
 

 

 

 
 

  

Faculty of Science and Technology 

Department of Technology and Safety 

Data-driven Arctic wind energy analysis by statistical and 

machine learning approaches 

Hao Chen 

A dissertation for the degree of Philosophiae Doctor – July 2022 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Tα εἰς ἑαυτόν 

Hårde tider har vi døyet, ble til sist forstøtt 

Dedicated to existence 

君を飾る花を咲かそう 

想淵明《停雲》詩就，此時風味。  



 

 

 
 
 
 

Data-driven Arctic wind energy analysis by 

statistical and machine learning approaches 

 
 
The Ph.D. thesis is a collection of published or finished papers during the 
Ph.D. program.  
 
 
Hao Chen  
 
 
 
The thesis is the fulfillment of the partial requirements for the degree of 
Philosophiae Doctor (Ph.D.) in Natural Science at the UiT The Arctic 
University of Norway. 
 

 

July 2022 

 

 

 

 

Department of Technology and Safety, Faculty of Science and Technology; 

Arctic Centre for Sustainable Energy; 

UiT The Arctic University of Norway. 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
Acknowledgment 
 

The investigations are the results of my doctoral studies from October 2019 to June 

2022 in the Department of Technology and Safety. The study period is under the 

compliant supervision of Dr. Yngve Birkelund, Dr. Reidar Staupe-Delgado, Dr. Fuqing 

Yuan, and Dr. Stian Normann Anfinsen (first two years).  

First, special thanks to Yngve Birkelund for his thoughtful guidance, persistent 

support, and invaluable comments. Needless to say, without his kindness in daily life 

and the freedom and resources he offered for my research, my Ph.D. work would not 

have been established into the current content. I am sincerely grateful to Reidar 

Staupe-Delgado for his encouragement and useful instructions for my work and career. 

I thank Fuqing Yuan and Stian Normann Anfinsen for their timely and insightful 

comments and suggestions on my work. 

I am sincerely thankful to the Department of Technology and Safety for hiring me as a 

Ph.D. researcher and for enrolling me in a warm large family and administrative 

support and other Ph.D. students in the department for their accompany.  

Thanks to the hosting supervisors for my academic visits or internship during my 

Ph.D.: Dr. Xiuhua Zhu at the Max Planck Institute for Meteorology, Hamburg, 

Germany; Dr.  Cristina Corchero Garcia at the Catalonia Energy Research Institute, 

Barcelona Spain; Dr. Muhammad Aziz at the University of Tokyo, Tokyo, Japan; and 

Dr. Clovis Freire Junior at the United Nations Conference on Trade and Development 

(UNCTAD); Geneva, Switzerland.  

I am grateful for the horror of being a member of the Arctic Centre for Sustainable 

Energy (ARC) UiT and the Norwegian research school on Changing Climates in the 

coupled Earth System (CHESS) UiB.  

I am very grateful to the coauthors, editors, and reviewers of my publishing.  

Last but not the least, I want to thank my family and friends for their unbounded love, 

support, and care during the period. 

 

 

 

 

 

 

 

 



 

 

Abstract 
 
Norway's Arctic region is rich in wind resources and developing wind energy in the 

region can promote a green transition and economic development. However, the 

region's unique topography with fjords and mountains and cold climate conditions 

make wind resource assessment, generation analysis, and power forecasting 

particularly challenging. 

The accumulation of wind data and the emergence of data science give new promise to 

this issue. “Can advanced statistical and machine learning methods deliver effective 

and accurate analysis for wind energy in these Arctic landscapes that are 

characteristics with dramatically fluctuating wind?” The thesis systemically answers 

the question with the chronological order of the wind power generation process. 

First, a statistical probabilistic modeling approach is utilized to assess wind energy 

resources in particular wind speed and its volatility, both from measured and 

numerically modeled wind data. The accurate assessment results contribute to 

evaluating wind resources of sites in the Arctic region. 

Then, we propose a wind power curve model to monitor wind power generation for the 

Arctic wind park. The model involves quantifying wind turbulence, clustering 

meteorological data, and ensemble learning and reaching a satisfactory modeling 

result for the park power curve. 

Finally, we demonstrate that traditional machine learning methods can be used to 

make short-term wind power forecasts for the Arctic wind parks, and these forecasts 

could be improved to some extent by applying appropriate meteorological wind data, 

as inputs, to the forecasting models. Moreover, we developed a novel approach for 

turbine forecasting with appropriate data processing techniques, and loading the data 

into large deep learning models allows for more accurate forecasting in different 

terrain conditions. Further, we utilized a variety of transfer learning techniques to 

make it possible to refine the raw data information and transfer large accurate but slow 

training forecasting models to smaller and faster ones for realizing rapid and efficient 

wind power forecasting. 

In summary, through the above three parts of the investigation, the Ph.D. project 

achieved the target goal of developing data-driven Arctic wind energy analysis by 

statistical and learning approaches for wind parks and turbines in the Norwegian 

Arctic area. 
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1 Introduction 

 

1.1 Background  

As the global economy expands at a high speed, the problems of resource shortage, energy 

scarcity, and environmental pollution are increasingly severe, and the global climate change 

issue is a growing threat to the sustainable development of human society and economy. 

Against this background, accelerating the transformation of energy structure to a low-carbon, 

clean renewable energy system is an inevitable trend [1]. Renewable energies are playing an 

ever-greater role in the national energy system, thanks to their sustainability, cleanliness, and 

improving efficiency [2]. In particular, wind and photovoltaic energy received extensive 

publicity and experienced rapid expansion over recent years, and are considered important 

forms that can complement and gradually replace the traditional power generations [3]. 

In particular, the Arctic is one of the regions most affected by global warming [4]. Therefore, 

special attention has been paid to the carbon emissions of production and transportation 

processes in the development of the Arctic region. In particular, the development of renewable 

energy sources in the region not only protects the environment but also contributes to the 

economic development of the region. 

Several studies in recent years have shown that the Arctic is more significantly exposed to 

climate change than the temperate and tropical zones [5], [6], [7], [8]. A low-carbon transition 

in the Arctic is therefore imperative. Norway, as an economic powerhouse in the Arctic, has 

been at the forefront of international research and engineering practice in polar environmental 

energy theory in recent years. Norway's Arctic region has rich renewable energy resources, 

especially complementary solar and wind energy [9], [10], [11].  

Wind energy, as one of the promising and technologically proven renewable energy sources, 

has been developing vigorously worldwide over the past decades. Wind energy has received 

attention from a growing number of countries for its low-cost operation and maintenance, 

small turbine footprint, flexibility in development scale, and rapidly decreasing electricity 

generation costs [12]. Global Wind Energy Council (GWEC) statistics show that the global wind 

power capacity is up to 743 GW by the end of 2020 and with 93 GW installations within 2020. 

Going forward, the wind energy industry of China, the USA, and Europe will remain 

continuously growing, while the industry is going to jump in South America, Africa, Latin 

America, and other emerging markets [13]. It is projected to account for around 12% of the 

global electricity supply by 2030 [14]. 

Efficiency and reliability are critical to making wind energy competitively possible as wind 

energy grows in scale [15]. One of the hallmarks of modern engineering advances is the 

widespread adoption of data-intensive analytical tools and applications [16]. The potential and 

opportunities to leverage the vast accumulated amounts of data to address efficiency and 

reliability challenges are being extensively discussed in wind energy research and engineering 
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practice with the development of data science and artificial intelligence [17], [18], [19]. 

Technically, wind turbine technology has progressed significantly in recent years, enabling the 

design and deployment of larger turbines as well as the construction of wind parks in locations 

with cold climates and less required maintenance compared to the industry in the last century 

[20].  Modern wind parks have a great number of different types of sensors to keep their 

functioning efficient and reliable. Many anemometers, thermometers, strain sensors, and 

power meters are integrated into the wind turbine nacelle. Wind parks are usually also 

equipped with specifically constructed wind measurement towers to monitor wind conditions 

throughout the park. All of these monitoring tools generate vast volumes of data rapidly, 

providing opportunities for data science to resolve wind energy crucial issues in a new and 

effective way. Furthermore, the wind is a random and intermittent natural phenomenon. 

Therefore, the instability of wind energy is one of the most significant challenges for wind 

energy production and integration into the grid. Continuous innovations in data science 

provide comprehension of wind stochasticity and enable the design of countermeasures that 

could potentially yield groundbreaking progress in the wind energy industry as wind-related 

data continue to accumulate [21]. 

As mentioned above, increasing numbers of wind energy projects are being developed in colder 

regions. Relying more on wind energy resources in the Arctic helps achieve carbon neutrality 

in this cold and environmentally vulnerable area. Norway owns some of the best wind energy 

resources in Europe [22]. It has enormous potential for wind power generation, especially in 

its northern and Arctic regions. The vast sparsely vegetated lands in cold regions, the low 

temperature and high-density air and the excellent wind resources are favorable for the 

development of wind energy projects. However, developing wind energy faces many problems, 

such as turbine blade icing, weak local power grid, rapidly fluctuating wind speed, and 

direction, etc. 

The Ph.D. project paid special attention to the rapidly fluctuating wind speed and direction 

issue in northern Norway with complex fjord topography and unique climate conditions. 

Norway has a cold climate and a 25,148km coastline, both of which are generally characterized 

by an abundance of wind energy resources, and it is with a complex terrain consisting of 

mountains, valleys, and fjords, making the wind change dramatically and unpredictably.  

To comprehensively address the mentioned issue, under the guidance of the International 

Energy Agency (IEA) Wind Technology Collaboration Programme’s (TCP) Research Tasks 

with attention on tasks as follows [23], [24]: 

Task 1. Environmental and Meteorological Aspects of Wind Energy Conversion Systems 

(WECS) studied the environmental impact and operational safety of large-scale WECS, 

investigated the uncertainty in wind forecasting appropriate for day-to-day operation of 

WECS, and recommended design methods for selected load cases. 

Task 19. Wind Energy in Cold Climates gathers and provides information about wind energy 

in cold climates, including project development, operation, and maintenance (O&M), health, 

safety, and environment (HSE), operational experiences, and recent research. 
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Task 36. Forecasting for Wind Energy focuses on improving the value of wind energy 

forecasts to the wind industry.  

In terms of data science, the three items above can be organized by a formulation of wind power 

generation in Eq. (1). 

𝑓(𝑃) = ∫  𝑥 𝑓(𝑃 ∣ 𝑥)𝑔(𝑥)𝑑𝑥                                                                                                                          (1)                                                    

where f (.) and g (.) are probability density functions. P denotes generated wind power, and x 

represents wind-related factors, like wind speed, direction, etc.  

The item 𝑔(𝑥) says that the understanding of distributions of wind-related factors is necessary 

to address the wind power distribution. The item 𝑓(𝑃 ∣ 𝑥) is conditional power distribution 

that is linked with the internal relationships between power generation and its corresponding 

wind factors like wind speed, air density, temperature, etc. Finally, the 𝑓(𝑃), the wind power 

statistic, is integrated through the x result of the formula. Since generated wind power changes 

with time, so, it is more precise to denote the item with a time item t as f(Pt). 

Specifically, the focus of this thesis is on the mainly data-driven analysis of wind turbines and 

site-wide data from several wind parks, mainly energy production side, in the northern Arctic 

of Norway, with special attention to the Fakken wind park due to data availability.  

Thus, the present Ph.D. research addresses the Data-driven Arctic wind energy analysis by 

statistical and machine learning approaches based on the above three tasks from IEA TCP 

and Eq. 1. from data science for wind energy in three aspects: 

1. Five Arctic wind parks wind resource assessment: Task 1 and Modeling 𝑔(𝑥). 

2. Comprehensive wind power operation monitoring modeling for an Arctic wind park: Task 

19 and Modeling (𝑃 ∣ 𝑥). 

3. Wind power forecasting for Arctic wind park and turbines: Task 36 and Modeling Pt. 

1.2 Motivation and objective 

The Ph.D. work, initiated in October 2019, is mainly carried out at the Department of 

Technology and Safety and Arctic Centre for Sustainable Energy, UiT The Arctic University of 

Norway, it also benefits from the academic visits of Max Planck Institute for Meteorology and 

Catalonia Institute for Energy Research and academic internship of the University of Tokyo.  

The motivation of this Ph.D. project is “Whether the accurate and efficient analysis of wind 

energy in the Arctic, with dramatically fluctuating wind, can be achieved by developing 

models based on data-driven advanced statistical and machine learning methods.”  

Data-driven wind energy analysis has yielded many results [25] ,[26] ,[27], [28], [29]. But on 

one side, these studies are usually focused on highly populated temperate and tropical regions 
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or areas with relatively flat topography; on the other side, wind energy studies on a particular 

area are compartmentalized, i.e., concerned with only one part of the full work cycle, thus 

leading to a lack of information on the whole spectrum of a wind park from resource evaluation 

to operation analysis.  

Therefore, the primary objective is to develop data-driven comprehensive models for wind 

resource assessment, operational modeling, and power forecasting for wind parks in the 

Norwegian Arctic region. More specifically from the theoretical and methodological 

perspectives, the first is using physics and mathematical modeling to approach the question. 

The second is a combination and comparison of different methods in varying scenarios for 

deeply understanding the data characteristics and method implementations. The third is 

developing advanced and specialized tools with the considerations of proper data science and 

wind energy physics. 

1.3 Problem description  

The present research is a comprehensive wind energy analysis with a focus on the Norwegian 

Arctic conditions by advanced statistical, learning, and meteorological approaches. According 

to the chronological order of wind power projects, the research is conducted with attention to 

approaching the following problems:   

Q1: Prior to wind power generation: How to assess the wind energy resources of 

an area in a proper approach? Task 1 and Modeling 𝑔(𝑥). 

Answered by a Journal Paper I. A. Assessing probabilistic modeling for wind speed 

from numerical weather prediction model and observation in the Arctic and a 

Conference Paper I. B. Probability distribution for wind speed fluctuation 

characteristics-A case study of Northern Norway 

Q2: At present wind power is being generated: How do construct appropriate 

models to monitor wind power generation? Task 19 and Modeling (𝑃 ∣ 𝑥). 

Answered by a Journal Paper II. Cluster-based ensemble learning for wind power 

modeling from meteorological wind data  

Q3: Future of wind power production: How to achieve accurate wind power 

forecasting to enable large-scale penetration into the grid for such green energy? 

Task 36 and Modeling Pt. 

Answered by three Journal papers Paper III. A. Comparative study of data-driven 

short-term wind power forecasting approaches for the Norwegian Arctic 

region; Paper IV. Data-augmented sequential deep learning for wind power 

forecasting; Paper V.  Knowledge distillation with error-correcting transfer 

learning for wind power prediction and a Conference papers Paper III. B. 

Examination of turbulence impacts in ultra-short-term wind power and speed 

forecasts with machine learning. 
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Figure 1 – Research questions timeline. 

1.4 Employed technique list 

As wind energy research involves highly sophisticated physical and data science, this study 

employs a variety of methods to address the questions asked above. They include but are not 

limited to Table 1. 

Table 1. Summarized used techniques. 

No. Publications Main employed techniques 

Paper I 

Assessing probabilistic modeling for wind speed from 
numerical weather prediction model and observation 
in the Arctic.  Descriptive statistics,  

Exploratory data analysis,  
Inference tests,  
Parametric estimation,  
Probability distribution. 

Probability distributions for wind speed volatility 
characteristics: A case study of Northern Norway.  

Paper II Cluster-based ensemble learning for wind power 
modeling from meteorological wind data. 

Exploratory data analysis,  
Clustering analysis,  
Feature selection, 
Regression trees, 

Ensemble learning. 

Paper III 

Comparative study of data-driven short-term wind 
power forecasting approaches for the Norwegian 
Arctic region.  Descriptive statistics, 

Representative machine learning 
algorithms, 
Interference tests,  
Univariable and multivariable 
regression. 

Examination of turbulence impacts on ultra-short-
term wind power and speed forecasts with machine 
learning. 
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Paper IV Data-augmented sequential deep learning for wind 
power forecasting.  

Data preprocessing, 
Feature engineering, 
Neural networks, 
Deep learning, 
Encoder-decoder networks 
Interference tests. 

Paper V Knowledge distillation with error-correcting transfer 
learning for wind power prediction.  

Deep learning, 
Encoder-decoder networks 
Knowledge distillation, 
Error analysis, 
Transfer learning, 
Edge learning 
Bidirectional long short-term 
memory networks 
Inference tests. 

The above techniques are cross-used and elaborated in the included papers. Due to the length 

limitations, the details of these techniques can be found in the attached papers when they are 

applied. 

1.5 Target and data in brief  

The major research targets are five wind parks, namely Nygårdsfjellet, Fakken, Raggovidda, 

Kjøllefjord, and Havøygavlen in northern Norway with the cold climate and complex terrain 

consisting of large mountains, valleys, and fjords. Moreover, due to the data availability, the 

Fakken wind park is given special attention. A descriptive overview and locations of the five 

sites are intuitively presented in Figure. 2 with terrain elevation around each wind park. Table 

2 serves as a summarized statistical comparison in terms of their coordinates, heights installed 

capacity, location, and site ruggedness (RIX). The example of generated wind power data is 

shown in Figure 3.  Northern Norway has a complex terrain consisting of fjords, mountains, 

and valleys that goes from the coast into a moderately high inland along the border to northern 

Sweden and Finland.  

Nygårdsfjellet wind park is located in a valley, far from the open sea, that reached 

approximately 450 meters elevation. The mountains south and north of the valley limit the 

main wind direction to be west-east, and high wind events are expected during the winter 

season.  Havøygavlen, Kjøllefjord, and Fakken wind parks are located close to the open sea and 

on relatively flat hills where large nearby fjords affect both wind direction and speed. 

Raggovidda wind park is also located near the open sea but on a flat mountain that does not 

have any vegetation. 
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Figure 2 – The concerned five wind parks in Northern Norway. Ocean is shown in white. 
Color tones from blue to red show terrain heights from 0m to 2000m [30]. 

Table 2. Description of the concerned five wind park sites [30]. 

Terrain features: Nygårdsfjellet  (Inland valley, high steep mountains); Fakken (Small hill, high steep mountains 

and fjords); Raggovidda (Flat inland mountain, close to coast); Kjøllefjord (Low flat mountains and fjords);  

Havøygavlen (Flat low island, steep cliffs and fjords). 

 

Figure 3 – Generated wind power in the first 48 hours of 2017 for the five wind parks. 

Wind Park Location °N / °E Height[m] RIX 

Designed 

power 

[MW] 

Mean 

power 

[MW] 

Standard 

deviation 

[MW] 

Capacity 

factor of 

2017 

Nygårdsfjellet 68.504 / 17.879 410 0-5 32.2 11.132 11.833 34.57% 

Fakken 70.098 / 20.081 95 5-10 54.0 15.239 15.858 28.22% 

Raggovidda 70.769 / 29.094 440 0-5 45.0 21.782 16.869 48.40% 

Kjøllefjord 70.922 / 27.268 280 10-20 39.1 12.349 12.786 31.58% 

Havøygavlen 71.012 / 24.589 220 5-10 40.5 10.311 11.037 25.46% 
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The used wind data (0:00 1st January 2017 to 23:00 31st December 2017) summery is briefly 

shown in Table 3.  

Table 3. A brief summary of used wind data. 

Wind data Source Resolution 

Wind power generation data 

for five wind parks 

Norwegian Water Resources 

and Energy Directorate (NVE) 
1h time resolution 

Numerical weather prediction 

(NWP) wind data for five wind 

parks 

MET Norway (Norwegian 

Meteorological Institute) MEPS 

(Ensemble Prediction System) 

1h time resolution, 2.5 km 

spatial resolution 

Measured wind environmental 

data of mast for Fakken wind 

park 

Troms Kraft Produksjon. Local 

power production company, 

owner of Fakken wind park 

10min time resolution 

interpolated to 1h time 

resolution 

Measured wind environmental 

data of turbine for Fakken wind 

park 

Troms Kraft Produksjon. Local 

power production company, 

owner of Fakken wind park 

10min time resolution 

interpolated to 1h time 

resolution 

1.6 Outline of the thesis  

The remainder of the dissertation is structured as follows: Chapter 2, 3, and 4 focus on prior 

to wind power generation: wind resource assessment; on wind power generation: wind power 

curve modeling; and future wind power generation: wind power forecasting, respectively. In 

Chapter 5, we introduce the publications and discuss the research findings and contributions. 

Chapter 6 concludes the dissertation with a summary and suggestions for further work. Finally, 

the papers included in the dissertation can be found in the appendices. 
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2 Prior to wind power generation: wind resource 
assessment 

 

In this chapter, Question 1: Prior to wind power generation: How to assess the wind 

energy resources of wind sites in a proper approach in the Arctic? is taken under 

consideration. To refine the question, it is addressed by analyzing the wind speed and its 

volatility distributions by statistical methods.  

 

Figure 4 – Wind resource assessment. 

Specifically, the question is answered by a journal paper Assessing probabilistic modeling for 

wind speed from numerical weather prediction model and observation in the Arctic 

(Scientific Reports 2021, IF: 5.0) and a conference paper Probability distribution for 

wind speed fluctuation characteristics-A case study of Northern Norway (Elsevier Energy 

Reports 2021 IF: 4.9). The main content of this chapter is drawn from the two papers 

mentioned above [10], [31]. 

2.1 Background 

In Norway, multiple wind energy projects have been developed for energy markets, and many 

more wind parks are in the design and planning stage [32]. It is critical to developing a 

convincing technique for assessing the area's wind energy resources. Assessing regional wind 

energy potential and resources precisely is an important aspect of wind energy development 

since it increases investment trust in finance and risk management [33]. Because of geographic 

variances, wind resource potential differs from one wind park location to another. As a result, 

when developing durable wind power projects, a precise assessment of a wind park's wind 

energy potential is essential [34]. A rigorous evaluation of the potential wind speed resources 

of a specific location directly affects the economic value, risk assessment, turbine selection, 

power generation estimation of the wind park, as well as the operation and management of 

wind power conversion systems [35]. [10] 
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The probability density function (PDF) is normally applied in wind resource assessments to 

quantify the theoretical wind energy potential, both of which can intuitively reflect the wind 

speed statistical patterns [10]. Wind speed value is positive, and its PDF is skewed to the right. 

It should not strictly follow the normal distribution. Consequently, right-skewed ideal PDF 

with non-negative mean, such as Weibull or Rayleigh distributions [12], are candidates for 

modeling the speed. 

Theoretically, a practical concept in wind engineering is named the Capacity Factor (CF). 

Understanding the probability distribution of wind speed is vital to computing the CF, which 

is computed by the mean energy production divided by the rated in a certain period, as in Eq. 

(2): 

𝐶𝐹 =
𝑃ave 

𝑃𝑟
, where  𝑃ave = ∫ 𝑓

∞

0
(𝑣)𝑃(𝑣)𝑑𝑣                                                                                                  (2)                                                    

where f(v) represents the PDF of wind speed. P(v) is the turbine power curve with wind speed. 

A wind turbine gets its maximum electricity generation when the wind speed is in the interval 

between the rated and cut-off speed. Knowledge of the wind speed interval is of great 

importance for ensuring the turbine’s efficient and economical operation. So, the f(v) is an 

important evaluation index for estimating local wind resource potential [10]. 

2.2 Probabilistic modeling for wind speed 

• Assessing probabilistic modeling for wind speed from numerical weather 

prediction model and observation in the Arctic [10] see Appendix Paper I.A.  

Research in a nutshell 

The statistical characteristics of wind speed are essential for the practical assessment of wind 

energy potential and the sustainable design of wind parks. Since wind speed is variable, 

intermittent, and uncertain, appropriate means should be used to describe its fluctuating 

nature [12]. Wind is created by pressure differences between different regions, but terrain 

features like mountains, valleys, fjords, and other surface irregularities create disturbances, 

meaning that wind speeds near the ground typically fluctuate significantly. The wind speed 

contributing to energy production in a wind turbine surrounded by complex terrain typically 

changes significantly; therefore, when the time scale is short, the statistical characteristics of 

the wind become uncertain and difficult to predict [36]. When the time scale is long, the 

probabilistic distribution of wind speed is relatively stable, and the long-term statistical 

characteristics of wind can be determined [37]. A common way of describing the wind energy 

at a site is to use its annual wind speed distribution. The PDF of wind speed is vital in valuing 

energy production for wind power and is an important evaluation index for estimating local 

wind resource potential.  

Most related studies have focused on PDF modeling for the observed wind speed of wind parks, 

and there is a lack of PDF modeling for wind speed forecasted by Numerical Weather 

Prediction (NWP). This is unfortunate because NWP calculations generate most of the world's 
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wind data. Some studies have focused on using the Weibull distribution or one of three or four 

other similar distribution methods. However, they fail to consider the broader deployment of 

the PDF approach for wind speed modeling. In practice, more attention is paid to the wind 

speed range corresponding to the wind turbine's rated power. Despite this, few studies have 

applied PDF methods to analyze wind speed intervals when wind turbines are producing the 

maximum power, and little research has discussed wind speed distribution in the Arctic region.  

In the study, we concentrate on probabilistic modeling of NWP wind speed for five wind parks 

in the Norwegian Arctic region and one observed wind speed, Fakken, for one of them. The 

results of the present study indicate that, for wind resource assessments in complex terrain, 

the Nakagami and Generalised extreme value distributions are recommended as the preferred 

models for the PDF of NWP and observed wind speed, respectively, as they showed excellent 

and consistent performance. In addition, the probabilistic models that reasonably describe 

interval wind speed differ from those of overall wind speed due to the nature of the wind: the 

former corresponds more to the right-side properties of the probability distribution functions.  

2.3 Probability distributions for wind speed volatility 

• Probability distributions for wind speed volatility characteristics: a case 

study of northern Norway [31] see Appendix Paper II.B. 

Research in a nutshell 

Due to the uncertainty and intermittency of wind, wake effects between wind turbines, and the 

cubic relationship between wind speed and the wind turbine-generated power, a small change 

in wind speed can be significantly amplified in the output wind power. The random volatility 

of wind is regarded as an adverse factor for wind energy [38]. This intermittency brings severe 

challenges to the power system's safety, power quality, and the balance of power supply and 

demand. Therefore, studying the volatility characteristics of wind is of great significance for 

improving wind power forecasting accuracy, scenario generations, and overcoming the adverse 

effects of wind power integration in the grid [39]. Wind speed volatility, a phenomenon that 

strongly affects wind power generation, has not received sufficient research attention. The 

typical wind energy assessment methodology lacks tools to characterize wind speed volatility 

on sites. The volatility analysis offers additional information about wind. The wind has 

different volatility characteristics at different temporal scales. Although the wind has certain 

seasonal and diurnal characteristics, there is no fixed volatility amplitude and cycle; its 

volatility has no clear rules to follow.  

In the present study, we focus on statistical modeling of wind speed volatility for a wind park, 

Fakken, inside the Norwegian Arctic region. The probability distribution of wind volatility is 

overall centrally symmetrical but quite different from the normal distribution. In our cases, 

wind volatility is slightly left-skewed and has sharper peaks compared to the normal 

distribution. However, as the temporal resolution of sampling decreases, its probability 

distribution becomes closer to the normal distribution. Although most PDF models fail a 

rigorous nonparametric goodness-of-fit test based on the raw data of complex wind 
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phenomena, the logistic and t distributions deliver (coefficient of determination) high R2 and 

Root Mean Square Error (RMSE) approaching zero, suggesting that both distributions provide 

good characterizations of wind speed short-term volatility in wind energy engineering practice. 

Moreover, the t distribution has a notable advantage, and its performance is very stable with 

sampling time. 

2.4 Summary 

Question: Prior to wind power generation: How to assess the wind energy resources of wind 

sites in a proper approach in the Arctic?  

Brief answer: The proposed comprehensive probability distribution modeling processes 

delivers a useful tool for assessing the wind resource, especially for wind speed and its 

volatility.  

For wind speed assessment, we comparatively assess seven different PDFs for wind speed 

modeling for the five wind parks. We analyzed wind speed distributions for a wind park using 

NWP and observed wind data to better understand the differences in wind speed data from 

different resources. [10] 

For wind speed volatility assessment, we use different PDFs and skewness and kurtosis 

moments to characterize short-term wind speed volatility at various temporal scales for 

Fakken. The statistical modeling of volatility assists in documenting wind's internally volatile 

features, especially for the wind in a cold climate and complex terrain. [31]. 
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3 On wind power generation: wind power curve 
modeling  

 

This chapter focuses on Question 2: At present wind power is being generated: How to 

construct appropriate models to monitor wind power generation? The refined 

question is dealt with wind power generation curve modeling from meteorological wind data 

with machine learning algorithms and the modeling performance is checked by statistical 

approaches. 

 

Figure 5 – Wind power curve modeling. 

Specifically, the question is answered by a journal paper Cluster-based ensemble learning for 

wind power modeling from meteorological wind data (Elsevier Renewable and 

Sustainable Energy Reviews 2022, IF: 16.8). The main content of this chapter is drawn 

from the mentioned paper [40]. 

3.1 Background 

Wind power is characterized by volatility, randomness, and intermittency. Establishing an 

accurate power model for a wind park based on the empirical mapping of weather data is 

important to understand the relationship between wind and wind power generation, which in 

turn is significant for the safe and stable operation and economic operation [41]. It is also 

important for having a non-parametric power curve model that can be applied as a reference 

profile for the online monitoring generation process [42]. In practice, for grid planning and 

dispatching, improving the modeling accuracy of wind power can protect the economic 

scheduling and power balance and can reduce the allocation of energy storage equipment 

capacity [43]. For wind power parks, accurate models can provide a reliable reference for 

power generation plans and thus improve production efficiency [26], [44]. More precise 

examples to describe the importance of wind power curve models are firstly the wind energy 

prediction can be done by forecasting wind speed initially and then converting it to predicted 
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power by using power curve models [45], [46]. Secondly, accurate models can assist in turbine 

performance assessment and turbine health monitoring [47], [48]. [40] 

Wind power production is a conversion from wind kinetic energy to electrical energy. 

Neglecting any loss in the process of conversion, the actual power output (theoretical power 

curve) of a wind turbine can be expressed as (3). 

𝑃 =

{
 
 

 
 

0 𝑣 < 𝑣𝑚𝑖𝑛
1

2
𝐶𝑃𝜌𝐴𝑣

3 𝑣𝑚𝑖𝑛 < 𝑣 < 𝑣𝑛

𝑃𝑛 𝑣𝑛 < 𝑣 < 𝑣𝑚𝑎𝑥
0 𝑣 > 𝑣𝑚𝑎𝑥

                                                                                                                    (3) 

where P is the output power; CP is wind energy efficiency; ρ donates the air density; A 

represents the effective area swept by the wind turbine blades, v is the wind speed; vmin, vmax, 

and vn are cut-in, cut-off wind speed, and rated wind speed, respectively. Pn means the rated 

power for the turbine. From (3), the output of a wind turbine is mainly influenced by wind 

speed, air density, and swept area. Moreover, air density is primarily affected by temperature 

and pressure [49]. The swept area is influenced by wind direction. The functional relationship 

between environmental factors and power response is typically nonlinear. The nonlinearity is 

mainly from complex CP that is influenced by many environmental factors [50]. Furthermore, 

the multiplicative relationships indicate interactions between the factors [51]. [40] 

So, the complexity in Eq. (3) offers an opportunity for data science, with a data-driven 

nonparametric modeling approach, in the power modeling from environmental factors. From 

the wind park curve modeling and operation monitoring point of view, the power production 

can be summarized by functional relationships with the most dominant factor wind speed 

vector V and other weather factors W, as P=f (V; W). 

3.2 Wind power modeling by cluster-based ensembles  

• Cluster-based ensemble learning for wind power modeling from 

meteorological wind data [40] see Appendix Paper II.  

Research in a nutshell 

Driven by progress in computing affordability and capability and algorithmic advances, wind 

power can increasingly be modeled by physical, statistical, and hybrid methodologies. 

However, there is still room to improve these models [52].  This study presents an ensemble 

learning approach that combines bagging, boosting, and stacking for modeling wind power 

from meteorological data. To mine the inherent characteristics of the data, four clustering 

approaches are used to process inputs for the layered ensembles. Then, the layered cluster-

based ensembles are fused within the stacking framework.  

The Adaptive boosting (AdaBoost) with Random Forest (RF) model can accurately model wind 

power. The algorithm circumvents issues of an equal weighting of each tree in RF and 
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AdaBoost and allows each learner to boost incrementally, and eventually creates a model with 

a good generalization. The overall performance of the proposed method is proven much better 

than the benchmarks in the cases without clustering. As no standard methods for identifying 

the cluster number exist, the study uses a heuristic elbow graph, an empirical formula, and the 

X-means clustering to precisely determine the implied number for meteorological data.  

The comparative study of Adaboost with RF-based on different clustering methods reveals, 

firstly, that the model with clusters significantly performs better than the model without, 

regardless of what clustering approach is employed. This suggests that similarities within the 

wind power data can correspond to similarities within the weather data. Secondly, among these 

clustering methods, the model with Farthest First (FF) clustering provides the best modeling 

results. The reason is that FF is built on finding the data point furthest from the previous 

centroid as the new one; in other words, it emphasizes large differences between clusters. Upon 

this clustering, the fluctuations among the original meteorological data are considerably 

diminished, which in turn corresponds to a smoother wind power output and increases the 

accuracy of the wind power model. The fast computability and accuracy of FF also suggest that 

the clustering technique can be applied to ultra-short-term wind power models. Thirdly, 

Canopy is the fastest among the four clustering methods and achieves comparable results. 

Therefore, Canopy can also serve as a favorable clustering approach when wind weather 

datasets are considerably large. 

The wind power model is further strengthened by using stacking to fuse the layered ensembles 

with four clustering approaches. It can be interpreted as the two-layer stacking with four 

clustering methods Adaboost with RF model working as a representation learning—that is, 

effective features are automatically collected from raw data and fed into the second layer via 

multiple learners in the first layer; the second layer compiles and aggregates these features 

through linear regression with a regular term and effectively outputs simulations. 

3.3 Summary 

Question: At present wind power is being generated: How do construct appropriate models 

to monitor wind power generation, especially for the Arctic wind parks?  

Brief answer: The wind power curve modeling for monitoring the generation can be achieved 

by a modeling scheme that orderly integrates three types of ensemble learning algorithms—

bagging, boosting, and stacking—and clustering approaches to achieve wind power modeling 

from multiple wind-based meteorological factors for a wind park in the Norwegian Arctic area. 

The scheme involves quantifying wind turbulence, clustering meteorological data, and 

ensemble learning. Firstly, an effective model integrating bagging and boosting is constructed. 

Secondly, four prominent clustering algorithms are systematically incorporated with models 

to form layered cluster-based ensembles and the best clustering approach is selected. Finally, 

stacking is employed to fuse these ensembles with different clusters to establish a more 

accurate model. [40] 
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4 Future wind power generation: wind power 
forecasting 

 

This chapter weighs heavily for the Ph.D. project, which systemically answers the Question3: 

Future of wind power production: How to achieve accurate wind power 

forecasting? In northern Norway, the cold climate region can, in general, be characterized 

by good wind resources but is challenging in wind power forecasting with the complex terrain 

consisting of large mountains, valleys, and fjords. So, the question is further refined into three 

sub-questions. The sub-questions are answered by establishing different forecasting models 

with machine learning and wind energy physics, and the modeling performance is checked by 

statistical approaches. 

 

Figure 6 – Wind power forecasting. 

1. Which input feature selections and existing forecasting methods are suitable for the Arctic 

wind scenario? 

Specifically, the question is answered by a journal paper Comparative study of data-driven 

short-term wind power forecasting approaches for the Norwegian Arctic region (AIP 

Journal of Renewable and Sustainable Energy 2021, IF: 2.8) and a conference paper 

Examination of turbulence impacts on ultra-short-term wind power and speed forecasts with 

machine learning (Elsevier Energy Reports 2021, IF:4.9).  

2. How to develop an advanced wind power forecasting model combining data processing and 

state-of-the-art deep learning algorithms? 

Specifically, the question is answered by a journal paper Data-augmented sequential deep 

learning for wind power forecasting (Elsevier Energy Conversion and Management 

2021, IF: 11.5).  
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3. How to quickly train an accurate but complex model and further incorporate available 

weather data into the model? 

Specifically, the question is answered by a journal paper Knowledge distillation with error-

correcting transfer learning for wind power prediction. 

The main content of this chapter is drawn from the four papers mentioned above [53], [54], 

[55], and Appendix Paper V. 

4.1 Background 

Along with the electricity grid adding wind power penetrations, the unstable grid factors also 

increase, which are undesirable to the power system's effective and safe operations. So, it is 

crucial to use proper methods to understand wind power production and harness proper 

methods to make forecasts of the electricity generated by wind parks. However, due to the 

inherent characteristics of random nonlinear fluctuations in wind speed variation, it is difficult 

to obtain satisfactory prediction performance. To integrate wind energy into the power supply 

system efficiently and economically, it is vital to accurately make the wind power prediction. 

Wind power prediction can be divided into ultra-short-term prediction, short-term prediction, 

medium-term prediction, and long-term prediction [56]. Ultra-short-term forecasts are 

predictions made from a few minutes to 30 minutes in advance; the short-term are forecasts 

made from 30 minutes to 48 hours ahead, the medium-term refers to predictions made days, 

weeks, or months earlier, and the long-term is made years in advance. Wind power forecasting 

methodology is generally divided into physical, statistical, and hybrid approaches. [57] The 

first predicts wind power by extensive numerical computation of physical equations. It is based 

on fluid dynamics and uses Numerical Weather Prediction (NWP) data such as wind speed and 

pressure, and geoinformation like ground roughness and altitude. The method performs best 

in medium or long-term forecasting and applies to the wind resource assessment of new wind 

parks that lack historical observations. The statistical approach aims to establish linear or 

nonlinear patterns within wind data sequences that can be utilized in forecasting. In particular, 

machine learning-based wind power forecasting methods developed in recent years are widely 

applied. The hybrid approach is a combination of the former categories and has shown its edge 

profoundly [58]. 

Regarding data science, wind power forecasting could be simplified as a multivariable 

regression project, in which wind power time series are autoregressed, while wind speed and 

other weather factors serve as the supplementing information to the autoregression. Updating 

the related weather forecasts from NWP of the predicted time is a crucial feature in the 

forecasting based on an extensively cited reference by Giebel and Kariniotakis [59]. 

Generally, the fundamental multistep forecasting model f(.) with timestep i+n is expressed as:  

𝑃̂𝑖+𝑛 = 𝑓(𝑃𝑖−𝑗;𝑊𝑖−𝑗; 𝑁𝑊𝑃𝑖+𝑛) + 𝜀𝑛                                                                                                         (4)     
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where i means the base current time and with each i, 𝑗 is the previous time steps. 𝑃̂𝑖+𝑛 is n 

timestep ahead forecasting power, W is the measured wind, NWP donates wind data computed 

by the mesoscale NWP model. εn is the model error. [53], [55] 

4.2 Comparative investigation of wind power forecasting  

The section firstly applies various machine learning methods for wind power forecasting and 

comprehensively compares the performance of models categorized by whether consider 

weather factors. Then, it investigates the use of turbulence intensity for the predictions of wind 

power and speed for a wind park in the Arctic. 

4.2.1 Comparative study of data-driven forecasting approaches 

• Comparative study of data-driven short-term wind power forecasting 

approaches for the Norwegian Arctic region [53] see Appendix Paper III. A.  

Research in a nutshell 

This study conducts a systemic comparative study on univariate and multivariate wind power 

forecasting for five wind parks inside the Arctic area. 

For the univariate time series wind power prediction in these cases, the Persistence Model (PE) 

approach and machine learning methods do not have a considerable difference in 

performance. The Support Vector Regression (SVR) and MultiLayer Perceptron (MLP) 

function equally well with the PE model. The machine learning algorithms that perform best 

in Mean Average Error (MAE) are SVR and SVR optimized with Genetic Algorithm (GA-SVR), 

whose average MAE is almost the same as for the PE model. The machine learning algorithm 

that performs best in Root Mean Square Error (RMSE) is MLP. SVR, Radial Basis Functions 

(RBF), GA-SVR, and Long Short-Term Memory neural networks (LSTM) also have lower 

RMSE than the PE model has. This generally means the PE model has more large errors in the 

prediction procedure. Our result also validates the conclusion from research [60] in the wind 

engineering field. The conclusion is learning algorithms do not deliver on their promise for 

univariate time series prediction, and the classical statistical methods even perform better. The 

phenomena may be explained that for univariate series, the complex methods often overlearn 

the training set and create overfitting in the testing. 

For the multivariate wind power forecasting in our cases, the model considers methodological 

or topographic factors by taking the mesoscale NWP wind data as inputs. Compared to the 

corresponding algorithm in the univariate case, the multivariate model has a lower MAE and 

results in a smaller RMSE. When the predictive time increases, the multivariate models are 

more stable than the PE model, especially in the metric of RMSE. These prove that the 

multivariate model entirely exceeds the PE model and the univariate model. Furthermore, the 

sophisticated ensemble and deep learning algorithm demonstrate their superiority in dealing 

with complex and multivariate pattern recognitions in complicated wind power forecasting 

problems.  
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The NWP wind data are generated with mesoscale (2.5km), which is larger than the area of our 

wind parks. However, adding this local weather information can still obviously optimize the 

performance of forecasting models. The improvements in the penetration of NWP data in wind 

power prediction can be explained from two aspects: firstly, from the Bayesian theory [61], the 

introduced NWP wind information can provide a priori probability information to make more 

precise wind power (corresponding to posterior probability) predictions; secondly, NWP wind 

data can be regarded as the simulating wind conditions of the whole wind park, which add 

useful information in the predictive process. 

4.2.2 Turbulence impacts on the forecasting  

• Examination of turbulence impacts on ultra-short-term wind power and 

speed forecasts with machine learning [54] see Appendix 4.2.  

Research in a nutshell 

In the present study, we focus on various machine learning autoregressive approaches to 

realize forecasts for wind power and speed for a wind park inside the Norwegian Arctic regions. 

