—, o)) dt) " }
[([(xk)f7 [oek_1%%)

+ {007 -, 00)} lery

e (Z)

Proof Integrating by parts, in view of inequality (4.1) and Lemma 4.2, we have that

ASSH{“’(’*)?( ool d(U®)'T )t )}

U(xy)? k-1 e (Z)
w(xk)q 1 1
xk—l)pz(xk—l_j OO) + ” {(p(xk) 1 Z(xk_i OO)} ” 0 (7)
L[(xk)P LP(Z)
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S Ao+ ol Trw1=,00} sy + | 1060030511000} 1

~ A+ || {w(xk)%z(xk—, 00)} HZP(Z) SAr+ A~ A,

On the other hand, again integrating by parts, we get that

Ay - H{ so(xk)é1 (/‘xk Z(t,w)P*d(U(t)I;;))F}

Uxg)? Ve t(Z)
1 1
(ox) i NV
< H{ it / U() 7 d(-v(t—, 00)")
U (xr)? Y ber-rxx) P(2)
1
+ Hoe0) 7=, 0} | o ) = As- O
Lemma 4.4 Assume that the conditions of Lemma 4.1 are fulfilled. Then
A3 %All-;
where
(0e)1 ”
q * N £
Ay = H{ LA T (f U(t)%d(—g(t—,oo)p ))1’ }
U(xp)? \ [xie-1%) €°(Z)
\ W\
+ {w(xk)q (/ d(-v(t—, 00) )) } :
[gXper1) 2P(Z)
Proof By Lemma 2.5, in view of Remark 3.3, we have that
1
[t vtsi-,00)} |y
1
e * 7
~ {so(xk)q (Z[z(xi—, 00" = v(xi11—, 00)° ]) }
i=k P (Z)
+ H [qo(xk)% lim v(z, OO)}
t—>00 P (Z)
1 * *y Lo
~ [{o@) 7 (vir—, 00} = v(w— 00 )7 | )
1
1 * r*
~ H {w(xk)q (/ d(-v(t=, 00y )) } : 0
[xps1) 2P(Z)

Lemma 4.5 Assume that the conditions of Lemma 4.1 are fulfilled. Then
Ay ® As,

where

*"“

) 1z
12

|

LP(Z)
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Proof By Lemma 2.5, we have that

1
3

A (2 ([ uFatste-o0)) |
Ux)? \ox0

1

(f[xk,oo) d(-v(t-, oo)p*)) i }

LP(Z)

QU

+

{w(xk)

£°(z)

Hence,

Asm H {w(xk)% ( Ut 307 d(-v(e-, “’p*)) F }
[0,x)

1

{w(xk); </[ )u(t’xk)id("z(t" °°)”*)>p* }
X, 00

~ H{(ﬂ(xk)711< o )U(t,xk)%d(—z(t—,oo)"*)y*}

LP(Z)

+

(2)

= As. O

P (Z)
We are now in a position to state and prove our first main theorem.
Theorem 4.1 Let 0 <p<1,0 < q< o0, and let u, v, w be weights. Assume that u is such

that U is admissible and the measure w(t) dt is non-degenerate with respect to U g.
(i) Let 1 < q < 0o. Then inequality (3.1) holds for every h € M*(0, 00) if and only if

W=

L := sup (/OOL{(x,s)%w(s) ds> 6( L{(t,x)%*d(—g(t—, oo)”*)>P < 00.
) \J0 [0,00)

x€(0,00

Moreover, the best constant c in (3.1) satisfies c ~ I.
(ii) Let 0 < g < 1. Then inequality (3.1) holds for every h € M*(0,00) if and only if

I := (/Oo</m1/{(x,s)1%w(s) ds)q ( Z/l(t,x)%d(—y(t—, oo)p*))p*w(x) dx)q*
0 0 [0,00)

< 0OQ.

Moreover, the best constant c in (3.1) satisfies ¢ = I,.

Proof (i) The proof of the statement follows by using Lemmas 3.1, 4.1-4.5 and 2.3.
(ii) The proof of the statement follows by combining Lemmas 3.1, 4.1-4.5 and Theo-
rem 2.1. O

The case 1 < p < 00, 0 < g < 00. The following lemma is true.

