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Impact of climatic change on alpine
ecosystems: inference and prediction

Nigel G. Yoccoz, Anne Delestrade and Anne Loison

1 Alpine climate has changed during the last decades and future changes will be even larger

(Beniston, 2009). But climate does not change alone: agriculture and forestry, tourism,

nitrogen deposition, invasive species are all factors that can affect alpine ecosystems. We

are  then  faced  with  both  the  complexity  of  changes  and  of  ecosystem  functioning:

prediction  (Box  1)  of  global  changes  impact  on  ecosystem  structure  and  function

(biodiversity, species distribution, biogeochemical cycles) is difficult. Recent years have,

however,  seen rapid developments of  predictive models.  Our objective here is  not to

review what is known of the impact of climatic change on alpine ecosystems – we will use

only some selected examples – but rather to project ourselves in the near future, ask

some specific questions and suggest some answers: what kind of research approach is best

suited to refine our projections? In other words, what kind of data and models do we

need?

 

Box 1: Scenarios, projections, predictions, forecasts,
verification, validation…: a glossary

2 What will be an alpine ecosystem in 50 years from now? To answer this question requires

integrating many disciplines (climatology, social sciences, economics, ecology, statistics

to quote only five) that have all their own vocabulary. For a statistician, a model makes

predictions –  nothing to do with magic,  the model  is  only applied to new data,  and

predictions can be made for the future, another region or the past. Under the assumption

that the structure and the parameters of the model apply to these new observations, it is

possible to calculate the uncertainty of these predictions. In social sciences, it is often

illusory to develop predictive models for which uncertainty can be estimated, and use of

scenarios  is  common,  for  example  within  the  IPCC  framework.  These  scenarios

correspond to simplified frames for the evolution of our society, and no likelihood or
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probabilities are associated to them. They often project in the future recent evolutions,

with changes often dependent of rather crude economic options. Similarly (but based on

highly complex numerical models), climate models project in the future what is known of

the climate today, but modifying some variables (such as CO2 concentration) according to

the economic scenarios. Forecast is often used for predictions which are not long-term, as

for example for weather or economic forecasts, but what is long term depends on the

discipline:  10 days for daily weather forecasts,  some years at  most  in economics.  All

predictions  or  forecasts  should,  however,  be  validated.  This  is possible  for  weather

forecasts – and is done routinely and using more and more elaborate tools, taking in

particular forecasting error costs (Casati et al., 2008), but difficult if the projection is for

the climate in 2060. There are then two possibilities: validate models in other regions, for

example  by  building  a  predictive  model  of  species  distribution  in  Switzerland  and

validate in Austria (Randin et al., 2006), or validate in the past, for example by comparing

climate obtained from a climate model and a climate reconstructed using proxys such as

pollen and macrofossils (Kaspar et al., 2005). Such a validation does not lead to model

verification – in other words, “all models are wrong, but some are useful” (Box et al., 2005)

–  a  model  can be  valid  or  useful  to  make predictions  even if  one  knows that  some

components of the model are poor approximations of species’ ecology.

3 To make predictions imply in most cases using quantitative models, based on equations

linking what will  change – climate among other factors -  and variables we focus on:

distribution or abundance of species (for example:  where do the rock ptarmigan will

survive  in  100  years  from  now),  or  more  functional  aspects  (for  example,  primary

production or ecosystem resilience to extreme environmental events such as the drought

of 2003, very severe in the Alps (Rébetez, 2004)). These models vary along an axis with

purely numerical  models  without  biological  mechanisms at  one end and mechanistic

models, using known effects on ecosystems and projecting them in the future (Morin and

Thuiller, 2009). The former models can be very efficient at describing the present, but do

not  usually  lead  to  an  understanding  of  the  causes  behind  the  changes.  To  base

projections on such models can be unreliable. It is also more satisfying to understand

rather than just predict, but it can be necessary, particularly so for management in a

short-term  perspective,  to  achieve  optimal  predictions  without  waiting  for  better

knowledge of mechanisms which can take long time to achieve. The art is to combine the

two approaches – include mechanisms when they are important and known with enough

precision  to  lead  to  reliable  forecasts,  and  to  describe  the  rest  using  numerical

approaches, but based on rigorous statistical criteria (Gallien et al., 2010). The option of

building “realistic” models including all known mechanisms is not a viable one because

the enormous complexity and uncertainty of such models make them useless (Oreskes,

2003).