The performances of different machine learning algorithms in predicting ultra-short-term 

wind power and speed are satisfactory but not significantly different in general. According to 

the statistical analysis, no clear statistical evidence exists that wind speed turbulence 

intensities affect the ultra-short-term wind power and speed forecasts. The main reason is that 

in ultra-short-term forecasts, the predictor variable's previous data are the most dominant 

factor affecting their predictive values, and other variables serve only as supplementary 

information. It suggests that it might be ill-advised to directly employ turbulence intensity in 

the forecast model, given that it is a subsidiary factor and increases computational burdens.  

Since the wind park understudy has a complex topography, there may be turbulence 

interactions, both natural and generated by the wind turbines. As a whole wind park, these 

turbulent currents could cancel each other out. It is advantageous to examine the turbulence 

effect for a single wind turbine. Even though the effect of wind speed turbulence intensity is 

not significant in our case, it is still detected that it has a greater impact on ultra-short-term 

wind speed prediction than power, which indicates that there are interactions between weather 

factors. It also implies that if wind speed, turbulence, and other weather factors impacting 

wind power generation are taken into account in an appropriate methodology, wind power 

forecasts accuracy may be improved.  

4.3 An advanced wind power forecasting framework  

• Data-augmented sequential deep learning for wind power forecasting [55] 

see Appendix Paper IV.  

Research in a nutshell 

The present study returns to the physical process of wind power generation, the statistical 

characteristics of wind data, and the nature of deep learning to approach the forecasting 
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problem. After synthesizing numerous data augmentation methodologies and drawing on 

multiple state-of-the-art advances in sequential data prediction, the robust and efficacious 

encoder-decoder deep neural networks with stacking LSTM units are proposed for wind 

turbine power forecasting in the Arctic. It initially scrutinizes the usefulness of data 

augmentation approaches in wind power forecasting and proposes a multi-input and multi-

output prediction algorithm with verified superiority in multistep forecasting five wind 

turbines with various topologies.  

The proposed seq2seq-based deep Encoder-Decoder Long Short-Term Memory neural 

networks (EDLSTM) enable highly effective and robust multistep power forecasting, by 

highlighting the sequential dependence of the problem, for wind turbines under different 

terrain conditions.  

Since EDLSTM is a complex deep learning model, its strength requires so-called big data. It is 

demonstrated that five-fold expansions of the primary data with data augmentations 

statistically boost neural network-based NN (Three-layer backpropagation Neural Networks), 

LSTM, BA (Bionic optimized neural networks constructed Adaboost), and EDLSTM wind 

power forecasting capabilities. The boost is particularly evident in EDLSTM, where, on 

average, the performance of the data-augmented model provides better forecasting with lower 

RMSE, which is 10.2% smaller than its counterpart without data augmentation. This boosting 

can be interpreted as expanding the training set, it is equivalent to adding a regular term to the 

loss function when training models, which can effectively avoid overfitting. Besides, due to the 

stochasticity involved in data augmentations, the learned model built on the techniques 

presents better robustness. Moreover, the data-augmented EDLSTM edges over the 

benchmarks since the proposed EDLSTM further learned deeper information, like signal 

decompositions, of the wind data by mentioned augmentation techniques. 

The impact of the eight data augmentation approaches employed, three physics-oriented and 

five data-oriented, on wind power prediction is forecasting arithmetic sensitive. For the 

proposed well-performing EDLSTM, various augmentations can approximately, by over 12%, 

boost the forecasting qualification rate at the 90% threshold. But augmentations improve the 

forecasting performance to slightly different degrees when evaluated by RMSE and MAE, and 

generally, data-oriented augmentations outperform physics-oriented ones. Among data-

oriented augmentations, the results illustrate that EDLSTM's forecasting RMSE is significantly 

decreased even by simply appending noisy and randomly perturbing or moving data the same 

way as sophisticated statistical data decomposition and learning data generation, however, as 

per MAE, the latter two provide overall closer predictions to the real power. 

4.4 An integrated but fast wind power forecasting 

framework  

• Knowledge distillation with error-correcting transfer learning for wind 

power prediction see Appendix Paper. V 

Research in a nutshell 
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The presented study fully addresses the above concerns by innovatively developing a 

framework for predicting wind turbine power with mathematical derivation. It is the first time, 

through Knowledge Distillation (KD), to deploy a large sequential deep learning forecasting 

model with multiple inputs and outputs for big data in wind parks on a fast-running small-

scale turbine forecasting model; the framework fully exploits the prediction error value and 

ingeniously downscales the NWP information corresponding to wind parks non-explicitly to 

the turbine scale by transfer learning and primitive and inverse function transformation. In 

other words, A deep learning wind power prediction framework bridges large (park with big 

data) and small-scale (turbine with small data) forecasting through a proposed KD regression 

approach, and maps park-scale weather forecasts non-explicitly to turbine-scale by Transfer 

Learning (TL)-based prediction error corrections. The effectiveness and quickness of the 

framework are experimentally verified on wind turbines in different terrains. Furthermore, the 

framework has extensive applicability in other fields since it does not involve specific energy-

physics and geographical factors. The following conclusions are drawn from experiments on 

turbine predictions under five types of topography in a park in the Arctic. 

The proposed multistep power prediction framework is extraordinarily effective and robust by 

leveraging the data and reinforcing the nonlinear capabilities of the model based on the 

experimental comparisons. Compared to its competitors, the overall average effectiveness, in 

RMSE, is respectively improved from high to low: 23.9%, 21.1%, 14.9%, 7.9%, and 3.3%. The 

effectiveness is also verified with a metric with physical meaning, Qualification Rate at the 90% 

threshold (QR90). Moreover, KD-TL, thanks to its adequate utilization of weather forecast 

information, yields satisfactory outcomes in predicting wind turbines in complex terrain, 

which is normally challenging as well. Finally, the complexity and response time of KD-TL 

decreases multiplicatively over its closest competitor, which enables the proposed approach to 

have extensive strengths in engineering deployment. 

4.5 Summary 

Question: Future of wind power production: How to achieve accurate wind power 

forecasting, especially for the Arctic wind parks? 

Brief answer: Traditional machine learning methods could be to achieve short-term wind 

power forecasts for the Arctic region, in which these forecasts could be improved to some 

extent by applying appropriate wind meteorological data to the forecasting models. Expanding 

the amount of data with appropriate data processing techniques and loading the data into large 

deep learning models allows for more accurate wind power predictions in different terrain 

conditions. With a variety of transfer learning techniques, it is possible to refine the raw data 

information better and transfer large accurate but slow training forecasting models to smaller 

and faster ones for realizing rapid and efficient wind power forecasting. 
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5 Research findings and contribution 

 

Throughout this chapter, a summary of the finished academic papers of the Ph.D. project and 

their research findings and contributions, by presenting abstracts and contribution parts of 

these papers. 

5.1 List of publications 

The Ph.D. thesis includes 5 scientific journal articles that are finished or published through 

international scientific journals on the related topics. Except for Paper III.A which is published 

in a subscribing way, whose postprint version is self-archived at the Norwegian academic 

repository Cristin. The others are fully open access. 

Additionally, some results are also presented and published 7 short communication journal 

articles. 2021 & 2022 International Conferences on Technologies and Materials for Renewable 

Energy, Environment and Sustainability (TMREES), 2021 International Conference on Power 

and Energy Systems Engineering (CPESE), 2021 & 2022 International Conference on 

Electrical Engineering and Green Energy (CEEGE), 2022 International Conference on Clean 

Energy and Electrical Systems (CEES), 2021 Asia Conference on Automation Engineering 

(ACAE) 

In total, the author of this Ph.D. thesis successfully published 11 peer-reviewed scientific 

papers and a finished manuscript during his Ph.D. period. 

The present dissertation includes the following five scientific journal and two conference 

papers that served as supplementary materials for two of the five journal papers: 

Paper I.  

A. Chen, Hao; Birkelund, Yngve; Anfinsen, Stian Normann; Staupe-Delgado, Reidar; Yuan, 

Fuqing. Assessing probabilistic modeling for wind speed from numerical weather prediction 

model and observation in the Arctic. Scientific Reports 2021; Volum 11. (7613) s. 

B. Chen, Hao; Anfinsen, Stian Normann; Birkelund, Yngve; Yuan, Fuqing. Probability 

distributions for wind speed volatility characteristics: A case study of Northern Norway. 

Energy Reports 2021; Volum 7. s. 248-255. CONFERENCE 

Paper II. 

Chen, Hao. Cluster-based ensemble learning for wind power modeling from meteorological 

wind data, Renewable and Sustainable Energy Reviews, Volume 167,2022. 

Paper III. 
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A. Chen, Hao; Birkelund, Yngve; Anfinsen, Stian Normann; Yuan, Fuqing. Comparative 

study of data-driven short-term wind power forecasting approaches for the Norwegian 

Arctic region. Journal of Renewable and Sustainable Energy 2021; Volum 13.(2) s. 

B. Chen, Hao; Birkelund, Yngve; Yuan, Fuqing. Examination of turbulence impacts on ultra-

short-term wind power and speed forecasts with machine learning. Energy Reports 2021; 

Volum 7. Suppl. 6 s. 332-338. CONFERENCE 

Paper IV 

Chen, Hao; Birkelund, Yngve; Qixia, Zhang. Data-augmented sequential deep learning for 

wind power forecasting. Energy Conversion and Management 2021; Volum 248. s. 1-12. 

Paper V 

Chen, Hao; Birkelund, Yngve. Knowledge distillation with error-correcting transfer learning 

for wind power prediction.  

Table 4. Contribution of the Ph.D. candidate to the papers in the Ph.D. thesis. 

Topic  
Paper I 

A, B 
Paper II  

Paper III 

A, B  
Paper IV  Paper V 

Conceptualization  √ √ √ √ √ 

Data curation     √ √ 

Formal analysis  √ √ √ √ √ 

Investigation  √ √ √ √ √ 

Methodology  √ √ √ √ √ 

Resources   √  √ √ 

Software  √ √ √ √ √ 

Visualization  √ √ √ √ √ 

Validation  √ √ √ √ √ 

Paper writing  √ √ √ √ √ 

Submitting and 

revising  
√ √ √ √ √ 
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5.2 Research findings and contribution 

This part presents research summaries and findings in the form of abstracts and/or 

contributions from papers I through V that are included in this dissertation. 

• Prior to wind power generation: Assessing the wind energy resources of the 

Norwegian Arctic wind parks 

Paper I. A. Assessing probabilistic modeling for wind speed from numerical 

weather prediction model and observation in the Arctic [10] 

In this research, different probability density functions are used to model wind speed for five 

wind parks in the Norwegian Arctic region. A comparison between wind speed data from 

numerical weather prediction models and measurements is made, and probability analysis for 

the wind speed interval corresponding to the rated power, which is largely absent in the 

existing literature, is presented. The results of the present study suggest that no single 

probability function outperforms across all scenarios. However, some differences emerged 

from the models when applied to different wind parks. The Nakagami and Generalised extreme 

value distributions were chosen for the numerical weather predicted prediction and the 

observed wind speed modeling, respectively, due to their superiority and stability compared 

with other methods. This paper, therefore, provides a novel direction for understanding the 

numerical weather prediction wind model and shows that its speed statistical features are 

better captured than those of real wind.   

The main contributions of this paper can be summarized as follows: 

1. This study is the first to conduct a PDF modeling analysis of wind speed intervals associated 

with wind turbine rated power, with a particular focus on differences between interval and 

overall wind speed modeling. 

2. This paper compares wind speed distributions based on wind data from NWP and 

measurements. Wind speed distributions provide an intriguing and well-established approach 

to analyzing wind speed resources, and this paper investigates their use for NWP models in the 

context of complex coastal terrain. 

3. The present study can assist in a more detailed understanding of PDF applications in wind 

speed modeling, as seven ideal distributions are used to model wind speed. Moreover, it offers 

an insight into the potential for renewable energy utilization in the Arctic by conducting 

natural resource modeling in this area, with clear implications for practice, policy, and future 

project implementation. 

Paper I. B. Probability distributions for wind speed volatility characteristics: a 

case study of northern Norway [31] 

Wind speed volatility, a phenomenon that strongly affects wind power generation, has not 

received sufficient research attention. In this paper, a framework for studying short-term wind 
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speed volatility with statistical analysis and probabilistic modeling is constructed for an 

existing wind park in Northern Norway. It is found that unlike the characteristics of wind 

power volatility, wind speed volatility cannot be described by the normal distribution. The 

reason is that even though the probability distribution of wind speed volatility is centrally 

symmetric, it is much more centrally concentrated and has thicker tails. After comparing three 

distributions corresponding to different sampling periods, this paper suggests utilizing the t 

distribution, with average modeling RMSE less than 0.006 and (coefficient of determination) 

R2 exceeding 0.995 and with the best modeling scenario of temporal resolution, the 30 mins 

has an RMSE of 0.0051 and an R2 of 0.997, to explore the fluctuating characteristics of wind 

speed more accurately and effectively. The statistical modeling of volatility assists in 

documenting wind's internally volatile features, especially for the wind in a cold climate and 

complex terrain. 

• At present wind power is being generated: Constructing an appropriate model to 

monitor wind power generation  

Paper II. Cluster-based ensemble learning for wind power modeling with 

meteorological wind data [40] 

Based on the idea that similar wind conditions lead to similar wind powers; this paper 

constructs a modeling scheme that orderly integrates three types of ensemble learning 

algorithms, bagging, boosting, and stacking, and clustering approaches to achieve wind power 

modeling from multiple wind-based meteorological factors in a wind farm. The paper also 

investigates the applications of different clustering algorithms and methodologies to 

determine cluster numbers in the modeling. The results reveal that all ensemble models with 

clustering exploit the intrinsic information in wind data and thus outperform models without 

clustering by approximately 15% on average in modeling wind power. The model with the best-

performing Farthest First clustering is computationally rapid and with an improvement of 

around 30% compared with the baselines. Given the diversity introduced by clustering 

algorithms, the power modeling performance is further boosted by about 5% by introducing 

stacking that fuses ensembles with varying clusters. The proposed modeling framework thus 

demonstrates promise by delivering efficient and robust performance on the targeted problem. 

The principal contributions of this paper are thus as follows. 

1. This paper experimentally proves that farthest first clustering is a distinctive approach in 

clustering wind data for power modeling compared to K-means, expectation-maximization, 

and Canopy clustering algorithms. It shows that even the worst-performing layered cluster-

based ensemble outperforms the one without clustering. This indicates the similarities and 

dissimilarities in wind data. However, even though these data are not related to an individual 

wind turbine, they can still be significantly reflected in wind power in an implicit form. 

2. Given the differences in results of different clustering algorithms, the paper proposes fusing 

layered ensembles with varying clusters with two-layer stacking to formalize a model that 

exceeds the optimal single clustering method. The stacking can more efficiently and quickly 
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address the complex mapping task of nonlinear relationships between meteorological wind 

data and wind power. 

3. The paper builds a procedure for determining the cluster number with a heuristic elbow 

chart, an empirical formula, and an X-means clustering approach. The procedure may be 

further developed and refined into a technique for identifying cluster numbers on other 

problems. 

4. AdaBoost boosting with random forest bagging as its weak learner is apposite in the wind 

power models. These tree-based algorithms are computationally fast and parameter 

insensitive compared to the network-based ones.  The proposed AdaBoost model statistically 

outperforms linear, neural network, and benchmark Adaboost approaches. 

5. The quantization of wind turbulence intensities—both wind speed and direction that are 

rarely considered in related research—is applied to wind power modeling in a novel manner. 

The study finds that both intensities can serve as new features for considering wind volatility 

in the modeling. 

• Future of wind power production: Developments of accurate wind power 

forecasts for wind parks and turbines  

Paper III. A. Comparative study of data-driven short-term wind power 

forecasting approaches for the Norwegian Arctic region [53] 

This work conducts a systemic comparative study on univariate and multivariate wind power 

forecasting for five wind parks inside the Arctic area. The development of wind power in the 

Arctic can help reduce greenhouse gas emissions in this environmentally fragile region. In 

practice, wind power forecasting is essential to maintain the grid balance and optimize 

electricity generation. This study firstly applies various learning methods for wind power 

forecasting. It comprehensively compares the performance of models categorized by whether 

considering weather factors in the Arctic. Nine different representative types of machine 

learning algorithms make several univariate time series forecasting, and their performance is 

evaluated. It is demonstrated that machine learning approaches have an insignificant 

advantage over the persistence method in the univariate situation. With numerical weather 

prediction wind data and wind power data as inputs, the multivariate forecasting models are 

established and made one hour to six hours in advance predictions. The multivariate models, 

especially with the advanced learning algorithms, show their edge over the univariate model 

based on the same algorithm. Although weather data are mesoscale, they can contribute to 

improving wind power forecasting accuracy. Moreover, these results are generally valid for the 

five wind parks, proving the models' effectiveness and universality in this regional wind power 

utilization. Additionally, there is no clear evidence that predictive model performance is 

related to wind parks' topographic complexity. 

The main contributions of this study can be summarized as follows:  
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1. For brief experimental univariate power forecasts. The persistence model and nine machine 

learning benchmarking algorithms are researched in forecasting models and compared to their 

performance from an algorithm perspective. We find the persistence model performs almost 

equally to machine learning models in our cases. The result also proves conclusions from 

Ref.[60]; those classical methods may dominate univariate time series forecasting. However, 

we find that its performance drops more quickly with the forecast time step rises. Considering 

the contingency of parameters tuning and computational complexity of the learning algorithm, 

it is suggested that statistical modeling methods should be primarily considered in forecasting. 

2. The multivariate models with mesoscale NWP wind data, although the data resolution scale 

is larger than the wind park area, as inputs can slightly gain prediction accuracy compared with 

the univariate models with the same algorithm. Moreover, the multivariate models reduce 

performance slower than the univariate models, which indicates the informative 

complementary role that the weather data play in the model. 

3. The five Arctic wind parks have different complex terrains and climates. The wind park with 

complex terrains implies that the NWP wind results are not as accurate as their counterparts 

in plain landscapes. However, there is no significant evidence that prediction results are 

related to the ruggedness index of wind parks from our results. 

Paper III. B. Examination of turbulence impacts on ultra-short-term wind power 

and speed forecasts with machine learning [54]  

Wind turbines' economic and secure operation can be optimized through accurate ultra-short-

term wind power and speed forecasts. Turbulence, considered a local short-term physical wind 

phenomenon, affects wind power generation. This paper investigates the use of turbulence 

intensity for ultra-short-term predictions of wind power and speed with a wind park in the 

Arctic, including and excluding wind turbulence, within three hours by employing several 

different machine learning algorithms. A rigorous and detailed statistical comparison of the 

predictions is conducted. The results show that the algorithms achieve reasonably accurate 

predictions, but turbulence intensity does not statistically contribute to wind power or speed 

forecasts. This observation illustrates the uncertainty of turbulence in wind power generation. 

Besides, differences between the types of algorithms for ultra-short-term wind forecasts are 

also statistically insignificant, demonstrating the unique stochasticity and complexity of wind 

speed and power, especially for the Arctic regions. 

Paper IV. Data-augmented sequential deep learning for wind power forecasting 

[55] 

With excellent automatic pattern recognition and nonlinear mapping ability for big data, deep 

learning is increasingly employed in wind power forecasting. However, salient realities are that 

in-situ measured wind data are relatively expensive and inaccessible and correlation between 

steps is omitted in most multistep wind power forecasts. This paper is the first time that data 

augmentation is applied to wind power forecasting by systematically summarizing and 

proposing both physics-oriented and data-oriented time-series wind data augmentation 
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approaches to considerably enlarge primary datasets and develops deep encoder-decoder long 

short-term memory networks that enable sequential input and sequential output for wind 

power forecasting. The proposed augmentation techniques and forecasting algorithm are 

deployed on five turbines with diverse topographies in an Arctic wind park, and the outcomes 

are evaluated against benchmark models and different augmentations. The main findings 

reveal that on one side, the average improvement in RMSE of the proposed forecasting model 

over the benchmarks is 33.89%, 10.60%, 7.12%, and 4.27% before data augmentations, and 

increases to 40.63%, 17.67%, 11.74%, and 7.06%, respectively, after augmentations. The other 

side unveils that the effect of data augmentations on prediction is intricately varying, but for 

the proposed model with and without augmentations, all augmentation approaches boost the 

model outperformance from 7.87% to 13.36% in RMSE, 5.24% to 8.97% in MAE, and similarly 

over 12% in QR90. Finally, data-oriented augmentations, in general, is slightly better than 

physics-driven ones. 

The principal contributions of the present study paper are as follows: 

1.  We exhaustively develop a seq2seq deep learning predictive end-to-end model with inputs 

of historical wind speed and power data and wind speed from NWP as well as simultaneously 

interrelated outputs of multistep, futuristic wind power. The model is based on an encoder-

decoder constructed with LSTM and shows its superiority in forecasting power. 

2. It is demonstrated that the impact of various augmentation approaches is different in each 

forecasting algorithm. Augmentations somewhat increase linear, like persistence model errors. 

Nonetheless, augmentations improve the performance, most notably the proposed deep 

learning model, of neural networks-based algorithms, where data-oriented augmentations 

generally contribute greater than physics-oriented ones. 

3. The data augmentations combined with the proposed and benchmark forecasting models 

are utilized to predict power generated by five turbines in various landscapes. The results are 

analyzed by rigorous statistical methods and indicate that the augmentations and the proposed 

forecasting model have wind engineering values and potentially extensive applicability in other 

energy fields. 

Paper V. Knowledge distillation with error-correcting transfer learning for wind 

power prediction 

Wind power prediction, especially for turbines, is vital for the operation, controllability, and 

economy of electricity companies. Hybrid methodologies combining advanced data science 

with weather forecasting have been incrementally applied to the predictions. Nevertheless, 

individually modeling massive turbines from scratch and downscaling weather forecasts to 

turbine size are neither easy nor economical. Aiming at it, this work proposes a novel 

framework with mathematical underpinnings for turbine power prediction. It is the first time 

to incorporate knowledge distillation into energy forecasting, enabling accurate and 

economical constructions of turbine models by learning knowledge from the well-established 

park model. Besides, park-scale weather forecasts non-explicitly are mapped to turbines by 
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transfer learning of predicted power errors, achieving model correction for better 

performance. The proposed framework is deployed on five turbines featuring various terrains 

in an Arctic wind park, the results are evaluated against the competitors of ablation 

investigation. The major findings reveal that the proposed framework yields performance 

boosts from 3.3 % to 23.9 % over its competitors. This advantage also exists in terms of wind 

energy physics and computing efficiency, which are verified by the prediction quality rate and 

calculation time. 

The work is further continuous research for Paper IV. As Paper IV yielded a delicate forecasting 

structure promising multistep prediction. However, there are still the following points where 

enhancements are possible according to our further investigations. 

1.  Deep learning-based models require multiple layers of uniquely designed neural network 

structures to realize the intrinsic features of the data [62]. And training large deep networks is 

very time-consuming and computationally intensive. Therefore, it is proposed that certain pre-

training techniques, such as Knowledge Distillation [63], can be adopted to distill useful 

information, knowledge, from the large pre-trained, whole park, teacher model and condense 

it into smaller scale turbine prediction, student, models.  

2. The NWP information in hybrid prediction models is usually for the whole wind park and 

does not precisely reflect the individual turbine's future meteorological condition. Besides, the 

wake effect (wind is strongly perturbed, decreased kinetic energy and added turbulence behind 

blades of a turbine), together with the turbulence induced by the micro-scale topography in 

complex terrain, thereby rendering further forecasting difficulties. Typically, single wind 

turbine meteorological modeling considers NWP results and simulates turbine wind 

conditions with Computational Fluid Dynamics [64], [65]. This paper will bypass this complex 

approach based on multiple physical assumptions and indirectly integrate the meteorological 

information of turbines into the whole prediction model by data science. 

3. Wind power forecasting is essentially reducible to a regression problem, so regression 

diagnostics in statistics, especially error analysis and correction, could be incorporated into the 

prediction model. Hence, this paper achieves the detection and forecasting of prediction errors 

through advanced deep learning approaches. Moreover, weather information is ingeniously 

embedded into the final prediction model by the errors correcting. 
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6 Conclusion and future work  

 

6.1 Concluding remarks  

As increasing numbers of wind power projects are developed in the northern Norway Arctic 

and large amounts of wind power operational data are being accumulated, data-driven 

comprehensive analysis of wind power in this complex terrain and cold climate region becomes 

potentially feasible. The present Ph.D. thesis is motivated by the challenge “Whether the 

accurate and efficient analysis of wind energy in the Arctic, with dramatically fluctuating wind, 

can be achieved by developing models based on data-driven advanced statistical and machine 

learning methods?” and guided by IEA TCP and a proposed wind energy theoretical equation 

from data science to answer three research questions of prior to, at present, and in future wind 

power generation for wind parks in northern Norway. 

Firstly, for question 1: Prior to wind power generation: How to assess the wind energy 

resources of wind sites in a proper approach in the Arctic? Its concluded answer: The proposed 

comprehensive probability distribution modeling processes delivers a useful tool for assessing 

the wind resource, especially for wind speed and its volatility both for the wind data from 

measurements and numerical modeling. 

Then, for question 2: At present wind power is being generated: How to construct appropriate 

models to monitor wind power generation for the Arctic wind park? Its concluded answer:  The 

proposed wind power curve scheme involves quantifying wind turbulence, clustering 

meteorological data, and ensemble learning. The scheme orderly integrates three types of 

ensemble learning algorithms—bagging, boosting, and stacking—and clustering approaches to 

achieve accurate wind power modeling from multiple wind-based meteorological factors for a 

wind park in the Norwegian Arctic area.  

Furthermore, for question 3: Future of wind power production: How to achieve accurate wind 

power forecasting for the Arctic wind park? Its concluded answer: Traditional machine 

learning methods could be to achieve short-term wind power forecasts for the Arctic region, 

which these forecasts could be improved to some extent by applying appropriate wind 

meteorological data to the forecasting models. Expanding the amount of data with appropriate 

data processing techniques and loading the data into large deep learning models allows for 

more accurate wind power predictions in different terrain conditions. With a variety of transfer 

learning techniques, it is possible to refine the raw data information better and transfer large 

accurate but slow training forecasting models to smaller and faster ones for realizing rapid and 

efficient wind power forecasting. 

These three research questions, arranged in the wind power generation timeline, have been 

thoroughly and in-depth investigated through the present thesis and attached papers. The 

project achieved the target goal of developing data-driven Arctic wind energy analysis by 
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statistical and machine learning approaches for wind parks, especially Fakken, in the 

Norwegian Arctic.  

6.2 Future work 

There are still some potential research perspectives on data-driven approaches for Arctic wind 

energy. The following are a few recommendations and comments for future investigations: 

Firstly, for wind resources assessment, the statistical properties of wind speed in Arctic wind 

sites are well investigated. However, wind resources are also affected by other environmental 

factors such as wind direction and air density. The development of a joint distribution of 

environmental variables based on more advanced multivariate statistical techniques could 

provide a more comprehensive picture of wind resources in the region. 

Then, for wind power modeling, future research is further improving the proposed wind power 

curve model with a deep optimization for base learners of ensemble learning architecture and 

their combination algorithms to deliver faster and more accurate modeling. Another direction 

is to incorporate an in-the-now power modeling approach and meteorological data with 

historical wind power to achieve efficacious very short-term power forecasting for the Arctic 

wind park. 

Moreover, the existing studies covered the targeted Arctic wind park and wind turbine power 

prediction. Further research could be: 1. exploring the mathematical properties within 

complex deep learning forecasting algorithms and giving confidence intervals for further 

developing probabilistic forecasts; 2. investigating how to better exploit the potentials of 

weather forecast data in wind power forecasting; 3. incorporating data science, weather 

forecasting and satellite observations of weather and other multi-source models is also a good 

direction. 

In terms of wind energy engineering practice, the possibility of integrating data-driven wind 

resource assessment, wind power curve modeling, and wind power forecasting into an open-

access or commercial user-friendly platform, to maximize resource utilization is also worth 

further consideration. 

 

 

 
  



 

 

32 

 

References 

[1] F. Kern and K. S. Rogge, "The pace of governed energy transitions: Agency, 
international dynamics and the global Paris agreement accelerating decarbonisation 
processes?," Energy Research & Social Science, vol. 22, pp. 13-17, 2016. 

[2] R. U. Ayres and E. H. Ayres, Crossing the energy divide: moving from fossil fuel 
dependence to a clean-energy future. Pearson Prentice Hall, 2009. 

[3] D. Infield and L. Freris, Renewable energy in power systems. John Wiley & Sons, 
2020. 

[4] N. Wunderling, M. Willeit, J. F. Donges, and R. Winkelmann, "Global warming due to 
loss of large ice masses and Arctic summer sea ice," Nature communications, vol. 11, 
no. 1, pp. 1-8, 2020. 

[5] J. E. Box et al., "Key indicators of Arctic climate change: 1971–2017," Environmental 
Research Letters, vol. 14, no. 4, p. 045010, 2019. 

[6] A. Witze, "The Arctic is burning like never before--and that's bad news for climate 
change," Nature, vol. 585, no. 7825, pp. 336-338, 2020. 

[7] L. Sun, M. Alexander, and C. Deser, "Evolution of the global coupled climate response 
to Arctic sea ice loss during 1990–2090 and its contribution to climate change," 
Journal of Climate, vol. 31, no. 19, pp. 7823-7843, 2018. 

[8] W. F. Vincent, "Arctic climate change: Local impacts, global consequences, and policy 
implications," in The Palgrave handbook of Arctic policy and politics: Springer, 2020, 
pp. 507-526. 

[9] B. Babar, R. Graversen, and T. Boström, "Solar radiation estimation at high latitudes: 
Assessment of the CMSAF databases, ASR and ERA5," Solar Energy, vol. 182, pp. 397-
411, 2019. 

[10] H. Chen, Y. Birkelund, S. N. Anfinsen, R. Staupe-Delgado, and F. Yuan, "Assessing 
probabilistic modelling for wind speed from numerical weather prediction model and 
observation in the Arctic," Scientific Reports, vol. 11, no. 1, pp. 1-11, 2021. 

[11] K. Solbakken, B. Babar, and T. Boström, "Correlation of wind and solar power in high-
latitude arctic areas in Northern Norway and Svalbard," Renewable Energy and 
Environmental Sustainability, vol. 1, p. 42, 2016. 

[12] P. Jain, Wind energy engineering. McGraw-Hill Education, 2016. 
[13] M. DeCastro et al., "Europe, China and the United States: Three different approaches 

to the development of offshore wind energy," Renewable and Sustainable Energy 
Reviews, vol. 109, pp. 55-70, 2019. 

[14] W. Dong, H. Sun, J. Tan, Z. Li, J. Zhang, and Y. Y. Zhao, "Short-term regional wind 
power forecasting for small datasets with input data correction, hybrid neural network, 
and error analysis," Energy Reports, vol. 7, pp. 7675-7692, 2021. 

[15] T. Stehly, P. Beiter, and P. Duffy, "2019 cost of wind energy review," National 
Renewable Energy Lab.(NREL), Golden, CO (United States), 2020.  

[16]  D. P. Mandic et al., "Data fusion for modern engineering applications: An overview," 
in International Conference on Artificial Neural Networks, 2005: Springer, pp. 715-
721.  

[17] G. J. Herbert, S. Iniyan, E. Sreevalsan, and S. Rajapandian, "A review of wind energy 
technologies," Renewable and sustainable energy Reviews, vol. 11, no. 6, pp. 1117-1145, 
2007. 

[18] F. Dincer, "The analysis on wind energy electricity generation status, potential and 
policies in the world," Renewable and sustainable energy reviews, vol. 15, no. 9, pp. 
5135-5142, 2011. 

[19] M. Sawant, S. Thakare, A. P. Rao, A. E. Feijóo-Lorenzo, and N. D. Bokde, "A review on 
state-of-the-art reviews in wind-turbine-and wind-farm-related topics," Energies, vol. 
14, no. 8, p. 2041, 2021. 



 

 

33 

 

[20] G. W. E. C. GWEC, "Global offshore wind report 2020," URL https://gwec. net/global-
offshore-wind-report-2020, 2020. 

[21] Y. Ding, Data science for wind energy. CRC Press, 2019. 
[22] B. Blindheim, "Implementation of wind power in the Norwegian market; the reason 

why some of the best wind resources in Europe were not utilised by 2010," Energy 
policy, vol. 58, pp. 337-346, 2013. 

[23] E. Peltola, H. Holttinen, S. Rissanen, and C. Murphy-Levesque, "IEA Wind TCP 2016 
Overview," in IEA Wind TCP 2016 Annual Report, 2017, pp. 6-27. 

[24] K. L. Dykes et al., "IEA wind TCP: Results of IEA wind TCP workshop on a grand vision 
for wind energy technology," National Renewable Energy Lab.(NREL), Golden, CO 
(United States), 2019.  

[25] A. Kusiak and Z. Zhang, "Short-horizon prediction of wind power: A data-driven 
approach," IEEE Transactions on Energy Conversion, vol. 25, no. 4, pp. 1112-1122, 
2010. 

[26] E. T. Renani, M. F. M. Elias, and N. A. Rahim, "Using data-driven approach for wind 
power prediction: A comparative study," Energy Conversion and Management, vol. 
118, pp. 193-203, 2016. 

[27] H. Long, L. Wang, Z. Zhang, Z. Song, and J. Xu, "Data-driven wind turbine power 
generation performance monitoring," IEEE Transactions on Industrial Electronics, 
vol. 62, no. 10, pp. 6627-6635, 2015. 

[28] D. Zhang, L. Qian, B. Mao, C. Huang, B. Huang, and Y. Si, "A data-driven design for 
fault detection of wind turbines using random forests and XGboost," Ieee Access, vol. 
6, pp. 21020-21031, 2018. 

[29] D. Astolfi, F. Castellani, A. Lombardi, and L. Terzi, "Data-driven wind turbine aging 
models," Electric Power Systems Research, vol. 201, p. 107495, 2021. 

[30] Y. Birkelund, S. Alessandrini, Ø. Byrkjedal, and L. D. Monache, "Wind power 
predictions in complex terrain using analog ensembles," 2018. 

[31] H. Chen, S. N. Anfinsen, Y. Birkelund, and F. Yuan, "Probability distributions for wind 
speed volatility characteristics: A case study of Northern Norway," Energy Reports, vol. 
7, pp. 248-255, 2021. 

[32] A. Duffy et al., "Land-based wind energy cost trends in Germany, Denmark, Ireland, 
Norway, Sweden and the United States," Applied Energy, vol. 277, p. 114777, 2020. 

[33] E. W. E. Association, Wind energy-the facts: a guide to the technology, economics and 
future of wind power. Routledge, 2012. 

[34] J. Yuan, "Wind energy in China: Estimating the potential," Nature Energy, vol. 1, no. 
7, pp. 1-2, 2016. 

[35] J. Wang, J. Hu, and K. Ma, "Wind speed probability distribution estimation and wind 
energy assessment," Renewable and sustainable energy Reviews, vol. 60, pp. 881-899, 
2016. 

[36] M. Bilal, Y. Birkelund, M. Homola, and M. S. Virk, "Wind over complex terrain–
Microscale modelling with two types of mesoscale winds at Nygårdsfjell," Renewable 
Energy, vol. 99, pp. 647-653, 2016. 

[37] B. Safari and J. Gasore, "A statistical investigation of wind characteristics and wind 
energy potential based on the Weibull and Rayleigh models in Rwanda," Renewable 
Energy, vol. 35, no. 12, pp. 2874-2880, 2010. 

[38]  T. Yang, "Optimal sizing of the hybrid energy storage system aiming at improving the 
penetration of wind power," in 2016 IEEE PES Asia-Pacific Power and Energy 
Engineering Conference (APPEEC), 2016: IEEE, pp. 2358-2362.  

[39] S. Z. Moghaddam, "Generation and transmission expansion planning with high 
penetration of wind farms considering spatial distribution of wind speed," 
International Journal of Electrical Power & Energy Systems, vol. 106, pp. 232-241, 
2019. 



 

 

34 

 

[40] H. Chen, "Cluster-based ensemble learning for wind power modeling from 
meteorological wind data," Renewable and Sustainable Energy Reviews, vol. 167, p. 
112652, 2022. 

[41] Z. Tian, Y. Ren, and G. Wang, "Short-term wind power prediction based on empirical 
mode decomposition and improved extreme learning machine," Journal of Electrical 
Engineering & Technology, vol. 13, no. 5, pp. 1841-1851, 2018. 

[42] A. Marvuglia and A. Messineo, "Monitoring of wind farms’ power curves using machine 
learning techniques," Applied Energy, vol. 98, pp. 574-583, 2012. 

[43] W.-Y. Chang, "A literature review of wind forecasting methods," Journal of Power and 
Energy Engineering, vol. 2, no. 04, p. 161, 2014. 

[44] M. Ferreira, A. Santos, and P. Lucio, "Short-term forecast of wind speed through 
mathematical models," Energy Reports, vol. 5, pp. 1172-1184, 2019. 

[45]  S. S. Soman, H. Zareipour, O. Malik, and P. Mandal, "A review of wind power and wind 
speed forecasting methods with different time horizons," in North American power 
symposium 2010, 2010: IEEE, pp. 1-8.  

[46] Q. Zhou, C. Wang, and G. Zhang, "Hybrid forecasting system based on an optimal 
model selection strategy for different wind speed forecasting problems," Applied 
Energy, vol. 250, pp. 1559-1580, 2019. 

[47] Y. He and A. Kusiak, "Performance assessment of wind turbines: data-derived 
quantitative metrics," IEEE Transactions on Sustainable Energy, vol. 9, no. 1, pp. 65-
73, 2017. 

[48] E. Lapira, D. Brisset, H. D. Ardakani, D. Siegel, and J. Lee, "Wind turbine performance 
assessment using multi-regime modeling approach," Renewable Energy, vol. 45, pp. 
86-95, 2012. 

[49] C. Jung and D. Schindler, "The role of air density in wind energy assessment–A case 
study from Germany," Energy, vol. 171, pp. 385-392, 2019. 

[50] A. W. Manyonge, R. Ochieng, F. Onyango, and J. Shichikha, "Mathematical modelling 
of wind turbine in a wind energy conversion system: Power coefficient analysis," 2012. 

[51]  G. Ofualagba and E. Ubeku, "Wind energy conversion system-wind turbine modeling," 
in 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery 
of Electrical Energy in the 21st Century, 2008: IEEE, pp. 1-8.  

[52] A. M. Foley, P. G. Leahy, A. Marvuglia, and E. J. McKeogh, "Current methods and 
advances in forecasting of wind power generation," Renewable energy, vol. 37, no. 1, 
pp. 1-8, 2012. 

[53] H. Chen, Y. Birkelund, S. N. Anfinsen, and F. Yuan, "Comparative study of data-driven 
short-term wind power forecasting approaches for the Norwegian Arctic region," 
Journal of Renewable and Sustainable Energy, vol. 13, no. 2, p. 023314, 2021. 

[54] H. Chen, Y. Birkelund, and F. Yuan, "Examination of turbulence impacts on ultra-
short-term wind power and speed forecasts with machine learning," Energy Reports, 
vol. 7, pp. 332-338, 2021. 

[55] H. Chen, Y. Birkelund, and Q. Zhang, "Data-augmented sequential deep learning for 
wind power forecasting," Energy Conversion and Management, vol. 248, p. 114790, 
2021. 

[56] J. Jung and R. P. Broadwater, "Current status and future advances for wind speed and 
power forecasting," Renewable and Sustainable Energy Reviews, vol. 31, pp. 762-777, 
2014. 

[57] H. Liu, C. Chen, X. Lv, X. Wu, and M. Liu, "Deterministic wind energy forecasting: A 
review of intelligent predictors and auxiliary methods," Energy Conversion and 
Management, vol. 195, pp. 328-345, 2019. 

[58] S. Hanifi, X. Liu, Z. Lin, and S. Lotfian, "A critical review of wind power forecasting 
methods—past, present and future," Energies, vol. 13, no. 15, p. 3764, 2020. 

[59] G. Giebel and G. Kariniotakis, "Wind power forecasting—A review of the state of the 
art," Renewable energy forecasting, pp. 59-109, 2017. 



 

 

35 

 

[60] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, "Statistical and Machine Learning 
forecasting methods: Concerns and ways forward," PloS one, vol. 13, no. 3, p. 
e0194889, 2018. 

[61] J. M. Bernardo and A. F. Smith, Bayesian theory. John Wiley & Sons, 2009. 
[62] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016. 
[63] G. Hinton, O. Vinyals, and J. Dean, "Distilling the knowledge in a neural network," 

arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015. 
[64] Y. Wang, Y. Liu, L. Li, D. Infield, and S. Han, "Short-term wind power forecasting based 

on clustering pre-calculated CFD method," Energies, vol. 11, no. 4, p. 854, 2018. 
[65] L. Liu and Y. Liang, "Wind power forecast optimization by integration of CFD and 

Kalman filtering," Energy Sources, Part A: Recovery, Utilization, and Environmental 
Effects, vol. 43, no. 15, pp. 1880-1896, 2021. 

  



 

 

36 

 

 

Appendix 

 

No. Publications 

Paper I 

A. Assessing probabilistic modeling for wind speed from numerical weather 
prediction model and observation in the Arctic. Scientific Reports 2021; 
Volum 11. (7613) s. 

B. Probability distributions for wind speed volatility characteristics: A case 
study of Northern Norway. Energy Reports 2021; Volum 7. s. 248-255. 

Paper II 
Cluster-based ensemble learning for wind power modeling from 
meteorological wind data, Renewable and Sustainable Energy Reviews, 
Volume 167,2022. 

Paper III 

A. Comparative study of data-driven short-term wind power forecasting 
approaches for the Norwegian Arctic region. Journal of Renewable and 
Sustainable Energy 2021; Volum 13. (2) s. 