Lemma 4.6 Let 1 <p < 00,0 < q< 00, and let u, v, w be weights. Assume that u is such
that U is admissible and the measure w(t) dt is non-degenerate with respect to U » . Let {x;}
be any discretizing sequence for ¢ defined by (3.3). Then

A~ B,
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where

ST

H{fﬂ(m)q( o (/t u(S)dS)y(t,oo))}
L[(xk)p Hg—1<t<xp \Jwg_;

Proof By Lemma 2.4, in this case we find that

e (Z)

. 1
B(xr_1,%k) &~ sup (/ u(s) ds>py(t,xk).
Xk-1

Xje—1<L<Xf

By using (2.11), in view of Lemma 3.1, we have that

A~ H{ go(xk)él ( sup (/t u(s) ds)ﬁg(t,xk))}
U(xp)? \Sr-1<t<sx \agq

+ {0 v6s0 5} | ey

0(2)

Obviously,

1 , 1
B S H{ w(xk)ql ( sup </ u(s) ds)pg(t, xk))}
U(xp)? \Fr-1<t<sg N LP(Z)

+ H{ w(xk)q T+ V(%k, oo)( sup (/t u(s) ds)p>}
U (i) ? 17 Fe—1 <t<xp \J xp_q

00(Z)
{55 ) )
U(xr)? \wka<t<n \Ja g 0 (z)
H o)1 " 3,00 ( /xk o) ds)p}
1’ Xj-1 LP(Z)
o (] )
Ux)? \sea<t<sic \Jag (@)
+ {90(951()52(9510 00)} HWZ)
~ H{ go(xk)ﬁl ( sup (/‘t u(s) ds)ﬁy(t,xk)>}
U(xp)? \Wr-1<t<se \dagq 2P (Z)
+ {0 v 5} | 1y = A-
On the other hand,
H{ xk)q < sup </ u(s)ds)ﬁz(t,xk))}
U(xk)p K1 <t<xp \Jxp_1 LP(Z)
H{ v(xk,xk+1)< sup </ u(s) ds)ﬁ>]
u (xk)" Fh-1<E<Xk \Jxgy P (Z)
< H{ q)(xk)i < sup </ u(s) ds)iy(t, oo))} := B,.
u(xk)p Kp_1<t<Xp Xp_1 P (Z)

Page 20 of 29


http://www.journalofinequalitiesandapplications.com/content/2013/1/515

Gogatishvili et al. Journal of Inequalities and Applications 2013, 2013:515
http://www.journalofinequalitiesandapplications.com/content/2013/1/515

Lemma 4.7 Assume that the conditions of Lemma 4.6 are fulfilled. Then
B ~ By,

where

H{ )T 1 ( sup  U(D)P (e, oo))}

Xp )P Ek-1<E<AK LP(Z)
Proof Obviously,
B <B,
Since
1
|| {(p(xk)qy(xk, OO)} ”ep(z)
1
7 *k p
~ { e " Ve )(/ u(s) ds)p}
U(x)? -1 o

= {M_(%O@) sup (/t u(s)ds)p}
U (xp)? w1 <t<xp \J xp_g

0P(Z)
(407 t ’
X p
< { LA - sup (/ u(s)ds) v(t, oo)} =B, (4.2)
U ()P k1<t \J gy t0(2)
we obtain that
l
)4 1
By <B + { rU(xi1)?  sup  v(Z, OO)}
[7 Kf—1 <E<xp LP(Z)
;
)4 1
=B+ { T U(xk_l)Pz(xk_l,OO)}
)? LP(Z)
SBi+ ||{§0(xk v 1, 4oz
=B+ o)t 051,000} oy S B 0

Lemma 4.8 Assume that the conditions of Lemma 4.6 are fulfilled. Then
BZ ~ BB:

where

H{‘p(’ck -(sup umiz(t,oo))}

P W1 <t<xg

1
+ [ {o ) v, 00) ) ||l/’(Z)
e0(2)

Proof Obviously,

B, < Bs.
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On the other hand, by (4.2), we get that
ooy 360} | 1oy ~ [ {000 7251000} [ 1) < Br S Bo
Thus

B3:=B, +|| {‘P(xk)%ﬂ(xkr 0 o2y S Bo-

Lemma 4.9 Assume that the conditions of Lemma 4.6 are fulfilled. Then

B3 ~ By,
where
1 1
B ::H{ x(§( su Z/lt,x(ﬁvt,oo>} .
4 @ (xx) te(O,Io)o) (t,x1) 7 v(¢, 00) )
Proof By Lemma 2.5, we get that
(5)1
q 1
By~ ”{ LA ( sup L[(t)Pz(t,oo))}
U(xk)i O<t<xy 0P(Z)
1
+ X 5( sup V(¢ 00 )}
H {(p( k) xk<t§oo _( ) LP(Z)
~ ” {(p(xk)l< sup Ul(t, xk)P v(t, oo))}H
0<t<xy £P(Z)

+|e@7( sup U xPve00)) )

Kj <t<00

~ oo ( sup uemrve, oo))]H

te(0,00)

e (z)

Our next main result reads as follows.