4 We address in this paper three levels for the response to climatic change: individuals,

populations  and  ecosystems  (Stenseth  et  al.,  2002).  These  three  levels are  inter-

dependent, and we will show how ecosystem impacts can be derived from impacts at the

individual  level.  However,  as  data  and  models  differ  among  levels,  we  keep  the

distinction. The examples chosen – phenology, distribution and trophic interactions – are

not exhaustive, but reveal what are the main challenges ahead.
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Phenology

5 It is one of the phenomena most directly linked to temperature, even if other factors can

be important  (photoperiod):  we are all  aware that  the first  leaves or  flowers appear

earlier in a warmer spring. Earlier seasons have been described throughout the world

(Menzel et al., 2006; Morissette et al., 2009), and mountains are no exception (Ziello et al.,

2009). But snow can influence the direct effect of air temperatures: plants cannot start

their development before snow melting (Wipf and Rixen, 2010). An increase in winter

precipitations, if it leads to an increase in snow depth, can therefore limit the impact of a

warmer spring. Moreover, some species, such as migratory birds, are influenced by what

is happening in their wintering or migration grounds, usually in lowlands or in southern

regions,  and  can  therefore  be  out  of  synchrony  with  local  plants,  coming  too  early

compared to the availability of resources (Inouye et al.,  2000). On the contrary, if the

decision to start breeding or molt (for a ptarmigan, say) depends on photoperiod, this can

lead to a delay.

6 A large number of  models  have been developed to link plant  phenology to different

climatic  variables  –  spring temperatures,  but  also  winter  temperatures  as  some tree

species need to be “chilled” before they can start their development (Chuine, 2000). These

models can be mathematically complex and require detailed temperature data, allowing

calculating at the daily scale the sum of temperatures above a given threshold (degree-

days). These models have been developed in lowlands – very little is known for mountain

areas, and even less for alpine areas. This can be explained by the origin of phenological

data, most often coming from botanical gardens or meteorological stations, which are

rare in alpine regions, and focusing on species which do not reach high altitudes (most

are trees, and often broad-leaved trees: Menzel et al., 2006). Therefore, the majority of

studies published on phonological changes in Europe or North America focus on lowlands,

and the influence of snow is very rarely analyzed or discussed.

7 The CREA has therefore started the project Phénoclim, a network of stations monitoring

phenology and temperatures, covering the French Alps with some additional stations in

Italy and Switzerland. As Phénoclim was started in 2005, it cannot be used to build up a

predictive model of phenological changes for the next 20 or 50 years, as it was done in

other regions. But the first results, using the altitudinal gradients to identify climatic

factors influencing important phenological events (as bud burst; see Vitasse et al., 2009),

suggest that snow, through its impact on soil temperature and early development, is an

important driver. Trees of course burst later at higher altitudes, but the delay observed is

larger than what would be expected from a simple effect of the temperature decrease

with altitude: some species need a larger accumulation of degree-days to reach a given

stage such as bud-burst (Pellerin et al., under revision). The spring warming (particularly

strong in some alpine regions:  www.meteosuisse.ch)  will  therefore not  just  influence

phenology directly, but also indirectly through the decrease in snow cover. We believe

that developing phenological models integrating snow is needed for alpine environments.

As  climate  scientists  are  developing  predictive  models  for  snow  cover  and  depth

(Beniston, 2009), the latter could be used in predictive models of phenological changes.

8 Plants are not the only organisms with their life cycles being affected by ongoing climatic

changes. Birth dates for marmots or chamois, laying dates for birds, or emergence of

butterflies are also impacted by climatic variation to some degree: if butterflies are more
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likely to be directly influenced by spring or summer temperatures, determination of birth

dates of chamois is more complex (for example because mating occurs in the fall). Arrival

dates of migrating birds is also influenced by weather conditions, but often far from their

breeding areas (Jonzén et al., 2006). That life cycles are influenced by different factors

leads to possible changes in the interactions among species, a point we detail below.

9 We now know that phenological changes represent one of the most rapid response to

climatic change, but that these responses can differ greatly from one group to the next.

Moreover,  alpine  areas  have  their  own  specificities  (snow,  migrating  or  hibernating

species)  which have not  been integrated in most  models.  The lack of  data  in alpine

regions explains in part why modeling effort has been relatively weak in this region with

a more complex functioning, but recent studies and networks should lead to a better

understanding of alpine specific characteristics.

 

Distribution

10 Models  used to predict  species distributions as  a function of  climate have developed

rapidly in the last 20 years (Thuiller et al., 2009). As some of the research groups working

on these models study alpine species, we know in fact much on these species. Alpine

species  distributions  are  often closely  linked to  climate.  The forest  or  tree line,  and

therefore of the tree species, is likely to be the first example that comes to mind. It is also

an excellent example of human influence through land use: in the Alps, the tree line is

usually below what climate alone would allow for, a well known consequence of grazing.