B. Examination of turbulence impacts on ultra-short-term wind power and 
speed forecasts with machine learning. Energy Reports 2021; Volum 7. 
Suppl. 6 s. 332-338. 

Paper IV 
Data-augmented sequential deep learning for wind power forecasting. 
Energy Conversion and Management 2021; Volum 248. s. 1-12. 

Paper V 
Knowledge distillation with error-correcting transfer learning for wind 
power prediction. 

 

  



 

 

37 

 

 
 
Paper I. A. 
 

Assessing probabilistic modeling for wind speed 
from numerical weather prediction model and 
observation in the Arctic 
 
https://doi.org/10.1038/s41598-021-87299-4 
 

 
 
 
 
 
 
 
 

               

   

    

           

          

  

  

       

   

 

  

         

 

  

           

                  
       

         

      

         

     

      

       

       

        

       

         

                    

        

   

    

          

     

    

https://doi.org/10.1038/s41598-021-87299-4


 

 

38 

 

Assessing probabilistic modelling for wind speed 

from numerical weather prediction model and 
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Fuqing Yuan1  
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Arctic University of Norway, Tromsø 9019, Norway 

Abstract 

Mapping Arctic renewable energy resources, particularly wind, is important to ensure the 

transition into renewable energy in this environmentally vulnerable region. The statistical 

characterisation of wind is critical for effectively assessing energy potential and planning wind park 

sites and is, therefore, an important input for wind power policymaking. In this article, different 

probability density functions are used to model wind speed for five wind parks in the Norwegian 

Arctic region. A comparison between wind speed data from numerical weather prediction models 

and measurements is made, and a probability analysis for the wind speed interval corresponding 

to the rated power, which is largely absent in the existing literature, is presented. The results of the 

present study suggest that no single probability function outperforms across all scenarios. 

However, some differences emerged from the models when applied to different wind parks. The 

Nakagami and Generalised extreme value distributions were chosen for the numerical weather 

predicted prediction and the observed wind speed modelling, respectively, due to their superiority 

and stability compared with other methods. This paper, therefore, provides a novel direction for 

understanding the numerical weather prediction wind model and shows that its speed statistical 

features are better captured than those of real wind.   

 

Keywords: resource modelling, wind energy, numerical weather prediction, probability 

distribution, Arctic 

1.Introduction 

With the growing reliance on renewable energy resources in many regions of the world, studying 

the predictability of renewable energy is becoming progressively important.1 As one of the cleanest 

renewable energy sources, wind energy has attracted growing attention worldwide.2 In Norway, 

multiple wind energy projects have been developed for energy markets, and many more wind parks 

are in the design and planning stage. It is, therefore, essential to create a compelling and effective 

method for evaluating wind energy resources in the region. Accurately assessing local wind energy 

potential and resources is a crucial part of wind energy development and enhances investor 

confidence in financial feasibility and risk acceptability 3 Wind resource potential varies 

considerably from one wind park site to another due to geographical and topographical differences. 

Therefore, an accurate assessment of a wind park's wind energy potential is necessary when 

developing sustainable wind power projects.4 A rigorous evaluation of the potential wind speed 
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resources of a specific location directly affects the economic value, risk assessment, turbine 

selection, power generation estimation of the wind park, as well as the operation and management 

of wind power conversion systems.5 In other words, proper attention to site selection is crucial for 

long-term sustainability gains in wind power investments, in addition to social priorities due to the 

recognised nuisance conflicts that have previously arisen in the context of wind power 

developments.  

Since wind speed is variable, intermittent and uncertain, appropriate means should be used to 

describe its fluctuating nature.6 The probability density function (PDF) and the related cumulative 

distribution function (CDF) are often used in wind resource assessments to quantify the theoretical 

wind energy potential of an area. Both of them intuitively reflect the statistical characteristics of 

wind speed. Wind is created by pressure differences between different regions, but terrain features 

like mountains, valleys, fjords and other surface irregularities create disturbances, meaning that 

wind speeds near the ground typically fluctuate significantly. The wind speed contributing to 

energy production in a wind turbine surrounded by complex terrain typically changes significantly; 

therefore, when the time scale is short, the statistical characteristics of the wind become uncertain 

and difficult to predict.7 When the time scale is long, the probabilistic distribution of wind speed is 

relatively stable, and the long-term statistical characteristics of wind can be determined.8 A 

common way of describing the wind energy at a site is to use its annual wind speed distribution. 

The PDF of wind speed is vital in valuing energy production for wind power and is an important 

evaluation index for estimating local wind resource potential. 

1.1. Related work 

Some prior research on wind resources is based on probability distribution methods for specific 

regions with varying wind conditions and wind power potential. The two-parameter Weibull 

distribution is a widely used statistical distribution in wind engineering;9, 10 however, the fitting 

results are not optimal for some regions, which results in a substantial difference between the 

estimated annual power generation and the actual yearly power generation.5 This suggests that 

distribution may not be a good representation of some wind conditions or some sites. Elsewhere, 

researchers have expressed concerns over the role of case studies for practical wind engineering 

purposes. Aries, N. et al. conducted a case study of four sites’ wind speed with eight distribution 

models for four sites in Algeria and found that the Generalised extreme value and Gamma 

Distributions were the most reliable base on the root mean square error evaluation.11 Wang, J. et 

al. compared parametric and nonparametric models for wind speed probability distribution by 

taking four sites in central China as examples and showed the edge of nonparametric models.5 

Alavi, O. et al. demonstrated that the most suitable probability distributions for evaluating wind 

speed were not the same based on five different measurement stations distributed in the east and  

south-east of Iran.12 Ayodele, T. et al. used the Weibull distribution to estimate the wind resource 

in a coastal area of South Africa with complex terrain.13 Gualtieri, G. et al. focused on coastal 

locations in Southern Italy and used the Weibull distribution extrapolating model to assess wind 

resource to the turbine hub height.14 Allouhi, A. et al. also used the Weibull distribution to describe 

the frequencies of actual wind data in six coastal locations in Morocco based on hourly wind speeds 

and directions data of five years between 2011 and 2015.15 Jiménez, P et al. found that atmospheric 

stability plays a major role in controlling the shape of the wind speed distribution. The authors 
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showed that the shape wind speed measured from a combination of long-term wind observations 

and numerical simulations is strongly modulated by the numerical atmospheric scales.16  

Most studies in this field have focused on PDF modelling for the observed wind speed of wind parks, 

and there is a lack of PDF modelling for wind speed forecasted by Numerical Weather Prediction 

(NWP). This is unfortunate because NWP calculations generate the vast majority of the world's 

wind data. Some studies have focused on using the Weibull distribution or one of three or four 

other similar distribution methods. However, they fail to consider the broader deployment of the 

PDF approach for wind speed modelling. In practice, more attention is paid to the wind speed range 

corresponding to the wind turbine's rated power. Despite this, few studies have applied PDF 

methods to analyse wind speed intervals when wind turbines are producing the maximum power, 

and little research has discussed wind speed distribution in the Arctic region. 

1.2. Objectives  

In this research, we comparatively assess seven different probability distributions for wind speed 

modelling, some of which are classical, while others have rarely been used to estimate the wind 

speed distribution for five wind parks in the Norwegian Arctic coastal region. To improve the 

understanding of differences in wind speed data from different resources, we compared wind speed 

distributions for a wind park with NWP and observed wind data.  

The main contributions of this paper can be summarised as follows: 

1. The present study is the first to conduct a PDF modelling analysis of wind speed intervals 

associated with wind turbine trunnion rated power, with a particular focus on differences 

between interval and overall wind speed modelling. 

2. This paper compares wind speed distributions based on wind data from NWP and 

measurements. Wind speed distributions provide an intriguing and well-established approach 

to analyse wind speed resources, and this paper investigates their use for NWP models in the 

context of complex coastal terrain. 

3. The present study can assist in a more detailed understanding of PDF applications in wind 

speed modelling, as seven ideal distributions are used to model wind speed. Moreover, it offers 

an insight into the potential for renewable energy utilisation in the Arctic by conducting natural 

resource modelling in this area, with clear implications for practice, policy and future project 

implementation. 

 

The paper is organised as follows: In Section 2, we describe the wind data and their sites to provide 

the context of the study. In Section 3, we elaborate on the methodological aspects of the study, while 

Section 4 outlines the experimental process. Section 5 presents the results and main implications 

of the study and reflects on their relevance for research and practice. The final and concluding 

section summarises the most important elements of the research.  

2. Description of wind park and wind speed data 

In the present study, we focus on five wind parks in the Norwegian Arctic regions. The second and 

third columns of Table 1 list their locations and the site ruggedness index (RIX).17 The RIX is an 
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empirical parameter for measuring the complexity of nearby terrain and is typically used in fluid 

modelling or in numerical weather models to indicate identify turbulence may interfere with the 

model results. In our case, this was based on a fraction of the area within a 2 km radius around the 

location with a more than 30% degree inclination and was extracted from a Norwegian mapping of 

wind resources. 

2.1. Numerical Weather Prediction 

Scandinavian meteorological institutes use an operational numerical weather prediction (NWP) 

forecast known as the Meteorological Ensemble Prediction System (MEPS). The NWP model is a 

complex mathematical model of the atmosphere that divides the Earth's surface into grids.18 The 

grid's spatial resolution determines how meteorological processes are simulated with different 

accuracy levels, which limits the quality of the forecasts. A study conducted by 

the Norwegian Meteorological Institute demonstrated that the higher-resolution regional NWP 

model did not lead to better wind power forecasts for some Norwegian wind parks.19 Therefore, in 

the present study, we considered NWP data with a horizontal resolution of 2.5 km as a relatively 

coarse resolution in wind predictions. 

2.2. Data description 

NWP wind data from the five wind parks were extracted from Norwegian Meteorological Institute's 

operational MEPS models. The predictions initiated at 00, 06, 12 and 18 UTC and were made 

available for operational use about 2 hours later. The observed wind data were offered by Troms 

Kraft AS – the power company that operates Fakken wind park. In the present study, we combined 

the forecast data into a single time series with hourly wind speed data from 0:00 on 1 January 2017 

to 23:00 on 31 December 2017. The year is with wind conditions of northern Norway coastline are 

not significantly different from the previous fifteen years. Table 1 provides a summary of the overall 

data. The coefficient of variation is defined as the standard deviation divided by the mean. 

Table 1. The location of wind parks and statistics of their wind speed 

Wind park 
Location 

°N /°E 
RIX 

Mean 

(m/s) 

Standard 

Deviation 

(m/s) 

Min 

(m/s) 

Max 

(m/s) 

Coefficient 

of 

Variation 

Skewness 
Kurtosi

s 

Nygårdsfjellet 

68.504/ 

17.879 0 to 5 8.096 5.038 0.032 31.481 0.622 0.775 3.815 

Raggovidda 

70.098/ 

20.081 5 to 10 9.490 5.101 0.107 32.430 0.538 0.666 3.361 

Kjøllefjord 

70.769/ 

29.094 0 to 5 7.900 4.213 0.080 25.508 0.533 0.704 3.453 

Havøygavlen 

70.922/ 

27.268 10 to 20 8.335 4.434 0.097 26.926 0.532 0.709 3.359 

Fakken (NWP) 

71.012/ 

24.589 5 to 10 6.948 3.885 0.097 33.686 0.559 1.164 5.960 
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Fakken 

(MEASURE) 

71.012/ 

24.589 5 to 10 7.687 4.627 0.000 35.100 0.602 1.338 5.660 

3. Methodology  

3.1. Wind energy 

In wind engineering, the capacity factor (CF) is particularly useful when conducting a fast 

evaluation at the early design and planning stages of a wind park. Understanding the probability 

distribution of wind speed is essential to calculating the CF of wind parks. The CF is calculated from 

the average value of wind energy produced divided by the rated wind power by a wind turbine in a 

certain period, which may be read from the following equations (1), (2), (3): 

𝐶𝐹 =
𝑃ave 

𝑃𝑟
    (1) 

𝑃ave = ∫ 𝑓
∞

0

(𝑣)𝑃(𝑣)𝑑𝑣    (2) 

𝑃(𝑣) = {

𝑃𝑟 𝑣𝑟 < 𝑣 ≤ 𝑣𝑜
𝑃𝑟 × 𝑔(𝑣) 𝑣𝑖 < 𝑣 ≤ 𝑣𝑟

0 𝑣 ≤ 𝑣𝑖 , 𝑣 > 𝑣0

    (3) 

where f(v) is the PDF of wind speed, which is the main target of this research P(v) reflects the 

turbine power curve used to describe the power fluctuations related to wind speed. vi, vr, vo, and Pr 

represent the cut-in speed, the rated speed, the cut-off speed, and the rated power, respectively. 5, 
20 The g(v) is a multiplier increasing from 0 to 1 within the interval, that depends on the wind 

turbine specification. A wind turbine reaches its maximum power output when the wind speed is 

in the interval between the rated and cut-off speed. Adequate knowledge of the wind speed interval 

corresponding to the wind turbine's rated power is important for ensuring the efficient and 

economical operation of the turbine. Therefore, aside from the wind speed distribution modelling, 

we also paid special attention to wind speed in this rated power interval. 

3.2. Probability distribution 

Tables 2 and 3 offer brief mathematical expressions of the seven ideal probability distributions used 

in the present study. These distributions are defined as follows: 

o Gamma distribution is a two-parameter continuous probability distribution.21 

o Generalised extreme value distribution (GEV) is a continuous probability 

distribution developed with extreme value theory. 22 

o Nakagami distribution is a generalised two parameters probability distribution model 

proposed by Nakagami Minoru.23 It has received extensive attention, as it can model a 

broad range of fading channel conditions and describe many empirical data sets.24  

o Normal distribution, also called Gaussian distribution, is a continuous probability 

distribution for ideally describing a real-valued random variable.25 

https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Extreme_value_theory
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o Rayleigh distribution essentially describes the distribution of the mode of a stochastic two-

dimensional vector when the two components of the vector are independent, have the same 

variance and are normally distributed with zero means.26, 27 

o T distribution is commonly used to estimate the mean of a small population that is normally 

distributed, where the standard deviation is unknown.28 

o Weibull distribution is the theoretical basis for reliability analysis and life inspections and 

is widely used for describing the probability distribution of wind speed.29 

Table 2. The mathematical expressions of distributions 

Distribution PDF Note CDF 

Gamma 

𝑓(𝑥; 𝑎, 𝑏) =
1

𝑏𝑎𝛤(𝑎)
∫ 𝑡𝑎−1
𝑥

0

𝑒−
𝑡
𝑏𝑑𝑡 

where 

𝑡(𝑥) = {
(1 + 𝜉 (

𝑥 − 𝜇

𝜎
))

−1/𝜉

  𝜉 ≠ 0

𝑒−(𝑥−𝜇)/𝜎   𝜉 = 0

 

a is a shape 

parameter 

b is a scale 

parameter and 

𝛤(. ) is the 

Gamma function 

𝐹(𝑥) = 𝑒−𝑡(𝑥) 

GEV 𝑓(𝑥; 𝜇, 𝜎, 𝜉) =
1

𝜎
𝑡(𝑥)𝜉+1𝑒−𝑡(𝑥) 

𝜇 is a location 

parameter 

𝜎 > 0 is a scale 

parameter 

𝜉 is a shape 

parameter 

𝐹(𝑥; 𝑎, 𝑏) =
1

𝑏𝑎𝛤(𝑎)
∫ 𝑡𝑎−1
𝑥

0

𝑒−
𝑡
𝑏𝑑𝑡 

Nakagami 
𝑓(𝑥;𝑚,𝛺)

=
2𝑚𝑚

𝛤(𝑚)𝛺𝑚
𝑥2𝑚−1 𝑒𝑥𝑝 (−

𝑚

𝛺
𝑥2) , ∀𝑥 ≥ 0 

𝑚 ≥ 1/2 is a 

shape parameter 

𝛺 ≥ 0is a spread 

parameter 

𝐹(𝑥;𝑚,𝛺) =
𝛾 (𝑚,

𝑚
𝛺
𝑥2)

𝛤(𝑚)
 

where 𝛾(. ) is the Incomplete Gamma function 

and 𝛤(. ) is the Gamma function 

Normal 𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1
2(
𝑥−𝜇
𝜎 )

2

 

𝜇 is the mean  

𝜎is the standard 

division 

erf(. ) is the error 

function 

𝐹(𝑥) = 𝛷 (
𝑥 − 𝜇

𝜎
) =

1

2
[1 + 𝑒𝑟𝑓 (

𝑥 − 𝜇

𝜎√2
)] 

Rayleigh 𝑓(𝑥; 𝜎) =
𝑥

𝜎2
𝑒−𝑥

2/(2𝜎2),  𝑥 ≥ 0 
𝜎 > 0 is a scale 

parameter 
𝐹(𝑥; 𝜎) = 1 − 𝑒−𝑥

2/(2𝜎2) 

t 𝑓(𝑥; 𝜈) =
𝛤 (
𝜈 + 1
2

)

𝛤 (
𝜈
2
)

1

√𝜈𝜋

1

(1 +
𝑥2

𝜈
)

𝜈+1
2

 

𝜈 > 0 is the 

number of 

degrees of 

freedom 

and 𝛤(. ) is the 

Gamma function 

𝐹(𝑥; 𝜈) = ∫
𝛤 (
𝜈 + 1
2

)

𝛤 (
𝜈
2
)

𝑥

−∞

1

√𝜈𝜋

1

(1 +
𝑡2

𝜈
)

𝜈+1
2

𝑑𝑡 
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Weibull 𝑓(𝑥; 𝜆, 𝑘) = {
𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒−(𝑥/𝜆)
𝑘

𝑥 ≥ 0

0 𝑥 < 0

 

𝑘 > 0is a shape 

parameter and 

𝜆 > 0 is a scale 

parameter 

𝐹(𝑥; 𝜆, 𝑘) = {1 − 𝑒
−(𝑥/𝜆)𝑘 𝑥 ≥ 0
0 𝑥 < 0

 

Table 3. The mean and variance expressions of distributions 

Distribution Mean Variance 

Gamma ab ab2 

GEV 

{

𝜇 + 𝜎(𝑔1 − 1)/𝜉  if 𝜉 ≠ 0, 𝜉 < 1

𝜇 + 𝜎𝛾  if 𝜉 = 0

∞  if 𝜉 ≥ 1

 

where 𝑔𝑘 = 𝛤(1 −  𝑘𝜉), and 𝛾 is Euler's 

constant {
 
 

 
 𝜎2(𝑔2 − 𝑔1

2)/𝜉2  if 𝜉 ≠ 0, 𝜉 <
1

2

𝜎2
𝜋2

6
 if 𝜉 = 0

∞  if 𝜉 ≥
1

2

 

Nakagami 
𝛤 (𝑚 +

1
2
)

𝛤(𝑚)
(
𝛺

𝑚
)
1/2

 𝛺(1 −
1

𝑚
(
𝛤 (𝑚 +

1
2
)

𝛤(𝑚)
)

2

) 

Normal 𝜇 𝜎 

Rayleigh 𝜎√
𝜋

2
 

4 − 𝜋

2
𝜎2 

t 0, for 𝜈 > 1 
𝜈

𝜈−2
 , for 𝜈 > 2 

Weibull 𝜆𝛤(1 +
1

𝑘
) 𝜆2 [𝛤 (1 +

2

𝑘
) − (𝛤 (1 +

1

𝑘
))

2

] 

3.3. Parametric estimation 

Parametric estimation for the PDFs of wind speed refers to the assumption that a specific 

probability distribution model can describe the wind speed, where the parameters of the model are 

estimated based on available wind speed data. Several parametric estimation methods can be used 

in wind engineering, including the moment method, empirical approach, graphical method and 

maximum likelihood method.30 In a study comparing six methods for estimating Weibull 

parameters to fit wind data, the maximum likelihood method was, on the whole, shown to provide 

more accurate estimations than other methods in tests with both simulated and observation data.31 

Therefore, we used the maximum likelihood method to identify the parameters for all seven 

probability density functions in the present study. The Maximum likelihood estimation (MLE) 

method can be explained as follows:32 If {X1, X2, ⋯, Xn} is an independent and identically distributed 

sample from a population with PDF 𝑓(𝑥|𝜃1,⋯𝜃𝑘). The likelihood function is defined by equation 

(4):  

𝐿( 𝜃 ∣ 𝑋 ) = 𝐿(𝜃1,⋯ 𝜃𝑘 ∣ 𝑥1⋯𝑥𝑛) =∏𝑓

𝑛

𝑖=1

(𝑥𝑖 ∣ 𝜃1,⋯𝜃𝑘)    (4) 

https://en.wikipedia.org/wiki/Shape_parameter
https://en.wikipedia.org/wiki/Shape_parameter
https://en.wikipedia.org/wiki/Scale_parameter
https://en.wikipedia.org/wiki/Scale_parameter
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If 𝐿( 𝜃 ∣ 𝑋 )   is differentiable in θ, then the values of θi that minimize 𝐿(𝜃1,⋯𝜃𝑘 ∣ 𝑥1⋯𝑥𝑛)  are 

solutions of possible candidates θi for the MLE are calculated by equation (5): 

𝜕

𝜕𝜃𝑖
𝐿(𝜃 ∣ 𝑋 ) = 0,  𝑖 = 1,2,⋯𝑘    (5) 

3.4. Performance comparison  

The Friedman test is used to check for differences in performance across multiple trials to 

accurately compare the modelling performance of different probability distributions in different 

wind parks.33 In particular, column effects are checked after adjusting with possible row effects. 

The significant level of the Friedman test was set as 0.01 in the present study. 

H0: The column data do not have a significant difference. 

Ha: The column data have a significant difference. 

The statistic F is shown as in (6): 

𝐹 =
12𝑛

𝑘(𝑘 + 1)
[∑  

𝑘

𝑖=1

𝑟𝑖
2 −

𝑘(𝑘 + 1)2

4
] (6) 

where k is the number of columns, ri is the mean value of row i. It follows 𝜒(𝑘−1)
2  under H0. 

4. Experiment setup and evaluation 

4.1. Estimation of PDF 

We used 0.5 m/s as the bin size to create histograms of hourly wind speed throughout the whole 

year for the wind speed data from the NWP models at the five wind parks and the observed wind 

speed of the Fakken wind park. The MLE method was then used to estimate the parameters 

required to define each of the theoretical PDFs, as described in Section 3.3. A one-sample 

Kolmogorov–Smirnov test (K-S test) was conducted to confirm whether the original wind speed 

data came from calculated ideal distributions by comparing the CDF of the original data and fitted 

ideal distributions. 

Since the histogram is discrete, the kernel distribution is typically taken an empirical 

nonparametric PDF modelling method based on the original data. It harnesses the kernel functions 

(typically Gaussian function) to connect adjacent bins of the histogram to create continuous PDFs 

of the data. Unlike histograms, the kernel distribution approximates infinitesimal length sampling, 

thereby reducing sampling errors between each bin. Therefore, it can be considered a more real 

historical distribution of raw data. Graphically, we named this ‘PDF smoothing’, and it was defined 

by a kernel function K(·) and a bandwidth d in (7): 
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𝑓𝑑(𝑥) =
1

𝑛𝑑
∑  

𝑛

𝑖=1

𝐾 (
𝑥 − 𝑥𝑖
𝑑

) (7) 

We conducted two separate modelling analyses – overall and interval wind speed PDF fitting – to 

achieve a better understanding of the probabilistic characteristic of wind. Based on five wind park 

features and wind turbine power curve characteristics of our six cases, we choose the wind speed 

interval related to the rated power, with the rated speed of 10 m/s and the cut-off speed of 20 m/s, 

which are typical parameters for commercial medium-size wind turbines. 

4.2. Performance evaluation criteria 

The K–S test is a nonparametric statistical test based on cumulative distribution function that tests 

whether a distribution is different from a type of ideal distribution.34 A nonparametric test is used 

to test a hypothesis.35   

H0: {X1, X2, ⋯, Xn } has a given continuous distribution. 

𝐻𝑎:   At least one does not come from the given distribution. 

 

The K–S test is constructed from the statistic in equation (8): 

𝐷 = 𝑠𝑢𝑝
𝑥
 |𝐹0(𝑥) − 𝐹(𝑥)|     (8) 

where 𝐹0(𝑥) represents CDF of the given ideal distribution, and 𝐹(𝑥) is CDF of {X1, X2, ⋯, Xn }. The 

test statistic is compared to critical values from the theoretical distribution of the Brownian bridge 

(If a Brownian motion, which is the random motion of particles suspended in a medium, starts at 

a certain point and returns to the starting point at the end, the process is called Brownian bridge.). 
36 

To evaluate and compare the different examined performance of PDFs for modelling the wind 

speed, the mean absolute error (MAE) and root mean square error (RMSE) were used to calculate 

the probability density difference between parametric ideal distributions and the original PDF 

smoothing with speed unit of 0.01 m/s. Both are negatively oriented metrics, indicating that the 

smaller values are related to better performance. The MAE and RMSE determine the accuracy of a 

model by calculating averages of the absolute and square difference between the histogram-based 

PDF from the NWP and observed data and different theoretical PDF models, as expressed in 

equations (9) and (10). The RMSE assigns a higher weight to larger errors due to the square 

calculation, which penalises more significant model errors and indicates whether the model has a 

significant error variance.37 Hence, the MAE and RMSE provide a comprehensive representation 

of a model's performance.  

𝑀𝐴𝐸 =
∑ |𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔𝑖 − 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔𝑖|
𝑛
𝑖=1

𝑛
     (9) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔𝑖 − 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔𝑖)2
𝑛
𝑖=1

𝑛
     (10) 

https://encyclopediaofmath.org/wiki/Non-parametric_test
https://en.wikipedia.org/wiki/Brownian_bridge
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5. Results and Discussion 

5.1. PDF modelling graph 
Histograms and PDFs graphs are shown in Fig. 1 to show the estimated ideal PDFs with the MLE 

method for different cases. Discontinuous histograms are represented by bar charts (for clarity, we 

ignored the kernel distribution curves in these figures), and the fitted probability distribution 

curves are shown in different colours. As can be seen, although the wind speed distributions of 

different wind parks varied, they had some similarities. It is also clear that different probabilistic 

models provide differing fits to wind speeds. In particular, when comparing (e) and (f), the actual 

wind speed is more centrally concentrated and possesses a thicker tail. Due to the scarcity of data, 

this phenomenon could only be considered empirical for the Fakken site.  

 

(a)                                                                                                          (b) 

 

(c)                                                                                                           (d) 

 
(e)                                                                                                         (f) 

Fig 1. The estimated PDFs curve graphs for NWP model data of five sites and measurements from 

Fakken wind park (NWP: (a) Nygårdsfjellet, (b) Raggovidda, (c) Kjøllefjord, (d) Havøygavlen, (e) 

Fakken), Measurements: (f) Fakken) 

5.2. K-S test 
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The K–S test is a rigorous statistical test. Passing this test indicates that there is no statistically 

significant difference between the PDFs of original data and ideal distributions. The null hypothesis 

in the present study was that wind speed data fit a mentioned ideal distribution; however, they also 

could not originate from such an ideal distribution. The significance level was set at 1%, and the 

results of the K–S test are given in Table 4. 'Pass' means that the K–S test did not reject the null 

hypothesis, and 'Fail' indicates that the K–S test rejected the null hypothesis. 

Table 4. The result of the K-S test 

Wind park Gamma GEV Nakagami Normal Rayleigh t Weibull 

Nygårdsfjellet Fail Fail Fail Fail Fail Fail Fail 

Raggovidda Fail Fail Pass Fail Fail Fail Pass 

Kjøllefjord Fail Fail Pass Fail Pass Fail Pass 

Havøygavlen Fail Pass Pass Fail Pass Fail Pass 

Fakken (NWP) Fail Fail Fail Fail Fail Fail Fail 

Fakken 

(MEASURE) 

Fail Pass Fail Fail Fail Fail Fail 

As is shown, none of the distributions could pass all the K–S tests at the 1% significance level. In 

addition, the Gamma, normal and t distributions failed the tests in all cases. Meanwhile, the 

Nakagami and Weibull distributions passed the test for three of the NWP wind data sets, while no 

distributions passed the tests for Nygårdsfjellet. Regarding the comparison of the PDF modelling 

between the NWP and observed wind speed of Fakken, all distributions failed the tests for Fakken 

(NWP), and only the GEV distribution passed the test for Fakken (MEASURE). Therefore, the 

different probabilistic models each have particular strengths that vary according to wind park and 

data types. 

5.3. Overall wind speed PDF modelling 

Table 5 shows the calculated parameters by MLE of different PDF models. 

Table 5. The parameters of fitted PDFs 

  Gamma  GEV Nakagami Normal  Rayleigh  t Weibull  

Nygardsfjellet 2.07; 3.91    5.80; 4.10; -0.02 0.72; 90.93 8.10; 5.04 6.74 17.87 1.62; 9.02 

Raggovidda 2.90; 3.27 7.26; 4.10; -0.07 0.94; 116.08 9.50; 5.10 7.62 20.66 1.93; 10.69 

Kjøllefjord 3.04; 2.60 6.04; 3.10; -0.05 0.97; 80.15 8.10; 5.04 6.33 16.67 1.96; 8.91 

Havoygavlen 3.07; 2.71 6.37; 3.10; -0.05 0.98; 89.14 8.34; 4.43 6.68 16.84 1.96; 9.40 
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Fakken(NWP) 2.99; 2.32 5.18; 3.10; 0.00 0.94; 63.37 6.95; 3.89 5.63 7.48 1.87; 7.83 

Fakken(MEASURE) 3.01; 2.56 5.54; 3.10; 0.08 0.90; 79.62 7.69; 4.53 6.31 4.26 1.80; 8.68 

Note: The parameters are shown with the form in Table 2 in order corresponding to each PDF. 

The overall MAE of wind speed PDF fitting for the NWP model from five sites and measurements 

from Fakken is given in Fig. 2. For the NWP wind speed data, the Nakagami distribution generally 

had a lower MAE than the other distributions. One exception to this is Havøygavlen, in which the 

Rayleigh distribution performed the best. The normal t distributions had the worst performance in 

terms of MAE. For the Nakagami distributions for NWP wind speed from different wind parks, the 

MAEs of Kjøllefjord and Fakken (which are characterised by rougher terrain) were lower compared 

with the other wind parks. For the observed wind speed data fitting of Fakken, the GEV distribution 

had the lowest MAE; here, the edge was even more significant than the Nakagami distribution for 

Fakken NWP data modelling. In addition, the overall MAE of Fakken measured wind speed 

modelling was much larger than for the NWP data of Fakken. 

 

Fig 2. The overall MAE of wind speed PDFs for NWP data from five sites and measurements from 

Fakken 

The overall RMSE of the overall wind speed PDF for the NWP model of five sites and measurements 

of Fakken wind park is displayed in Fig. 3. In relation to NWP wind speed data, the Nakagami and 

Rayleigh distributions showed a low RMSE between the histogram and parameterised PDFs, except 

for Nygårdsfjellet. The overall RMSE of the normal and t distributions was relatively high. 

Kjøllefjord had the lowest RMSE in the Nakagami and Rayleigh distribution. In terms of the RMSE 

of wind speed measured data from Fakken, the results were similar to the overall MAE results. 

 



 

 

50 

 

Fig 3. The overall RMSE of wind speed PDFs for NWP data from five sites and measurements 

from Fakken 

Friedman tests for the overall MAE and RMSE of wind speed PDF modelling for the NWP data 

from five sites were conducted to determine whether there were statistical differences between 

different probability distribution modelling approaches (effect of distributions) and whether there 

were statistical differences in the probabilistic modelling results for different wind parks (effect of 

parks). All the p-values surpassed the confidence level of 0.01; therefore, the Friedman test’s null 

hypothesis was not rejected. The results are shown in Table 6. 

Table 6. The p-values of the Friedman test for overall wind speed modelling 

 
Effect of distributions Effect of parks 

MAE 0.0011 0.0525 

RMSE 0.0014 0.0029 

5.4. Interval wind speed PDF modelling  

The MAE of interval wind speed PDF is shown in Fig. 4. The results showed some differences from 

their counterparts in the overall modelling. For the NWP wind speed data, the optimal for 

Nygårdsfjellet was obtained with the Rayleigh distribution. The Weibull distribution had a slight 

advantage over the Nakagami and Rayleigh distributions, while the normal distribution showed the 

worst MAE performance on the whole. The MAE of the Weibull distributions for Kjøllefjord were 

the smallest out of the five wind parks. Regarding the distributions of measured wind speed of 

Fakken, the overall MAE was much larger than for the Fakken NWP data; further, the GEV 

produced the lowest MAE. 

 

Fig 4. The MAE of interval wind speed PDFs for NWP data from five sites and measurements 

from Fakken 

The RMSE of the interval wind speed PDF is shown in Fig. 5. The results were similar to the MAE 

evaluation of interval modelling. For the NWP wind speed data, the Rayleigh distribution was 

superior to other distributions for Nygårdsfjellet. The Nakagami, Rayleigh and Weibull 

distributions had almost the same RMSEs for the remaining four wind parks, while for the RMSE 

of the observed data from Fakken, the GEV distribution still won. 
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Fig 5. The RMSE of interval wind speed PDFs for NWP data from five sites and measurements 

from Fakken 

Similarly, differences in interval wind speed from NWP probabilistic modelling between wind parks 

were tested, and the results are given in Table 7. All p-values exceeded the confidence level of 0.01, 

which suggests that there are statistical differences between different probability distribution 

modelling methods and in the probabilistic modelling of different wind parks. 

Table 7. The p-values of the Friedman test for interval wind speed modelling 

 
Effect of distributions Effect of parks 

MAE 0.0717 0.05 

RMSE 0.0156 0.0134 

5.5. Discussion  

In summary, the Nakagami distribution is recommended as the preferred model for the PDF of 

NWP wind speed data, as it showed excellent and consistent performance. The Nakagami and 

Weibull distributions could generally capture essential characteristics of the historical distributions 

of wind speed for both NWP model data by K–S tests. The GEV distribution could describe the 

statistics of the observed wind data in the examples we used. Moreover, PDF modelling for the 

NWP wind speed was more accurate compared with actual measurements of wind speed. 

In terms of evaluating the NWP wind speed, for the overall wind speed PDF modelling 

performance, the Nakagami and Weibull distributions showed a good fit for all five wind parks’ 

overall PDFs of NWP wind speed data. In comparison, the Rayleigh distribution provided a 

favourable overall fit for all except Nygårdsfjellet. The Nakagami and Rayleigh distributions also 

performed excellently for the wind speed interval modelling. Generally, we made a more precise 

PDF fitting for NWP wind speed data from Kjøllefjord than for other wind parks both in overall and 

interval wind speed modelling. This was unexpected, as Kjøllefjord has the highest RIX (10 to 20) 

of all of them. In addition, Havøygavlen and Fakken, with RIXs (5 to 10), were also fitted better 

than Nygårdsfjellet and Raggovidda with RIXs (0 to 5). Further research is needed because it is 

generally thought that the more complex the terrain is, the more difficult it is to use NWP to forecast 

the wind speed.38 



 

 

52 

 

For the actual observed wind data from Fakken, the GEV distribution was superior to all other 

distributions both in overall and interval wind speed modelling and should be used to assess wind 

speed in this area. The differences between NWP wind data and real measurements of Fakken can 

be summarised as follows. First, referring to Table 2, the observed speed had a higher mean value, 

standard deviation, coefficient of variation and skewness, though lower kurtosis meant that the 

measurements varied more from the normal distribution and had a lighter distribution tail than 

the NWP data. Second, the best distributions were the Nakagami and Generalised extreme value 

distribution, respectively. The Weibull distribution, which is typically used for wind speed 

modelling, was inferior to these two methods in our cases.  

6. Conclusions 

The statistical characteristics of wind speed are essential for the practical assessment of wind 

energy potential and the sustainable design of wind parks. In the present study, we concentrated 

on probabilistic modelling of NWP wind speed for five wind parks in the Norwegian Arctic region 

and one observed wind speed for one of them. Our results are based on one year of data, and a 

longer period is needed to conduct a wind resource assessment of a potential wind park site. Using 

longer time series would provide a better estimate of the wind speed distribution for NWP and 

measurements and a better understanding of rare extreme high wind events. The results of the 

present study indicated that, for wind resource assessments in complex terrain, the Nakagami and 

Generalised extreme value distributions are recommended as the preferred models for the PDF of 

NWP and observed wind speed, respectively, as they showed excellent and consistent performance. 

In addition, the probabilistic models that reasonably describe interval wind speed differ from those 

of overall wind speed due to the nature of the wind: the former corresponds more to the right-side 

properties of the probability distribution functions. 

Based on the results of this study, the following policy recommendations are provided:  

1. Different probabilistic modelling approaches should be considered when conducting wind 

resource potential assessments to achieve more accurate estimations.  

2. The wind speeds of neighbouring regional wind parks are characterised by similarities and 

synergies partly due to the probabilistic models that accurately describe them are identical. 

But in wind engineering reality, Topography, meteorology, turbine selection and layout etc. all 

affect the power generation of a wind park. Therefore, the possibility of simultaneous 

intermittency of these wind parks must be considered when exploiting wind power in the area. 

Reasonable compensations for other energy sources are required.  

3. Compared with observed wind speeds, numerical predicted speeds can be better described by 

probabilistic models; therefore, when using numerical meteorology to assess wind resources, 

more consideration should be given to extreme wind events. Some allowance may be made for 

errors in wind energy project development. 
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Abstract 

The Norwegian Arctic is rich in wind resources. The development of wind power in this region can boost green 

energy and also promote local economies. In wind power engineering, it is a tremendous advantage to base projects 

on a sound understanding of the intrinsic properties of wind resources in an area. Wind speed volatility, a 

phenomenon that strongly affects wind power generation, has not received sufficient research attention. In this 

paper, a framework for studying short-term wind speed volatility with statistical analysis and probabilistic modeling 

is constructed for an existing wind farm in Northern Norway. It is found that unlike the characteristics of wind 

power volatility, wind speed volatility cannot be described by the normal distribution. The reason is that even 

though the probability distribution of wind speed volatility is centrally symmetric, it is much more centrally 

concentrated and has thicker tails. After comparing three distributions corresponding to different sampling periods, 

this paper suggests utilizing the t distribution, with average modeling RMSE less than 0.006 and R2 exceeding 0.995 

and with the best modeling scenario of temporal resolution, the 30 mins has an RMSE of 0.0051 and an R2 of 0.997, 

to more accurately and effectively explore the fluctuating characteristics of wind speed. 

  

Keywords: Wind energy; Wind speed volatility; Statistical analysis; Probability distribution; Arctic 

Abbreviations 

PDF probability density function 

CDF cumulative distribution function 

SV wind speed  

SP wind speed volatility 

γ skewness 

κ excess kurtosis 

MLE maximum likelihood estimation 

RMSE root mean square error 

R2 coefficient of determination 
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1. Introduction 

As an alternative to fossil fuels, wind energy has received increasing attention worldwide because of 

its abundant availability, widespread dispersal, and potential financial support [1]. Norway owns some 

of the best wind energy resources in Europe [2]. It has enormous potential for wind power generation, 

especially in its northern and Arctic regions.  

Assessing potential wind resources—typically evaluated by measured and modeled wind speed and 

direction through a year or more at a certain location—are critical for evaluating the feasibility and 

sustainability of a wind energy project [3]. Wind is a phenomenon involving air movement and relates 

to the atmospheric motion state. Changes in wind characteristics are closely related to the circulation of 

energy and matter in the atmosphere. The most noticeable difference between wind energy and 

conventional energy is the volatility, stochasticity, intermittency, and uncontrollability of the former [4]. 

The changes in wind speed are affected by long-term atmospheric motion and micro-scale atmospheric 

turbulence caused by many surface factors. These cause the wind to show strong instantaneous volatility 

in time and space. Due to the uncertainty and intermittency of wind, wake effects between wind turbines, 

and the cubic relationship between wind speed and the wind turbine-generated power, a small change 

of wind speed can be significantly amplified in the output wind power. The random volatility of wind is 

regarded as an adverse factor for wind energy [5]. This intermittency brings severe challenges to the 

power system's safety, power quality, and the balance of power supply and demand. Therefore, studying 

the volatility characteristics of wind is of great significance for improving wind power forecasting 

accuracy, scenario generations, and overcoming the adverse effects of wind power integration in the grid 

[6]. 

However, the typical wind energy assessment methodology lacks tools to characterize wind speed 

volatility on sites. The volatility analysis offers additional information about wind. The wind has different 

volatility characteristics at different temporal scales. Although the wind has certain seasonal and diurnal 

characteristics, there is no fixed volatility amplitude and cycle; its volatility has no clear rules to follow.  

The probability density function (PDF) is an effective quantification to describe wind randomness and 

uncertainty [7]. Much research has used the probability density function in wind engineering [8]. 

However, most of the research concerns evaluation of historical wind speed distribution. To illustrate, 

Mahmood and colleagues [9] used the Weibull distribution to assess wind speed data from a site in Iraq 

successfully.  

Studies centered on statistical analyses of volatility in wind energy, and those who exist have mainly 

considered wind power volatility directly are few and far between, although a handful exists. For instance, 

Lange [10] analyzed the uncertainty in wind power prediction using the statistical distributions and 

found that wind speed prediction error is normally distributed. Bludszuweit [11] looked into the 

statistical distributions of wind power errors forecasted by the persistence model. It proposed an indirect 

algorithm based on the Beta distribution based on one-year measured data from two different wind 

farms. Zhang [12] presented a versatile distribution for fitting wind power predictive errors and 

compared the distribution with benchmarking distributions of normal and Beta. Inspired by probability 

distributions of wind power volatility, it is also possible to use statistics to analyze the wind speed 

volatility using classical ideal distribution functions to model the histogram of the wind volatility and 

capture its nature.  