Theorem 4.2 Let1 < p <00, 0<q< 00, and let u, v, w be weights. Assume that u is such
that U is admissible and the measure w(t) dt is non-degenerate with respect to U 3
(i) Let 1 < q < 0o. Then inequality (3.1) holds for every h € M*(0,00) if and only if

1

I3 -sup(/ U(x, )Pw( )dt) U(x)"? sup L[(t)l%y(t,oo)<oo.

x>0 te(0,x)

—

Moreover, the best constant c in (3.1) satisfies that c ~ I5.
(ii) Let 0 < g < 1. Then inequality (3.1) holds for every h € M*(0, 00) if and only if

* = 1 7 7 7
= (/ (/ U(x, )P w(t) dt) Ll(x)_7( sup U(t) 7 v(t,00) ) (x )dx) <.
0 0 £e(0,%)

Moreover, the best constant c in (3.1) satisfies that ¢ = I,.

*"“
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Proof (i) The proof of the statement follows by combining Lemmas 4.6-4.9, 2.3 and 2.1.
(ii) The proof of the statement follows by using Lemmas 4.6-4.9, 2.1 and Theorem 2.1.
O

The case 0 < p < 00, g = 00. The following lemma is true.

Lemma 4.10 Let 0 < p < 00, and let u, v, w be weights. Assume that u is such that U is
admissible. Let ¢, defined by (2.7), be non-degenerate with respect to U Ilf. Let {xy} be any
discretizing sequence for ¢.

(i) If0<p <1, then

o< o[-

Lm(Z)’

(ii) If 1 < p < o0, then

D~ ot ( sup Ut mrueo0)}] .

te(0,00)

Proof (i) The proof of the statement follows by using Lemmas 3.2, 2.4 and 4.1-4.5.
(ii) The proof of the statement follows by combining Lemmas 3.2, 2.4 and 4.6-4.9. O

Now we are in a position to formulate our last main result.

Theorem 4.3 Let 0 < p < 00, and let u, v, w be weights. Assume that u is such that U is
1
admissible. Let ¢, defined by (2.7), be non-degenerate with respect to U? .
(i) Let 0 < p < 1. Then inequality (3.2) holds for every h € M*(0, 00) if and only if

*"—‘

Is:= sup (ess sup w(s)Z/{(x,s)ll’) ( U(t, x)%* d(—g(t—, oo)p*)> ! < 00.
[0,00)

x€(0,00)  5€(0,00)

Moreover, the best constant c in (3.2) satisfies that ¢ ~ I5.
(ii) Let 1 < p < 0. Then inequality (3.2) holds for every h € M*(0,00) if and only if

Ig:= sup (ess sup w(s)U (x, s)ll’)L[(x)’% sup L[(t)éy(t, 00) < 00.
)

x€(0,00) * 5€(0,00) te(0,x)

Moreover, the best constant c in (3.2) satisfies that ¢ ~ I.

Proof Both statements of the theorem follow by using Lemmas 3.2, 4.10, 2.3 and 2.1. O

5 Some applications

In this section, we give some applications of the obtained results. We start with the
weighted Hardy inequality on the cone of non-increasing functions. Denote by H, the
weighted Hardy operator

1

an(x) = m

f fou@at, xe0,00),
0
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Note that the characterization of the weighted Hardy inequality on the cone of non-

increasing functions

”Huf”q,w,(o,oo) =< CHf”p,v,(O,oo)v f € M+(01 05 »J/): (51)

has been obtained in [17] and [4].
The following reduction theorem is true.

Theorem 5.1 Let 0 < p,q < 00, and let u, v, w be weights. Then inequality (5.1) holds for
every f € M*(0,00; ) if and only if the inequality

e8] 1 x [ee] [l, q 1;; e8]
(./o (m/o (/t h) u(t)dt) w(x)dx) §C/O h(t)V(¢) dt (5.2)

holds for all h € M*(0, 00). Moreover, the best constants ¢ and C in (5.1) and (5.2), respec-
tively, satisfy C =~ c¥.

Proof It is well known that every non-negative, non-increasing function f is the pointwise
limit of an increasing sequence of functions of the form fsoo h for h > 0 (cf [5, p.97]).

Since f is non-increasing if and only if f is non-increasing, by the monotone convergence

theorem, (5.1) is equivalent to

([ Gt ([ ) o) o)
< cp/0w</twh)v(t)dt, h e M*(0,00),

which, by Fubini’s theorem, is equivalent to

(I G [ () o )

< cP/ h@®)V(e)dt, he M*(0,00). N
0
Analogously, the following theorem can be proved.