A study in the Swiss Alps has shown that a large part of the altitudinal increase in tree

line is due to a decrease in land use at high altitudes, and that the ongoing warming has

not contributed much (Gehrig-Fasel et al., 2007).

11 Species distribution models, also called niche models, are conceptually relatively simple:

on one hand predictive variables, preferably climatic variables having a direct influence

on organisms, on the other data on species distributions, often from atlases or surveys. A

large number of  statistical  models exist  to link these two types of  data (se BIOMOD;

Thuiller et al.,  2009).  A large number of studies have compared these models without

reaching a consensus: it is not because a model is better at describing species distribution

today that it will be better at predicting future changes. This problem is well known in

climatology – models that describe best mean temperatures and precipitations today are

not the best models to describe the changes observed during the last 30 or 50 years

(Räisanen,  2007).  We  have  too  few data  on  changes  in  distributions  during  the  20th

century to perform similar comparisons.

12 Studies on alpine species distributions focus mainly on plants because available data are

often  of  much  better  quality  (data  on  alpine  insects  for  example  are  very  poor).

Distribution of alpine species is well described by climatic variables, such as temperature

of the coldest (frost)  and warmest months (which can limit growth,  in particular for

woody species),  evapotranspiration and summer precipitations.  The climatic warming

expected for the next 50 or 100 years (+4 to +6 ºC for summer temperatures in the Alps)

would  lead  therefore  to  distributions  moving upwards,  often  by  500  to  1000  meters

(Randin et al., 2009). But many factors can invalidate these projections: 1) Models fitted to

present distribution assume that climate and distribution are at equilibrium, i.e., present

distribution reflects present climate. For example, absence of a species in a given area is

not due to a slow colonization. Most predictions indeed assume that plants can “follow”
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climate changes, i.e. disperse instantly to new favorable habitats. This is a reasonable

assumption for short distances, but it may be more difficult if it implies dispersing from

one mountain range to another, or if changes are very quick: including dispersal can

therefore lead to different predictions (Engler et al., 2009). 2) Alpine environments are

heterogeneous over short distances, but many models use rather large-scale gridded data

(10x10 or 50x50 km). Average climate over large areas do not include this heterogeneity,

and use of data at smaller scale (100x100 m or less) lead to different future distributions

(Randin et  al.,  2009).  3)  Climatic  factors  are  not  the  only  factors  influencing species

distributions – land use (grazing), management of large herbivores, nitrogen deposition

can also play a role, but it is both difficult to predict their changes and their influence.

13 Another  component  limiting  predictive  models  is  data  quality,  for  both  climate  and

species distributions. As for phenological studies, there are few weather stations in alpine

regions, and models use climate data interpolated from these stations (Zimmermann and

Kienast,  1999).  Even if  such interpolations  reconstruct  the  main patterns  (altitudinal

gradients or outer-inner regions in the Alps), they smooth local heterogeneities linked to

the  complex  topography  of  the  Alpine  range.  Distribution  data  are  also  often

fragmentary, and not sampled according to known criteria. Species distribution models

fitted to such data can differ from those obtained using data acquired using rigorous

sampling designs (Albert et al., 2010).

14 Birds  and  mammals  are  primarily  influenced  by  habitat  characteristics  rather  than

directly  by  climate.  A  bird  like  the  Alpine  chough  needs  cliffs  to  breed  and  alpine

meadows to feed.  Cliff  distribution is  not affected by climate,  but the distribution of

alpine meadows depends on climate (through changes in tree line) but also on land use

changes (e.g.,  colonization by rhododendron).  Effects of  climate change are therefore

hard  to  infer  if  both  direct  and  indirect  (through  habitat  changes)  effects  are  not

understood. This can explain why altitudinal distribution of birds in the Italian Alps has

not changed much (Popy et al., 2010).

15 Changes in mammalian distributions as a consequence of climatic changes have been less

studied than in plants (e.g., Levinsky et al., 2007). Some species are limited by climatic

factors – it could be the case for the lower limit of the alpine marmot, and snow duration

is  a  limiting factor  for  some species.  But  to  take an example  of  habitat  being more

important than climate, the snow vole, a small rodent found in the Alps at up to 4000 m

asl, has a name poorly reflecting his preferences since it can also be found at the sea level

in Croatia! Its distribution is linked to presence of scree with relatively large boulders,

and those are found only in some mountain regions. The direct influence of climate on

distribution and abundance of large mammals has been relatively minor, particularly so

in  Europe.  Indeed,  the  indirect  role  of  climate  on  habitats,  land  use  and  harvest