This paper uses different probability density functions and skewness and kurtosis moments to 

characterize short-term wind speed volatility at various temporal scales for a wind farm in Northern 

Norway. The statistical modeling of volatility assists in documenting wind's internally volatile features, 

especially for the wind in a cold climate and complex terrain. 
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2. Data preparation  

This paper draws on data from a wind power station located in the Norwegian Arctic, whose 

coordinates are 70°5'56" N, 20°3'54" E, and its designed capacity is 54 MW. The hub height of the 

turbines is 80 m above the ground, and the rotor diameter is 90 m. The farm has eighteen Vestas V90-

3.0 3.0 MW turbines with 45m long rotor and the hub height is 80m above the ground. The wind farm 

is surrounded by hills and fronts a fjord. The wind park company provides measurements, taken by the 

wind mast with the same height of turbines, of wind speed. The original wind speed data are from 0:00 

on 1st January 2017 to 23:00 on 31st December 2017 with 10 minutes temporal resolution. The number 

of measured data points is 52,560. Wind speed data with a reduced temporal resolution of 30 minutes 

and 60 minutes are obtained by interpolations. The size of the dataset with 30 minutes and 60 minutes 

resolution is 17,520 and 8,760 data points, respectively. The wind Speed Volatility (SV) is calculated as 

the first-order differential by Eqs. (1): 

𝑆𝑉𝑖 = 𝑆𝑃𝑖 − 𝑆𝑃𝑖−1    (1) 

where SPi and SPi-1 are wind speed at time t and one temporal resolution before ti.   

3. Methodology 

The sample skewness (γ) and sample excess kurtosis (𝜅) are common shape-parameters that describe 

the historical distributions of variables, and they are defined as:  

 𝛾 = 𝑇−1 ∑  𝑇
𝑡=1 (𝑋𝑡 − 𝑋̅)

3/𝑠3    (2) 

𝜅 = 𝑇−1∑  𝑇
𝑡=1 (𝑋𝑡 − 𝑋̅)

4/𝑠4 − 3    (3) 

where T is the size of the data sample, 𝑋̅ is the sample mean, and s is the sample standard division. 𝛾 

measures whether the PDF of a random variable "leans" to one side of the mean. A distribution is left-

skewed when 𝛾  is negative and right-skewed when 𝛾  is positive. κ measures the "peakedness" of a 

distribution. The so-called excess kurtosis defined in Eq. (3) is measured relative to the normal 

distribution, which attains a value of κ=0. Therefore, excess kurtosis is a measure of departure from 

normality and reflects the sharpness of the peak [13]. A distribution is leptokurtic when κ > 0, indicating 

that the PDF is sharper and steeper than the normal distribution, and it is platykurtic when κ < 0. 

The PDF of a random variable is a statistical model that describes the probability of occurrence of this 

variable at a specific point in each observation interval. The cumulative distribution function (CDF) 

specifies the probability that the variable is less than or equal to a specific value [14]. In this section, 

three commonly used ideal PDFs are chosen as the candidates for modeling the SF.  

For the normal distribution, its PDF (4) and CDF (5) are expressed by: 

𝑓(𝑥; 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒−

1

2
(
𝑥−𝜇

𝜎
)
2

    (4) 

𝐹(𝑥; 𝜇, 𝜎) =
1

2
[1 + 𝑒𝑟𝑓 (

𝑥−𝜇

𝜎√2
)]    (5) 

where μ is the mean, σ is the standard division, and erf (.) is the error function.  

The logistic distribution resembles the normal distribution in shape but has heavier tails (higher κ). 

The PDF (6) and CDF (7) of the logistic distribution are given [15], respectively, by: 
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𝑓(𝑥; 𝜇, 𝑠) =
𝑒−(𝑥−𝜇)/𝑠

𝑠(1+𝑒−(𝑥−𝜇)/𝑠)
2    (6) 

𝐹(𝑥; 𝜇, 𝑠) =
1

1+𝑒−(𝑥−𝜇)/𝑠
    (7) 

where μ is a location parameter and s is a scale parameter. The mean equals μ, and the variance is s2 

π2/3. 

The PDF (8) and CDF (9) of the t distribution are determined via the following functions [16]: 

𝑓(𝑥; 𝜈) =
𝛤(
𝜈+1

2
)

𝛤(
𝜈

2
)

1

√𝜈𝜋

1

(1+
𝑥2

𝜈
)

𝜈+1
2

    (8) 

𝐹(𝑥; 𝜈) = ∫
𝛤(
𝜈+1

2
)

𝛤(
𝜈

2
)

𝑥

−∞

1

√𝜈𝜋

1

(1+
𝑡2

𝜈
)

𝜈+1
2

𝑑𝑡    (9) 

where 𝜈 > 0 is the number of degrees of freedom and 𝛤(. ) is the Gamma function.  

Since histograms are discrete distributions, a nonparametric method of simulating distributions 

based on the data itself, the kernel distribution, can approximate discrete historical distributions to the 

empirical distribution of samples taken at infinitely small intervals. Figuratively, it is called smoothing 

PDFs and is determined by a smoothing function and a bandwidth. In this study, the smoothing function 

is the Gaussian function, and the bandwidth values 0.025, which can extract wind speed information 

with high precision and without adding sampling noise. 

3.1. Parameter estimation   

The PDF parameter estimation means an ideal probability distribution model can statistically 

describe the distribution of SV data. The parameters of the model are estimated by training the SV data 

with proper estimation approaches. This study uses the Maximum Likelihood Estimation (MLE) 

approach to determine parameters for the above three PDFs. 

4. Experiments  

The procedure for modeling the PDF of SV at different temporal scales is illustrated in Fig. 1. The raw 

wind speed data are interpolated and calculated by Eq. (1) to create SF data sequences for different 

temporal scales. These data are then tested for their normality, and their histograms are plotted. 

Moreover, their smoothing PDFs are created by the kernel distribution. Then, fitted distribution models 

corresponding to all SF datasets on different temporal scales are created, whose parameters are obtained 

with the MLE method. Finally, the fitted PDF models are tested with the goodness-of-fit and compared 

with the corresponding smoothing PDFs. 
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Fig. 1. Procedure for the SV probabilistic modeling. 

Pearson’s chi-square goodness-of-fit test for PDF models is a nonparametric test that evaluates how 

likely a data sample has been drawn from a given PDF [17]. The chi-square test divides data into k bins 

and defines the following null hypothesis: H0: {X1, X2, ⋯, Xn } follows the given probability distribution. 

The alternative hypothesis is: H1: {X1, X2, ⋯, Xn } do not follow this distribution. The test statistic is 

defined by Eqs. (10):  

𝜒2 = ∑  𝑘
𝑖=1 (𝑂𝑖 − 𝐸𝑖)

2/𝐸𝑖     (10) 

where Oi is the observed count and Ei is the expected count for bin i based on the hypothesized PDF. 

To evaluate the performance of different PDFs for SV modeling, the Root Mean Square Error (RMSE) 

and the coefficient of determination (R2) are applied to calculate the probability density difference 

between smoothing PDFs and corresponding fitted PDF models. RMSE is a negatively oriented metric, 

meaning that smaller values indicate better fitting performance. Meanwhile, the second is positively 

oriented, and its range is zero between one.  

𝑅𝑀𝑆𝐸 = √
∑ (𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔𝑖−𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔𝑖)

2𝑛
𝑖=1

𝑛
    (11) 

𝑅2 = 1 −
𝑆𝑆res

𝑆𝑆tot
    (12) 

Where n is the total number of sampling by the kernel function with 0.025m/s bandwidth that is related 

to SV ranging from -10m/s to 10m/s, and it equals 800. 𝑆𝑆res  is the sum of squares of residuals 

(deviations fitted from smoothing PDFs based on histograms) and 𝑆𝑆tot  is the total sum of squares 

(overall squared differences between the smoothing PDF values at the sampling points and their 

averages).  

https://en.wikipedia.org/wiki/Total_sum_of_squares
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5. Results and discussion 

We use three different PDFs, the normal distribution, the logistic distribution, and the t distribution, 

to model the volatility of wind speed over various temporal intervals for the wind farm in Northern 

Norway. The results are presented as follows. 

5.1. Statistics for SV data 

The descriptive statistics for SV data are shown in Table 1. 

Table 1. The statistics of SV data at different temporal scales. 

Temporal resolution (minutes) Mean (m/s) 

Standard 

Deviation 

(m/s) 

Min (m/s) Max (m/s) Skewness Kurtosis 

10 0.0000 1.0200 -9.6000 16.2000 0.3741 8.2444 

30 -0.0003 1.2808 -9.7000 11.6333 0.2429 5.1468 

60 -0.0007 1.5034 -10.4167 12.2833 0.1930 4.4025 

 

The mean value of the SV data is very close to zero at all temporal resolutions, which indicates that 

the wind speed volatility is, in general, trendless and oscillates back and forth around the zero points. 

As the sampling time grows, the SV data standard deviation increases, and their 𝛾 and κ decrease. The 

increase in standard deviation is understandable since SV is more variable over more extended periods.  

The 𝛾 of all three SV datasets is slightly positive, which means the right tails of the distributions are 

longer than the left ones, and their mass is concentrated slightly to the left. Both 𝛾 and κ decrease with 

time spacing, and so the data become increasingly normal. The negative correlation of the 𝛾  with 

sampling time indicates that the histogram of the SV data becomes more symmetrical as the time 

spacing increases. The three SV datasets have positive κ, which shows that all of them are leptokurtic 

and morphologically steeper or thicker tails than the normal distribution. Large κ values can occur in 

two situations: the probability mass is concentrated near the mean, and occasionally, there are some 

data in the dataset that are away from the mean, or the mass of probability is concentrated at the tails 

of the distribution. κ values that increase with temporal resolution also illustrate the decline in the 

concentration and the size of extreme values away from the means of SV datasets. Therefore, based on 

the above analysis, it is reasonable to assume that merely using the normal distribution to describe SV 

is inaccurate. 

5.2. PDF modeling fitting and test 

Fig. 2 shows histograms of SV data and fitted model PDFs with parameters that have been estimated 

by the MLE approach. 
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(a) 

 

(b) 
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(c) 

Fig. 2. The histograms and estimated PDFs curve graph for SV data ((a) is normal, (b) is logistic, and  (c) is t distribution)  

From Fig. 2, it can be seen visually that the mode PDF value falls significantly as the sampling time 

increases. The t and logistic distributions fit the shape of histograms better than the normal distribution 

for all three temporal resolution cases. 

Table 2. The parameters for PDFs and p values of the chi-square test (Values less than 10-8 are approximately expressed as 

zero). 

Temporal resolution (minutes) Normal (μ,σ) Logistic (μ,s) t (ν) Normal p Logistic p t p 

10 (0,1.02) (0,0.50) 2.50 0 0 0 

30 (0,1.28) (0,0.65) 3.00 0 0 0 

60 (0,1.50) (0,0.77) 3.31 0 0 0.062 

The standard deviation of the normal distribution, the scale parameter of logistic distribution, and 

the degrees of freedom of t distribution are shown in Table 2 to correlate positively with the time 

resolution, proving that curves of all three distributions become " lower and broader.  

Pearson’s chi-square test is a rigorous statistical test. According to the test, it can be concluded 

whether there exists a statistically significant difference between a theoretical distribution model and 

the observed frequency distribution of specified discrete events in the data sample. The hypothesis tests 

areas above section 4.2 and with a significance level of 5%. The p values of chi-square tests are also 

shown in Table 2. Only the p-value for the t distribution corresponding to the SV data with 30 minutes 

is above 0.05, indicating that the dataset statistically follows the t distribution with a degree of freedom 

equals 3.31. Given that rigorous statistical tests do not give a complete picture of the accuracy of 

probabilistic models. We will introduce quantitative analysis to evaluate these models in the following 

sub-section. 

5.3. Performance evaluation 

Real-world data will often have problems with passing a rigorous statistical test. In engineering 

practice, evaluation metrics from regression analysis are commonly adopted to assess the quality of PDF 
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modeling. The RMSE and R2 between empirical or smoothing PDFs of SV data and different fitted PDF 

models for various temporal resolutions are shown in Tables 3. 

Table 3. RMSE and R2 of different PDF models 

 RMSE R2 

Temporal resolution (min) normal logistic t normal logistic t 

10 0.0401 0.0226 0.0058 0.8738 0.9596 0.9971 

30 0.0286 0.0150 0.0051 0.9106 0.9748 0.9970 

60 0.0236 0.0121 0.0055 0.9241 0.9795 0.9954 

It is found that although most of the PDF models do not pass the chi-square test, the R2 of all logistic 

and t distribution models surpasses 0.95, which generally means that these PDFs provide a sound fit. 

Except for the normal distribution, the other two distributions can display probabilistic characteristics 

of the SV dataset. Regarding performance differences between different PDF models, the t distribution 

is superior to other distributions for all sampling time datasets in both RMSE and R2. Almost all PDF 

curves are highly centrally concentrated and have heavy and long tails, which potentially embodies the 

risk of wind ramp events. The t distribution satisfactorily embodies these features. Besides, the logistic 

distribution performs better than the normal distribution in all cases, suggesting that it can also deliver 

relatively satisfactory probabilistic modeling for describing SV. 

Concerning the comparison of various time resolutions, the RMSE and R2 of normal and logistic 

distributions respectively decrease and increase with the sampling time. This demonstrates that both 

PDFs more easily characterize the SV data's statistical distributions with the rising sampling time. 

Meanwhile, the RMSE and R2 of the t distribution are very stable and do not fluctuate much with 

sampling interval slightly volatile features. Overall, the t distribution is proven to be a more desirable 

probabilistic model to represent wind speed volatility in comparison with the normal logistic 

distributions. 

6. Conclusion 

Statistical characterization of wind volatility is vital to effectively conduct practical assessments of 

wind resources for wind power development. In the present paper, we focus on statistical modeling of 

wind speed volatility for a wind farm inside the Norwegian Arctic region. Based on the statistical analysis 

and PDFs modeling results, the following conclusions can be drawn. 

The probability distribution of wind volatility is overall centrally symmetrical but quite different from 

the normal distribution. In our cases, wind volatility is slightly left-skewed and has sharper peaks 

compared to the normal distribution. However, as the temporal resolution of sampling decreases, its 

probability distribution becomes closer to the normal distribution. Although most PDF models fail a 

rigorous nonparametric goodness-of-fit test based on the raw data of complex wind phenomena, the 

logistic and t distributions deliver R2 exceeding 0.95 and RMSE approaching zero, suggesting that both 

distributions provide good characterizations of wind speed short-term volatility in wind energy 

engineering practice. Moreover, the t distribution has a notable advantage, and its performance is very 

stable with sampling time. Therefore, this paper recommends explicitly applying the t distribution to 

modeling wind speed volatility based on our results. 
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Abstract 

Reliable and efficient power modeling from meteorological wind data is vital for optimal 

implementation and monitoring of wind energy, and it is important for understanding turbine 

control, farm operational optimization, and grid load balance. Based on the idea that similar wind 

conditions lead to similar wind powers; this paper constructs a modeling scheme that orderly 

integrates three types of ensemble learning algorithms—bagging, boosting, and stacking—and 

clustering approaches to achieve wind power modeling from multiple wind-based meteorological 

factors in a wind farm. The paper also investigates the applications of different clustering 

algorithms and methodologies to determine cluster numbers in the modeling. The results reveal 

that all ensemble models with clustering exploit the intrinsic information in wind data and thus 

outperform models without clustering by approximately 15% on average in modeling wind power. 

The model with the best-performing Farthest First clustering is computationally rapid and with an 

improvement of around 30% compared with the baselines. Given the diversity introduced by 

clustering algorithms, the power modeling performance is further boosted by about 5% by 

introducing stacking that fuses ensembles with varying clusters. The proposed modeling 

framework thus demonstrates promise by delivering efficient and robust performance on the 

targeted problem. 

Highlights 

⚫ Systematic demonstration of wind power modeling from weather data 

⚫ Construction and comparison of various clustering methods for classifying wind data 

⚫ Combination of bagging, boosting, and stacking for modeling 

⚫ Multiple wind meteorological characteristics are considered in the modeling 

Keywords: wind power modeling, clustering, layered ensemble learning, farthest first algorithm, 

stacking, Arctic 
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NWP Numerical Weather Prediction 

K-means K-means clustering 

EM Expectation-Maximization clustering 

FF Canopy clustering 

Canopy X-means clustering 

X-means Farthest First clustering 

SSE Sum of Squared Errors 

BIC Bayesian Information Criterion 

NMAE Normalized Mean Absolute Error 

NRMSE Normalized Root Mean Square Error 

Bagging Bootstrap aggregating  

Adaboost  Adaptive boosting 

REPTREE Reduced-Error Pruning TREE 

AdaRF Adaboost with Random Forest 

LR Linear Regression 

ANN Artificial three-layer Neural Networks 

AdaDT Adaboost Decision Tree 

CoV Coefficient of Variation 

'Cls-' AdaRF, LR, 

ANN, AdaDT 

Two-layer stacking with four clustering methods as the first and AdaRF, 

LR, ANN, AdaDT as the second, respectively 

NCl-AdaRF Emphasis on AdaRF without a clustering layer (same with AdaRF) 

FF-AdaRF Two-layer stacking with FF clustering and AdaRF 

 

1. Introduction 
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Wind energy is one of the most commercially viable renewable energy sources, due to its 

natural abundance and non-reliance on fossil fuels, and has thus become integral to combating 

climate change. The Global Wind Energy Council estimates that 355 GW of new capacity will 

be installed between 2020 and 2024, with almost 71 GW of new capacity per year [1]. The rising 

prevalence of wind energy brings new challenges for planning electricity generation and 

dispatching grids because wind power varies intermittently and unpredictably with prevailing 

wind conditions.  

Establishing an accurate power model for a wind farm based on the empirical mapping of 

weather data is important to understand the relationship between wind and wind power 

generation, which in turn is significant for the safe and stable operation of a wind farm and its 

economic operation [2]. It is also important for farms to have a non-parametric power curve 

model that can be applied as a reference profile for the online monitoring generation process 

[3]. This article aims to conceptualize wind power modeling by using weather data, rather than 

only wind speed, to compute its corresponding wind power.  

1.1. Related works 

Driven by progress in computing affordability and capability and algorithmic advances, 

wind power can increasingly be modeled by physical, statistical, and hybrid methodologies. 

However, there is still room to improve these models [4].  

A few studies have considered meteorological factors in wind power modeling. R. Liu et 

al. [5] inputted wind speed, wind direction, and air pressure to a power model based on 

multivariable phase space reconstruction—the similarity of time-series and linear regression—

and demonstrated its superiority for forecasting under conditions where wind power series 

fluctuate considerably. J. Ma et al. [6] used hourly wind speed and direction at the heights of 

10 m and 100 m to establish a good performance model through multivariate empirical 

dynamic modeling. However, this type of research focused on mapping the relationship 

between weather data and wind power, without examining meteorological data themselves and 

their potential to improve these models.  

Ensemble learning also remains a popular approach to improving modeling, since it can 

reduce the variance and bias of learners. D. Niu et al. [7] established a wind-speed power model 

with wavelet decomposition and weighted random forest optimized by the niche immune lion 

algorithm. The model was subsequently tested in two empirical analyses. Y. Dong et al. [8] 

processed input data with wavelet packet decomposition and applied a stacking ensemble by 

evaluating the correlation coefficient between base learners for wind power forecast modeling. 

The model clearly showed the ensemble edge when the base learners have high accuracy and 

low correlations with one another. However, these studies were primarily algorithm-oriented 
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and rarely considered wind data's inherent characteristics in detail; meanwhile, their uses of 

decomposition to handle data increased the modeling time complexity. 

Wind has some internal trends that can be understood through data mining approaches. 

There have been some studies on clustering technique applications in wind power modeling. 

V. Kushwah et al. [9] found that clusters of time series data showed identical trend components 

in wind speed data using a cluster-based statistical modeling technique, which showed better 

performance than other statistical ones. However, purely statistical models can suffer from 

underfitting problems when dealing with complex data. L. Dong et al. [10] utilized cluster 

analyses of the Numerical Weather Prediction (NWP) since wind power and corresponding 

meteorological data have the characteristic of daily similarity. This suggests that the clustering 

model is useful in the day-ahead modeling of wind power. K. Wang et al. [11] clustered NWP 

data consisting of daily wind speed, pressure, humidity, and temperature by K-means and fed 

the data into a deep belief network for day-ahead prediction modeling, showing that reduced 

volatility and sophistication in NWP data drove the outperformance. This also revealed the 

difficulty of tuning hyperparameters in specific modeling problems, especially in network-

based models. 

Fortunately, decision tree algorithms do not require the adjustment of many parameters. 

S. Tasnim et al. [12] proposed a K-means cluster-based ensemble regression by linear and 

support vector regression for wind power forecast modeling and proved its superiority, with 

an up to 17.94% upgrade, by comparison with no-clustering and several ensemble models in 

seventy Australian wind sites. The upgrade, as compared with the baseline, is further enlarged 

to 20.63% by employing a transfer learning approach called multi-source domain adaptation, 

which includes a weighing method, innovatively calculated with data distributions by K-means 

clustering, to merge existing sites’ information for new sites’ power forecasting [13]. However, 

these efforts only used one certain clustering method and did not further explore other faster 

and more efficient clustering approaches. 

As evidenced above, the effectiveness of cluster-based wind energy modeling analysis has 

been validated by multiple relevant models at wind sites worldwide, with engineering 

applicability and values. Nevertheless, except for the K-means algorithm, other well-suited 

clustering algorithms are rarely employed in this field. Interestingly, in this journal, Ref. [10] 

presented the significance of investigating different clustering approaches in wind power 

modeling. Wang et al. [14] conducted a self-organizing map clustering for classifying data and 

used neural networks and support vector machines as base learners to create a Bayesian model 

averaging ensembles for analyzing wind power. The model adapts to different meteorological 
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conditions, but its clustering approach and learners are neural network-based and thus with 

high temporal complexity.  

There remains a lack of comparative studies on ensemble learning wind power modeling 

with different clustering algorithms. Nor is there existing research that combines various 

clustering approaches-based stacking ensembles and considers the data diversities introduced 

by clustering for the modeling tasks. Both of these gaps are addressed in this study. 

1.2. Contribution 

Drawing on the literature review above, this study focuses on a wind farm in the 

Norwegian Arctic. A wind power modeling framework is proposed, which involves quantifying 

wind turbulence, clustering meteorological data, and ensemble learning. Firstly, an effective 

model integrating bagging and boosting is constructed. Secondly, four prominent clustering 

algorithms are systematically incorporated with models to form layered cluster-based 

ensembles and the best clustering approach is selected. Finally, stacking is employed to fuse 

these ensembles with different clusters to establish a more accurate model. 

The principal contributions of this paper are thus as follows. 

1. This paper experimentally proves that farthest first clustering is a distinctive approach in 

clustering wind data for power modeling compared to K-means, expectation-maximization, 

and Canopy clustering algorithms. The paper shows that even the worst-performing layered 

cluster-based ensemble outperforms the one without clustering. This indicates the 

similarities and dissimilarities in wind data. However, even though these data are not 

related to an individual wind turbine, they can still be significantly reflected in wind power 

in an implicit form. 

2. Given the differences in results of different clustering algorithms, the paper proposes fusing 

layered ensembles with varying clusters with two-layer stacking to formalize a model that 

exceeds the optimal single clustering method. The stacking can more efficiently and quickly 

address the complex mapping task of nonlinear relationships between meteorological wind 

data and wind power. 

3. The paper builds a procedure for determining the cluster number with a heuristic elbow 

chart, an empirical formula, and an X-means clustering approach. The procedure may be 

further developed and refined into a technique for identifying cluster numbers on other 

problems. 

4. AdaBoost boosting with random forest bagging as its weak learner is apposite in the wind 

power models. These tree-based algorithms are computationally fast and parameter 

insensitive compared to the network-based ones.  The proposed AdaBoost model 

statistically outperforms linear, neural network, and benchmark Adaboost approaches. 
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5. The quantization of wind turbulence intensities—both wind speed and direction that are 

rarely considered in related research—is applied to wind power modeling in a novel manner. 

The study finds that both intensities can serve as new features for considering wind 

volatility in the modeling. 

The remainder of this paper is organized as follows. Wind meteorology and the use of data 

are described in Section 2. In Section 3, an elaborated description of the clustering approaches 

and statistical methods is presented. Section 4 shows the experimental procedure. Section 5 

presents and discusses the obtained results. Finally, Section 6 concludes this work, noting its 

implications and outlook. 

2. Wind power meteorology and data preparation  

2.1. Wind power 

Wind power generation is the conversion of wind kinetic energy into electricity. Ignoring 

losses in the conversion process, the actual output power of wind turbines can be expressed as 

in (1): 

𝑃 =

{
 
 

 
 

0 𝑣 < 𝑣𝑚𝑖𝑛
1

2
𝐶𝑃(𝑣)𝜌𝐴𝑣

3 𝑣𝑚𝑖𝑛 < 𝑣 < 𝑣𝑛

𝑃𝑛 𝑣𝑛 < 𝑣 < 𝑣𝑚𝑎𝑥
0 𝑣 > 𝑣𝑚𝑎𝑥

                                                                                          (1), 

where P represents the output power of the wind turbine (W); CP(v) represents wind energy 

utilization efficiency; ρ is the air density (kg/m2); A represents the effective area swept by the 

wind turbine blades (m2); v is the wind speed (m/s); vmin, vmax, and vn respectively represent 

cut-in, cut-off, and rated wind speeds; and Pn is the rated wind power for the wind turbine. 

From (1), it is clear that the output of a wind turbine is primarily influenced by wind speed, air 

density, and swept area. Moreover, air density is primarily affected by temperature and 

pressure [15]. The swept area is related to the wind direction.  

2.2. Quantification of turbulence in the wind  

Turbulence arises when airflow moves through uneven landscapes or differences in air 

density. Turbulence is an immensely complicated flow phenomenon that is highly stochastic 

and difficult to characterize. In actual wind farm operations, turbulence is generated because 

of topographic and climate conditions and weak effects between wind turbines. Turbulence has 

a particularly strong impact on wind power production: given similar wind speed conditions, 

the higher the turbulence intensity, the higher the impact on wind farm output power [16]. The 

wind turbine's large inertia includes an impeller, whose rotation is behind wind speed change. 

Therefore, the turbine will not get the theoretically predicted wind force, and the power output 
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will go down. Empirically, at low wind speeds, turbulence increases turbine power production. 

However, when wind speed approaches the turbine's furling speed, turbulence reduces 

production [17]. Nevertheless, turbulence is rarely considered in machine learning models of 

wind energy. An article in the journal [18] compared the effects of five popular learning 

algorithms and nine atmospheric variables on wind turbine power generation and found the 

following through statistical tests. First, for the five benchmark algorithms, the selection of 

atmospheric features for wind power modeling is more important; second, the top five features 

that are most influential for modeling are, in order, wind speed, turbulent kinetic energy, 

temperature, turbulence intensity, and wind direction. However, turbulent kinetic energy is 

seldom recorded by wind sites due to its measurement complexity. Therefore, turbulence 

intensity is considered as an input feature in this study. 

Turbulence intensity, defined as wind speed standard deviation divided by the mean value 

over a short period [19], is the principal characteristic quantity of wind speed volatility. The 

turbulence intensity of direction is also applied as a quantitative tool to define turbulence 

behavior in wind direction. The turbulence intensities are shown in (2): 

𝐼𝑆𝑃 =
𝑆𝑆𝑃

𝑆𝑃
, 𝐼𝐷 =

𝑆𝐷

𝐷
     (2), 

where ISP and ID are wind turbulence intensity of wind speed and direction; SP is wind speed; 

Ssp is its standard deviation of the previous ten minutes; D is wind direction index; SD is its 

period standard deviation.  

2.3. Data preparation  

The study centers on a 54 MW wind farm designed in northern Norway, located about 500 

km inside the Arctic Circle; it stands out as one of the largest wind farms in the Arctic. This 

farm's terrain features are a small hill, high steep mountains, and fjords, which are regarded as 

complex terrains. The wind power station company offered measurement of wind data with 10 

min temporal resolution. We chose the five-dimensional meteorological wind data (wind speed 

and its variance, wind direction and its variance, and temperature) and power data from 0:00 

1st January 2017 to 23:50 31st December 2017. Specifically, we calculated the sine values of 

wind direction and its standard deviation as indicators of wind direction and its fluctuations. 

Further, the turbulence intensities of wind speed and sine value of direction were computed as 

quantitative indices of wind turbulence. In summary, ten-minute resolution wind data—

consisting of wind speed and sine direction and their turbulence intensities, temperature, and 

pressure—were employed to model wind power. These measurements contain small outliers 

and inevitable noise. However, the employed algorithm is insensitive to outliers, and this noise 
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fits the standard normal distribution; therefore, they are not further considered. Because the 

scales of variables in the dataset vary widely, it is worth rescaling the original data into new 

data with similar proportions for each variable. Data normalization or standardization can 

increase model convergence speed and improve some algorithms' accuracy, especially in 

distance-based clustering [20]. 

3. Methodology 

3.1. Chosen clustering approaches 

Cluster analysis is an exploratory data mining technique for extracting useful information 

from high-dimensional datasets. It is a type of unsupervised learning approach to grouping 

similar hidden patterns [21] and classifying similar data into different subsets to give subset 

members identical attributes [22]. This classification requires quantifying the degree of 

similarity or dissimilarity between observations. The clustering results are strongly dependent 

on the kind of similarity metric used [23]. The cluster number is typically unknown and needs 

to be designated according to prior knowledge or determined by some method. Several 

clustering methods have been proposed. Ref. [24] offered some factors for choosing a 

clustering method. The method should be able to effectively and precisely find the suspected 

cluster types, and it must resist errors in the datasets; further, it must have the availability of 

computing power. This paper selects four clustering approaches: K-means, expectation-

maximization, farthest first, and Canopy. The first one is a baseline method, and the other 

three can be regarded as competitors. 

K-means: Among clustering algorithms, the K-means algorithm is one of the most 

popular and classical. It is a robust and versatile clustering algorithm proposed in [25],. The 

target of the K-means is to categorize observations into k clusters. K-means in this study is 

associated with Euclidean distance. Given a set of n data points 𝐷 = {𝒙1, … , 𝒙𝑛} in ℝ𝑑and an 

integer k, the K-means problem is to determine a set of k centroids  𝐶 = {𝒄1, … , 𝒄𝐾} in ℝ
𝑑  to 

minimize the following error function: 

𝐸(𝐶) = ∑  𝐱∈𝐷 𝑚𝑖𝑛
𝑘=1,…,𝐾

 ∥∥𝐱 − 𝐜𝑘∥∥
2                                                                                                          (3). 

It is a combinatorial optimization that equals finding the partition of the n instances 

in k clusters whose associated set of mass centers minimizes Eq. (3) [26]. 

EM: The Expectation-Maximization (EM) algorithm is proposed by [27]. It provides a 

simple, easy-to-implement, and efficient tool for the learning parameters of a model [28], and 

is widely used. It finds the maximum likelihood or maximum posterior of the parameters in a 

probabilistic modeling process where the model relies on latent unobservable variables. The 

EM first initializes distribution parameters, then alternates between two steps: computing the 

https://en.wikipedia.org/wiki/Latent_variable
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expectation of variables based on the assumed initial parameters; and maximization, which 

gives a maximum likelihood estimate of the current parameters through the expectation values 

of the latent variables. The two steps repeat iteratively until the desired convergence is realized. 

When applied to clustering, the probabilistic model is established on the probability of each 

data sample to each cluster and distributes samples to the cluster with the largest possibility. 

The goal of EM clustering is to maximize the overall probability or likelihood of the clusters. 

FF: The first utilization of Farthest First (FF) traversal is in [29]. FF is an effective greedy 

permutation method in computational geometry. Its underpinning is the traversal of a 

sequence of points in space where the initial point is specifically stochastic. The subsequent 

points are as remote as possible from the prior chosen set of points. FF clustering is the 

application of FF traversal in clustering, which was introduced in [30]. It is an optimized K-

means with an analogous procedure, selecting the centroids first and assigning the samples to 

clusters with the maximum distance. Specifically, k numbers of centroids are generated by 

stochastically choosing a data point as the primary cluster centroid and greedily selecting the 

second centroid when it is FF from the first centroid. The process is repeated k times. As soon 

as all the centroids are recognized, FF assigns all the other data to the cluster in which the data 

have the nearest feature distance. In contrast to K-means, FF merely requires one traversal to 

cluster data. All the cluster centers are real data points, not geometric clustering centroids, and 

their position is fixed in the computation [31]. In most cases, the speed of clustering is 

considerably increased because fewer reassignments and adjustments are involved. The FF 

traversal is described in Algorithm 1. 

Algorithm 1. Farthest First clustering Algorithm. 

1. Farthest First Clustering (D: dataset, k: cluster number) { 

2. select random data as the first point and first centroid; 

3. // searching the data sample that is the farthest from the centroid 

4. for (I=2,…,k) { 

5. for (each remaining data sample in D) {  

6. calculate the total distance to the existing centroids;}  

7. select the sample with the largest distance as the new centroid;  

8. label the centroids as {c1, c2, …., ck}} 

9. //assignment the rest points {p1, p2, …., pn} 

10. for (each point pi) { 

11. calculate the distance function dist to each fixed cluster centroid; 

12. realize min {dist(pi, c1), dist (pi, c2), …, dist (pi, ck)]} 

13. put it to the cluster with minimum distance;} } 

Canopy: Canopy clustering was introduced in 2000, and its central idea was to use a 

cheap, approximate distance measure to divide the data into subsets efficiently. This clustering 
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decreases computing time over K-means and EM clustering methods by more than an order of 

magnitude and reduces errors on large datasets [32]. Unlike K-means, which only uses one 

distance, the Canopy algorithm uses two threshold distances, the larger loose distance T1 and 

the smaller close distance T2. It begins by removing a random point r sample from the original 

dataset and starting a canopy centered at r. It then approximates all distances between r and 

the remaining data ri. If the distance is less than T2, it places ri in r canopy. If the distance is 

less than T1, it removes ri from a dataset. It repeats these steps until there is no more data to 

be clustered. However, Canopy needs to be tuned to the distance parameters and, according to 

[33], T1 and T2 can be obtained approximately using a heuristic based on attribute standard 

deviation. 

3.2. Determining the cluster number  

While various clustering methods are available, all of the mentioned methods require the 

cluster number before the clustering procedure. It is necessary to estimate the number due to 

the resulting partition of the data being dependent on its specification.  

There have been energy studies using validated clustering methods, such as the elbow 

chart [10], Davies–Bouldin index [34], etc., to conduct data analysis. However, according to 

[35] and [36], there is no standard method for determining cluster numbers. Therefore, this 

paper combines three methods—formula, plotting, and information value—to 

comprehensively find a suitable cluster number for our meteorological wind data. 

There is an empirical formula [37] to find the cluster number k. It is useful to check the 

range of k since it is not a precise approach.  

k = 1+ 3.2 log10n                                                                                                                              (4), 

where n is the number of data points. This formula is inaccurate but can provide a reference 

for seeking k. 

The elbow method is a visually heuristic technique for choosing cluster numbers [38]. The 

elbow principle's idea is that the total sum of squared errors between the sampling point in 

each cluster and the centroid (a smaller value means a more convergent result) is calculated 

with a series of k values. When the setup cluster number approximates the actual cluster 

number, the sum of squared errors will decrease swiftly. As the setup cluster number continues 

to grow, the Sum of Squared Errors (SSE) will continuously decrease, but more slowly [39]. 

Intuitive observation of turning points from elbow plots is sometimes vague. Still, it can 

provide a reasonable interval for searching for the value of k. 

The X-means approach offers an effective tool for finding the exact k. 

https://en.wikipedia.org/wiki/Data_set
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X-means: X-means is a variation of K-means clustering and can automatically determine 

the optimal cluster number in a dataset. It refines cluster assignment by repeatedly attempting 

subdivision segments and keeping the best resulting splits. It searches the space of cluster 

locations and the cluster number to optimize the Bayesian Information Criterion (BIC) 

measure [40]. The main parameters for X-means are the lower and upper bounds of the cluster 

number, which are found in the above two methods. It includes two steps that are repeated 

until they reach the required convergence. Primarily, the K-means algorithm is utilized to 

cluster the given dataset. Each cluster centroid is divided into two parts in opposite directions 

along a stochastic vector. The K-means algorithm is locally operated within the old cluster and 

generates two new clusters. By comparing the BIC scores of the original clustering structure 

with a new one, the splitting is either made or not. The idea is that splitting a single cluster into 

two clusters increases the BIC score, with two clusters being more probable than one. When k 

reaches the set upper bound, the splitting stops, and the algorithm reports BIC scores for each 

k value. 

3.3. Modeling ensemble learning algorithm 

The fundamental idea behind ensemble learning is to ensemble multiple algorithms or 

models to achieve an integrated model with better predictive performance [41]. The ensemble 

method can tactfully partition the dataset into smaller ones, train them separately, and then 

combine them with some strategies. The main strategies can be categorized into three groups: 

boosting, bootstrap aggregating (shortened as "bagging"), and stacking. 

In the bagging procedure, new training sets are formed by taking from the original training 

set with a put-back. The averaging method for each new result of the training set is applied to 

reach the final result in a regression. Random forest [42] is an efficient bagging algorithm that 

uses decision trees as its base learners and offers decent performance and low computing costs. 

It is an improvement in the decision tree algorithm in which, essentially, multiple decision 

trees are merged. The creation of each tree depends on an independent bagging subset. Each 

tree in the forest has the same probability distribution. The final regression value can be 

determined by averaging each predictive value from each tree. Since random forest introduces 

perturbations in sampling and features, it dramatically improves generalization and avoids 

overfitting. Further, it can handle high-dimensional data without feature selection, and crucial 

features are derived during the training process [43].  

Boosting [44] is an approach that boosts weak learners to strong learners. Adaptive 

boosting (shortened as AdaBoost) is a representative boosting algorithm. It continually builds 

weak learners to emphasize (with larger weights) on samples mislearned in the prior learner 

until the number of learners reaches the setup value or the loss function reaches a threshold. 
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For the regression problem, the weighted average is used to eventually obtain predicted values. 

Adaboost is highly accurate, can adequately construct weak learners, and is not susceptible to 

overfitting. Meanwhile, it is sensitive to anomalous samples (which may receive large weights 

in iterations), affecting the performance of strong learners. For the numeric output for the 

strong learner ℎ𝑖(𝐱) ∈ ℝ, weighted averaging (5) is used for the final result [45]. 

𝐻(𝒙) = ∑  𝑀
𝑖=1 𝑤𝑖ℎ𝑖(𝒙)                                                                                                                            (5), 

where 𝑤𝑖 is the weight of a weak learner and 𝑤𝑖 ≥ 0,∑  𝑇
𝑖=1 𝑤𝑖 = 1. 

Stacking is a representation learning technique that can extract valid features from data 

by employing meta-learning algorithms to learn how to optimally combine predictions from 

many base learners. Several different base models are first trained with the original dataset. A 

new model named meta-learner is then trained with each of the previous models' outputs to 

get a final output [46]. The stacking result is typically better than its single base learner since 

the fusional ensemble combines varying types of base learners. The applied stacking is shown 

in Algorithm 2 [47]. 

Algorithm 2. Stacking algorithm with four base learners and one meta-learner. 

Input: Dataset 𝑫 = {(𝒙1, 𝑦1), (𝒙2, 𝑦2),… , (𝒙𝑚, 𝑦𝑚)} 

             Base learner varying clustering approaches-based Adaboost algorithms 𝕷𝟏, … , 𝕷𝟒; 

         Meta-learner linear regression 𝕷 

Process: 

1. for 𝑡 = 1,2,3,4 do 

2.       ℎ𝑡 = 𝕷𝑡(𝐷); 

3. // Train base leaners by 𝕷𝒕 

4. end for 

5. // Generate training set for meta-learner 

6. 𝑫′ = Ø; 

7. for  𝑖 = 1,2,… ,𝑚 do 

8.        for 𝑡 = 1,2,3,4 do 

9.              𝑧𝑖𝑡 = ℎ𝑡(𝒙𝑖); 

10.        end for 

11.        𝑫′ = 𝑫′ ∪ ((𝑧𝑖1, 𝑧𝑖2, 𝑧𝑖3, 𝑧𝑖4), 𝑦𝑖) 

12. end for 

13. // Meta-learner ℎ′ is established 

14. ℎ′ = 𝕷(𝐷′) 

Output: 𝐻(𝒙) = ℎ′(ℎ1(𝒙), ℎ2(𝒙),… , ℎ𝑇(𝒙)) 

A two-layer assemblage structure for regression, which can be categorized as a kind of 

layered cluster-based or oriented ensemble named by [48], is adopted to optimally incorporate 

clustering results generated separately by the four above clustering approaches into the 

AdaBoost mechanism. The ensemble structure achieves excellent learning ability and 
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prediction accuracy by mapping the first-layer clustering to the second-layer ensemble 

regression [21]. 

3.4. Proposed modeling strategy 

A proposed framework for clustering approach comparisons is displayed in Fig. 1. It is 

inspired by wind energy meteorology, clustering approaches, and ensemble learning. The 

framework is a two-layer architecture, with four clustering algorithms in layer 1 and AdaBoost 

in layer 2. Specifically, the random forest is the weak learner for the AdaBoost, and Reduced-

Error Pruning TREE (REPTREE) [49] is introduced to replace the decision tree in the random 

forest to reduce overfitting that may be caused by the complicated ensemble model structure.   

Take K-means clustering as an example. Layer 1 uses Section 3.2 to identify the cluster 

number k and clusters the wind data into k clusters. Layer 2 employs each cluster to train the 

AdaBoost to learn AdaBoost and establish k submodels with labels. Subsequently, the test data, 

one by one, are classified into an existing cluster and loaded into the trained AdaBoost 

submodel corresponding to the cluster for wind power modeling, and overall performance is 

calculated.  

 Analogously, the above procedure is also applied to EM, FF, and Canopy clustering 

approaches. More experimental details are presented in Section 4.  

 

Fig. 1. The procedure of the proposed strategy for wind power modeling. 