Theorem 5.2 Let 0 < p < 00, and let u, v, w be weights. Then the inequality

”Huf”oo,w,(o,oo) =< Cllf”p,v,(o,oo) (5.3)

holds for every f € M*(0,00; ) if and only if the inequality

1 x oo % p 00
iiios':go[))w(x)p(%/o </t h> u(t)dt> §C/O h(t)V (t)dt (5.4)

holds for all h € M™(0,00). Moreover, for the best constants ¢ and C in (5.3) and (5.4),
respectively, it yields that C ~ c?.


http://www.journalofinequalitiesandapplications.com/content/2013/1/515

Gogatishvili et al. Journal of Inequalities and Applications 2013, 2013:515 Page 25 of 29
http://www.journalofinequalitiesandapplications.com/content/2013/1/515

Combining Theorem 5.1 with Theorems 4.1 and 4.2, we obtain the following statement.

Theorem 5.3 Let u, v, w be weights. Assume that u is such that U is admissible and the
measure w(t) dt is non-degenerate with respect to U1.

(i) Let 0 <p <1, p < q < 00. Then inequality (5.1) holds for every f € M*(0,00; |) if and
only if

Cp:= sup </OOU(x, £)w(t) dt) ’ u(x)_l( sup U() V(t)ié) <00

x€(0,00) \J 0O te(0,x)

Moreover, the best constant c in (5.1) satisfies that ¢ ~ C.
(ii) Let 0 < p <1, 0 < g < p. Then inequality (5.1) holds for every f € M™*(0,00; ) if and
only if

r=q

Cy = ( / h ( / " U, o) dt) " U ( sup U(t)7a V(t)#)w(x) dx> " oo,
0 0

te(0,x)

Moreover, the best constant c in (5.1) satisfies that ¢ ~ C,.
(ili) Let 1 < p < g < 00. Then inequality (5.1) holds for every f € M*(0,00; ) if and only
if

3 =

Cos= sup ( /0 U, (o) dt> ! ( /0 S Ut xy ‘:((;)L, dt) " <0

Moreover, the best constant c in (5.1) satisfies that ¢ ~ Cs.
(iv) Let 1 < p < 00, 0 < g < p. Then inequality (5.1) holds for every f € M*(0,00; |) if and
only if

q(p-1)

Cyi= ( /0 < /0 ) dt)qu < /0 U %) V"( ;))p dt> @) dx)ﬁ < 0.

Moreover, the best constant c in the (5.1) satisfies that ¢ ~ Cj.

Combining Theorems 5.2 and 4.3, we arrive at the following statement.

Theorem 5.4 Let u, v, w be weights. Assume that u is such that U is admissible. Let ¢,
defined by

w
@(t) := esssup U(s) ess sup ﬂ, t € (0,00),
s€(0,¢) T€(s,00) U(‘L’)

be non-degenerate with respect to U.
(i) Let 0 < p < 1. Then inequality (5.3) holds for every f € M*(0,00; |) if and only if

Cs:= sup (ess sup w(s)Ll(x,s)) U(x)‘l( sup U(t) V(t)_zl’) < 0.

x€(0,00) * s€(0,00) te(0,x)

Moreover, the best constant c in (5.3) satisfies that ¢ ~ Cs.
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(ii) Let 1 < p < 0o. Then inequality (5.3) holds for every f € M*(0,00; ) if and only if

) <.

AN

Cg:= sup (esssupw s)Z/l(x,s) </ U(t, )p

x€(0,00) * s€(0,00)
Moreover, the best constant c in (5.3) satisfies that ¢ ~ Cs.

Now we consider the generalized Stieltjes transform S defined by

h(t) dt
(Sh)() / =

for all 1 € M*(0,00); the usual Stieltjes transform is obtained by putting U(x) = x. In
the case U(x) = x*, A > 0, the boundedness of the operator S between weighted [# and L4
spaces was investigated in [18] (when1 < p < g < oo) and in [19,20] (when1 < g < p < 0).
This problem was also considered in [21] and [22], where a completely different approach
was used, based on the so call ‘gluing lemma’ (see also [23]).

The following reduction theorem is true.

Theorem 5.5 Let 0 < g < 00,1 < p < 00, and let u, v, w be weights. Then the inequality

”Sh”q,w,(o,oo) =< C”h”p,v,(o,oo); he M+(0: OO), (5'5)
holds if and only if
o0
HH( / h) < clhllllpongy  he M (0,00), (5.6)
¢ q,w,(0,00)
holds.