management (hunting) has been much greater. Large herbivores have been intensively

harvested for meat,  trophy and as competitors of  domestic ungulates up to mid 20th

century. It is only after a general discussion of the status of the flora and fauna that

national  parks  first,  and thereafter  management  plans  outside  protected areas,  have

allowed for an increase in abundance and distribution. It is therefore difficult to assess

the  direct  impact  of  climate  on  the  high  densities  of  large  herbivores  in  mountain

regions, as well as their increase at higher and higher altitude. Studies of population

dynamics  show that  species  respond differently  to  snow depth,  spring phenology or

summer drought.  While  the chamois  is  sensitive  only to  winters  with extreme snow
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depths, ibex and roe deer seem to respond negatively to winters with rather averaged

snow depths.

16 By  continuously  monitoring  both  distributional  changes  and  mechanisms  limiting

populations locally, we should be able to identify the relative importance of direct (snow,

winter harshness, summer temperature) and indirect effects (quality and phenology of

resources) on geographical and numerical changes of different species. It is particularly

important to understand demographic mechanisms leading to species extinctions at low

altitudes, and colonization at high altitudes - these mechanisms are likely to differ. For

plants for example, competition could explain extinction of population at low altitudes,

whereas  temperature  and  dispersion  could  limit  colonization  at  high  altitudes

(Zimmermann  et  al.,  2009).  There  are  very  few  species  for  which  colonization  and

extinction mechanisms are known.

 

Ecosystems and trophic interactions

17 Research on ecosystems is done following two approaches, the first focusing on energy

and matter flows (e.g., C and N), the other focusing on interactions among species, and in

particular those defining the trophic web of the ecosystem. We will discuss here only the

latter,  and  specifically  interactions  among  plants  and  herbivores  (“herbivory”)  and

herbivores and carnivores (“predation”). As for direct and indirect effects of climate on

species  demography,  changes  in  CO2 concentrations  can  have  both  direct  (on  plant

growth and C assimilation, i.e.,  flows of matter in the ecosystem) and indirect effects

(through resistance to herbivory; Lau and Tiffin, 2009) on ecosystems, and we make this

distinction in order to simplify the discussion.

18 Climate can influence trophic interactions first through changes in phenology. For an

herbivore – a chamois as well as a caterpillar – quality and quantity of vegetation change

rapidly through the spring/summer. If quantity increases gradually until a maximum is

reached in the middle of the summer, quality is often much higher early during plant

growth. A caterpillar or a young chamois will therefore achieve higher growth if they can

match it to the period with highest quality of vegetation. Alpine environments differ

since mobile organisms can follow phenological changes, for example by moving upwards

in spring (Albon and Langvatn, 1992). By doing so, they can compensate for an earlier

phenology. On the other hand, less mobile species with a slower response to warming

than vegetation can show a mismatch with their resources. The direction of the effect can

vary with altitude. Some species seem to match the phenology of their resources only for

a specific temperature and snow pattern – the “optimal” band for these herbivores will

move upwards with warming. This seems to occur with an insect pest of birch forests in

mountains of North Norway, which is now impacting forests close to the tree line, with

potential consequences for the evolution of the tree line in this area (Hagen et al., 2007). A

insect pest of larch, however, has seen its outbreaks disappear in the last decades in

Engadine,  for the first time in 1,200 years,  probably as a consequence of the present

mismatch between the insect life cycle and its host, the larch (Esper et al., 2007).

19 Predation – by wolf on chamois or by stoat on vole – can also be directly influenced by

climate, in particular by snow conditions (Stenseth et al., 1998). This will be exacerbated

by different sensitivities of prey to snow: a chamois, with its interdigital membrane, move

faster on snow than a roe deer or a mouflon, which sink in deep or powder snow. In
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addition to the increased energetic costs associated with movement, the differences in

ability to move on snow will  also influence predation risk.  More snow in the winter

season could therefore benefit large predators, which could in the future be negatively

affected by a decreasing snow cover. The recolonisation dynamics of large predators in

the Alps is quick, made easier by the abundance of their prey. If climatic changes are

unlikely to be the major cause of the ongoing geographical expansion of large predators,

they impact their prey (population size and relative abundance of the different species)

and  may  therefore  affect  large  predators’  population  dynamics  in  a  complex,  but

important way. It is only by jointly studying the different trophic levels, from plants to

large herbivores to predators that we will be able to disentangle the direct effects of

climate and the indirect effects associated to trophic interactions among species.