Regarding stacking ensemble modeling, a novel method is put forward. It also consists of 

two layers, the first being base learners (AdaBoost models with the four different clustering 
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algorithms) and the second being linear regression Eq. (5) with Tikhonov regularization 𝜆 ∥

𝑤 ∥1 (also named ridge regression [49]  Eq. (6) to avoid overfitting caused by the complex 

model structure [50]). The reasons for this configuration are the following. First, the first layer 

has diversity in the layered ensembles based on four clustering algorithms and may deeply 

extract data features and transmit them to the second layer. Second, the major risk of the 

second layer is that it learns the generated data from the first layer and is vulnerable to 

overfitting, so linear regression with a regular term is the learning algorithm in this layer. The 

first layer procedure is the same as in Fig. 1. It generates four sets of simulated power on 

training and test sets. Subsequently, the second layer uses the measured power and four 

generated power sets as the dependent and independent variables, respectively, to build ridge 

regression on the training set and employs the learned regression to predict the power with the 

simulated test power on the test sets. 

𝑓(𝒙) = 𝒘⊤𝒙 + 𝑏                                                                                                                                               (6), 

with a loss function 𝐽 =
1

𝑛
∑  𝑛
𝑖=1 (𝑓(𝒙𝑖) − 𝑦𝑖)

2 + 𝜆 ∥ 𝑤 ∥1 : 

𝑚𝑖𝑛
𝑤,𝑏

     
1

𝑛
∑  𝑛
𝑖=1 (𝒘

⊤𝒙𝑖 + 𝑏 − 𝑦𝑖)
2

 s.t.     ∥ 𝑤 ∥1≤ 𝑡
                                                                                                                           (7). 

3.5. Model evaluation metrics and multiple comparisons  

Two metrics are utilized in evaluating the performance of different models in the test set. 

The first one is Normalized Mean Absolute Error (NMAE), while the second is Normalized 

Root Mean Square Error (NRMSE). They are negatively oriented, which means the smaller 

value is related to better performance. The NRMSE assigns a higher weight to larger errors 

because of the square calculation, meaning it punishes substantial prediction errors and 

reveals whether the regression has noticeable error variance. 

𝑁𝑀𝐴𝐸 =
∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖−𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑖|
𝑛
𝑖=1

𝑛
/
∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑖
𝑛
𝑖=1

𝑛
                                                                                   (8), 

𝑁𝑅𝑀𝑆𝐸 = √
∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖−𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑖)

2𝑛
𝑖=1

𝑛
/
∑ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑖
𝑛
𝑖=1

𝑛
                                                                     (9). 

Two statistical approaches are used to check whether there are statistically significant 

differences between the model’s performance. The Friedman test is used to check for 

differences in performance across multiple trials [51]. It tests column effects after adjusting for 

possible row effects. 

H0: The column data do not have a significant difference. 

Ha: They have a significant difference. 

Its statistic F is shown as: 
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𝐹 =
12𝑛

𝑘(𝑘+1)
[∑  𝑘

𝑖=1 𝑟𝑖
2 −

𝑘(𝑘+1)2

4
]                                                                                                                       (10), 

where k is the number of columns, ri is the mean value of row i, which follows 𝜒(𝑘−1)
2  under H0. 

Furthermore, the Tukey method is used for computing confidence intervals between the 

means of two populations. It is expressed as follows: 

(𝑌̅1 − 𝑌̅2) ±
𝑞𝑘,𝑛−𝑘,1−𝛼

√2
⋅ √𝑀𝑆𝐸 ⋅ √

1

𝑛1
+

1

𝑛2
                                                                                        (11), 

where q is the Gaussian q-distribution, k is the number of populations, and n is its total size; 

MSE is the Mean Square Error within groups. 

4. Experiment setup 

This study extracts meteorological wind data from the Norwegian Water Resources and 

Energy Directorate, including a few abnormal negative values, at which the wind farm did not 

generate electricity but consumed grid power. All weather data are normalized as inputs to the 

models. First, the wind data are divided into a training set, accounting for 90%, and a test set, 

accounting for 10%. To fully apply the data, avoid overfitting, and improve generalization in 

modeling [52], 10-fold cross-validation is used in the training. Then, weather data are 

harnessed in the test set to calculate the corresponding wind power, which is compared to the 

actual power data to obtain performance metrics. 

For the benchmark model, the processed training data are directly fed into the AdaBoost 

with random forest (Layer 2 in Fig. 1) (AdaRF). The number of iterations is set to 100 (trade-

off between performance and computing speed). Random forest is the AdaBoost inner weak 

learners, and the number of REPTREE in each random forest is set to 10. The competitors are 

linear regression (LR), artificial three-layer neural networks (16 nodes in the hidden layer, 

which is found by a grid search from 6 to 20) (ANN), and AdaBoost with 20 decision trees 

(achieved by a grid search from 5 to 30 with an interval of 5) as its weak learners (AdaDT).   

Regarding the ensemble model based on clustering approaches, the range of cluster 

numbers for the weather data is first found by the elbow graph and empirical formula (4). Its 

exact value is determined using the X-means clustering method. Then, the four 

aforementioned clustering approaches are used to group the data in the training set and 

categorize the test data into established clusters to find the best-performing clustering 

algorithm. Finally, stacking is employed to combine layered cluster-based ensembles with 

different clustering algorithms to further explore avenues to upgrade power modeling. 

In this study, wind power modeling is f realizing the relationship between wind power and 

wind weather Wt. The model is shown in (12). 
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𝑃
∧

𝑡 = 𝑓𝑡(𝑾𝑡) + 𝑒                                                                                                                                                (12), 

in which 

𝑾 = [𝑉, 𝐼𝑉𝑡𝑢𝑟𝑏𝑢𝑙𝑎𝑛𝑐𝑒 , 𝑠𝑖𝑛( 𝜃), 𝐼𝑠𝑖𝑛𝑡𝑢𝑟𝑏𝑢𝑙𝑎𝑛𝑐𝑒( 𝜃), 𝑇, 𝑃]                                                                      (13), 

where 𝑃
∧

𝑡 is modeling wind power; ft (.) is the model that needs to be implicitly realized; Wt  

represents weather data that will be clustered by the four clustering approaches; e is the model 

error. 

5. Experiments and results  

5.1. Feature ranking and comparison for modeling without clustering  

The training wind data are initially harnessed to establish a multivariate linear wind power 

regression model to check the feature attributing degree. The diagnosis (T statistic and its 

corresponding two-tailed p-value [53]) for interpretation of each feature is shown in Table. 1. 

Table 1. The wind features were selected by the statistical diagnosis of linear regression. 

Futures V IVturbulance Sin(θ) Isinturbulance(θ) T P 

T statistic; p-value 250.79; <0.0001 7.84; <0.0001 -21.77; <0.0001 3.02; 0.0025 23.68; <0.0001 0.67; 0.5040 

Note: the term is shown as “T statistic; p-value.” The H0 is where the interpretation equals zero and its Ha is where 

the term is not zero; when the p-value is smaller than the set confidence level of 0.05, the H0 is rejected and the 

feature is attributed to the linear model. 

All meteorological features are statistically significant in the linear modeling except 

pressure P. The features’ importance may be approximatively ranked by absolute values of T 

statistics in a descending scale as V, Sin(θ), T, IVturbulance, Isinturbulance(θ), P. Although pressure 

does not contribute to the linear regression, all above meteorological features are still 

accounted for in the modeling as pressure values are relatively stable and the presented models 

are clustering and tree models demanding low computations and feature selection. 

To enhance the verifiability of modeling results, the year is split into four quarters, Q1, Q2, 

Q3, and Q4, for individual power modeling. The statistical variability among quarterly data is 

initially analyzed in Table 2. Statistics and distribution disparities between meteorological 

wind and power quarterly datasets can be summarized, and quarterly data differ from yearly 

data. Therefore, separate modeling on these datasets can strengthen the proposed strategy’s 

credibility. 

Table 2. The statistics of the yearly and quarterly wind data. 

Statistics 

Dataset 
Average 

Standard 

deviation 
Skewness Kurtosis 

Year <0.0001 0.9983 4.9493 100.7258 
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Q1 0.1988 0.8981 3.9305 87.7615 

Q2 -0.0283 0.8729 5.4827 129.5278 

Q3 -0.0356 0.8421 5.4604 118.6208 

Q4 -0.1350 0.8873 4.7543 113.6719 

CoV for Statistics -53584 0.0586 0.1157 0.1316 

Note: The different variables are standardized to similar scales, so the statistics of the various variables in the 

dataset are averaged and shown. Coefficient of Variation (CoV) is defined as the ratio of standard deviation to 

mean. 

The four quarterly and yearly normalized training data are separately entered into the 

proposed AdaRF, benchmarking LR, ANN, and AdaDT to map the relationship between wind 

data and wind power. Fig. 2 shows the results. Both NMAE and NRMSE increase significantly 

as time grows. The NMAE and NRMSE of AdaRF are significantly lower than the results 

obtained from multivariate linear regression. The average NMAE and NRMSE decrease by 

52.98% and 46.31%, respectively. The AdaRF decrease in NMAE and NRMSE (corresponding 

to the model improvement) is also evident when compared with ANN (NMAE 19.54% and 

NRMSE 10.43%) and AdaDT (NMAE 29.31% and NRMSE 17.95%). Fig. 3 displays the 

modeling power of a day, from which AdaRF appears close to real values but with several errors 

in points. This means the proposed AdaRF enables accurate power modeling based on weather 

data but still leaves room for refinement. 

 

Fig. 2. The performance comparison for power modeling without clustering. 
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Fig. 3. The wind power modeling from weather data in the wind farm. 

5.2. Determination of an appropriate cluster number 

The size of the yearly dataset is 52,560; k is calculated to be approximately 16 in (4). 

Selecting this value as the midpoint, the total Sum of Squared Errors (SSE) of K-means is 

calculated with a starting point of k equals 2 and an endpoint of k equals 30. The elbow plot is 

drawn and displayed in Fig. 4. The precise value of the elbow point for the total sum of squared 

errors can be determined only approximately since the process is by intuition and experience. 

However, Fig. 4 still shows an interval, the cluster number k∈[10,20], in which the decline of 

SSE begins to flatten from steep, and where the elbow point belongs to. 

  
Fig. 4. The elbow plot for finding cluster number k. 

To demonstratively find the precise value of k, an X-means approach is adopted. The lower 

and upper bounds of k are set as 10 and 20 respectively according to the interval formerly 

found in Fig. 4. The optimized BIC score is 69,956.78 with a proper k value for the 

meteorological wind data equaling 11. 

Analogously, the k values for the four quarterly wind data, Q1, Q2, Q3, and Q4, are decided 

as 14, 8, 9, and 12, respectively. 

5.3. Comparison of different clustering approaches in modeling 
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For the yearly dataset, the four clustering approaches yield varying numbers of samples 

per cluster, albeit at the same cluster number. Based on the four separate clustering methods 

separately with 11 clusters, four complete layered cluster-based ensembles are developed for 

clustering comparisons. Firstly, the wind weather data with different clustering approaches in 

the training and test sets are shown in Fig. 5. Each color represents a cluster, and the vertical 

axis shows the percentage of each number in the total dataset. 

         

(a) Training set                                                                         (b) Test set 

Fig. 5. The clusters number percentage of different clustering approaches. 

The various clustering methods produce wildly different clustering results, even with the 

same k. The cluster sample number variance analysis reveals that the K-means method 

produces more homogeneous clustering than other methods. Even single-digit sample 

percentages are seen in the FF and Canopy algorithms for the training set. Apart from the K-

means, all of the other three algorithms generate clusters that exceed one-fifth of the sample 

size. Second, the four clustering methods' yearly meteorological wind test data are loaded into 

the layered cluster-based ensemble for wind power modeling. The NMAE and NRMSE are 

displayed in Fig. 6.  

The model based on FF clustering intuitively presents the smallest NMAE and NRMSE, 

32.35% and 33.64% reduction without clustering; the second smallest is the model with 

Canopy. The models with these two clustering approaches significantly improve their 

performance compared to the ones without clustering, while the K-means and EM algorithms 

also upgrade their models' abilities. 

 

Fig. 6. The NMAE and NRMSE of the power modes with different clustering methods for the yearly dataset. 
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To further elaborate comparisons of clustering methods, analogously, layered cluster-

based ensemble modeling with different clustering approaches is conducted on four quarterly 

wind datasets, and their NMAE and NRMSE are displayed in Fig. 7. The ranking of the models 

built on quarterly data is the same as those built on yearly data. Strengths in the FF and Canopy 

clustering algorithms are evident in each quarter. Moreover, a result is derived that the 3rd 

quarter-power model performs the best, followed by the 2nd quarter. This illustrates a more 

clear relationship between wind data and power from April to September, which is consistent 

with the intuition that the area has milder weather during this period. 

   
(a) NMAE                                                                                        (b) NRMSE 

Fig. 7. The NMAE and NRMSE of the power models with different clustering methods for quarterly data. 

Multiple comparisons are conducted between the metrics from different cluster-based 

models between quarters. The Friedman test p-values of NMAE and NRMSE are both 0.0056 

and much smaller than the confidence level of 0.05, so the null hypotheses are rejected. This 

leads to the conclusion that there are differences between the metrics of the various ensembles. 

Table 4 compares the average NMAE and NRMSE for models with different kinds of 

clustering against the ones without. Quarterly evenly, the new model reduces NMAE and 

NRMSE by 13.94% and 17.45%. Furthermore, performance improvement between the two 

models generally slumps from summer to winter. 

Table 4. The average performance improvement between the models with clustering and the corresponding one without. 
 

Q1 Q2 Q3 Q4 

NMAE 13.66% 15.06% 16.29% 10.74% 

NRMSE 17.73% 19.60% 20.08% 12.37% 

Regarding the best-performing FF clustering of the yearly dataset, table 5 compares 

NMAE and NRMSE for the FF-based model to the original model. Both NMAE and NRMSE 

have an approximately 23% to 34% decrease, which indicates this clustering approach is twice 

as good as the average clustering method in our case. Further, the superiority of FF is different 

with the quarter: the model boosting results are more noticeable during warm periods 

compared to those during cold seasons. 
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Table 5. The performance improvement between the models with FF clustering and the baseline. 
 

Q1 Q2 Q3 Q4 

NMAE 25.98% 31.94% 30.60% 23.24% 

NRMSE 28.83% 33.85% 31.68% 25.88% 

Further, the Canopy clustering-based approach also displays a satisfactory result, which 

improves the modeling performance by averages of over 20% in NMAE and 25% in NRMSE, 

respectively. EM and K-means clustering-based approaches have relatively similar 

performance. However, they are still not as good as the FF and Canopy, as the above yearly 

analysis shows. 

Collectively, the Tukey method calculates the intervals with 95% confidence of metrics 

difference; Table 6 shows the bounds of these intervals between the yearly and quarterly 

models with no clustering and ones with varying clustering algorithms. The upper and lower 

bounds of the metrics difference between no and FF clustering are positive, indicating that the 

superiority of the FF is statistically significant across multiple datasets. Moreover, the upper 

bounds of all other differences are greater than the lower bounds of absolute values, illustrating 

that normally distributed differences have positive means, which describes the other cluster-

based models as outperforming no clustering in a probabilistic sense. Therefore, the edges of 

wind data clustering, ranking as FF, Canopy, K-means, and EM in order, before the layered 

ensemble modeling procedure, are demonstrated in our datasets. 

Table 6. The bounds for paired comparisons of clustering across yearly and quarterly datasets. 

No clustering v.s. K-means EM FF Canopy 

NMAE 
Lower Bound -0.0363 -0.0414 0.0176 0.0011 

Upper Bound 0.0585 0.0534 0.1124 0.0959 

NRMSE 
Lower Bound -0.0572 -0.0642 0.0122 -0.0030 

Upper Bound 0.1082 0.1012 0.1776 0.1624 

5.4. Stacking ensemble power modeling 

Section 5.1 demonstrates that the proposed AdaRF outperforms three other benchmarks 

(ANN, AdaDT, and LR in descending order). Section 5.3 illustrates in Fig. 5 the four clustering 

algorithms yielding highly diverse clusters, and the cluster-based models work better. The 

AdaRF model is further refined by implementing a two-layer stacking structure (Cls-AdaRF): 

The first layer takes the four clustering outcomes in Fig. 5 as inputs to AdaRF to generate four-

layered cluster-based ensembles; the second layer combines these ensembles outputs by linear 

regression to yield final simulations. Its performance is compared with that of AdaRF without 

clustering (NCl-AdaRF) in Section 5.1 and AdaRF with FF clustering (FF-AdaRF) in Section 

5.3. The comparison in Fig. 8 shows that Cls-AdaRF decreases more NMAE and NRMSE in 

percentage than NCl-AdaRF (NMAE 31.89% and NRMSE 34.74%) and FF-AdaRF (NMAE 
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4.32% and NRMSE 5.71%). Its edge over FF-AdaRF indicates that stacking combined with four 

different clustering algorithms outperforms the best-layered ensemble with a single clustering. 

These model quarterly variations are similar to those in Section 5.3. 

 

Fig. 8. The  NMAE and NRMSE of the power models with different clustering methods for quarterly data. 

Likewise, placing benchmark algorithms ANN, AdaDT, and LR into this process 

eventually yields three cluster-based stacking ensembles, denoted as Cls-LR, Cls-ANN, and 

Cls-AdaDT. These models, including those that are run on the datasets separately, and their 

NMAE and NRMSE, are compared to those of Cls-AdaRF. Table 7 shows the difference 

intervals calculated by the Tukey method and reveals that, except for Cls-AdaRF vs. Cls-ANN 

in NMAE (where the upper bound is considerably close to zero), all the intervals are negative, 

indicating a 95% statistical significance among datasets for the Cls-AdaRF model's strength. 

Table 7. The bounds for paired comparisons of stacking across yearly and quarterly datasets. 

Cls-AdaRF v.s. Cls-LR Cls-ANN Cls-AdaDT 

NMAE 
Lower Bound -0.3735 -0.1398 -0.1654 

Upper Bound -0.2154 0.0183 -0.0073 

NRMSE 
Lower Bound -0.3896 -0.1835 -0.2011 

Upper Bound -0.2097 -0.0036 -0.0212 

The percentage reductions in NMAE and NRMSE for Cls-AdaRF versus other models 

(corresponding to model improvement) are further calculated and presented in Fig. 9. On 

average, Cls-AdaRF delivers over 20% improvements over its three competitors (within a 

standard deviation; Cls-AdaRF outperforms Cls-LR, Cls-ANN, and Cls-AdaDT by about 60%, 

25%, and 35%, respectively.). 
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Fig. 9. The NMAE and NRMSE improvement of Cls-AdaRF versus other models for the yearly dataset. 

Altogether, the Cls-AdaRF model is inferred to be a superior wind power model because 

it not only outperforms AdaRF without clustering but is also better than other stacking 

models. 

6. Conclusions 

This paper presents an ensemble learning approach that combines bagging, boosting, and 

stacking for modeling wind power from meteorological data. To mine the inherent 

characteristics of the data, four clustering approaches are used to process inputs for the layered 

ensembles. Then, the layered cluster-based ensembles are fused within the stacking 

framework. The proposed models' superiority is verified by diverse comparisons. 

The AdaRF can accurately model wind power. The algorithm circumvents issues of an 

equal weighting of each tree in RF and AdaBoost and allows each learner to boost 

incrementally, and eventually creates a model with a good generalization. The overall 

performance of the proposed method is on average 33.94% in NMAE and 24.90% in NRMSE, 

lower as compared to the benchmarks in the cases excluding clustering. 

As no standard methods for identifying the cluster number exist, the paper uses a 

heuristic elbow graph, an empirical formula, and the X-means clustering algorithm to precisely 

determine the implied number for meteorological data. Interestingly, the number for the 

yearly dataset is 11, which is close to the month's number. This result suggests that there may 

be analogous phenomena to measured wind data with monthly periodicity. 

A comparative study of AdaRF based on different clustering methods reveals, firstly, that 

the model with clusters significantly performs better than the model without, regardless of 

what clustering approach is employed. This suggests that similarities within the wind power 

data can correspond to similarities within the weather data. Secondly, among these clustering 

methods, the model with FF clustering provides the best modeling results. The reason is that 

FF is built on finding the data point furthest from the previous centroid as the new one; in 

other words, it emphasizes large differences between clusters. Upon this clustering, the 
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fluctuations among the original meteorological data are considerably diminished, which in 

turn corresponds to a smoother wind power output and increases the accuracy of the wind 

power model. The fast computability and accuracy of FF also suggest that the clustering 

technique can be applied to ultra-short-term wind power models. Thirdly, Canopy is the fastest 

among the four clustering methods and achieves comparable results. Therefore, Canopy can 

also serve as a favorable clustering approach when wind weather datasets are considerably 

large. 

Finally, the wind power model is further strengthened by using stacking Cls-AdaRF to 

fuse the layered ensembles with four clustering approaches. It can be interpreted as Cls-AdaRF 

working as a representation learning—that is, effective features are automatically collected 

from raw data and fed into the second layer via multiple learners in the first layer; the second 

layer compiles and aggregates these features through linear regression with a regular term and 

effectively outputs simulations. 

Practically, given that the proposed well-performing wind power model does not involve 

complex network training and extensive parameter tuning and wind energy physical modeling, 

it can be easily transferred to other energy utilization scenarios. 

Further research, as suggested by the above conclusions, is needed to deeply optimize the 

base learners of stacking and their combination algorithms to deliver faster and more accurate 

modeling. Another direction is to incorporate this article's in-the-now power modeling 

approach and meteorological data with historical wind power to achieve efficacious short-term 

power forecasting.  
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Abstract  

This paper conducts a systemic comparative study on univariate and multivariate wind 

power forecasting for five wind farms inside the Arctic area. The development of wind 

power in the Arctic can help reduce greenhouse gas emissions in this environmentally 

fragile region. In practice, wind power forecasting is essential to maintain the grid 

balance and optimize electricity generation. This study firstly applies various learning 

methods for wind power forecasting. It comprehensively compares the performance of 

models categorized by whether considering weather factors in the Arctic. Nine 

different representative types of machine learning algorithms make several univariate 

time series forecasting, and their performance is evaluated. It is demonstrated that 

machine learning approaches have an insignificant advantage over the persistence 

method in the univariate situation. With numerical weather prediction wind data and 

wind power data as inputs, the multivariate forecasting models are established and 

made one hour to six hours in advance predictions. The multivariate models, especially 

with the advanced learning algorithms, show their edge over the univariate model 

based on the same algorithm. Although weather data are mesoscale, they can 

contribute to improving the wind power forecasting accuracy. Moreover, these results 

are generally valid for the five wind farms, proving the models' effectiveness and 

universality in this regional wind power utilization. Additionally, there is no clear 

evidence that predictive model performance is related to wind farms' topographic 

complexity. 

Key words: wind energy, machine learning, power forecasting, numerical weather 

prediction, Arctic 
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1  INTRODUCTION 
To prevent global average temperatures from rising 1.5°C above pre-industrial level, 

the renewable energy percentage must increase from 20% to 67% of global energy 

production from 2018 to 2040 1. Wind energy is one of the fastest-growing renewable 

energy sources. It is considered an attractive alternative to conventional electricity 

sources generated from fossil fuels. Wind power is extensive, and its capacity has 

surged from 9,936 MW in 1998 to 564,347 MW in 2018, with an annual growth rate of 

22.4% in the last 20 years 2. Along with the electricity grid adds wind power 

penetrations, the unstable grid factors are also increased, which are undesirable to the 

power system practical and safe operations. So, it is crucial to use proper methods to 

understand wind power production and harness proper methods to make forecasts of 

the electricity generated by the wind parks. 

     Norway has a cold climate and a 25,148km coastline, both of which are generally 

characterized by an abundance of wind energy resources, and it is with a complex 

terrain consisting of mountains, valleys, and fjords, making the wind change 

dramatically and unpredictably. 

     Wind power prediction can be divided into ultra-short-term prediction, short-term 

prediction, medium-term prediction, and long-term prediction 3. Ultra-short-term 

forecasts are predictions made from few minutes to 30 minutes in advance; the short-

term are forecasts made from 30 minutes to 48 hours ahead, the medium-term refers 

to predictions made days, weeks, or months earlier, and the long-term is made years 

in advance. 

     In wind engineering, hourly wind power forecasting is an essential part of the short-

term prediction, whose main applications are maintaining real-time grid operations 

and keeping operational security in the electricity market 4. 

     In this study, five wind parks in the Norwegian Arctic regions are taken as the target. 

Table 1 serves as a summarized comparison in terms of installed capacity, location, and 

site ruggedness (RIX) 5 of the five sites. 

1.1  Related work 

In literature, there is much research on wind power forecasting using multiple analysis 

methods from many perspectives. A preliminary study on wind energy forecasting 

considered the use of statistical methods. Still, there is a trend of using machine 

learning algorithms for the forecast. Machine learning is an emerging artificial 

intelligence approach that attempts to provide learning capabilities for computers or 

other equipment without clear operations 6. It aims to develop strategies and 

algorithms that learn patterns from training data and make predictions. It can be an 

alternative tool in wind engineering, apart from the statistics and physical methods 7 

to forecast wind power with historical wind data. In particular, deep learning, which 

has emerged in recent years, offers a promise of automating pattern recognition and 
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solving problems such as complex wind power predictions. However, there is a well-

known rule called the No Free Lunch (NFL) theorem in the context of supervised 

machine learning, which states that averaged over all optimization problems, all non-

resampling optimization algorithms perform equally well 8.  Due to geographical and 

engineering reasons, the most suitable machine learning algorithms for wind power 

prediction for different wind farms vary.  

     Ref. 9 did a systematic literature review and found that artificial neural networks are 

used more frequently to predict wind energy and provide better results than other 

methods, as demonstrated with more than 180 references in the five   years. 

Specifically, Ref. 10 focused on a wind farm in north Iran at 5-min time interval 

predictions and found that the adaptive neuro-fuzzy inference system outperforms the 

other five data mining algorithms: random forests, M5Rules, k-nearest neighbor, 

support vector machine, and multilayer perceptron.  Ref. 11, based on the Portuguese 

wind power data throughout 2010–2014, also showed that the adaptive neural fuzzy 

inference system was the best performer. The artificial neural networks and the radial 

basis function network RBFN-OLS also delivered strong performances.  Ref. 12 

demonstrated that the proposed hybrid artificial neural network is effective and 

efficient for wind power forecasting in a Danish dataset.  Ref. 13 used an approach 

combining the infinite feature selection with the recurrent neural networks and proved 

its edge in a dataset from the National Renewable Energy Laboratory. Ref. 14 

investigated five years of wind observation data of Nigde, Turkey, and found 

that eXtreme gradient boost, support vector regression, and random forests 

algorithms are powerful in forecasting long-term daily total wind power and the 

absolute shrinkage selector operator is the worst algorithm due to its linear basis. Ref. 
15 mixed basic Multi-Layer Perceptron to complex deep learning neural networks to 

conduct the power prediction of a wind farm located in the Ecuadorian mountains. The 

hybrid model is shown to be more advantageous than a single model. 

     Notably, this journal emphasizes the basis and the state-of-the-art of wind power 

forecasting. Ref. 16 offered a detailed adaptabilities analysis of the support vector 

machine, genetic algorithm backpropagation, and radial basis function for wind power 

forecasting based on three wind farms in China. Ref. 17 noted the essence of deep 

learning in predictions; sometimes, the forecasts did not need models based on truly 

deep neural networks, but they offer a sound workflow for correctly developing a 

proper forecast model. 

     Meanwhile, much research concerns a particular class of machine learning 

algorithms, such as kernel methods and neural networks-based methods. There are a 

few studies that make comparisons between types of algorithms. The reason is 

applying machine learning always needs tuning the hyperparameters, which makes the 

comparison rather sophisticated. However, choosing an algorithm less sensitive to 

parameters or using a suitable method of adjusting parameters, and scale-up and 
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diversification data set can help deal with the problem. Ref. 18 proposed a two-stage 

wind power forecast method with meteorological factor and fault time and compared 

the method performance with support vector machines, artificial neural network, 

generalized regression neural network, and radial basis function and found the edge of 

the first algorithm. Moreover, there is a lack of complete comparative research on both 

univariate and multivariate time series forecasting with data science for wind energy 

prediction in the Arctic region characterized by dense air and excellent wind resources. 

1.2  Objective and contributions  

The objective and main contributions of this study can be summarized as follows:  

     1. The paper does a systematic study of the time series forecast for five wind parks 

generating power with sufficient wind potentials in the Norwegian Arctic region. We 

mainly focus on investigating the multivariate wind power forecasting models by 

considering Numerical Weather Prediction (NWP) data. 

     2. For brief experimental univariate power forecasts. The persistence model and 

nine machine learning benchmarking algorithms are researched in forecasting models 

and compared their performance from an algorithm perspective. We find the 

persistence model performs almost equally to machine learning models in our cases. 

The result also proves conclusions from Ref.19; those classical methods may dominate 

univariate time series forecasting. However, we find that its performance drops more 

quickly with the forecast time step rises. Considering the contingency of parameters 

tuning and computational complexity of the learning algorithm, it is suggested that 

statistical modeling methods should be primarily considered in the forecasting. 

     3. The multivariate models with mesoscale NWP wind data, although the data 

resolution scale is larger than the wind parks area, as inputs can slightly gain prediction 

accuracy compared with the univariate models with the same algorithm. Moreover, the 

multivariate models reduce performance slower than the univariate models, which 

indicates the informative complementary role that the weather data play in the model 

     4. These five wind farms have different complex terrains and climates. The wind 

park with complex terrains implies that the NWP wind results are not as accurate as 

their counterparts of plain landscapes. However, there is no significant evidence that 

prediction results are related to the ruggedness index of wind parks from our results. 

2  DATA DESCRIPTION AND PREPARATION  

2.1  Wind power locations 

Northern Norway has a complex terrain consisting of fjords, mountains, and valleys 

that goes from the coast into a moderately high inland along the border to northern 

Sweden and Finland. The terrain elevation around each wind park is also shown in 

Fig.1, and their coordinates and heights are listed in Table 1. Nygårdsfjellet wind park 



 

 

99 

 

is located in a valley, far from the open sea, that reached approximately 450 meters 

elevation. The mountains south and north of the valley limit the main wind direction 

to be west-east, and high wind events are expected during the winter season 20.  

Havøygavlen, Kjøllefjord, and Fakken wind parks are located close to the open sea and 

on relative flat hills where large nearby fjords affect both wind direction and speed. 

Raggovidda wind park is also located near the open sea but on a flat mountain that 

does not have any vegetation. This location is well known for adequate wind resources 

and produced power with relatively high capacity factors (the ratio between the real 

and designed power production) over several years.  

2.2  Norwegian Meteorological Institute (MET Norway) 

numerical weather prediction 

The Scandinavian weather institutions use a weather model for weather forecasts 

named MEPS (Ensemble Prediction System). The weather model makes ensemble 

forecasts, starting from a composition of several forecasts and quantifying the outcome 

space of possible weather developments, which depends on the weather itself rather 

than looking at a single estimate 21. The NWP model is a complex mathematical model 

of the atmosphere that divides the earth surface into grids 22. The spatial resolution of 

the grid determines how to simulate meteorological processes with different accuracy 

levels, limiting the quality of forecasts. 

     A study conducted by MET Norway has demonstrated that the regional NWP 

models with higher resolution did not result in better wind power forecasts for some 

Norwegian wind farms 23. Therefore, in this study, we use the NWP data with 2.5km 

horizontal resolution, which is regarded as a relatively coarser resolution in wind 

forecasting. 

2.3  Data description and scaling  

The hourly power data of five wind farms, measured hourly, used in the research is 

provided by the Norwegian Water Resources and Energy Directorate (NVE). We 

choose the wind power data from 0:00 1st January 2017 to 23:00 31st December 2017; 

the measured data are 8,760 for each wind farm. The total number of wind power data 

is 43,800. The location, annual mean powers, the standard deviation, and the capacity 

factor of the five wind farms in 2017 are also shown in Table 1. 

Table 1. The location and statistics of power data 
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The NWP wind forecast data are extracted from MET Norway operational weather 

forecast model MEPS and considering that forecasts need two hours to be calculated 

as usual. The forecasts are all initiated at 00, 06, 12, and 18 UTC. 

     Wind power generating is mainly affected by wind speed, wind direction, and air 

density, which is impacted by temperature and air pressure 24. In this study, we use the 

variables acquired at time t; such as measured generating wind power, NWP wind 

speed, NWP wind direction (radian system), NWP surface air pressure, and NWP 2 

meters above the ground temperature to predict the wind power generated at t+n, 

where n, ranging from 1 to 6, is the time delay in hours. The NWP wind data are 

summarized and shown in Table 2. All the items show variables with the mean value 

(standard deviation) form, and the relative air pressure means the real local air 

pressure minus the standard atmospheric pressure (101,325Pa). 

Table 2. The statistics of the original NWP data 

Wind park Speed (m/s) 

Direction 

(radical 

system) 

Temperature 

(℃) 

Relative air pressure 

(Pa) 

Nygardsfjellet 
8.096 

(5.038) 

-0.065 

(0.431) 

0.045 

(7.441) 
-5795.564 (1246.119) 

Fakken 
6.948 

(3.885) 
0.151 (1.032) 4.193 (5.109) -1091.373 (1284.892) 

Raggovidda 9.49 (5.101) 0.011 (0.855) -0.91 (6.256) -5148.793 (1277.989) 

Kjøllefjord 7.9 (4.213) 0.15 (0.962) 1.23 (5.763) -2848.796 (1292.669) 

Havoygavlen 
8.335 

(4.434) 

0.136 

(0.872) 
2.953 (5.33) -1750.36 (1309.583) 

      Data scaling is a standard approach to normalize data. An important reason for data 

scaling is that the algorithm converges faster with feature scaling than without it 25. 

And it is convenient to compare the model performance with similar data scales. The 

wind power data is scaled with min-max normalization between 0.2 and 0.8. 

Wind Park Location °N / °E 
Height  

[m] 
RIX 

Designe

d power 

[MW] 

Mean 

power 

[MW] 

Standar

d 

deviatio

n [MW] 

Capacity 

factor 

Nygårdsfjellet 68.504 / 17.879 410 0-5 32.2 11.132 11.833 34.57% 

Fakken 70.098 / 20.081 95 5-10 54.0 15.239 15.858 28.22% 

Raggovidda 70.769 / 29.094 440 0-5 45.0 21.782 16.869 48.40% 

Kjøllefjord 70.922 / 27.268 
280 10-

20 
39.1 12.349 12.786 31.58% 

Havøygavlen 71.012 / 24.589 220 5-10 40.5 10.311 11.037 25.46% 
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𝑥′ = 𝑎 +
(𝑥−𝑚𝑖𝑛(𝑥))(𝑏−𝑎)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
         (1) 

where a and b are the minimum and maximum values of the normalization scale. 

2.4  Stationary test 

The power data for five wind farms can be treated as five univariate time series 

sequences. Time series can be divided into stationary and non–stationary data 

sequences. Whether or not a time series is stationary has long been a question of major 

interest in the field of time series analysis 26. Statistical regression processes can 

analyze stationary time series; meanwhile, the non–stationary time series change their 

statistical properties with time 27. So, the forecasting for non–stationary time series is 

more problematic than for stationary ones. Augmented Dickey-Fuller test (ADF) is a 

widely used method for testing the null hypothesis that a unit root is present in a time 

series sample. Its principle is to check whether a unit root is present in a sequence. If 

no unit root presents, the sequence is stationary; otherwise, it is nonstationary. The 

ADF test is a standard method to test the stationarity of economic time series 28The 

ADF test utilizes the autoregressive process and optimizes its parameters for various 

lag values. A null hypothesis test can conduct the ADF test application in testing the 

stationary of a time series sequence. 

H0: the time series is nonstationary, which means it shows a time-dependent structure. 

Ha: the time series is stationary.  

     The ADF test is conducted on the five wind farms power data. The results show that 

all the null hypotheses are rejected with critical values that are much lower than 5%, 

demonstrating the five-time series power data are stationary. They also show the power 

data sequences do not have trends and seasonality, which means there is no need to 

divide the annual wind power data into monthly or seasonal sequences in forecasts. 

3 FORECASTING ALGORITHMS FOR WIND POWER  

For each utilized forecasting model, numerous changes are proposed by researchers 29, 

and it is impossible to conduct all of the existing differences in models. Therefore, our 

strategy is to consider each benchmarking model for different algorithms for hourly 

wind power forecasting. The ten prediction models, one baseline statistical model, and 

nine machine learning models are chosen because they are commonly used models.  

1. Persistence Model (PE) 

2. Support Vector Regression (SVR) 

3. K-Nearest Neighbor regression (KNN) 

4. MultiLayer Perceptron (MLP) 

5. Radial Basis Functions (RBF) 

6. Classification and Regression Trees (CART) 

7. Random Forest (RF) 
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8. Stochastic Gradient Boosting (SGB)  

9. SVR optimized with Genetic Algorithm (GA-SVR) 

10. Long Short-Term Memory neural networks (LSTM) 

     Method 1 is the reference in the performance comparison, whereas approaches 2 to 

6 are representative and widely used machine learning algorithms, and 7 and 8 are two 

representative types of ensemble machine learning techniques. There are two main 

types of ensemble learning methods: bootstrap aggregating (bagging) and boosting 30. 

The rest two are emerging trends of predictive algorithms, representing hybrid 

methods and deep learning, respectively.  The following offers a brief description of 

each algorithm. Due to the page limitation, more detailed descriptions of these 

algorithms are available in the references of this article. 

     The PE model takes that the power at time t + n equals t the power at t, n is the next 

n steps in time series. It assumes that the atmospheric conditions change stationarily.  

     SVR is a regression model provided by the support vector machine algorithm, which 

tries to identify the hyperplane that maximizes the margin between two classes and 

minimizes the total error under tolerance 31. SVR conducts a penalty with C 

(complexity penalization term) and achieves the best trade-off between the empirical 

error and the model complexity. SVR can perform a nonlinear regression because it 

provides kernel functions (like linear, polynomial, and Gaussian) that map data from 

the input space to a high dimensional feature space in which regression is conducted. 

The value of C is taken from a validation test for 𝐶 ∈ {0.01,0.1,1,10,100} . C is found 

with a value of 1 corresponding to the best performance with the Gaussian kernel 

function. 

     KNN regression focuses on feature similarity determined by distance functions, like 

Euclidean, Manhattan, or Minkowski distance, measurements for data samples 32. The 

K parameter, which implies the input consists of the k closest training sample subsets, 

determines the performance of the algorithm; a large K value can reduce the noise in 

the regression process, but it also leads to a risk of overfitting. In the study, we conduct 

a grid search for K from 1 to 10 in experiments to find an appropriate K value.  

     MLP is a network of simple neurons named perceptrons. The perceptron forms a 

linear combination based on its input weights and calculates the output through a 

nonlinear activation function 33. MLP is a versatile approach for forecasting; it can find 

nonlinear structures in a problem and model a linear regression process. MLP is a 

parameterized model. We can manage the MLP complexity by choosing the number of 

hidden nodes and the type of activation functions. Specifically, the sigmoid function is 

usually used as the activation function in MLP regression problems. In the study, the 

topology of the MLP consists of three layers; namely, the number of nodes for the input 

layer equals input numbers, a hidden layer with ten nodes, and an output layer with 

one node. 
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     RBF networks are feedforward and similar in structure to the MLP. The radial basis 

functions are harnessed as their activation functions. Their output is a linear 

combination of radial basis functions (radially symmetric around a center) applied to 

values of inputs neurons. The RBF also has a fast and efficient training process of both 

linear and nonlinear mappings. In the study, the RBF topology is the same as the MLP 

model. 

     CART regression is based on a tree-like recursive partition of inputs 34. The CART is 

made of internal decision nodes and end leaves. Given a test data set, the terminal 

leaves are decided by different training sample properties. Besides, a series of tests are 

created and utilized in the decision nodes, which can define where the inputs should 

be classified to specific nodes whose splitting will most significantly reduce the mean 

square error. Moreover, a final decision tree is realized when the mean square error is 

smaller than a threshold. 

     Bagging is a unique variant of the model averaging approach to reduce the 

prediction variances by repeatedly creating subsets of original data to train the 

machine learning model. RF is an efficient bagging ensemble algorithm and delivers 

sound capability and low computational cost. RF is based on the establishment of a 

multitude of sub learners. Each learner is trained by using a bootstrap sample extracted 

from the whole training set. The forest of learners produces ensemble regression 

values. The final result is determined, e.g., by averaging over the ensemble 35. RF has 

only one difference from the general bagging decision tree: it uses an improved 

decision tree algorithm, selecting a random subset of features at each sample selection 

in the training process.  

     Boosting is an iterative technique that uses the last classification to adjust the 

weights of nodes constantly in the learning process. SGB is a trendy and widely used 

boosting learning algorithm. It constructs regressions by sequentially fitting a base 

learner to current "pseudo"-residuals by least-squares in each iteration. It can improve 

the accuracy of gradient boosting and training speed by incorporating randomization 

into the learning procedure 36. 

Genetic Algorithm (GA) is one of the well-regarded evolutionary algorithms. It 

mimics the Darwinian theory of survival of the fittest and arrives at such configuration 

via cycles consisting of individual population generation, selection, crossover, and 

mutation phase 37. During the process, the population of candidates originates from a 

combination of the offspring and survivors of the previous generation or a randomly 

generated configuration. The population then faces two selection phases that decide 

which candidates do not survive into the next generation and then decide which 

candidates may produce child candidates. This filtering uses a fitness function. GA-

SVR is using the GA in optimizing complexity penalization term C of SVR in the 

training process and has become a so-called hybrid forecasting method. 
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Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) 

architecture that is mainly used in the field of deep learning 38. Unlike standard 

feedforward neural networks, LSTM has feedback connections, and unique LSTM 

units consist of input, output, and forget gates. It can process not only single data 

points but also entire sequences of data (such as speeches or videos). It can also be 

used in time series forecasting with proper pre-treatment of data. We utilize the Vanilla 

LSTM that is with one hidden layer, including LSTM units and one output to predict. 