Proof Evidently, inequality (5.5) is equivalent to the following inequality:

|S(htn)| <clhlllpy0,00), heE M (0,00).

q,w,(0,00) —

It is easy to see that

S(hil)(x) ~ m (/ h(s) ds)u(t)dt h e M*(0,00).

Indeed, by Fubini’s theorem, we have that

/:(/tooh(s)ds)u(t)dt /(/ h(s)ds+/ hs)ds)u(t
// t)dth(s ds+/x‘ h()ds/0 u(t) dt

= / U(s)h(s)ds + U(x) / ooh(S)ds
0

~ U(x) / T 7(5 h(s) ds = U(x)S(hl)(x),
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that is,
S(hl)(x) ~ H, (/oo h) (x), x€(0,00).

Hence, we see that inequality (5.5) is equivalent to inequality (5.6). O

Combining Theorem 5.5 with Theorems 4.2, 4.3 and Theorems 3.1, 3.2 in [6], we obtain
the following statements.

Theorem 5.6 Let u, v, w be weights. Assume that u is such that U is admissible and the
measure w(t) dt is non-degenerate with respect to U?. Let p,q € (0,00]. When q < p < 00,
we set r = 1%.

(i) Let p=1,1 < q < 00. Then inequality (5.5) holds for every h € M*(0, 00) if and only if

Sy:= sup (/OOLI(x, )Iw(t) dt) ! Ux)™ sup U(t)ess sup(LI(s)v(s))_1 < 00.
)\Jo

x€(0,00 te(0,x) se(t,00)

Moreover, the best constant c in (5.5) satisfies that c ~ S;.
(ii) Let p =1, 0 < g < 1. Then inequality (5.5) holds for every h € M™*(0,00) if and only if

[e'e] [ee] q*
Sy 1= ( / < / U(x,t)qw(t)dt) Ux)™T
0 0

X ( sup U(t)7 ess sup(L[(s)v(s))_q*)w(x) dx) ! < 00.

t€(0,x) se(t,00)

Moreover, the best constant c in (5.5) satisfies that ¢ = S,.
(iil) Let 1 < p < q < 00. Then inequality (5.5) holds for every h € M*(0,00) if and only if

=

S3:= sup ( / OOU(x,t)qw(t)dt>§( / oou(t,x)P’U(t)-P’v(t)l-P’dt)” < 0.
)\JO 0

x€(0,00

Moreover, the best constant c in (5.5) satisfies that ¢ ~ Ss.
(iv) Let 1 < p < 00, 0 < q < p. Then inequality (5.5) holds for every h € M™*(0,00) if and
only if

.o (/m</wu(x, Hwl(t) dt)” </oou(t,x)p’u(t)ﬂv(t)1p’ dt)"’w(x) dx)’ < 0.
o \Jo 0

Moreover, the best constant c in (5.5) satisfies that ¢ = S,.
(v) Let p = 00, 0 < g < 00. Then inequality (5.5) holds for every h € M*(0, 00) if and only

if
_ [e'9) i dt q %
S5 := </0 (Z/l(t,x)l,l(t) _v(t)) w(x) dx) < 00.

Moreover, the best constant c in (5.5) satisfies that ¢ ~ Ss.
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Theorem 5.7 Let u, v, w be weights. Assume that u is such that U is admissible. Let ¢,
defined by

w(t
@(t) := esssup U(s) ess sup L, t € (0,00),
) re(s,00) U(T)

be non-degenerate with respect to U.

(i) Let p = 1. Then the inequality
”Sh”oo,w,(o,oo) =< C”h”p,v,(o,oo) (57)
holds for every h € M™(0,00) if and only if

Se:= sup (ess sup w(s)U (x, s)) Ux)™? sup U(t)ess sup(l,[(s)v(s))_1 < 00.

x€(0,00) * 5€(0,00) te(0,x) s€(t,00)

Moreover, the best constant c in (5.7) satisfies that ¢ ~ Sg.
(ii) Let 1 < p < 00. Then inequality (5.7) holds for every h € M*(0, 00) if and only if

=

S;:= sup (ess sup w(s)U (x, s)) </OOZ/{(t,x)P’ U@y v dt) " < .
0

x€(0,00) * 5€(0,00)

Moreover, the best constant c in (5.7) satisfies that ¢ ~ S;.
(iil) Let p = 0o. Then inequality (5.7) holds for every h € M*(0, 00) if and only if

*© dt
Sgi= sup (esssupw(s)u(x,s))< / u(t,x)um—l—)m.
x€(0,00)  s€(0,00) 0 v(t)

Moreover, the best constant c in (5.7) satisfies that ¢ ~ Sg.
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