20 Understanding  impact  of  climate  on  trophic  interactions  is  difficult  because  these

interactions  vary  spatially  –  for  example  the  match  between  herbivores  and  plants

described above – and the climatic variables with an ecological impact,  such as snow

quality,  are  not  directly  measured  but  have  to  be  calculated,  often  with  a  large

uncertainty, from other variables such as temperature and precipitation. Snow is also

difficult  to  manipulate  experimentally  (it  is  easier  with  temperature  or  CO2

concentrations) even if some studies have done it, but at very small spatial scales (a few

m²; van der Wal et al., 2000; Wipf and Rixen, 2010). It is therefore not surprising that very

few studies have convincingly demonstrated a direct impact of snow on interactions such

as predation, which often act at large spatial scales (Garrott et al., 2009).

 

Conclusions and perspectives

21 Almost  by  definition,  climate  determines  where  alpine  ecosystems  are  found  –  any

change in climate will force them to move, and to disappear if species cannot follow (by

dispersal) their climatic niche or if their niche is not within the altitudinal limits of the

regions of interest (Thuiller et  al.,  2005;  Randin et  al.,  2009).  The first  models linking

species and climate, mostly applied with success to plants, have identified the important

climatic variables, such as summer and winter temperatures but also evapotranspiration.

The quality of model predictions has been checked in the field either by using models to

find new populations of rare species (e.g., Eryngium alpinum in Swiss Alps (Guisan et al.,

2006)) or by transferring them to other alpine regions (Randin et  al.,  2006).  That the

quality is highly variable means that distribution models need to be refined, by including

mechanisms at the individual and population levels, trophic interactions among species

and ability of species to respond to changes (Hoffmann and Willi, 2008). The integration

of these mechanisms in models describing the impact of climate and climatic changes

require, however, that data have been collected in a consistent way (i.e.,  they can be

compared at similar spatial and temporal scales), and taking into account the large spatial

variability of  environmental  conditions of  alpine ecosystems.  The current network of

observations and experiments covers only a very small part of this variability and results

cannot  be  generalized to  other  alpine ecosystems.  Moreover,  such a  network should

include snow measurements, such as snow hardness (Yoccoz and Ims, 1999; Kausrud et al.,

2008) and snow permeability for respiratory fluxes, in order to better understand the role

of  snow in  ecosystem  functioning.  Setting  up  such  a  network,  combining  intensive

observational/experimental  studies  of  mechanisms  and  extensive  studies  validating

predictions derived from intensive studies, should be a major objective if we want to
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better  predict  how  alpine  ecosystems  will  look  like  in  50  or  100  years,  and  if  our

management decisions can affect their evolution towards preferred states.
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ABSTRACTS

Alpine ecosystems will be greatly impacted by climatic change, but other factors, such as land use

and invasive species, are likely to play an important role too. Climate can influence ecosystems at

several  levels.  We describe some of them, stressing methodological  approaches and available

data. Climate can modify species phenology, such as flowering date of plants and hatching date in

insects. It can also change directly population demography (survival, reproduction, dispersal),

and therefore species distribution. Finally it can effect interactions among species – snow cover

for example can affect the success of some predators. One characteristic of alpine ecosystems is

the presence of snow cover, but surprisingly the role played by snow is relatively poorly known,

mainly  for  logistical  reasons.  Even  if  we  have  made  important  progress  regarding  the

development of predictive models, particularly so for distribution of alpine plants, we still need

to  set  up  observational  and  experimental  networks  which  properly  take  into  account  the

variability of alpine ecosystems and of their interactions with climate.

Les écosystèmes alpins vont être grandement influencés par les changements climatiques à venir,

mais d’autres facteurs, tels que l’utilisation des terres ou les espèces invasives, pourront aussi

jouer un rôle important. Le climat peut influencer les écosystèmes à différents niveaux, et nous

en décrivons certains, en mettant l’accent sur les méthodes utilisées et les données disponibles.

Le climat peut d’abord modifier la phénologie des espèces, comme la date de floraison des plantes

ou  la  date  d’éclosion  des  insectes.  Il  peut  ensuite  affecter  directement  la  démographie  des

espèces (survie, reproduction, dispersion) et donc à terme leur répartition. Il peut enfin agir sur

les interactions entre espèces – le couvert neigeux par exemple modifie le succès de certains

prédateurs. Une caractéristique des écosystèmes alpins est la présence d’un manteau neigeux

important et pourtant l’influence de la neige reste relativement mal connue, en particulier pour

des raisons logistiques. Même si nous avons fait des progrès importants dans le développement

de modèles prédictifs,  surtout pour ce qui est de la répartition des plantes alpines, il  reste à

mettre en place des réseaux d’observations et d’expériences permettant de mieux tenir compte

de la variabilité des écosystèmes alpins et des interactions avec le climat.
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