4  EXPERIMENTAL SETUP  
Multi-steps wind predictions are required in short-term wind energy generation. In the 

study, we make direct forecasting, which only uses actual measured values as model 

inputs. It builds n different prediction models for n steps ahead forecasting. The benefit 

of direct forecasting is that it does not use previous prediction values to forecast the 

values with higher steps, which means the prediction is not affected by the cumulative 

error in the forecasting process. 

     Wind power prediction from t1 to t3 for the univariate forecasting with one-

dimensional input wind power at time t0. t1 to t6 is for the multivariate forecasting with 

five-dimensional input (wind power, NWP wind speed, NWP wind direction, NWP 

temperature, and NWP air pressure at time t0) because according to Ref. 7, the weather 

factors are recommended considered after 3 hours. Namely, we conduct two modeling 

processes for each wind park. The multivariate model is displayed in equation 2. 

𝑃
∧

𝑡+𝑛 = 𝑓𝑡+𝑛(𝑃𝑡,𝑊𝑡) + 𝑒𝑛, 𝑛 = 1,2,3,4,5,6    (2) 

where 𝑃
∧

𝑡+𝑛 is the n steps wind power forecasting, ft+n is the forecasting model, Pt and 

Wt represent the wind power and NWP weather data at time t, en is the model error. 

     The source data set is divided into 66% for training the model and 34% for testing 

the models' performance and carrying out comparisons. 

4.1  Cross-validation and evaluation Metrics 

One of the most critical and popular validation methods for machine learning is k-folds 

cross-validation; it is more suitable for relatively small and limited data set compared 

with the train and test split validation approach because it can ensure that there is a 

chance for every sample in the original data to appear in the training as well as the 

validation process. In this research, we use k = 10 in the implementation of the whole 

training set. According to a study by Kohavi, this is usually a pretty good choice 39.  

     Two metrics are used in evaluating the performance of the different kinds of 

algorithms for wind power forecasting. The first metric is the Mean Absolute Error 

(MAE); the second metric is the Root Mean Square Error (RMSE). The definitions for 

MAE and RMSE are shown in equations 3 and 4. Both are negatively oriented metrics,  
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meaning the lower scores are related to better performance 40. In our cases, if an 

approach has a low MAE but a high RMSE, it generally predicts smoothly and efficiently 

but has a higher population of large significant forecasting errors that are weighted 

significantly by RMSE. 

𝑀𝐴𝐸 =
∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖−𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑖|
𝑛
𝑖=1

𝑛
  (3) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖−𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑖)

2𝑛
𝑖=1

𝑛
  (4) 

4.2  Forecasting procedure  

For the procedure of univariate hourly wind power forecasting, the wind power data 

are normalized and tested with ADF stationary tests. Then we use the PE model and 

nine machine learning algorithms to do three steps forecasts. 

     Moreover, to further improve wind power forecasting accuracy and make full use of 

the NWP data, we established a multivariate forecasting model based on SVR, MLP, 

RF, and LSTM algorithms, shorten as ‘NWP plus the abbreviation’, based on the 

univariate forecasting results and some recommendations for publications 41, 42. The 

performance is compared with their counterparts in univariate cases. The procedure 

of forecasting is illustrated in Fig. 1. 

 

 

Fig. 1. Procedure for the multivariate hourly wind power forecasting 
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5  RESULTS  
We conduct a univariate wind power forecasting with the aforementioned ten 

algorithms and adds the NWP wind data as inputs to create new MLP, CART, RF, and 

LSTM multivariate forecasting models for five wind parks. 

     For the univariate forecasting, the performance comparison of ten models is briefly 

conducted. For multivariate forecasting, the four multivariate models' performance is 

compared with their counterparts in univariate forecasting cases. 

5.1  Univariate forecasting  

Regarding MAE results, the MAEs of all models increase as the forecasting step adds. 

The average MAE of three steps predictions is displayed in Fig. 3. The PE models 

perform similarly with SVR and GA-SVR models in all wind parks. The KNN, MLP, 

RBF, CART, and LSTM have similar MAEs, which are more unsatisfactory results than 

PE and SVR and GA-SVR have. The ensemble learning methods show the highest 

MAEs.  

 

 

Fig. 2. The average MAE of ten forecasting models for five wind farms 

     RMSEs of all models have positive correlations with the forecasting step from 1 to 

3. The main RMSE of three steps forecasts is shown in Fig. 4. The MLP, RBF, and GA-

SVR have the best performance in RMSE, in which MLP has the lowest overall RMSE. 

The PE, KNN, CART, SGB, and LSTM have similar RMSEs, and nearly all of them have 

more inferior results than MLP, RBF and GA-SVR do. The RF model has the highest 

RMSE as it does in MAE analysis.  
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Fig. 3. The average RMSE of ten forecasting models for five wind farms 

5.2  Multivariate forecasting  

The MAE of the multivariate forecast for the five wind parks is displayed in Fig. 5. We 

predict one hour to six hours of wind power. As the forecasting step increases, the MAE 

of all models increases, and the rising speed gets slower. For each forecasting step, the 

NWP machine learning models have lower MAE than their univariate counterparts, 

and NWP RF is with the largest improvement. Generally, the edge of multivariate 

models is incrementally stronger with the raising forecast time. RF and LSTM, which 

perform unfavorably in univariate forecasts, excel in multivariate predictions. In 

particular, NWP LSTM dominates all cases, and its domination is reinforced over time. 

For four of the wind parks, the NWP models perform better in the term of MAE. The 

exception is Raggovidda wind park, for which the PE model has the lower MAE for all 

six-time steps than NWP MLP and CART. Meanwhile, the forecasting models produce 

the lowest MAE for Havoygavlen wind park. 
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Fig. 4. The MAE comparisons of univariate and multivariate models for five wind 

farms 

     Numerical comparisons of average MAE for different models are shown in Table 3. 

The NWP LSTM model is ranked first for almost all wind parks. Adding the mesoscale 

NWP wind data can significantly increase forecasting algorithms' performance based 

on the same algorithm, especially for Fakken wind park, which reduces MAE by 16.14% 

and 16.54% concerning RF and LSTM, respectively. 

Table 3. The comparisons of average MAE for different models 

Wind park 

PE MLP CART RF LSTM 
NWP 
CART 

v.s. NWP 
LSTM 

v.s NWP 
MLP 

v.s NWP 
CART 

v.s NWP 
RF 

v.s NWP 
LSTM 

v.s NWP 
LSTM 

Nygårdsfjellet 3.78% 8.41% 8.41% 11.02% 11.33% 3.18% 

Fakken 14.16% 12.04% 11.94% 16.14% 16.54% 5.99% 

Raggovidda 1.53% 2.71% 2.99% 14.89% 9.62% 6.96% 

Kjøllefjord 1.81% 5.32% 4.82% 12.98% 8.11% 2.82% 

Havøygavlen 5.46% 2.60% 1.92% 10.30% 3.02% 6.32% 
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     The RMSE of the multivariate forecasts displays in Fig. 5. The trends of RMSE are 

similar to MAE's. Besides, growth rates of RMSE of all machine learning models, 

especially the NWP MLP, RF, and LSTM models, are lower than the PE model. 

Concerning each forecasting step, the multivariate models have lower RMSE than 

corresponding univariate models. For all the five wind parks, the multivariate LSTM 

performs best in terms of RMSE in nearly all the six predictive steps. Moreover, the 

Raggovidda wind park still has a higher RMSE compared to other wind parks. 

Meanwhile, the models still provide the lowest RMSE for Havøygavlen wind park. 

 

Fig.  5. The RMSE comparisons of univariate and multivariate models for five wind 

farms 

     Table 4 shows the comparisons of average RMSE and demonstrates the multivariate 

LSTM models are the best for all wind parks. It overperforms approximately an average 

of 14% better RMSE performance than the baseline PE model. The mesoscale NWP 

wind data provide positive information in the forecast algorithm.  

Table 4. The comparisons of average RMSE for different models 

Wind park 

PE  MLP  CART  RF LSTM 
NWP 
CART  

v.s. NWP 
LSTM 

v.s NWP 
MLP 

v.s NWP 
CART 

v.s NWP 
RF 

v.s NWP 
LSTM 

v.s NWP 
LSTM 

Nygårdsfjellet 16.69% 6.12% 4.27% 7.44% 9.56% 6.09% 
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Fakken 17.46% 8.25% 5.61% 14.83% 12.66% 7.21% 

Raggovidda 12.14% 2.25% 1.57% 12.20% 7.53% 6.72% 

Kjøllefjord 12.03% 2.95% 1.65% 10.33% 7.34% 5.33% 

Havøygavlen 16.82% 1.56% -0.36% 16.09% 6.43% 10.68% 

6  CONCLUSION 
This paper makes univariate and multivariate short-term wind energy forecasts for five 

wind parks inside the Norwegian Arctic region. Consequently, the following 

conclusions can be drawn.  

     For the univariate time series wind power prediction in these cases, the PE approach 

and machine learning methods do not have a considerable difference in performance. 

The SVR and MLP function equally well with the PE model. The machine learning 

algorithms that perform best in MAE are SVR and GA-SVR, whose average MAE is 

almost the same (0.18% and 0.10 % lower) as for the PE model. The machine learning 

algorithm that performs best in RMSE is MLP, whose average RMSE is 5.4% lower 

than the PE model. SVR, RBF, GA-SVR, and LSTM also have lower RMSE than the PE 

model has. This generally means the PE model has more large errors in the prediction 

procedure. Our result also validates the conclusion from research 19 in the wind 

engineering field. The conclusion is learning algorithms do not deliver on their promise 

for univariate time series prediction, and the classical statistical methods even perform 

better. The phenomena may be explained that for univariate series, the complex 

methods often overlearn the training set and create overfitting in the testing. 

     For the multivariate wind power forecasting in our cases, the model considers 

methodological or topographic factors by taking the mesoscale NWP wind data as 

inputs. Compared to the corresponding algorithm in the univariate case, the 

multivariate model has a lower MAE and results in a smaller RMSE. When the 

predictive time increases, the multivariate models are more stable than the PE model, 

especially in the metric of RMSE. These prove that the multivariate model entirely 

exceeds the PE model and the univariate model. Furthermore, the sophisticated 

ensemble and deep learning algorithm demonstrate their superiority in dealing with 

complex and multivariate pattern recognitions in complicated wind power forecasting 

problems.  

The NWP wind data are generated with mesoscale (2.5km×2.5km), which is larger 

than the area of our wind parks. However, adding this local weather information can 

still obviously optimize the performance of forecasting models. The improvements of 

the penetration of NWP data in wind power prediction can be explained from two 

aspects: firstly, from the Bayesian theory 43, the introduced NWP wind information can 

provide a priori probability information to make more precise wind power 

(corresponding to posterior probability) predictions; secondly, NWP wind data can be 
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regarded as the simulating wind conditions of the whole wind park, which add useful 

information in the predictive process. 

In summary, based on our case studies, it is recommended to use statistical methods 

for short-term univariate wind power forecasting since learning algorithms involve 

parameter tuning and larger computational volumes without significantly better 

performance than statistical ones. It is advisable to include meteorological 

information, even if the weather data scale is relatively large, into the multivariate 

predictive models, where the advanced learning algorithms can be really effective with 

such autoregression combined with meteorological inputs.The replicability of these 

conclusions is established because the data from the five wind parks are relatively 

uncorrelated, and the machine learning regressions are built with sufficient 

considerations for the generalization of the models. 

     Moreover, we cannot find that each wind park's forecasting results significantly 

correlate with the site ruggedness. There are two possible reasons for this. First, the 

decisive, independent variable in the data-driven wind power prediction model is the 

prior value of power. According to Table 1, the standard deviation of the power time 

series does not become larger with increasing RIX. Second, because of the relatively 

large scale of the NWP model and the fact that the concerned wind farms are located 

near the sea, the effect of complex terrain is mitigated in the NWP grid. Therefore, to 

further investigate topography influence, the hydrodynamic modeling between 

topography and wind turbines in wind farms is needed. More interestingly, we find 

that the performances have some correlations with each wind park's capacity factor; 

the higher the capacity factor is, the lower the performance. i.e., the most inferior 

performance (Raggovidda) with the highest capacity factor of 48.40% and the best 

performance (Havøygavlen) with the lowest capacity factor of 25.46%. This implies 

that turbulence within the wind farm in complex terrain conditions may be the 

dominant factor, masking the effects of external large-scale weather.The phenomenon 

needs further investigations. 
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Abstract 

Wind turbines' economic and secure operation can be optimized through accurate ultra-short-term wind power and 

speed forecasts. Turbulence, considered as a local short-term physical wind phenomenon, affects wind power 

generation. This paper investigates the use of turbulence intensity for ultra-short-term predictions of wind power 

and speed with a wind farm in the Arctic, including and excluding wind turbulence, within three hours by employing 

several different machine learning algorithms. A rigorous and detailed statistical comparison of the predictions is 

conducted. The results show that the algorithms achieve reasonably accurate predictions, but turbulence intensity 

does not statistically contribute to wind power or speed forecasts. This observation illustrates the uncertainty of 

turbulence in wind power generation. Besides, differences between the types of algorithms for ultra-short-term 

wind forecasts are also statistically insignificant, demonstrating the unique stochasticity and complexity of wind 

speed and power. 

© 2021 Published by Elsevier Ltd. 
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1. Introduction 

Establishing accurate wind power prediction models is of great significance to the power grid's safe 

and stable operation and economic operation [1]. Moreover, from the perspective of power generation 

companies, accurate and reliable prediction of wind energy in the short term is of great importance for 

the efficient operation of wind farms [2]. It can also prompt them to participate in electricity market 

competition [3], reduce economic losses caused by electricity supply uncertainties, and make reasonable 

wind farms' practical maintenance plans. Wind power forecasting can describe wind characteristics and 

power in the next minutes, hours, days, or even weeks based on wind farms or meteorological data. This 

paper focuses on ultra-short-term forecasts (a few seconds to 4 h) used for turbine control and load 

tracking [4]. 

The research for ultra-short-term can be considered forecasting of a time series and thus ignores the 

meteorological factors. Gangui Y et al.(2012) [5] took ultra-short-term wind power production as a 

multiple chaotic time series problem. They used a validation of their solution using a real wind farm in 

northeast China using forecasting times of 15 min, 30 min, and 1 h. Zhang Z Z et al.(2011) [6] proposed 

an improved GM (Grey Model) to forecast ultra-term wind speed. It used the relationship between wind 

speed and wind power to make a prediction.  Utilizations of different learning algorithms for forecasting 

wind are also prevalent. Shi K et al.(2018) [7] also demonstrated the enhanced accuracy, efficiency, and 
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robustness of improved random forests for short-term wind power forecasting, which has better 

performance than the backpropagation neural network, Bayesian network, and support vector machine. 

Lee J et al.(2020) [8] compared ensemble learning-based models in the wind power prediction on ten 

minutes of data from actual wind turbines located in France and Turkey. It showed that the ensemble 

methods could predict wind power production with high accuracy than the standalone machine learning 

models. These investigations are normally algorithm-oriented and the benchmark algorithms for 

comparing the proposed algorithms are often of the same type, without cross-algorithm comparisons. 

There are a few studies about turbulence in wind power forecasting. Nielson J et al.(2020) [9] set up 

an artificial neural network with wind speed, density, Richardson number, turbulence intensity, and 

wind shear as input parameters to improve wind turbine power prediction. Li F et al.(2019) [10] 

conducted a multistep wind speed prediction using turbulence into the hybrid deep neural networks on 

multiple prediction intervals from 10 min to 12 h and finding the higher resolution turbulence intensity 

incorporated in good wind prediction. However, these studies typically claim that models that consider 

turbulence make more accurate predictions, but their results are not tested statistically. 

This paper uses a rigorous statistical approach to test whether turbulence has a notable role in wind 

power and speed forecasts and compares the performance of different types of machine learning 

predictive algorithms. 

2. Wind turbulence and data preparation  

Wind energy is a form of conversion of solar energy: the solar radiation energy received by the Earth 

is converted into wind energy by temperature gradients in the air [11]. Wind power generation is the 

process of converting wind energy into electrical energy. As a local wind phenomenon, turbulence has a 

significant impact on wind turbine electricity generation in wind park operations. Due to the uneven 

terrain or air density difference, the airflow will generate turbulence when flowing. On similar wind 

speed conditions, the higher the turbulence intensity, the higher the impact of wind farm output power 

[12]. At low wind speeds, turbulence increases the electrical power production of the turbine. However, 

when the wind speed approaches the turbine's furling speed, turbulence reduces energy production [13]. 

In statistics, the standard deviation measures the amount of variation or dispersion of a set of values. 

Turbulence is an extremely complex fluid phenomenon with intense randomness that is difficult to 

describe precisely. Turbulence intensity is one of the main characteristics quantity of wind speed 

fluctuations. It is defined as dividing the standard deviation of wind speed by the mean wind speed in a 

short time interval [14]. In this research, we define turbulence intensity 𝐼𝑖  within ten minutes intervals i 

as: 𝐼𝑖 = 𝑆𝑖/𝑆𝑃𝑖, where SPi is wind speed, and Si is its standard deviation of the previous ten minutes.  

The meteorological wind data measurements are from a wind park, with an installed capacity of 54 

MW with 18 Vestas V90 3.0 MW turbines, flat hills and towards a fjord, and an average altitude of 95m. 

It is a whole year data from 0:00 1st January 2017 to 23:50 31st December with ten minutes temporal 

resolution. The size of the data sample is 52,560. Since the ranges of variables of the data set are quite 

different, it is necessary to rescale the raw data into new data with a similar scale of each variable. There 

are standard data rescaling methods, namely normalization, and stabilization. In this research, we 

choose stabilization, by subtracting the overall average from the original data and dividing the difference 

by the standard deviation. Consequently, it rescales original data to a new data set with a mean of zero 

and a standard deviation of one. 

3. Methodology 

This section presents four well-performing, representative machine learning algorithms for wind 

power and speed forecasts and metrics to evaluate their predictive performance. Besides, statistical 

methods for comparing their results are also described. 
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Linear Regression (LR): Linear regression algorithm is a basic supervised machine learning algorithm 

due to its relatively simple and well-known characteristics. It uses a least-squares function named linear 

regression equation to model the relationship between independent and dependent variables. This 

function is a linear combination of one or more model parameters called regression coefficients [15].  

Back Propagation Neural Network (BPNN): The neural network is a bionic machine learning 

algorithm inspired by the biological neural networks that constitute animal brains. Besides, it enables 

these models to solve prediction problems with nonlinear structures. It is proven its edge in wind 

prediction problems [16]. For BPNN, a typically three-layered structure consists of input, hidden, and 

output layers, and the loss function gradients are computed and backpropagated. In this study, the 

BPNN comprises 20 nodes of the hidden layer and one node output layer. 

Reduced-Error Pruning TREE (REPTREE): The decision tree is a popular predictive machine 

learning algorithm because of its understandability and simplicity. A decision tree generated by the 

algorithm is typically large for a big data set, and each variable has been considered in detail. It may raise 

the problem of overfitting. REPTREE is a practical decision tree pruning method that sets a new 

validation to correct the tree to overcome the overfitting problem[17]. It traverses all the subtrees 

sequentially from bottom to top. A new, relatively simplified decision tree is created for each subtree of 

a non-leaf node replaced with a leaf node. As a result, the terminated pruning algorithm typically offers 

a more superficial and more generalized decision tree. 

Random Forest (RF): Bagging is a unique algorithm of the model averaging approach to reduce the 

prediction variances by using repetitions of creating multiple sets of original data to train the machine 

learning model. Random Forest (RF), proposed by Ho in 1995 [18], is an efficient ensemble machine 

learning. RF is based on the construction of many basis learner. Each tree is trained by using a bootstrap 

sample extracted from the whole training set. The forest of regressions produces an ensemble value. The 

final regression value can be determined in kinds of averages [19].  

The ultra-short-term wind forecasting employs a predictive variable autoregression strategy in 

conjunction with other variables, like turbulence intensity, to complement the forecasting analysis. This 

strategy allows the adequate exploitation of predictive variables' time-series information and absorbs 

information from other variables to improve the forecast model. The general forecast as step i+n is 

described as:  

𝑦̂𝑖+𝑛 = 𝑓(𝑦𝑖−1, … , 𝑦𝑖−6; 𝜗𝑖−1, … , 𝜗𝑖−6) + 𝜀𝑛    (1) 

where 𝑦̂𝑖+𝑛 is n time steps ahead predictive wind variable, ϑ represents assistant variables that may offer 

additional information in predictive models, εn is the error of the model. Given the data's temporal 

resolution and the short-term property of turbulence, the furthest previous data are set to one hour 

before the current time, six-time steps before. Besides, the maximum forecast time is chosen as three 

hours, which is eighteen-time steps ahead. 

There are two metrics in evaluating forecast performance with different machine learning algorithms. 

Namely, Root Mean Square Error (RMSE) and Mean Directional Accuracy (MDA). The first is error 

magnitude metrics, and the second is an error direction index, which is used in econometrics but rarely 

in energy science. Besides, 𝟏𝑠𝑔𝑛(.) is the indicator function in equation (3). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝑛
𝑡=1 (𝑦(𝑡) − 𝑦̂(𝑡))

2    (2) 

𝑀𝐷𝐴 =
1

𝑛
∑  𝑛
𝑡=1 𝟏𝑠𝑔𝑛(𝑦(𝑡)−𝑦̂(𝑡))    (3) 
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Three statistical methods are used to test whether there are statistically significant differences between 

results in different this study. Viz. Paired T-test, analysis of variance (ANOVA), and Tukey method for 

confidence intervals (CIs) between means of two populations [20]. The first is for paired comparisons, 

and the other two are for multiple comparisons. For the two tests, their hypotheses are similar. H0: The 

means of these populations are equivalent; Ha: At least one does not equal the other. Their test statistics 

are as below: 

𝑇 =
𝑌̅1−𝑌̅2

𝑆(𝑌̅1−𝑌̅2)
∼ 𝑡𝑛1+𝑛2−2    (4) 

𝐹 =
 Variance between groups differences 

 Variance within groups differences 
∼ 𝐹𝑘,𝑛−𝑘    (5) 

The Tukey method for CIs is expressed as: 

(𝑌̅1 − 𝑌̅2⋅) ±
𝑞𝑘,𝑛−𝑘,1−𝛼

√2
⋅ √𝑀𝑆𝐸 ⋅ √

1

𝑛1
+

1

𝑛2
    (6) 

where S is the standard deviation, t and q are t and Gaussian q-distributions, k is the number of 

populations and n is the total size of all populations, and MSE is the mean square error within groups.  

4. Experimental Results and Discussions  

To test whether turbulence makes a significant difference in ultra-short-term wind prediction. We 

perform multistep predictions of wind power and wind speed itself separately with the above algorithms. 

The procedure is illustrated in Fig. 1. Given the relatively large sample size, the testing set is configured 

as one-tenth of the total sample. This paper is concerned with ultra-short-term forecasting; half an hour, 

one, and three hours are selected as the maximum prediction timesteps, and results are tallied. The 

results are compared with the statistical method mentioned previously. 

4.1. Wind power forecast 

Four machine learning algorithms are applied for multistep predictions of wind power. The first of 

these prediction models include wind speed turbulence intensity, and the second (marked with *) does 

 

 

 

 

 

 

 

 

Fig. 1. Procedure for wind forecasts and statistical tests. 
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not.  Tables 1 shows RMSEand MDA of three-time steps wind power forecasts with LR, BPNN, REPTREE, 

and RF algorithms, including and excluding turbulence of wind speed. 

Table 1. The performance of three steps ahead wind power forecasts with machine learning algorithms. 

Metrics Step1 * Step1 Step2 * Step2 Step3 * Step3 

LR RMSE 0.2331 0.2331 0.3474 0.3473 0.4028 0.4028 

LR MDA 57.7231 58.0854 48.0641 48.0832 48.2068 48.2259 

BPNN RMSE 0.2307 0.232 0.3447 0.3447 0.4013 0.4009 

BPNN MDA 57.4371 58.0854 48.0259 48.3883 49.2751 48.512 

REPTREE RMSE 0.2434 0.2429 0.3575 0.3574 0.4166 0.4165 

REPTREE MDA 39.2449 39.4928 30.9746 30.9556 30.5609 30.5799 

RF RMSE 0.2496 0.252 0.3713 0.3704 0.4327 0.4343 

RF MDA 55.8924 55.3013 48.4646 47.7017 48.4357 48.016 

It is shown that as the forecasting step increases, the RMSE of two cases of all algorithms raises, and 

the metric increases slower for each step. There is no clear trend in the variation of MDA. From the first 

inspections of these results, forecast models with and without turbulence do not perform differently with 

the same algorithms. The results for the four algorithms are quite similar. To rigorously verify whether 

wind speed turbulence has a significant effect on wind power prediction, paired T-tests are conducted 

for the results of models built on the same forecasting algorithm, respectively. The p-values are shown 

in Tables 2. It is seen that for three and six-time steps, the p-values are higher than 0.05 for almost all 

tests, indicating there is statistical evidence that the inclusion and exclusion of turbulence density do not 

have significant impacts on ultra-short-term wind power forecasts in these cases. It is notable that when 

the forecast time is extended to three hours, the models' performance with and without turbulence 

appears to some differences. Therefore, it cannot be inferred whether counting the turbulence term 

improves the model accuracy or adds noise to the power prediction.  

Table 2. The p-values of paired T-tests for time steps (metric plus ‘steps’) ahead wind power forecasts. 

Metrics (no. means 

timesteps) 

LR vs. LR* BPNN vs. BPNN* REP vs. REP* RF vs. RF* 

RMSE 3  0.423 0.618 0.222 0.408 

MDA 3 0.364 0.866 0.426 0.027 

RMSE 6 0.025 0.713 0.315 0.051 

MDA 6 0.371 0.602 0.792 0.075 

RMSE 18 0 0.584 0 0.223 

MDA 18 0.62 0.395 0 0.016 

4.2. Wind speed forecast 

Analogously to wind power prediction, models containing and not containing turbulence are 

constructed, and multistep wind speed predictions are performed. The metrics for forecasts are 

displayed in Table 3. These metrics temporal alterations for wind speed forecasts are similar to their 

counterparts in power forecasts cases. 

Table 3. The performance of three steps ahead wind speed forecasts with machine learning algorithms. 

Metrics Step1 * Step1 Step2 * Step2 Step3 * Step3 

LR RMSE 0.228 0.2282 0.3073 0.3079 0.3482 0.3492 

LR MDA 46.9458 46.8696 43.2242 43.1861 44.3556 44.2604 
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BPNN RMSE 0.2247 0.228 0.3045 0.3067 0.3474 0.347 

BPNN MDA 47.6689 47.0219 43.3003 43.5097 45.1171 44.9267 

REPTREE RMSE 0.2382 0.2381 0.3222 0.3219 0.3642 0.3647 

REPTREE MDA 36.3654 35.6232 31.7472 31.8234 33.676 33.3524 

RF RMSE 0.2316 0.2373 0.3114 0.32 0.3561 0.3611 

RF MDA 46.7555 46.2226 43.6049 44.4233 45.3455 46.126 

Likewise, the paired T-tests are made to check the turbulence function in multistep speed predictions 

in Table 4. These tests for three and six-time steps wind speed forecasts also reject the null hypothesis 

and verify turbulence intensity's ineffectiveness.  However, turbulence statistically changes the overall 

performance of predictive models for 3 hours (18 time steps) ahead of forecasts. 

Table 4. The p-values of paired T-tests for time steps (metric plus ‘steps’) ahead wind speed forecasts. 

Metrics  (no. means 

timesteps) 

LR vs. LR* BPNN vs. BPNN* REP vs. REP* RF vs. RF* 

RMSE 3  0.122 0.261 0.902 0.028 

MDA 3 0.053 0.487 0.297 0.508 

RMSE 6 0.008 0.703 0.153 0 

MDA 6 0.111 0.177 0.367 0.256 

RMSE 18 0 0.001 0 0 

MDA 18 0.851 0.453 0.130 0.368 

4.3. Multiple comparisons between forecast algorithms 

To scientifically investigate the differences between machine learning algorithms for wind power and 

wind speed forecasts, ANONA is carried out among the various metric, corresponding to eighteen steps 

predications with turbulence. These algorithms and results are presented in Table 5. It turns out that 

there is no substantial difference in the performance of these forecast algorithms, as a group, for both 

wind power and speed predictions regarding RMSE since their p-values are considerably larger than 

0.05. Among them, the smaller p-values corresponding to forecasting wind power forecasts indicate that 

differences in forecasting wind power with these algorithms are more insignificant compared to wind 

speed. 

Table 5. The multiple comparisons of eighteen steps ahead wind power and speed forecasts with turbulence. 

Statistics Power RMSE Speed RMSE Power MAD Speed MAD 

F 0.863 0.245 395.881 687.393 

p-value 0.464 0.865 0 0 

Moreover, multiple pair comparisons of metrics with Tukey methods also prove that no difference in 

RMSE is found between these prediction algorithms in forecasting wind power and speed since 

confidence intervals for their differences all contain zero. In particular, from Tables 6, the REPTREE 

algorithm statistically shows lower MDAs in both forecasts, suggesting that its prediction error 

distribution is more symmetrically distributed than other algorithms, with zero centered. 

Table 6. The bounds with 95 % CIs for paired comparisons of MDA for wind power and speed forecasts algorithms. 

Bounds LR vs.BPNN LR vs.REP LR vs.RF BPNN vs.REP BPNN vs.RF REP vs.RF 

Power Lower -1.5265 16.4945 -1.0885 16.3425 -1.2405 -19.2615 

Power Upper 1.8304 19.8515 2.2684 19.6995 2.1165 -15.9046 

Speed Lower -1.0981 11.9981 -1.1182 12.1695 -0.9469 -14.0431 
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Speed Upper 0.7554 13.8516 0.7352 14.0229 0.9066 -12.1896 

5. Conclusion 

Ultra-short-term wind forecasting is essential for optimal control and operational efficiency of wind 

turbines. Turbulence in the wind has implications on wind power generation. In the present study, we 

focus on various machine learning autoregressive approaches to realize forecasts for wind power and 

speed for a wind farm inside the Norwegian Arctic regions. The effects of turbulence terms in modeling 

and different algorithms are compared.   

The performances of different machine learning algorithms in predicting ultra-short-term wind 

power and speed are satisfactory but not significantly different in general. Their error distributions are 

different to some extent. This phenomenon may be interpreted as an absence of apparent variations of 

variables in the ultra-short-term. These variations are quite stochastic, resulting in the time series 

resembling a random walk in a short period so that prediction algorithms hardly capture their patterns. 

According to the statistical analysis, no clear statistical evidence exists that wind speed turbulence 

intensities affect the ultra-short-term wind power and speed forecasts. The main reason is that in ultra-

short-term forecasts, the predictor variable's previous data are the most dominant factor affecting their 

predictive values, and other variables serve only as supplementary information. It suggests that it might 

be ill-advised to directly employ turbulence intensity into the forecast model, given that it is a subsidiary 

factor and increases computational burdens.  

Since the wind farm understudy has a complex topography, there may be turbulence interactions, 

both natural and generated by the wind turbines. As a whole wind farm, these turbulent currents could 

cancel each other out. It is advantageous to conduct the examination of turbulence effect for a single 

wind turbine. Even though the effect of wind speed turbulence intensity is not significant in our case, it 

is still detected that it has a greater impact on ultra-short-term wind speed prediction than power, which 

indicates that there are interactions between weather factors. It also implies that if wind speed, 

turbulence, and other weather factors impacting wind power generation are taken into account in an 

appropriate methodology, wind power forecasts accuracy may be improved. This requires further 

research. 
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Abstract  

Accurate wind power forecasts play a critical role in the operation of wind parks and the 

dispatch of wind energy into the power grid. With excellent automatic pattern recognition and 

nonlinear mapping ability for big data, deep learning is increasingly employed in wind power 

forecasting. However, salient realities are that in-situ measured wind data are relatively 

expensive and inaccessible and correlation between steps is omitted in most multistep wind 

power forecasts. This paper is the first time that data augmentation is applied to wind power 

forecasting by systematically summarizing and proposing both physics-oriented and data-

oriented time-series wind data augmentation approaches to considerably enlarge primary 

datasets, and develops deep encoder-decoder long short-term memory networks that enable 

sequential input and sequential output for wind power forecasting. The proposed 

augmentation techniques and forecasting algorithm are deployed on five turbines with diverse 

topographies in an Arctic wind park, and the outcomes are evaluated against benchmark 

models and different augmentations. The main findings reveal that on one side, the average 

improvement in RMSE of the proposed forecasting model over the benchmarks is 33.89%, 

10.60%, 7.12%, and 4.27% before data augmentations, and increases to 40.63%, 17.67%, 

11.74%, and 7.06%, respectively, after augmentations. The other side unveils that the effect of 

data augmentations on prediction is intricately varying, but for the proposed model with and 

without augmentations, all augmentation approaches boost the model outperformance from 

7.87% to 13.36% in RMSE, 5.24% to 8.97% in MAE, and similarly over 12% in QR90. Finally, 

data-oriented augmentations, in general, is slightly better than physics-driven ones. 

 

Keywords: Renewable energy; Wind power forecasting; Data augmentation; Deep learning; 

Encoder-decoder networks; Big data 
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Key abbreviations 

𝑃̂𝑖+𝑛 n timestep ahead predicted wind power 

𝑃𝑖 Measured wind power 

vi Measured wind speed 

𝑢𝑖+𝑛 n timestep ahead wind speed calculated from weather model  

m Sample number of the testing set 

Cap Designed capacity of the wind turbine 

T Statistic of paired T-test 

F Statistic of paired Friedman test 

BA Bionic optimized neural networks constructed Adaboost 

DA# Physics-oriented data augmentation strategy - number # 

ED Encoder-Decoder 

EDLSTM Proposed Encoder-Decoder Long Short-Term Memory neural networks 

LSTM Long Short-Term Memory 

MAE Mean Absolute Error 

MSE Mean Square Error 

NLP Natural Language Processing 

NN Three-layer backpropagation Neural Networks 

NWP Numerical Weather Prediction 

PA# Data-oriented data augmentation strategy – strategy number # 

PI Prediction Interval 

PR Persistence model 

QR90 Qualification Rate at the 90% threshold 

RMSE Root Mean Square Error 

RNN Recurrent Neural Networks 

seq2seq Sequence-to-Sequence 

STD Standard deviation 

T# Wind turbines with different terrain – turbine number #  

 

1. Introduction 

Wind is a renewable, sustainable, and environmentally friendly energy resource. As wind 

technology has developed in recent years, wind energy has received attention from a growing 

number of countries for its low-cost operation and maintenance, small turbine footprint, 

flexibility in development scale, and rapidly decreasing electricity generation costs. [1] 

Meanwhile, massive electricity generated by wind energy is volatile, intermittent, and with 

low power density. These features influence the power production of generation companies, 

the balance of the grid and may profoundly jeopardize its security [2]. In a large-scale grid-

connected system involving wind power, an unplanned load increase or an unscheduled wind 
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power decrease will cause a supply-demand imbalance when thermal power or hydropower 

ceases generation or is insufficient. [3] Hence, the uncertainty in wind power production 

enlarges the required reserve capacity of the system. An accurate wind power forecast 

minimizes the spare capacity and enables optimal dispatch of power in systems with wind 

power generation. Furthermore, an effective prediction serves as a basis for wind parks to 

engage in generation bidding, determines a reasonable charging and discharging strategy for 

energy storage, and lowers the occurrence and duration of wind curtailments. 

Wind power forecasting methodology is generally divided into physical, statistical, and 

hybrid approaches. [4] The first predicts wind power by extensive numerical computation of 

physical equations. It is based on fluid dynamics and uses Numerical Weather Prediction 

(NWP) data such as wind speed and pressure, and geoinformation like ground roughness and 

altitude. The method performs best in medium or long-term forecasting and applies to the 

wind resource assessment of new wind parks that lack historical observations. The statistical 

approach aims to establish linear or nonlinear patterns within wind data sequences that can 

be utilized in forecasting. In particular, machine learning-based wind power forecasting 

methods developed in recent years are widely applied. The hybrid approach is a combination 

of the former categories and has shown its edge profoundly. [5] 

In 2006, Hinton et al. successfully trained deep neural networks (i.e., artificial neural 

networks with several hidden layers) and achieved excellent performance on multiple datasets, 

[6] which signified the birth of deep learning. Since then, deep learning techniques based on 

neural networks of different designs have flourished and solved long-standing challenges, such 

as voice and image recognition and generation, preliminary implementation of autonomous 

driving, etc. [7]. Recently, the application of deep learning to energy science has also become 

popular because of its powerful auto-pattern recognition and nonlinear mapping capabilities. 

[8] The two major drivers of deep learning evolution are progressive computational 

capabilities and the influx of big data. It is generally agreed that larger datasets yield better 

deep learning models. [9] 

The effectiveness of deep supervised learning relies on the volume and quality of labeled 

training data as well as the topology and parameters tuning of deep networks. [10] Notably, an 

effective solution to establish large sets of training data is data augmentation, since the training 

set typically lacks a sufficient number of manually labeled samples. Especially in wind energy, 

it is generally challenging to acquire high-quality and long-duration meteorological and power 

production data.  

Data augmentation is a technique to make supervised machine learning more efficient. It 

extends the amount of available training data by adding modified versions of existing data or 
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new data generated based on existing data. The effect is to regularize the deep learning model 

and assist in mitigating overfitting during deep training, thereby improving the generalizability 

and ubiquity of the learned models. Overfitting is a phenomenon that occurs as a learner learns 

a function with extraordinarily large variance, such as perfectly fitting the training data. 

Generalizability defines the difference in performance when a model is assessed in relation to 

data in the training set previously seen compared to previously unseen data in the testing set. 

[11]  

Essentially, using multi-inputs to make multistep wind power forecasting can be regarded 

as a Sequence-to-Sequence (seq2seq) prediction that is framed as a mapping of multiple inputs 

to multiple time-series outputs. It was demonstrated that the seq2seq model “approaches or 

surpasses all currently published results” [12] in Natural Language Processing (NLP), like  

Google Translate, and recently it has also shown its promise in renewable energy forecasting. 

[13] , [14] The Encoder-Decoder (ED) Recurrent Neural Networks (RNN) has successfully 

handled seq2seq problems [15] and exhibits state-of-the-art performance in the area of text 

translation that is fundamentally a time-series problem.  

1.1. Previous work review 

In computer science research, there are several developed methodologies in data 

augmentation. [16] Shorten and Khoshgoftaar [11] systematically presented current imagery 

data augmentation methods, their promising advances, and methodologies used to implement 

them to boost the performance of imagining deep learning tasks. Cubuk et al. [17] investigated 

several commonly used image recognition datasets and designed an augmentation strategy 

that learns from the datasets. The strategy consists of many sub-strategies and is automatically 

selected in the model training process and helps gain 0.4% to 0.6% imagine classification 

accuracy on different datasets. But the data augmentation technique is mainly in the field of 

image recognition and has received little attention in sequence analysis. DeVries and Taylor 

[18] summarized and utilized interpolation and extrapolation, etc., and domain-agnostic 

approach to reach the predictions with deep learning for time-series datasets, and tentatively 

proved the techniques are timely and effective in some supervised learning problems.  

Deep learning techniques have got much attention from researchers in renewable energy 

forecasting.[8] With its distinctive automatic nonlinear recognition capabilities, deep learning 

has gradually emerged as an important approach to the challenge of forecasting sharply 

volatile wind power. [5], [19] Yildiz et al. [20] extracted wind datasets with features with 

variational mode decomposition and converted these features into images. Then the images 

were handled by an improved residual-based deep convolutional neural network to forecast 

wind power for a wind park in Turkey. The edge of the proposed process was proved by a 
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comparison between some existing well-used large networks. Kisvari et al. [21] constructed a 

framework consisting of data preprocessing, anomaly detection, feature engineering, and 

gated recurrent deep learning models for wind power prediction and demonstrated that the 

framework offered more effective predictions than traditional recurrent neural networks. 

Shahid et al. [22] piled up Long Short-Term Memory (LSTM) units into a large network and 

tunes the network by using the genetic algorithm to forecast wind power validated the 

statistical advantage of the network over a single unit by the Wilcoxon Signed-Rank test. 

Memarzadeh et al.[23] applied a bionic algorithm, wavelet transform, feature selection, and 

LSTM networks to forecast wind power of two wind parks in Spain and Iran, and showed the 

effectiveness of the proposed method by comparison with benchmark neural networks.  

While numerous wind power models based on a hybrid of traditional data methodologies 

and deep learning have been developed and advanced in forecasting for many sites, 

nevertheless, further sophistication of forecasting models may render the results specific, i.e., 

wind power forecasts are restricted to a certain category of terrain and weather features and 

difficult to be generalized and not be easily employed because their consisting techniques such 

as signal processing, feature engineering, etc. require a prolonged and special training to 

master. Lipu et al. [24] also summarized the most recent progress of wind power forecasting 

using artificial intelligence and pointed out the issues and challenges in the field. The 

challenges include many various data preprocessing techniques for diverse wind data, model 

structure, and optimization, etc. In particular, Reichstein et al. [25] recommended that more 

attention should be given to Earth system science problems to the coupled data approaches 

with physical phenomena and deep learning methods themselves, rather than building more 

complex traditional methods-based models. 

In the present study, in the contrast, we return to the physical process of wind power 

generation, the statistical characteristics of wind data, and the nature of deep learning to 

approach the forecasting problem. After synthesizing numerous data augmentation 

methodologies and drawing on multiple state-of-the-art advances in sequential data prediction, 

the robust and efficacious encoder-decoder deep neural networks with stacking LSTM units 

are proposed for wind turbine power forecasting in the Arctic. 

1.2. Contributions 

Leveraging the aforementioned literature review, attention is paid to a wind park, inside 

the Arctic, in complex terrain. The principal contributions of the present study paper are as 

follows:  

1. This paper systematically applies data augmentation to wind power forecasting for the first 

time. Specifically, eight time-series data augmentation approaches are proposed according 
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to physical characteristics of wind energy and statistical properties of data in wind 

engineering. The approaches are implemented in four benchmarking models and proposed 

advanced deep learning models. The methodology is particularly suitable for new wind 

parks that have a short period of operation and therefore a limited amount of accumulated 

data. It enables to fully and automatically deepen the information and value of these 

limited data. 

2. We exhaustively develop a seq2seq deep learning predictive end-to-end model with inputs 

of historical wind speed and power data and wind speed from NWP as well as 

simultaneously interrelated outputs of multistep, futuristic wind power. The model is 

based on an encoder-decoder constructed with LSTM and shows its superiority in 

forecasting power. 

3. It is demonstrated that the impact of various augmentation approaches is different in each 

forecasting algorithm. Augmentations somewhat increase linear, like persistence, model 

errors. Nonetheless, augmentations improve the performance, most notably the proposed 

deep learning model, of neural networks-based algorithms, where data-oriented 

augmentations generally contribute greater than physics-oriented ones. 

4. The data augmentations combined with the proposed and benchmark forecasting models 

are utilized to predict power generated by five turbines in various landscapes. The results 

are analyzed by rigorous statistical methods and indicate that the augmentations and the 

proposed forecasting model have wind engineering values and potentially extensive 

applicability in other energy fields. 

 

The architecture avenue opens the article with an introduction on wind energy forecasting 

and its deep learning utilization status quo as well as contributions presented in Section 1. 

Section 2 illustrates the principle of wind power generation and the utilized data and scheme. 

Section 3 delves into proposed data augmentation techniques and a novel predictive deep 

neural network. Section 4 provides detailed experiment procedures and model assessment 

metrics. In Section 5, hierarchical experimental results and discussions, from comparisons of 

models themselves to data augmentation approaches, are presented. Finally, the main findings, 

research outlooks, and derivative policy recommendations are demonstrated in Section 6. 

2. Data preparation and forecast scheme 

Wind power generation is a conversion from wind energy to electricity. Ideally, the output 

generation of a wind turbine is expressed as in (1): 
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𝑃 = {

0 𝑣 < 𝑣𝑚𝑖𝑛
𝑃𝑣(𝐶𝑃 , 𝜌, 𝐴; 𝑣) 𝑣𝑚𝑖𝑛 < 𝑣 < 𝑣𝑛

𝑃𝑟 𝑣𝑛 < 𝑣 < 𝑣𝑚𝑎𝑥
0 𝑣 > 𝑣𝑚𝑎𝑥

                                                                                          (1) 

where P is the output power of the wind turbine (W); 𝑃𝑣 (.), typically proportional to the cubic 

of the wind speed, is the wind curve function at the speed interval, CP means wind energy 

utilization efficiency; ρ is the air density (kg/m2); A is the effective area swept by turbine blades 

(m2), v denotes the wind speed (m/s); vmin, vmax, and vn respectively are cut-in, cut-off and rated 

wind speed. Pr is turbine rated wind power. From (1), the output of a wind turbine is mainly 

influenced by the third power of wind speed, air density, and swept area.  

The study centers on the wind turbine, 3.0 MW Vestas V90, electricity production of a 

wind park, named Fakken, with an installed capacity of 54 MW with 18 turbines, average 

annual production is 139 GWh in the Arctic region. 

 

Fig. 1. Fakken wind park located in northern Norway 

 

Wind is predominantly influenced by the terrain; wind anomalies occur when wind moves 

through these areas. The influence is dependent on the height and width of the barriers. The 

terrain of Fakken wind park is with low and flat hills and narrow valleys, and towards a fjord. 

Fig. 1 is a photograph of the wind park in operation at a close distance taken by the authors in 

May 2021 at sea, and the nearby mountain reaching around 900 meters above sea level. 

The timescale of data in this study is from 0:00 1st January 2017 to 23:50 31st December 

2017. Raw wind speed and power data of each turbine, 10 mins temporal resolution and 

recorded by Supervisory Control And Data Acquisition SCADA, are supplied by a local wind 

energy operator. The NWP wind speed data, calculated by the Meteorological cooperation on 

operational Ensemble Prediction System (MEPS) NWP model, are with 2.5 km horizontal 

resolution that is taken as the mesoscale. The model, operating by the Norwegian 

Meteorological Institute, updates at 00, 06, 12, and 18 UTC, and its forecasts for the next 66 
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hours are available around 1 h 15 minutes later. The wind speed data sequences from NWP 

comprise the nearest accessible weather prediction data. 

To verify the generality and portability of the proposed methodology, five wind turbines 

separately situated in different topographic conditions in the wind park are selected as study 

subjects. Moreover, wind measurements are taken at the turbine nacelle, which is 80 meters 

about the ground. Their topographic features and statistics of annual in-situ measured wind 

speed and power are shown in Table 1.  

Table 1. The terrain and statistics of wind turbines. 

Wind  

Turbine 
Terrain 

Wind power Wind speed 

Mean[kW] STD[kW] Skew Kur Mean[m/s] STD[m/s] Skew Kur 

T1 Plateau 825.58 990.43 1.01 -0.35 3.98 5.15 1.18 1.31 

T2 Valley 826.19 987.92 0.95 -0.43 3.91 5.06 1.10 1.12 

T3 Lakeside 738.37 914.33 1.23 0.28 3.55 4.65 1.33 2.01 

T4 Hilltop 804.40 971.86 1.04 -0.25 4.02 5.27 1.27 1.71 

T5 Seaside 783.86 950.42 1.06 -0.14 3.93 5.10 1.19 1.49 

Note: STD is standard deviation, Skew is skewness and Kur is relative kurtosis (actual kurtosis minus 3). 

Statistically, wind power forecasting can be regarded as a multivariable regression 

problem, in which wind power time series are autoregressed, and wind speed serves as the 

supplementing information to the autoregression. Updating the wind speed from NWP of the 

predicted time, the current information, is also the key feature in the prediction since 

according to an extensively cited reference by Giebel and Kariniotakis [26], forecasting wind 

power beyond three to six hours typically requires consideration of information on NWP wind 

speed at the moment of prediction. In this study, we chose measured data of the previous six 

hours to make multistep forecasts for the wind power from the next six to twelve hours with 

the assistance of wind speed from NWP. 

The fundamental multistep forecasting model f(.) with timestep i+n is described as:  

𝑃̂𝑖+𝑛 = 𝑓(𝑃𝑖−𝑗; 𝑣𝑖−𝑗; 𝑢𝑖+𝑛) + 𝜀𝑛                                                                                          (2) 

where i represents the base current time i=1, 2, …, 7, and with each i, 𝑗=0, 1, …, 6. 𝑃̂𝑖+𝑛 is n 

timestep ahead predicted wind power, 𝑛 ∈ {6,7,8,9,10,11,12}, v is the wind speed observed in 

the turbine, u represents the wind speed calculated from the mesoscale NWP wind model for 

the site. εn is the error of the forecasting model.  

Since the scopes of wind power and speed are not the same, it is beneficial to rescale the 

raw data into a new set with a similar scale. Data rescaling techniques can accelerate 

convergence speed and improve algorithms' accuracy of neural networks. [27] 

3. Methodology  

3.1. Wind data augmentation 
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In practice, testing errors need to be continuously reduced along with training errors to 

construct meaningful deep learning models. Data augmentation is a phenomenally robust 

approach to accomplish this aim. It embarks on overfitting from the origin, the training data 

themselves, of the problem, assuming that further information can be retrieved from the source 

dataset.  

Based on know-how in wind energy technology and state-of-the-art data science, we divide 

the techniques for augmenting wind data for forecasting with robust and efficient deep learning 

into two categories: physics-oriented and data-oriented.  

3.1.1. Physics-oriented approaches 

Inspired by the physics of wind power engineering, we propose three strategies to augment 

training set data for forecasting models. The first is the explicit perturbation of the wind power 

curve according to Eq. (1). The second is the implicit perturbation based on the difference 

between the numerical weather predicted wind speed of the wind park area and the actual 

measured wind speed of turbines. The third considers the operational data of the other wind 

turbines in the vicinity of the studied wind turbines. These three physics-oriented approaches 

are shortened as PA1, PA2, and PA3, respectively. 

PA1: Considering the wind speed as the independent variable and differentiating Eq. (1), 

the following Eq. (3) is obtained. 

𝑑𝑃 = {

0 𝑣 < 𝑣𝑚𝑖𝑛
𝑃𝑣
′(𝐶𝑃, 𝜌, 𝐴; 𝑣)𝑑𝑣 𝑣𝑚𝑖𝑛 < 𝑣 < 𝑣𝑛

0 𝑣𝑛 < 𝑣 < 𝑣𝑚𝑎𝑥
 0 𝑣 > 𝑣𝑚𝑎𝑥

                                                                                          (3) 

from Eq. (1), it is observed that when v is in the cut-in and rated wind speed interval, the 

derivative of the power curve, the ratio of tiny variations in wind turbine power and wind speed, 

is proportional to the quadratic of this point wind speed. Therefore, according to Eq. (3), it is 

possible to artificially adhere a slight random perturbation in a wind speed point in the interval 

and calculate the corresponding power variation in accordance with the speed. 

PA2: According to Eq. (2), the input to the power forecasting model contains the wind 

speed from measurements and the NWP model, but they correspond to different time stamps 

when entering the model. Since NWP datasets also have wind speeds that correspond to the 

same time stamps as the measured wind speeds, and there is no significant difference in wind 

speed probability distribution from two wind speed resources in the wind park based on our 

previous study [28]. So, we resort to a random replacement strategy with a fixed probability to 

replace the wind speeds in the measured datasets with the correspondent NWP wind speeds. 
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PA3: Since the neighboring turbines to the target turbine have similar wind conditions in 

operation. Therefore, adopting the measured wind speed of the neighboring turbine with a 

specific probability to replace the target turbine could be a strategy to augment the target wind 

speed dataset.  

3.1.2. Data-oriented approaches 

The proposed taxonomy for the data-oriented methods for wind power forecasting is 

enlightened by the feature space expansion, signal processing, and machine learning 

techniques. It consists of five approaches. DA1: Various simple interpolation and extrapolation 

methods are used to obtain data on larger time scales. DA2: Implements noise to the original 

dataset. DA3: Sequential augmentation approaches, named geometric transformations, draw 

on image processing, symmetry or flipping, translation, and random erasing. DA4: 

Methodology used for decomposition in time-series data. DA5. Scenario generation methods 

for the single turbine include statistical and machine learning generation. 

DA1: Averaging is usually required to calculate the data in hourly units as the original 

measured dataset is in ten-minute increments. The new hourly data can be acquired by 

performing some interpolation or extrapolation modification to this averaging process. The 

new averaging is defined as: 

𝒙𝒕
′ = ∑ 𝜔𝑗𝒙𝑗

6
𝑗=1                                                                                                                    (4) 

where 𝒙𝒕
′  is the hourly data and 𝒙𝑗 donates the raw 10-mins data. 𝜔𝑗 is the stochastic weight 

that fulfills: ∑ 𝜔𝑗 = 6, (−0.3 ≤ 𝜔𝑗 ≤ 1.3)
6
𝑗=1 , which when 𝜔𝑗 < 0 is extrapolation while 𝜔𝑗 ≥ 0 

means interpolation. 

DA2: Another simple, probably the simplest, method of data augmentation is the addition 

of white noise, following the standard normal distribution, to data. A wind power forecasting 

study considered noise in data as a detrimental factor for prediction and removed it by signal 

processing. [29] Nonetheless, in machine learning research, applying noise to the neural 

network's inputs increases the generalizability of the networks. [16] The noise injection is 

determined with a scaling parameter 𝜹: 

𝒙𝒕
′ = 𝒙𝒕 + 𝜹𝑿,𝑿~𝒩(𝟎, 𝝈𝒊)                                                                                                                   (5) 

where 𝒙𝒕
′  is the enhanced data and 𝒙𝒕 donates the original hourly data. 

DA3: Geometric transformations are among the initial data augmentation methods with 

excellent effectiveness in deep learning for image recognition, such as flipping, cropping, and 

color transformations. [11] Based on the characteristics of the measured wind speed time series 

and referring to image geometric augmentations, we stochastically opt for, 10% respectively, 
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symmetry along with the average point, substitution of prior or posterior values, and stochastic 

erasing of some data.  

DA4: Wind power forecasting is known mathematically as a special time series problem. 

Ordinarily, the time series  𝑥𝑡 can be decomposed into base 𝛼𝑡, trend 𝜏𝑡, season 𝑠𝑡, and residual 

𝛾
𝑡
 parts as in Eq. (6). 

𝑥𝑡 = 𝛼𝑡 + 𝜏𝑡 + 𝑠𝑡 + 𝛾𝑡 , t =1,2,…, N                                                                                          (6) 

The extensively implemented approach is firstly based on the time-domain figure of the 

time series or its Fourier analysis to obtain its period corresponding to seasonality, and then 

decomposes the time series with the loess smoothing technique [30], a locally weighted 

autoregression, into the above four components. The weights of these four components are 

subsequently and stochastically adjusted by Eq. (7) to form an augmented series. 

𝑥𝑡
′ = 𝜔1𝛼𝑡 +𝜔2𝜏𝑡 +𝜔3𝑠𝑡 +𝜔4𝛾𝑡 , ∑ 𝜔𝑖 = 4, 0.9 ≤ 𝜔𝑖 ≤ 1.1

4
𝑖=1                                               (7) 

DA5: The data augmentation methodologies described above all involve randomness, data 

selections, and/or weight adjustments, so they are relatively independent of the data and 

require considerable manual fine-tuning. Wind power scenario generation is an effective tool 

to resolve uncertainties in stochastic planning of the energy system with the integration of wind 

power. [31] Classical and advanced statistical methods and machine learning models are 

broadly employed [32] to predict wind power scenarios. Intrinsically, these models profile 

conditional distributions of time series by assuming that the current value depends on previous 

points: a new time series may be generated from the learned conditional distributions provided 

that original series values are perturbed in some way.  

3.2. Encoder-decoder LSTM deep networks 

RNN has achieved tremendous success and wide application in numerous sequence 

applications. [16] RNN is designed to process learning tasks with sequential data. ‘Recurrent’ 

means the current output is related to the previous output. The nodes in hidden are structurally 

connected to each other to reach inputs of the hidden layers includes not only outputs of the 

input layer but also ones of the previous-time hidden layers.  

Among the RNN network structures, the most extensively used and highly successful 

model is the LSTM network, with a kind of unique memory unit in its hidden layers and is 

generally more expressive of long-short time dependencies than the other RNNs. [33] Typically, 

the LSTM unit consists of three gates, i.e., input gate, forget gate, and output gate. There are 

three primary internal phases of the unit. The first is forget phase, which retains the important 

information coming in from the previous node and forgets the unimportant details. The next 

phase is the selective memory phase, which optionally remembers inputs of this phase. Finally, 
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an output phase determines which ones should be treated as outputs of the current state. 

Mathematically, the long-short memory unit can be expressed as [34]: 

𝒊𝑡:= 𝜎  (𝑾𝑥𝑖𝒙𝑡 +𝑾ℎ𝑖𝒉𝑡−1 + 𝒃𝑖) ,

𝒇𝑡:= 𝜎  (𝑾𝑥𝑓𝒙𝑡 +𝑾ℎ𝑓𝒉𝑡−1 + 𝒃𝑓) ,

𝒐𝑡:= 𝜎 (𝑾𝑥𝑜𝒙𝑡 +𝑾ℎ𝑜𝒉𝑡−1 + 𝒃𝑜),

𝒄̃𝑡:= tanh (𝑾𝑥𝑐𝒙𝑡 +𝑾ℎ𝑐𝒉𝑡−1 + 𝒃𝑐),
𝒄𝑡:= 𝒇𝑡⊙𝒄𝑡−1 + 𝒊𝑡⊙ 𝒄̃𝑡 ,

𝒉𝑡:= 𝒐𝑡⊙ tanh(𝒄𝑡) .

                                                                                          (8) 

where 𝒙𝑡 is the input and 𝒉𝑡−1 is the hidden state of the previous timestep. 𝒊𝑡, 𝒇𝑡, and 𝒐𝑡 are 

input, forget, and output gates, W.. denotes the corresponding weight parameter, and b. is the 

corresponding bias parameter. 𝒄̃𝑡 is the candidate memory cell, 𝒄𝑡 is the memory cell, and  𝒄𝑡−1 

is its previous time step state. 𝒉𝑡 is the hidden state. 𝜎 (.) is the sigmoid function, tanh (.) is 

hyperbolic tangent function, and ⊙ represents the pointwise multiplication. 

The encoder-decoder LSTM is a type of EDRNN network designed to deal with seq2seq, 

and its architecture is innovative in terms of sequence embedding, i.e., the usage of a reading-

in and exporting-out fixed-size sequences. The encoder-decoder LSTM includes an input layer, 

LSTM based encoder and decoder, and an output layer in this study. The LSTM unit achieves 

the extraction and utilization of important information in the sequence through its gate 

controls. The encoder reads input sequences and encodes them into fixed-length vectors by the 

weight of each time step with a context vector. The decoder decodes these fixed-length vectors 

and outputs predicted sequences. The fixed-length context vector introduces a mechanism 

called Attention, which enables highly summarize and highlight the information learned by the 

encoder and uses it as input to the decoder for translation. The encoder and decoder networks 

are mutually independent, which indicates that their LSTM units do not share parameters 

during the process of networks training. 

3.3. Proposed deep EDLSTM for wind power forecasting 

According to Eq. (2), wind power prediction involves autoregression, multiple sources of 

wind speed, and nonlinear functional relationships, all of which may lead to the application of 

EDLSTM networks. In addition, multistep wind power forecasting is appropriate to be handled 

as a seq2seq problem since the historical data of the inputs are linked and interactive. 

Therefore, a deep, stacked multilayers EDLSTM, shorten as EDLSTM, is proposed and utilized 

to extract the implicit features from layer to layer. The detailed deep EDLSTM employed in this 

article is illustrated in Fig. 2.  
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Fig. 2. The structural diagram of the proposed deep EDLSTM for wind power forecasting (The LSTM 

unit graph in this paper is cited from Ref. [35]) 

 

First, the encoder consists of a stack of three-layer LSTMs, which sequentially extracts 

complex time-dependent features of inputting measured and meteorological data deeply layer 

by layer with transferring hidden states h. And then generate a fixed-length context vector 

containing the extracted characteristic information. The structure and transmission of 

information for the decoder are basically identical to those for the encoder. Then, the context 

vector serves as the initial input to the decoder. Regardless of the updating from the encoder 

of the context vector, the vector is sent to the first layer of the decoder as its input, and its 

output is used as the input of the second layer. Sequentially, the third layer output is 

transformed through the output layer and cyclically fed back to the first layer as its next input. 

Eventually, the decoder generates a time series of the predicted wind power. 

4. Experiments 

4.1. Experimental scheme 
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The scheme of forecasting individual turbine wind power by employing EDLSTM with 

data augmentation is animatedly illustrated in Fig. 3. Firstly, the measured wind speed and 

power with the ten-minute resolution are averagely interpolated into, except for the DA1 

augmentation measure, data with hourly resolution. All hourly data are segmented into 

training and testing sets, accounting for 65% and 35%, respectively. Secondly, the measured 

wind speed and/or wind power data in the training set are separately augmented with the 

approaches proposed in Section 3.1 to enlarge the data amount to five times the original 

training set size. i. e., the new data with the four times larger size of the original training set 

are generated with augmentations. Thirdly, the unexpanded and expanded training sets are 

individually fed into the benchmark models, i.e., Persistence (PR), simple three-layer 

backpropagation Neural Networks (NN), basic LSTM RNN (LSTM), Bionic optimized neural 

networks constructed Adaboost (BA) ensemble leaning (regarded as a popular and advanced 

hybrid forecasting model [36]), and the proposed deep EDLSTM network to conduct training 

and obtain multiple learned models. The benchmark models have been introduced in Ref. [37], 

[38], [39] and their parameters are briefly summarized in Table 2. Finally, the testing set data 

are imported into the trained models to yield the multistep predicted wind power and to assess 

and compare the forecasting models' performance. 

 

Fig. 3. The main procedure of the data augmentation based EDLSTM for predicting wind power  

 

Table 2. A summary of forecasting models’ parameters 

Forecasting 

model 
Main parameters 

PR The predicted value for the next moment is the current moment's value. 
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NN 
The input, hidden, and output layers are with 15, 30, and 7 neurons, respectively; sigmoid activation 

function, and MSE loss function 

LSTM 
One fully connected dense NN layer, Seven LSTM units, and one dense NN with 7 neurons as output 

layer; sigmoid activation function, MSE loss function, and Adam algorithm optimizer. 

BA 

As the performance of a neural network is intimately linked to neuron number in the hidden layer, the 

genetic algorithm [40], a bionic algorithm, is applied in training iterations to automatically search for the 

adaptive neuron number and constitute optimized neural networks as Adaboost's base learners. The node 

number searching interval is set as [10,100] and the max iteration is 50. The Adaboost emphasizes (with 

bigger weights) data mislearned in the previous base learner to establish an ensemble model that boosts 

the performance of single base learners. The number of base learners is 10 and Adaboost max iteration is 

20. 

EDLSTM As described in Section 3.3 and Fig. 2. 

 

4.2. Data augmentation program 

Our data augmentation strategy fine-tunes the data without altering the temporal order 

of the original data and ensures that the augmented training data and the previous ones 

maintain statistical consistency. This study augments the training samples and scales up their 

number to five times the original sample size. The data augmentation techniques explained 

above, apart from DA5, all involve stochastic perturbation of the original data. Our method is 

to gradually enlarge the perturbation amplitude and accordingly generate new data four times. 

For the DA5 method, four new datasets are produced by individually operating autoregressive 

models based on four machine learning models. Details of the various data augmentation 

approaches are shown in Table 3. 

Table 3. A detailed description of each data augmentation process 

Physics-

oriented 

PA1 

The Vestas V90 3 MW wind turbine corresponds to a cut-in and rated wind speed of 4 and 15 m/s, 

respectively, according to its power curve. Select the measured wind speed vi in the corresponding interval: 

 𝑣𝑖
′ = 𝑣𝑖 + 𝑋, 𝑋~𝑈[−0.1𝑛, 0.1𝑛], 𝑛 = 1,2,3,4, where U represents the uniform distribution. Then the power 

variation corresponding to the wind speed variation is calculated by Eq. (3), and new power data are 

generated accordingly. 

PA2 

The measured wind speeds are randomly substituted with 50 % probability four times with NWP wind 

speed data with the same timestamps, and the wind power data are added a white noise following N 

(0,0.1). 

PA3 

We select measured wind speeds of the two closest turbines to the target turbine and randomly substitute, 

with a probability of 15% for each and a total of 30%, the target wind speed dataset. The power data are 

with the same treatment in PA2. 

Data-

oriented 

DA1 As described in DA1 introduction in Section 3.1.2. 

DA2 
Two normally distributed noises, N (0,0.1n) and N (0,0.02n), are separately loaded into the measured 

wind speed and power data four times, where n=1,2,3,4. 

DA3 As described in DA3 introduction in Section 3.1.2. 

DA4 As described in DA4 introduction in Section 3.1.2. 
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DA5 

Four learning algorithms to augment measured wind data, such as: 

 𝒙𝑡
′ = 𝑓𝑛(𝒙𝑡−1, 𝒙𝑡−2, 𝒙𝑡−3, 𝒙𝑡−4, 𝒙𝑡−5, 𝒙𝑡−6), 𝑛 = 1,2,3,4 ,                                                                                                   

where 𝒙𝑡
′  is the generating data, 𝑓𝑖(𝒙𝑡−1, 𝒙𝑡−2, 𝒙𝑡−3, 𝒙𝑡−4, 𝒙𝑡−5, 𝒙𝑡−6)  represents a single step ahead 

forecasting model established by learning algorithms.  𝑓1(. ) is linear regression, 𝑓2(. ) is support vector 

regression, 𝑓3(. ) is classification and regression tree, and 𝑓4(. ) is simple three-layer neural networks with 

15 hidden neurons regression models, respectively. All four are well-established and widespread machine 

learning algorithms, and a detailed description of them can be found in Ref. [37] for space constraints.  

Note: The units of wind speed and power in the table are m/s and MW, respectively. 

4.3. Performance evaluation 

Collectively, data-driven wind power forecasting is inherently a matter of using advanced 

neural networks for regression in which Mean Square Error (MSE) serves as the loss function. 

So, Root Mean Square Error (RMSE) is naturally selected as the metric to measure the 

performance of the models. The metric is negative-oriented to the modeling performance, 

which means a smaller value corresponds to better performance. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖−𝑃𝑖̂)

2𝑚
𝑖=1

𝑚
                                                                                                                                     (9) 

where Pi and 𝑃𝑖̂ are normalized measured and corresponding predicted wind power, m is the 

sample number of the testing set. 

Nevertheless, the RMSE is with a disproportionately big effect of larger errors and, 

sometimes, is close when comparing some different forecasting models. Therefore, in these 

cases, Mean Absolute Error (MAE) and Qualification Rate (QR) [41] indices are introduced as 

below to comprehensively assess the performance of models. MAE uniformly examines the 

forecasting errors while the QR emphasizes the smaller errors. 

𝑀𝐴𝐸 =
∑ |𝑃𝑖−𝑃𝑖̂|
𝑚
𝑖=1

𝑚
                                                                                                                                              (10) 

𝑄𝑅 =
1

𝑚
∑𝑖=1
𝑚  {

1, (1 −
|𝑃𝑖−𝑃𝑖̂|

𝐶𝑎𝑝
) ⩾ 𝑄

0, (1 −
|𝑃𝑖−𝑃𝑖̂|

𝐶𝑎𝑝
) < 𝑄

                                                                                                                      (11) 

where Cap is the designed capacity of the turbine. Q is the quantile percentage for qualified 

predictions, chosen as 90% in this study. 

Two statistical tests are employed to check whether there are statistically significant 

differences exist in the performance of forecasting models. And both of their conference values 

are set as 0.05. The first is paired T-test for the two comparisons. The null hypothesis H0: The 

averages of these samples are equivalent; Ha: The averages are not equivalent. And its test 

statistic T is: 

𝑇 =
𝑌̅1−𝑌̅2

𝑆𝑇𝐷(𝑌̅1−𝑌̅2)
∼ 𝑡2𝑙−2                                                                                                                                           (12) 
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where 𝑌̅ is the average and l is the number of samples. 

The second is the Friedman test, for multiple comparisons, is harnessed to examine across 

multiple trials and checks column effects after statistically eliminating potential row effects. 

[42] 

H0: The column data do not have a significant difference. 

Ha: They have a significant difference. 

The statistic F is given as: 

𝐹 =
12𝑡

𝑘(𝑘+1)
[∑  𝑘

𝑖=1 𝑟𝑖
2 −

𝑘(𝑘+1)2

4
]                                                                                                                                           (13) 

where k is the number of columns, ri is the average value of row i, which follows 𝜒(𝑘−1)
2  

distribution under H0. 

5. Results and discussion  

This section reveals the experimental results at three levels, firstly, the superiority of the 

proposed forecasting model is verified by analyzing different models' performance on the 

original dataset. Secondly, the overall effects of data augmentations on different forecasting 

algorithms are illustrated by the comparison of their performance before and after data 

augmentations. And finally, the impacts of various augmentation approaches on the proposed 

model's forecasting effectiveness are statistically explored. 

5.1. Benchmarks and proposed deep EDLSTM model forecasting outcomes 

The rescaled measured and NWP wind data of chosen five wind turbines are respectively 

loaded into the four benchmarks and proposed deep EDLSTM models to make six to twelve 

hours ahead of wind power forecasts. The RMSE is displayed in Fig. 4. In general, the RMSE 

of all forecasting models grows as increasing prediction steps. The PR grows faster compared 

to the other models. The proposed deep EDLSTM outperforms best among all models for 

multistep power prediction for all wind turbines in almost all cases. The RMSE of the NN, 

LSTM, BA and EDLSTM all constructed on neural networks is noticeably smaller than the one 

of PR, suggesting that neural networks can reflect the nonlinear characteristics of wind power. 

Moreover, these characteristics are better retained by the forecasting models as the networks 

are deeper and more tailored. On the overall average, the benchmarking PR, NN, LSTM, and 

BA models have RMSE that is 51.46%, 11.89%, 7.67%, and 4.46% higher than EDLSTM. This 

demonstrates that the proposed model can efficiently and accurately predict the power 

generated by the five wind turbines under attention. Besides, EDLSTM's RMSE maintains 

relative stability with the increasing step, indicating that the seq2seq with multiple inputs and 

multiple outputs reduces the cumulative error in multistep forecasting. Reasonably, the 
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forecasting algorithms outcome relatively low RMSE of the wind turbines situated on plateau 

and lakeside, both of which are regarded as flat terrains. In contrast, the unique fjord 

topography on the Norwegian coast causes wind turbines located on hilltops, valleys, and 

seasides to be challenging, but handled properly by EDLSTM, to predict their electricity 

generation. Therefore, the proposed model allows for effective and robust power predictions 

of wind turbines on several different topographical conditions. 

  
Fig. 4. The multistep performance of benchmarking and deep EDLSTM forecasting models for each 

turbine: (a) 1.Plateau, (b) 2.Valley, (c) 3.Lakeside, (d) 4.Hilltop, (e) 5.Seaside, (f) Average. 

 

5.2. Holistic validity of data augmentations  

Aiming to investigate the applicability of data augmentation in wind power prediction, the 

original measured data are enlarged following the eight augmentation approaches presented 

in Section 3.1 and are predicted by the four benchmarks and the proposed EDLSTM models. 

The RMSE for the six to twelve-step forecasts by the forecasting algorithms based on the eight 

data-augmented sets is averaged separately. The results are compared to the RMSE equally 

averaged of the models without augmentations. Fig. 5 shows the comparison, and Table 4 

offers their performance difference with paired T-test. 
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Fig. 5. The overall average RMSE of multistep forecasting models without and with data 

augmentations for each turbine: (a) Without augmentations, (b) With augmentations. 

 

 

Table 4. The T test for average performance difference between without and with data augmentations 

Paired T PR NN LSTM BA EDLSTM 

Mean 0 0.003876 0.005813 0.004610 0.010291 

p-values / 0.002219 0.000083 0.000173 0.000001 

 

As can be seen, the average effect of data augmentation is tightly linked to forecasting 

algorithms. The RMSE of PR with data augmentation is the same as the previous one for all 

wind turbines in focus. The reason is there is no learning process in the PR method and its 

RMSE remains the same when the used data augmentations give stochastic perturbations in 

data or generations of new data based on patterns of primitive data. So, it is meaningless to 

further discuss the augmentation in the PR approach. Within one STD, there is an apparent 

difference, with p-values smaller than 0.05, between RMSE of all network-based NN, LSTM, 

BA, and EDLSTM forecasting algorithms. It can be interpreted that these algorithms can not 

only respectively learn the dominant or trending patterns in the input space, but data 

augmentations also provide additional valuable information in these network-based models 

training phrases.   

Most notably, a significant improvement, with a statistical average difference over 0.0102, 

in the performance of the EDLSTM forecasting algorithm is evident with augmented input data. 

On the one hand, it means that the limited original data restrict the proposed deep learning 

model's potential or possibly cause overfitting. On the other hand, it demonstrates that the 

augmented data more adequately train the complex deep networks to yield better predictions 

by insight into more hidden and sophisticated patterns in the forecasting. In addition, the STD 
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of RMSE between multiple predictions shows no significant variation before and after data 

augmentations, which points out that the effects of data augmentations are approximate for 

each step. Generally, the average RMSE of augmented models of NN, LSTM, and BA separately 

grows by 21.47%, 13.30%, and 7.60% compared with augmented EDLSTM. 

To more explicitly show outcomes of the various data-augmented models, the RMSE of 

each step prediction based on the eight augmentation approaches is averaged and plotted in 

Fig. 6. 

  

Fig. 6. The multistep average RMSE of forecasting models with data augmentations for each turbine: 

(a) NN, (b) LSTM, (c) BA, (d) EDLSTM. 

 

By comparing Fig. 6 with Fig. 4, it can be found that: first, the tendency of gradually 

increasing RMSE persists of data-augmented multistep predictions. Secondly, the augmented 

EDLSTM model outperforms its counterpart based on raw data in almost every step of 

prediction for all wind turbines. And thirdly, the power prediction of T3 wind turbine is the 

best, corresponding to the RMSE of the data augmented EDLSTM model is barely less than 

0.11, and the second-best one is T1. Furthermore, the predictions for T2, T4, and T5, located in 

complex terrain, are also significantly improved. Thus, data augmentation improves EDLSTM 

for power forecasting, resulting in satisfactory reductions in model RMSE errors. 

5.3. Competition between diverse data augmentation methodologies  
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The superiority of data augmentation approaches as a whole in wind power prediction is 

elaborated in Section 5.2. To further investigate which data augmentation approaches are more 

effective, the average and STD of RMSE for each step of prediction by algorithms based on 

different augmentation approaches are taken and presented in Fig. 7. As can be seen, there is 

no obvious regularity in the average multistep forecasting performance with different 

augmentation-based models. That is, the results of various augmentation approaches in 

different forecasting algorithms are not tendentious. The overall RMSE of distinct 

augmentations is comparable in NN, LSTM, and BA but the opposite is the view in EDLSTM. 

Nevertheless, certain patterns exist for augmentations in the prediction of different turbines. 

Regardless of what augmentations, the errors in predictions for turbines in flatter terrain are 

smaller, consistent with the predictions without augmentations.  

 

Fig. 7. The multistep average RMSE of forecasting models with various data augmentations for each 

turbine: (a) NN, (b) LSTM, (c) BA, (d) EDLSTM. 

 

As a further statistical examination to test the variation in different data augmentation in 

multistep predictions, the Friedman test to answer whether there is a difference between the 

RMSE averages of the five wind turbines with different augmentations in the same time step. 

The p-values are demonstrated in Table 5. Among the power forecasts based on data 

augmentations for all turbines, The effect of different augmentation approaches for forecasting 

models is not statistically significant in most cases, such as in NN, LSTM, and most cases of 

BA. Particularly, the proposed EDLSTM models' RMSE, with a relatively complex p-value set, 

differs only in sixth and seventh step forecasts with varying augmentations. Additionally, in 
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view of the EDLSTM's favorable outperformance in wind power forecasting, the decrease rate 

of average multistep RMSE for each augmented versus unaugmented model based on the same 

forecasting algorithm is computed. The rate is averaged among five turbines and illustrated in 

Fig. 8. The p-value for the multivariate comparison between these RMSE decrease rates is 

0.00033, much less than 0.05, indicating that overall improvements in EDLSTM performance 

with various augmentations are statistically different. In general, based on RMSE, PA3, PA2, 

DA1, and PA1 provide modest improvements, from 7.87% to 9.96%, to the EDLSTM model, 

while DA5, DA4, DA3, and DA2 improve, sequentially from 10.80% to 11.36%, the model 

relatively substantially. 

Table 5. The p-values of RMSE Friedman test within five turbines for multiple comparisons in different data-augmented 

approaches 

P-values 6 7 8 9 10 11 12 

NN 0.4717 0.2772 0.1013 0.54 0.1705 0.1046 0.7608 

LSTM 0.1274 0.6809 0.3268 0.6809 0.0183 0.0335 0.6113 

BA 0.0202 0.4084 0.3445 0.0558 0.1775 0.532 0.1507 

EDLSTM 0.0049 0.0012 0.0626 0.3041 0.1213 0.0901 0.1239 

Note: The p-values less than 0.05 are marked in italics meaning H0 is rejected. 

     

Fig. 8. The average RMSE decrease rate of multistep EDLSTM forecast with various augmentations for 

averaging five turbines 

 

Despite the varying decrease degrees in RMSE for the EDLSTM models with different 

augmentation approaches, the difference is minimal between some approaches, like DA4 and 

DA5. To further compare the effects of different augmentations, the average MAE and QR90 

of forecasts with the same scenario as in Fig. 8 are gained and their change rates before and 

after augmentations are calculated and tested in Fig. 9 and 10. The p-value of MAE decrease 

rate comparison is 0.0023, less than 0.05, also smaller than its counterpart of RMSE, which 

also means varying augmentations give statistically different boosts in EDLSTM. Similar to Fig 
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8, the DAs are better than PAs, but Fig. 9 offers a clearer distinction between several DAs. DA4 

and DA5 have a greater MAE decline, 8.97% and 8.82%, than DA2 and DA3, 8.49% and 7.79%, 

which generally indicates that the former two provide closer predictions to the real values. But 

DA4 and DA5 may have big deviations in some forecasting points, so these data-oriented 

augmentations are quite close in Fig. 8. The p-value of QR90 increase rate comparison is 

0.0052, bigger than 0.05, which illustrates different augmentations have no significant 

different improvements, around 12% to 13%, in QR90. This phenomenon reveals that either 

augmentation technique can elevate the qualification rate of the EDLSTM model in a relatively 

similar amount and provide satisfactory forecasts in terms of this evaluation index.  

Fig. 9. The average MAE decrease rate of multistep EDLSTM forecast with various augmentations for 

averaging five turbines 

Fig. 10. The average QR90 increase rate of multistep EDLSTM forecast with various augmentations for 

averaging five turbines 

 

To summarize, the impact of the different data augmentation methods on the benchmark 

models is not significantly different. However, the improvement for the deep EDLSTM is 
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slightly varied, unremarkable in QR90 metric. DAs, on the whole, outperform PAs in RMSE 

and MAE, and MAE further reveals that DA4 and DA5 have edges in the DA methods. 

6. Conclusions 

This paper initially scrutinizes the usefulness of data augmentation approaches in wind 

power forecasting and proposes a multi-input and multi-output prediction algorithm with 

verified superiority. Inferences on the results of multistep forecasting five wind turbines with 

various topologies, conclusions are given as follows: 

The proposed seq2seq-based deep EDLSTM enables highly effective and robust multistep 

power forecasting, by highlighting the sequential dependence of the problem, for wind turbines 

under different terrain conditions. Also, compared with the benchmark PR, NN, LSTM, and 

BA algorithms, its overall RMSE is lowered by 33.89%, 10.60%, 7.12%, and 4.27%, respectively.  

Since EDLSTM is a complex deep learning model, its strength requires so-called big data. 

It is demonstrated that five-fold expansions of the primary data with data augmentations 

statistically boost neural network-based NN, LSTM, BA, and EDLSTM wind power forecasting 

capabilities. The boost is particularly evident in EDLSTM, where, on average, the performance 

of the data-augmented model provides better forecasting with lower RMSE, which is 10.2% 

smaller than its counterpart without data augmentation. This boosting can be interpreted as 

expanding the training set, it is equivalent to adding a regular term to the loss function when 

training models, which can effectively avoid overfitting. Besides, due to the stochasticity 

involved in data augmentations, the learned model built on the techniques presents better 

robustness. Moreover, the data-augmented EDLSTM edges over the benchmarks, PR, NN, 

LSTM, and BA with the same expanding inputs, extending to 40.63%, 17.67%, 11.74%, and 7.06% 

decrease in RMSE, respectively since the proposed EDLSTM further learned deeper 

information, like signal decompositions, of the wind data by mentioned augmentation 

techniques. 

The impact of the eight data augmentation approaches employed, three physics-oriented 

and five data-oriented, on wind power prediction is forecasting arithmetic sensitive. For the 

proposed well-performing EDLSTM, various augmentations can approximately, by over 12%, 

boost the forecasting qualification rate at the 90% threshold. But augmentations improve the 

forecasting performance to slightly different degrees when evaluated by RMSE and MAE: 

multistep and multiturbine meanly, the improvement varies from approximately 7.87% to 

11.36% of RMSE and 5.24% to 8.97% of MAE within one standard deviation, and generally, 

data-oriented augmentations outperform physics-oriented ones. Among data-oriented 

augmentations, the results illustrate that EDLSTM's forecasting RMSE is significantly 
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decreased even by simply appending noisy and randomly perturbing, or moving data the same 

way as sophisticated statistical data decomposition and learning data generation, however, as 

per MAE, the latter two provide overall closer predictions to the real power. 

Our future research, on the basis of this paper, foresees to further investigate de facto 

more advanced data augmentation techniques and integrate them into the proposed model to 

conduct in-depth point and probability predictions and attempt industrial applications in 

extensive comparisons with other forecasting models. 

Additionally, ensuing policy recommendations may be extrapolated:  

Drawing on state-of-the-art deep learning techniques and increasing computational 

abilities, wind power forecasting and deriving data issues in energy fields shall be approached 

progressively from traditional statistical and parameters-sensitive classical machine learning 

methods to deep learning approaches that can automatically identify complex patterns. 

Besides, the sophisticated deep networks are particularly reliant on data amounts. Motivated 

by this article, limited data of wind parks or other energy sectors could be artificially enlarged 

by appropriate data augmentations to serve as the steppingstone for further applications of 

deep learning to challenge related scientific and engineering difficulties. 
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Abstract  

Wind power prediction, especially for turbines, is vital for the operation, controllability, 

and economy of electricity companies. Hybrid methodologies combining advanced data 

science with weather forecasting have been incrementally applied to the predictions. 

Nevertheless, individually modeling massive turbines from scratch and downscaling weather 

forecasts to turbine size are neither easy nor economical. Aiming at it, this paper proposes a 

novel framework with mathematical underpinnings for turbine power prediction. This 

framework is the first time to incorporate knowledge distillation into energy forecasting, 

enabling accurate and economical constructions of turbine models by learning knowledge from 

the well-established park model. Besides, park-scale weather forecasts non-explicitly are 

mapped to turbines by transfer learning of predicted power errors, achieving model correction 

for better performance. The proposed framework is deployed on five turbines featuring various 

terrains in an Arctic wind park, the results are evaluated against the competitors of ablation 

investigation. The major findings reveal that the proposed framework, developed on favorable 

knowledge distillation and transfer learning parameters tuning, yields performance boosts 

from 3.3 % to 23.9 % over its competitors. This advantage also exists in terms of wind energy 

physics and computing efficiency, which are verified by the prediction quality rate and 

calculation time. 

 

Keywords: Renewable energy prediction; Knowledge distillation; Deep learning; Error 

correction; Transfer learning; Arctic 
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Abbreviations 

NWP Numerical Weather Prediction 

TL Transfer learning 

LSTM Long Short-Term Memory 

EDLSTM or ED Encoder-Decoder Long Short-Term Memory neural networks 

KD Knowledge Distillation 

MMD Maximum Mean Discrepancy 

MSE Mean Square Error 

Bi-LSTM Bidirectional LSTM  

RMSE Root Mean Square Error 

QR90 Qualification Rate at the 90% threshold 

GeoMean Geometric mean 

STD Standard deviation 

T#. Wind turbines with different terrain – turbine number 

 

1. Introduction 

The exploitation of renewable energy is a propitious approach to achieving carbon 

neutrality. Wind energy, as one of the foremost renewable energy sources, has gained 

increasing prominence in various countries for its abundant availability, technological 

maturity, and favorable financial support [1]. However, the volatility and randomness of the 

natural wind, especially when sited in complex terrain conditions [2], create tremendous 

uncertainty in wind power generation. The volatile electricity generated by wind turbines 

causes adverse effects on power quality, grid dispatch, and the stability and security of power 

system operation [3]. Therefore, as larger-scale wind power is integrated into the grid, there is 

a considerable necessity to further develop associated energy forecasting strategies [4] to 

reduce the impact of renewable on the grid and improve energy efficiency.  

Wind power prediction can be categorized into physical, statistical, and hybrid approaches 

[5]. The first is appropriate for relatively long-term (days) forecasts through atmospheric 

physics modeling called. The second is suitable for relatively short-term (minutes or hours) 

predictions. However, the current prediction investigations, which usually combine the above 

two methods and can extrapolate the prediction-time scenario to realize higher accuracy, are 

attracting more interest [6]. 

1.1. Previous work  
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Extensive research has been conducted using Numerical Weather Prediction (NWP) 

downscaling [7], [8], signal decomposition [4], statistical regression [9], machine learning [5], 

[10], deep learning [11], and more for wind power prediction and has achieved satisfactory 

results in many wind park experiments.  

The state-of-the-art of employing deep learning associated approaches to predict wind 

power is sufficiently summarized and reviewed in [11], [12], [13]. These studies are primarily 

devoted to the decomposition of wind energy-related sequences using different data processing 

techniques and developing advanced deep learning algorithms to recognize the in-depth 

features of these sequences. Since wind power is primarily driven by weather, adding 

information from suitable weather forecasts to a generation prediction mode can lead to an 

accuracy boost [14]. However, it is common to downscale mesoscale NWP (wind park-scale or 

larger) applying meteorological [8] or statistical methodologies [15], [16] or to input these data 

directly into the prediction model for automatic recognition [17], [18]. The former involves 

substantial physical assumptions and computational time whereas the latter loses differences 

between turbines in the same wind park. 

As the availability of wind energy data and the accuracy of power prediction increases, so 

does the complexity of the forecasting models. Since different researchers have developed 

various forecasting models for the individual park, when faced with the problem of a new site, 

it is required to develop a fresh model from scratch.  

Transfer learning (TL) is a machine learning paradigm that applies some kind of learning 

algorithms to derive information from one or more application scenarios and thereby 

contribute to enhancing the learning performance for the target scenarios [19]. There appear 

to be a few efforts in recent years to apply TL to wind power prediction. Hu Q et al. [20] tried 

to transfer wind speed information from a data-rich old operating wind park to a newly-built 

park and successfully used stacked denoising autoencoders to forecast the speed with each 

other data for four wind parks in the north of China. Qureshi AS et al. [21] speeded up and 

optimized the deep sparse autoencoder power prediction model learning by only training one 

park data and transferring the gained knowledge to others with sounds weight initializations.  

Yin H et al. [22] focused on multiple wind parks power forecasting with TL in Inner Mongolia 

and applied CNNs-LSTM to extract sequence features of source parks and deliver the features 

to build a good model for the target wind farm. These studies all directly and successfully 

transferred information from other wind farms to the intended one, but without accounting 

for the forecasting issue for turbines. Liu X et al.  [23] considered turbines prediction by a 

proposed a deep and TL framework with the turbine Supervisory Control And Data Acquisition 

(SCADA) data, and by processing the homogeneity and heterogeneity among different wind 



 

 

155 

 

turbines, they realized the ultra-short-term power prediction within one hour with high 

accuracy. However, the study is a purely statistical and short-term forecast; to achieve the long-

term prediction, weather forecasts must be factored.  

The forecasting error includes unlearned information, analyzed in [24], which can be 

extracted as a complementary for park power prediction models. A few studies consider the 

magnitude of prediction errors. Ding M et al. [25] used a gated recurrent unit neural network 

to correct the NWP wind speed error and applied the corrected speed to model the power curve 

with efficiency. Sun Z et al. [26] directly modeled the error sequence trend of preliminary 

prediction results and combined the predicted error to obtain the final predictions. However, 

most of these studies treated the prediction errors as separate time series, which are not always 

reliable because the error series may be very white-noisy and hard to be forecasted or the 

accuracy of their prediction decreases rapidly with the forecasting time step [27]. 

1.2. Contributions 

     As our previous work published Data-augmented sequential deep learning for wind 

power forecasting and its literature showed that the work returned to the physical process of 

wind power generation, the statistical characteristics of wind data, and the nature of deep 

learning to approach the prediction problem for the turbine in varying terrain conditions [17] 

and yielded a delicate forecasting structure promising multistep prediction.  

However, there are still the following points where enhancements are possible according 

to our further investigations. 

1. Deep learning-based models require multiple layers of uniquely designed neural 

network structures to realize the intrinsic features of the data [28]. And training large 

deep networks is very time-consuming and computationally intensive. Therefore, it is 

proposed that certain pre-training techniques, such as Knowledge Distillation (KD) 

[29], can be adopted to distill useful information, knowledge, from the large pre-

trained, whole park, teacher model and condense it into smaller scale turbine 

prediction, student, models.  

2. The NWP information in hybrid prediction models is usually for the whole wind park 

and does not precisely reflect the individual turbine's future meteorological condition. 

Besides, the wake effect (wind is strongly perturbed, decreased kinetic energy and 

added turbulence behind blades of a turbine), together with the turbulence induced by 

the micro-scale topography in complex terrain, thereby rendering further forecasting 

difficulties. Typically, single wind turbine meteorological modeling considers NWP 

results and simulates turbine wind conditions with Computational Fluid Dynamics 
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(CFD) [30], [31]. This paper will bypass this complex approach based on multiple 

physical assumptions and indirectly integrate the meteorological information of 

turbines into the whole prediction model by data science. 

3. Wind power forecasting is essentially reducible to a regression problem, so regression 

diagnostics in statistics, especially error analysis and correction, could be incorporated 

into the prediction model. Hence, this paper achieves the detection and forecasting of 

prediction errors through advanced deep learning approaches. Moreover, weather 

information is ingeniously embedded into the final prediction model by the errors 

correcting. 

The presented paper fully addresses the above concerns by innovatively developing a 

framework for predicting wind turbine power with solid mathematical derivation. It is the first 

time, through KD, to deploy a large sequential deep learning forecasting model with multiple 

inputs and outputs for big data in wind parks on a fast-running small-scale turbine forecasting 

model; the framework fully exploits the prediction error value and ingeniously downscales the 

NWP information corresponding to wind parks non-explicitly to the turbine scale by transfer 

learning and primitive and inverse function transformation.  The effectiveness and quickness 

of the framework are experimentally verified on wind turbines in different terrains. 

Furthermore, the framework has extensive applicability in other fields since it does not involve 

specific energy-physics and geographical factors. 

The rest of this article is organized as follows. Section 2 elaborates on the deep learning 

techniques involved in the proposed wind power prediction framework. Section 3 describes 

case study experiment data and vividly deduces the mathematical principles underlying the 

framework. In section 4, the experimental procedure and evaluation are briefly stated. The 

experimental results for comprehensive verification of the framework are thoroughly 

discussed in section 5. Finally, the main findings and policy recommendations are exhibited in 

Section 6. 

2. Methodology  

         This section elaborates on the peripheral techniques utilized in this paper, starting with 

Transfer Learning (TL), followed by Knowledge Distillation (KD), an important TL technique, 

and finally, prediction algorithms and their resultant error corrections.  

2.1. Transfer learning 

          An essential challenge in employing machine learning applications in engineering is the 

weak displacement of models, i.e., existing models do not transfer well into new areas. Firstly, 

Many machine learning application applications are trained with small data: traditional 
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learning algorithms tend to suffer from overfitting problems due to small data size [32]. Thus, 

the established models cannot be well extended to new scenarios. Secondly, strong robustness 

is required for machine learning models: classical algorithms assume that training and testing 

data are from the same statistical distribution [33], which are sometimes unrealistic in 

engineering. Finally, personalization and data security; in largescale practical applications, 

where datasets often belong to multiple owners and cannot be disclosed to each other for 

security reasons. Therefore, the learning model should extract the intrinsic of each dataset and 

transfer to new scenarios [34]. 

The emerging TL responds to this problem. It is a methodology that addresses data 

distributions in the source domain (where the model has been trained) and the target domain 

(where the trained model will be implemented), which are similar but not identical, to promote 

efficiency in machine learning [35]. The core in a sound TL is finding the similarity between 

the mentioned two scenarios to achieve a so-called adaptive learning. TL is categorized into 

two types with the based on the features in the two scenarios: homogeneous and heterogeneous 

[36]. The former is only considered because the data used are only wind sequence data and 

designed transfer process is elaborate. TL, especially deep TL, directly improves performance 

on different tasks by recognizing patterns directly on the original data and transferring the 

models to other original data. It enables the automagical extraction on more expressive 

features and meets the end-to-end demands of real-world applications. 

In the present study, TL architecture is established with the development of an adaptive 

sparse deep learning network for univariate pattern recognition. The structure is shown in Fig. 

1. 

In fact, adaptive learning is effectively applied by identifying and reducing differences 

between the source and target domains through simple and executable transformations to 

transfer learned models from source domains to target ones. The Kullback Leibler Divergence 

(DKL), also named relative entropy in (1), is mostly employed to identify similarities between 

two distributions p(x) and q(x). Practically, Practically, since DKL involves integration and 

logarithmic operations, a similar metric Maximum Mean Discrepancy (MMD), in (2),  as an 

approximation of bivariate divergence is available in the [37]. 

𝐷𝐾𝐿(𝑝(𝑥) ∥ 𝑞(𝑥)) = ∫  
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where sup(.) is supremum; xi and xt j are the i-th and j-th sample in the source and target 

domains, respectively; f (.) donates feature mapping function in TL; N and Nt represents source 

and target domain size. 

For deep learning network (extensively literature detailing DL [28]). The utilized sparse 

DL's (shorten as D1) loss function LD1 is expressed as follows: 

𝐿𝐷1 =
1

𝑛
∑  𝑛
𝑖=1 (𝑋𝑖 − 𝑋̂𝑖)

2
+ 𝛽Ω𝑤 + 𝛿Ω𝑠                                                                                                     (3) 

where 
1

𝑛
∑  𝑛
𝑖=1 (𝑋𝑖 − 𝑋̂𝑖)

2
 is the Mean Squared Error (MSE), typical loss function for regression 

task,  Ω𝑤 =
1

2
∑(𝑊𝑖,𝑗)

2
 donates the L2 regularization term (handling over fitting) of NN weights, 

Ω𝑠 = 𝐷𝐾𝐿(𝑝𝑖 ∥ 𝑝̂𝑖)  represents the sparse regularization term that enforces constraints of 

sparsity in outputs from hidden layers to minimize the calculated data distribution 𝑝̂𝑖  and 

inputs actual distribution 𝑝𝑖. 

The well-learned model is normally can be directly transferred to process new datasets. 

Since the old and new datasets are merely similar but not identical, an adaptive MMD-based 

mechanism (an Optimizer named MMD comparator) is introduced into the model transfer to 

further improve the new model's (D2) accuracy. The loss function LD2 of D2: 

𝐿𝐷2 = 𝐿𝐷1 + 𝛾Ω𝑀𝑀𝐷                                                                                                                                   (4) 

where Ω𝑀𝑀𝐷 = ∑ 𝑀𝑀𝐷(𝑋𝑖 , 𝑋𝑖
′)𝑙𝑎𝑦𝑒𝑟𝑠  is the divergence regularization term to minimize the gaps 

between the layer to layer of old and new models. So, LD2 optimized the transferred old model 

to fit new data better. 

 

Fig. 1. The architecture of proposed TL with adaptive sparse deep learning 
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2.2. Knowledge Distillation 

Distillation is a chemistry term referring to the extraction of components at different 

boiling temperatures. Typically, big and complex models that have excellent performance and 

generalization, but with enormous parameters are hard to be deployed, which is not available 

to small models. Inspired by pedagogy, in a similar problem, whether the knowledge acquired 

from big models could guide small ones, so that the latter, meanwhile with reduced parameters’ 

number, have improved performance and generalization ability like the former. 

KD [38], based on the "teacher-student" learning strategy, is a model compression 

approach, and its application is emerging in academia and industry due to its conciseness and 

effectiveness [39]. Specifically, it means relocating the pre-trained knowledge from teacher 

networks, typically large or ensemble, to student networks that are relatively small or simple, 

so that the student's learn the know-how from the teacher's network. The KD system generally 

involves three pivotal components: knowledge, distillation algorithm, and teacher-student 

architecture [39].  

While former KD studies have focused on classification tasks, few studies concentrated on 

regression missions, such as speech recognition [40] and objects localization [41], etc. There is 

a scarcity of investigation on KD approaches for time-series tasks., which are fully developed 

in the present study. 

2.3. Proposed KD forecasting framework 

In the present study, inspired by [42], [43], and [44], the KD networks architecture shown 

in Fig. 2, which is implemented to distill the wind park prediction model with big data to 

turbine prediction. The proposed KD forecasting framework is developed to address three 

challenges. 

1. Large stacked LSTM-based encoder-decoder models are adopted to predict the wind 

park with big data while small Bidirectional LSTM (Bi-LSTM) models are applied to 

forecast small data turbines. 

2. Cross-dataset knowledge transfer, model to model, in KD is achieved by developing a 

suitable operator that allows different teacher and student models, based on different 

inputs, in the KD structure to be compared in training. 

3. The designed linear combination of Loss I and II in designing student model's loss 

function Loss KD realizes the optimization of the student model not only by training 

from its own data but also by further learning from the high-performance complex 

teacher model. 
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The operation of this KD architecture is as follows: firstly, the wind park big data is 

imported into the large teacher model, as the pre-trained, to learn the data depth features and 

generate the predicted park power. Simultaneously, the turbine data are also fed into the 

student model for preliminary learning and to produce preliminary turbine power calculations. 

Then the fine-tuning process with KD for the student model begins with the mission of 

minimizing its loss function Loss KD. In regression tasks with KD, the loss function can be 

generally expressed in (5) 

𝐿reg =
1

𝑛
∑  𝑛
𝑖=1 𝑚𝑖𝑛(∥∥𝐩̂𝑆 − 𝐩𝑆∥∥

2, ∥∥𝐩̂𝑆 − 𝐩̂𝑇∥∥
2
)                                                                                                 (5) 

where 𝐩̂𝑇 donates output of the pre-trained teacher model,  𝐩̂𝑆 is outputs of primarily student 

model, and 𝐩𝑆 is corresponding real values of inputs of the student model. Notably, since these 

park and turbine predicted power statistics are not identical, operators are necessary to scale 

them and to compare each other. The mentioned 𝐩  values are defined as in Eq. (6) and 

calculated with the two operators.  

𝐩̂𝑇 = ∥∥
∥𝑃𝑝−𝑃̂𝑝

𝑃𝑝 ∥∥
∥ , 𝐩̂𝑆 = ∥∥

∥𝑃𝑡−𝑃̂𝑡
𝑃𝑡 ∥
∥∥ , 𝐩𝑆 = 𝟎                                                                                                            (6) 

Simplifying the function to a linear combination of two loss functions as in 

𝐿reg =
1

𝑛
∑  𝑛
𝑖=1 𝛼∥∥𝐩𝑆∥∥

2 + (1 − 𝛼)∥∥𝐩̂𝑆 − 𝐩̂𝑇∥∥
2
                                                                                                 (7) 

To prevent overfitting and reduce model complexity, the KD will stop when the student 

model has a lower error than the teacher one. The formula (7) can be further simplified as 

𝐿reg =
1

𝑛
∑  𝑛
𝑖=1 𝛼∥∥𝐩𝑆∥∥

2 + (1 − 𝛼)𝐿compare                                                                                                  (8) 

𝐿compare = {
∥∥𝐩̂𝑆 − 𝐩̂𝑇∥∥

2, if ∥∥𝐩̂𝑆∥∥ > ∥∥𝐩̂𝑇∥∥

𝟎,  otherwise 
                                                                                                (9) 

where 𝑃𝑝 and 𝑃𝑡 are measured power of park and turbine, 𝑃̂𝑝 and 𝑃̂𝑡 and their predicted power 

by the teacher and student models, respectively. 0 < 𝛼 < 1 represents the vital index named 

KD parameter that controls the balance between knowledge flow from teacher and student 

itself in the learning stage. 
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Fig. 2. The proposed KD structure for distilling knowledge from park to turbine. 

2.4. Error correction for NWP  

As described in Section1, NWP data are often on large scales and can often be downscaled 

from tens of kilometers to a few ones as applicable to wind parks. However, research has shown 

that a lower scaling is not always advisable in wind power prediction [45]. Also, it is difficult to 

accurately downscale NWP to wind turbines (tens of meters) because of the involved 

turbulence and sophisticated CDF assumptions. In engineering practice, the NWP wind data 

corresponding to the park are accessible. Meanwhile, the turbine data are analogous to those 

of the park. In view of the profound pattern mining and matching capabilities of deep learning 

and the neat structure of TL, park's NWP information can be refined and transferred to more 

accurate turbine predictions through the corresponding data-driven prediction error 

correction approach. The proposed NWP error correction approach is explained in detail in 

section 3.2. 

2.5. Modular for Forecasting algorithms 

The research employs three deep learning regression algorithms: a multilayer general 

deep neural network for univariate TL (error correction from park to turbine and integration 
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of turbine training and testing), Bi-LSTM for student prediction of turbines model, and a 

developed large-scale EDLSTM for forecasting the wind park, respectively. The first two are 

well-established deep learning models that are well elaborated in [28]. And the superiority of 

EDLSTM, applied in the proposed KD structure for park prediction algorithms, compared to 

other machine learning benchmark models (Persistence, simple three-layer backpropagation 

Neural Networks, basic LSTM, bionic optimized neural networks constructed Adaboost 

ensemble learning) has been thoroughly analyzed in [17].  And the detailed description of 

competitors for the proposed prediction framework is described in section 5.2. Since modern 

deep learning models are modularly constructed, a brief summary of the used modules is 

presented in Table. 1. 

Table 1. A brief summary of prediction modules’ setup 

Forecasting 

model 
Main parameters 

Fully connected layer Sigmoid activation function, and Mean Square Error (MSE) loss function 

Deep neural network 

for univariate TL 

The input, 3 hidden, and output layers are with 7, (15, 10, 15) and 7 neurons, respectively; 

sigmoid activation function, and MSE loss function. (Hidden layers neurons numbers 

are roughly found with a grid search with a unit of 5 from 5 to 30.) 

LSTM unit  Sigmoid activation function, MSE loss function, and Adam algorithm optimizer. 

Bi-LSTM 

Fully connected layer for internal outputs and the regressor, Two-layer seven LSTM 

units with reverse directions A fully connected layer with 7 neurons as the external 

output layer. Dropout avoids overfitting.  

EDLSTM 

The encoder and decoder, linked with a fixed-length context layer, are with 3 layers of 7 

connected LSTM units. Dropout and early stop to avoid overfitting. Batch size control 

for fast learning. 

3. Data preparation and prediction theory  

3.1. Data preparation 

Wind turbines can convert the kinetic energy from the wind into electricity. Theoretically, 

the wind power generation model is expressed in (10): 

𝑃 =
1

2
𝜌𝜋𝑅2𝐶𝑝(𝜆, 𝛽)𝑣

3                                                                                                         (10) 

where P is the wind turbine power generation (W); ρ is the air density (kg/m2); R donates the 

rotor radius; CP means wind energy utilization efficiency (dependent on the tip speed ratio 𝜆 

and the blade pitch angle 𝛽); v represents the wind speed (m/s). According to (10), the output 

of a wind turbine is mainly about the wind speed, air density, swept area, and blade conditions, 

all of which are strongly influenced by the local weather of the turbine. 
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Given that the present investigation is a follow-up study to the previous article [17], the 

data from the same wind park, a 54 MW with 18 Vestas V90 3 MW turbines with complex 

terrain in the Arctic, are maintained for comparability. The measured 2017 year data with a 10-

mins temporal resolution of the whole wind park (also with 2.5 km spatial and 1 h temporal 

resolution NWP data) and 5 turbines with varying terrains (T1 Plateau, T2 Valley, T3 Lakeside, 

T4 Hilltop, T5 Seaside).  

For park and turbine, the raw 10-mins measured data derived from the averaged 

interpolation approach are utilized since it is required to forecast its hours-ahead power. The 

details of the used data can be found in Section 2 of [17]. 

       Due to the varying physical variables involved in the mentioned equations, the raw data 

should initially be scaled before learning with data standardization (adjustment by placing the 

mean at 0 and the standard deviation at 1) to facilitate the convergence speed of the loss 

function in learning [46].                                                                                 

3.2. Prediction theory 

Mathematically, wind power prediction with deep learning can be simplified to a function 

construction problem. Where the variables can be linked by suitable function operators. This 

paper proposes the following functional approach to realize transferring large wind park power 

forecasting models to small turbine prediction and realize non-explicit NWP downscaling by 

error correction. 

Algorithm 1. 

1. Teacher (large) models for wind park p and their error functions. 

𝑃̂𝑖+𝑛𝑝
I
= 𝑓𝑝

I (𝑃𝑖−𝑗𝑝; 𝑣𝑖−𝑗𝑝) ,

𝐸𝑟𝑟𝑜𝑟𝑝
I = 𝑃𝑖+𝑛𝑝 − 𝑃̂𝑖+𝑛𝑝

I
,

𝑃̂𝑖+𝑛𝑝
II
= 𝑓𝑝

II (𝑃𝑖−𝑗𝑝; 𝑣𝑖−𝑗𝑝; 𝑢𝑖+𝑛𝑝) ,

𝐸𝑟𝑟𝑜𝑟𝑝
II = 𝑃𝑖+𝑛𝑝 − 𝑃̂𝑖+𝑛𝑝

II
,

𝐸𝑟𝑟𝑜𝑟𝑝
II = 𝑔𝑝(𝐸𝑟𝑟𝑜𝑟𝑝

I).

                                                                                                                 (11) 

where i is the current time i=1, 2, …, 7, and with each i, 𝑗=0, 1, …, 6. 𝑃̂𝑖+𝑛 is n hours ahead 

predicted wind power, 𝑛 ∈ [6,24], v is the wind speed observed in the turbine, u represents the 

wind speed calculated from the mesoscale NWP wind model for the site.  

Firstly, two large deep learning prediction models 𝑓𝑝
I(. )  and 𝑓𝑝

II(. ) for wind parks are 

created with only measured data and measured and NWP data, respectively, and the prediction 

error sequences are calculated separately. Then the relational function 𝑔𝑝(. ) of the two error 

sequences is established. 
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2. Student (small) training models for turbine t and error functions transfer. 

𝑃̂𝑖+𝑛𝑡
I

𝑇𝑟𝑎𝑖𝑛
= 𝑓𝑡 (𝑃𝑖−𝑗𝑡𝑇𝑟𝑎𝑖𝑛

; 𝑣𝑖−𝑗𝑡𝑇𝑟𝑎𝑖𝑛
)                                                                                                       (12) 

𝑃̂𝑖+𝑛𝑡
II

𝑇𝑟𝑎𝑖𝑛
= 𝑃̂𝑖+𝑛𝑡

I

𝑇𝑟𝑎𝑖𝑛
+ 𝑔𝑝(𝑃𝑖+𝑛𝑡 − 𝑃̂𝑖+𝑛𝑡

I

𝑇𝑟𝑎𝑖𝑛
)                                                                                                  

Firstly, the learned large wind park prediction model 𝑓𝑝
I(. ) in the first stage is distilled 

to the small turbine model 𝑓𝑡(. ) with KD. Then the error relational function 𝑔𝑝(. ) for park is 

transferred to non-explicitly compensate for the lack of NWP information in the original 

prediction model 𝑃̂𝑖+𝑛𝑡
I

𝑇𝑟𝑎𝑖𝑛
 for turbines. 

3. Turbine testing models 

𝑃̂𝑖+𝑛𝑡
I

𝑇𝑟𝑎𝑖𝑛
= ℭ𝑒(𝑃̂𝑖+𝑛𝑡

II

𝑇𝑟𝑎𝑖𝑛
)                                                                                                 (13) 

𝑃̂𝑖+𝑛𝑡
I

𝑇𝑒𝑠𝑡
= 𝑓𝑡 (𝑃𝑖−𝑗𝑡𝑇𝑒𝑠𝑡

; 𝑣𝑖−𝑗𝑡𝑇𝑒𝑠𝑡
)                                                                                                      

(14) 

𝑃̂𝑖+𝑛𝑡
II

𝑇𝑒𝑠𝑡
= ℭ−1𝑒(𝑃̂𝑖+𝑛𝑡

I

𝑇𝑒𝑠𝑡
)                                                                                                 (15) 

       Since the result labels in the test set should not be involved in testing, so the prediction 

errors in the test set cannot be engaged in the same way as the training for model correction. 

Therefore, primitive and inverse function transformation is introduced to link the original and 

improved model (with NWP information) for testing. Firstly, primitive function ℭ𝑒(. )  is 

learned between the two predictions of the training set. Then the trained turbine model 𝑓𝑡(. ) is 

tested on the test set to get an original prediction 𝑃̂𝑖+𝑛𝑡
I

𝑇𝑒𝑠𝑡
. Finally, the improved test set model, 

delivering the final forecast 𝑃̂𝑖+𝑛𝑡
II

𝑇𝑒𝑠𝑡
, is obtained by the inverse operator ℭ−1𝑒(. ) on 𝑃̂𝑖+𝑛𝑡

I

𝑇𝑒𝑠𝑡
.        

To summarize, the foregoing framework for wind turbine power prediction through KD, 

TL, and error correction is exhaustively illustrated in Fig. 3. 
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Fig. 3. The proposed KD structure for distilling knowledge from park to turbine. 

4. Experiments 

4.1. General experimental process 

Firstly, the measured wind park and turbine 10-minute data are first interpolated into 

hourly data by averaging. And all data are standardized and divided into a training set, 65%, 

and a testing set, 35%. Then add white noise to expand the data to five times the original size 

(DA2 data augmentation in [17]). The training sets of the park (with 10-folds validations for 

improving training accuracy for its large forecasting model) and turbines are separately loaded 

into their corresponding algorithms to learn fine-tuned forecasting models and generate 

predicted power of the park and turbines.  Subsequentially, the prediction errors can be 

calculated and transferred for the turbine prediction corrections if needed. Finally, the 

described turbine predictive modeling frames are tested with the turbines’ testing sets and the 

performance is assessed and compared.  

4.2. Performance evaluation 

The data-driven wind power prediction is essentially categorized as a regression problem 

in machine learning, where the MSE controls the model's learning progress as the basic unit 
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of the regressor loss function. Therefore, the Root Mean Square Error (RMSE) is the most 

dominant indicator to evaluate the models' performance. Besides, prediction Qualification 

Rate (QR) [47] is introduced to more physically evaluate models. RMSE emphasizes larger 

forecasting errors while the QR stresses smaller ones. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖−𝑃𝑖̂)

2𝑚
𝑖=1

𝑚
                                                                                                                                     (16) 

𝑄𝑅 =
1

𝑚
∑𝑖=1
𝑚  {

1, (1 −
|𝑃𝑖−𝑃𝑖̂|

𝐶𝑎𝑝
) ⩾ 𝑄

0, (1 −
|𝑃𝑖−𝑃𝑖̂|

𝐶𝑎𝑝
) < 𝑄

                                                                                                                      (17) 

where Pi and 𝑃𝑖̂ represent standardized measured and corresponding predicted wind power, m 

is the sample number of the testing set. Cap donates the designed turbine capacity. Q is the 

quantile percentage of qualified predictions, selected as 90% in the work as QR90. 

Moreover, as a crucial strength of the proposed model is merely training the large 

EDLSTM network on wind park data and transferring the network's knowledge to the small 

network for turbine prediction via the developed KD technique, the complexity and computing 

load of the proposed model could be anticipated to be considerably reduced. So, indices like 

number of model parameters, modeling time consumption and inference time on the edge are 

also compared with the rate between forecasting models. 

Furthermore, since multiple groups of metrics are involved in the comparisons, a 

multivariate statistical test, the Friedman test [48], is applied to determine statistical 

significance in the metrics. 

H0: The column data fail to show a significant difference. 

Ha: They display a significant difference. 

The statistic F is in (18): 

𝐹 =
12𝑡

𝑘(𝑘+1)
[∑  𝑘

𝑖=1 𝑟𝑖
2 −

𝑘(𝑘+1)2

4
]                                                                                                                                 (18) 

where t and k represent the number of samples and their columns, ri is the mean of row i, 

which follows 𝜒(𝑘−1)
2  distribution under H0. 

5. Results and discussion  

This section presents the experimental results from a holistic range in three perspectives. 

Firstly, given that the KD and TL models serve as core pieces of the proposed method, and the 

foremost KD parameter 𝛼  and TL parameter 𝛾  remarkably affect the whole forecasting 

performance, it is necessary to find the most appropriate parameters first. The second part is 

the main content of the Section, which synthetically evaluates the proposed model by 
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comparing it with the benchmark models. Moreover, a physical analysis of the predicted power 

is briefly undertaken. 

5.1. Optimal TL and KD parameters finding 

According to Eq. (7) and (8), the KD parameter 𝛼 controls the weights of soft-loss from 

teacher model and hard-loss from student model. Therefore, an optimized KD architecture 

needs to be constructed before the implementation of the complete turbine prediction 

modeling. And based on to Eq. (4) the TL parameter 𝛾 adjusts the contribution of MMD-based 

mechanism in TL process, with which the fine-tuned model will be more adaptable to new data. 

A grid search is conducted for the parameter in the range of 0 to 1 in steps of 0.2, and the 

corresponding performance RMSE of the KD turbine prediction model in Fig. 2 (also 

Algorithm 1.1) with finding 𝛼 is illustrated in Fig. 4 (a). The overall RMSE, for all targeted 

turbines, of KD is seen to exhibit nonuniform downward trends as 𝛼 increases from 0 to 1. 

However, the RMSE variations and 𝛼-values corresponding to the minimum points vary for 

different turbines. The KD models for the turbines, except for T3 (0.6) and T5 (1), are 

optimized for an 𝛼 of 0.8. Intuitively, an interpretation could be that the student model learns 

more from the complex teacher when the 𝛼 parameter is bigger, but completely abandoning 

the student's own loss function may also lead to underfitting on the training set. Therefore, 

𝛼 = 0.8 is chosen as the optimized parameter of KD for all the five turbines in the following 

trials for 𝛾 determinations. 

 

Fig. 4. The grid search for KD and TL parameters with indexing by RMSE (The points corresponding 

to the best performance is marked with bigger icons): (a) KD parameter 𝛼 and TL parameter 𝛾, (b) TL 

parameter 𝛾.  
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Set the 𝛼 of KD to 0.8 for all wind turbine prediction frames and then proceed to correct 

prediction errors with TL from the park to turbines. The same grid search is also made for 

determining a proper TL parameter 𝛾 for error transferring. The performance comparison is 

displayed in Fig. 4 (b). The RMSE also shows a decrease with increasing 𝛾 parameter, but not 

significantly, and even displays a decreasing and then increasing shape in T1 and T4. Besides, 

algorithmically, 𝛾 controls the contribution of the comparison between wind field and turbine 

data in the TL, so its optimal value changes with the turbine data and TL internal states. Thus, 

it is hardly applicable to determine each turbine's TL with a single 𝛾 parameter. For T1 and T4, 

𝛾 is 0.6; for T3 and T5, 𝛾 is 0.8; 𝛾 is 0.4 for T2. 

Therefore, the two dominant parameters for the proposed turbine prediction framework 

are determined with the grid search and will be applied in the following experiments. 

5.2. Multistep turbine power prediction   

Two crucial parts are involved in the proposed model, i.e., KD and TL error correction (if 

the latter is involved, the Algorithm 1.3. must be included for the testing set) for turbine power 

predictions. 

To explore the contribution of each part, several model variants are derived for the 

comprehensive ablation investigation. The models’ description and their inputs are listed in 

Table 2. 

Table 2. The general description for the used models. 

Model Description  
Inputs (standardized 

data) 

BiLSTM Simple Bi-LSTM for turbine prediction. 
Turbine measured data, 

NWP for park 

EDLSTM 
[17] proposed EDLSTM framework for 

turbine prediction. 

Turbine measured data, 

NWP for park 

KD 
Only Fig. 3 KD system without TL error 

correction 

Park and Turbine measured 

data 

EDED-TL 

EDLSTM for both park and turbine 

forecasting and they are connected with 

TL error correction, no KD is involved. 

Park and Turbine measured 

data, NWP for park 

EDBi-TL 

Without KD, EDLSTM for park 

forecasting, and Bi-LSTM for turbine and 

they are linked with TL error correction. 

Park and Turbine measured 

data, NWP for park 
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KD-TL 

The proposed predictive framework in 

which KD combines EDLSTM for park 

and Bi-LSTM for turbine, their 

relationship is found in forecasting by TL 

error correction. 

Park and Turbine measured 

data, NWP for park 

The six models and corresponding inputs from the above table are individually applied to 

five selected wind turbines to predict power from 6 to 12 hours in advance. All prediction 

models yielded relatively satisfactory outputs within forecasting steps, all with RMSE < 0.15, 

which fully illustrates the powerful nonlinear mapping capability of the deep LSTM neural 

network-based models. The RMSE for different models with varying prediction steps is 

illustrated in Fig. 5.  

Generally, all prediction models RMSE rises with increasing steps, but the rising rate is 

gradually slowing down. In virtually multiple steps, EDED-TL and proposed KD-TL perform 

best among all turbines’ predictions.  

 

Fig. 5. The multistep RMSE of models with varying prediction algorithms for each turbine: (a) 

BiLSTM, (b) EDLSTM, (c) KD, (d) EDED-TL, (e) EDBi-TL, (f) KD-TL. 

To quantitatively analyze the variations in multistep performance, the RMSE inter-step 

rising rates are calculated and the summarized geometric means, also with the Friedman tests, 

and STDs of these rates are taken separately for both turbines and algorithms are shown in the 

Table 3. Table 3(a) says the p-value of the Friedman statistic is much less than 0.05, indicating 

that the RMSE increase (from around 1.8% to 3.8%) with the step of the six prediction 

algorithms is significantly different. This also verifies the dominant influence of topography on 
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turbine predictions. As can be observed from Table 3(b), its Friedman statistic gives a p-value 

of 0.9047 which means the RMSE inter-step increase is statistically identical for the models, 

which, to some extent, reveals that LSTM-based models can deeply and robustly mine the 

essential characteristics of the wind data and when a model has an initial edge, the edge carries 

over. 

Table 3(a). The statistics for RMSE inter-step rising rates geomeans for different turbines. 

Rising rate between turbines 

F = 16.4; p = 0.0025 
T1 T2 T3 T4 T5 

GeoMean 2.395% 3.839% 2.749% 1.818% 3.109% 

STD 0.0030 0.0032 0.0105 0.0020 0.0043 

Table 3(b). The statistics for RMSE inter-step rising rates geomeans for various models. 

Rising rate with steps 

F = 1.57; p = 0.9047 
BiLSTM EDLSTM KD EDED-TL EDBi-TL KD-TL 

GeoMean 2.853% 2.576% 2.676% 2.716% 2.810% 2.567% 

STD 0.0096 0.0082 0.0103 0.0068 0.0097 0.0070 

 

5.3. Holistic validity of the proposed model  

Furthermore, the collective performance of various algorithms and different turbines are 

summarily compared in Fig. 6 with geometric means (including STD) in terms of algorithm 

and turbine perspectives. Fig. 6 (a) clearly presents the average performance for diverse 

algorithms in the multistep predictions. KD, despite distilling park's knowledge to turbine, 

performs the worst, which is because the weather forecasts are not included in the model's 

inputs, thus the prediction accuracy on historical measured data only is unsatisfactory even 

with advanced methods. Two baselines with NWP inputs, BiLSTM and EDLSTM, the latter is 

obviously better than the former, are slightly inferior to EDBi-TL. This indicates that turbine 

prediction is improved by TL of error correction even without the KD mechanism. And the 

improvement is considerably bigger than directly incorporating the wind park's NWP data into 

the turbine predictions. By discovering the advantage of EDED-TL over EDBi-TL, it means 

that the simple Bi-LSTM, compared to EDLSTM, may not learn the deep features of the turbine 

data well. Noteworthy, the proposed KD-TL delivers the lowest RMSE, (averagely 21.14%, 

7.89%, 23.92%, 3.26%, and 14.86% lower than BiLSTM, EDLSTM, KD, EDED-TL, and EDBi-

TL.) which proves the superiority of the proposed models among its competitors.  

Fig. 6 (b) summarizes the prediction performance of the algorithms for varying turbines. 

The RMSE for turbines in flat terrains, such as T1 Plateau and T3 Lakeside, is minimal within 

an STD. By contrast, the distinctive fjord landscape of the Norwegian coast makes T2 Valley, 
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T4 Hilltop, and T5 Seaside somewhat challenging. But the proposed framework holistically 

addresses these challenges and provides competitive predictions in these complex terrains (the 

KD-TL RMSE of these three turbines is smaller than RMSE of some baselines for turbines on 

flat ground.). 

 

Fig. 6. The overall average RMSE of multistep prediction models with STD: (a) Predictive algorithm 

perspective, (b) Different turbine perspective. 

Finally, the proposed KD-TL has the best performance, even lower than EDED-TL does, 

both in mentioned two perspectives, which demonstrates that the learned turbine Bi-LSTM 

(student) with KD from park EDLSTM is even slightly better than the complex EDLSTM, 

consuming much computing resources and time, for turbine itself. This suggests certain 

overfitting in the large EDLSTM on the turbine smaller, compared with park, data. Moreover, 

its advantage over the EDED-TL also exists in model’s complexity. The number of EDED-TL 

parameters is around 3.8 times bigger than the number of KD-TL (also means around 20 times 

for five turbines’ forecasts.). And the former also spends around 2.3 folds as much time as the 

latter does on edge inference, which meets excepted diminished complexity and rapidity for 

the proposed model in engineering operations. 

To further delve into the turbine power predictions by different. This subsection briefly 

explores the physical interpretation of the outcomes. Fig. 7 exhibits the geometric QR90 

average of five turbines, from 6 to 12 steps, an increase of proposed KD-TL in comparison to 

other prediction models. As this metric focuses more on predictions within ten percent of the 

designed power difference between the predicted and real values, a high QR90 reflects that the 

prediction method gives a more trustworthy result. It is seen that compared to BiLSTM, 

EDLSTM, KD, EDED-TL, and EDBi-TL, KD-TL offers improvements of QR90 over 14.07%, 

11.35%, 14.96%, 1.07%, and 7.86% within one STD respectively. 
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Fig. 7. The overall average QR90 increase rate of the proposed multistep KD-TL prediction versus 

other models. 

In summary, the proposed model enables more precise and economic multistep turbine 

power prediction than the baseline models and such advantages exist for turbines on different 

topographic conditions. 

6. Conclusions 

This paper exploits a deep learning wind power prediction framework. It bridges large 

(park with big data) and small-scale (turbine with small data) forecasting through a proposed 

knowledge distillation regression approach, and maps park-scale weather forecasts non-

explicitly to turbine-scale by TL-based prediction error corrections. The following conclusions 

are drawn from experiments on turbine predictions under five types of topography in a park 

in the Arctic. 

As the turbine prediction models get knowledge by KD from the park model, it is vital to 

optimizing both contributions in the final prediction model (loss function in deep learning). 

The contributions’ parameters for the KD are found as 0.8. And the parameters for error 

corrections change with turbines and their scope is determined to be 0.4 to 1. 

  The proposed KD-TL multistep power prediction framework is extraordinarily effective 

and robust by leveraging the data and reinforcing the nonlinear capabilities of the model based 

on the experimental comparisons. Compared to its competitors, the overall average 

effectiveness, by RMSE, is respectively improved from high to low: 23.9%, 21.1%, 14.9%, 7.9%, 

and 3.3%. The effectiveness is also verified with a metric with physical meaning, QR90. 

Moreover, KD-TL, thanks to its adequate utilization of weather forecast information, yields 

satisfactory outcomes in predicting wind turbines in complex terrain, normally challenging, as 

well. Finally, the complexity and response time of KD-TL decreases multiplicatively over its 

closest competitor, which enables the proposed approach to have extensive strengths in 

engineering deployment. 
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Furthermore, consequent policy recommendations could be inferred: 

The assembled historical data should be sufficiently exploited to build accurate large 

models applicable to the local natural conditions in regional energy industries. With know, a 

smaller, easy-to-deploy model could be developed in practical applications by edge computing 

methods. In data-oriented engineering, initial model errors, usually ignored or dismissed as 

unfavorable, are valuable that can be extracted by progressively state-of-the-art deep learning. 

The extracted information may help the subsequent modeling through appropriate transfer 

methodology. 
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