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ABSTRACT: The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) plays an
essential role in the termination of serotonergic neurotransmission by removing 5-HT
from the synaptic cleft into the presynaptic neuron. It is also of pharmacological
importance being targeted by antidepressants and psychostimulant drugs. Here, five
commercial databases containing approximately 3.24 million drug-like compounds have
been screened using a combination of two-dimensional (2D) fingerprint-based and three-
dimensional (3D) pharmacophore-based screening and flexible docking into multiple
conformations of the binding pocket detected in an outward-open SERT homology model.
Following virtual screening (VS), selected compounds were evaluated using in vitro
screening and full binding assays and an in silico hit-to-lead (H2L) screening was performed to obtain analogues of the identified
compounds. Using this multistep VS/H2L approach, 74 active compounds, 46 of which had Ki values of ≤1000 nM, belonging to
16 structural classes, have been identified, and multiple compounds share no structural resemblance with known SERT binders.

■ INTRODUCTION

Transporters belonging to the neurotransmitter:sodium
symporter (NSS) family are expressed in both eukaryotic and
prokaryotic organisms.1 By facilitating the translocation of a
wide range of substrates across cellular membranes, the
transporters play important roles in physiological processes
such as maintenance of cellular osmotic pressure and
neurotransmission.2,3 The eukaryotic serotonin (5-hydroxy-
tryptamine, 5-HT) transporter (SERT), together with its close
relatives the noradrenaline and dopamine transporters (NET
and DAT, respectively), is one of the most widely studied NSS
transporters. In the central nervous system (CNS), SERT plays
a pivotal role in the termination of serotonergic neuro-
transmission by reducing the amount of the neurotransmitter
available for activation of post-synaptic 5-HT receptors.4

Multiple therapeutic (e.g., antidepressants) and illicit (e.g.,
cocaine) drugs inhibit this reuptake, hence enhancing the
serotonergic neurotransmission.4

The NSS transporters are secondary transporters that use
pre-existing ion gradients as an energy source for the
translocation of their substrates.3,5 In the presence of sodium,

the substrate binding site (termed the S1 site), located
approximately midway through the membrane, is accessible
from the extracellular environment but not from the
cytoplasm.6 Upon substrate binding, large conformational
changes occur, leading to closure of the extracellular regions
and opening of the cytoplasmic parts of the transporters,
resulting in the release of substrate and sodium to the cell.6

However, the fine details of this alternate-access transport
mechanism are not fully known. In fact, studies have suggested
both 1:1 and 2:1 substrate:transporter stoichiometry.7−13 In the
latter scenario, it has been suggested that substrate binding to
an additional site (termed S2) located in the extracellular
vestibule is a prerequisite for initiation of substrate trans-
location from the centrally located S1 site.9,12,13

Homology modeling is an important technique in the study
of NSS transporters, because, until 2013, only one member of
this large family has been solved by X-ray crystallography,
namely, the prokaryotic Aquifex aeolicus leucine transporter
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(LeuT). In accordance with the alternate-access transport
mechanism, LeuT has been crystallized in three major
conformations, namely, in the outward-open (S1 site accessible
from the extracellular region),7,14,15 outward-occluded (S1 site
inaccessible from either side of the membrane),8,10,15−21 and
inward-open (S1 site accessible from the cytoplasm)14

conformations. Co-crystallization with substrates and non-
competitive inhibitors (inhibitors occupying the S2 site)17−19

stabilizes the transporter in the outward-occluded conforma-
tion.15,16 In contrast, LeuT adopts an outward-open con-
formation when co-crystallized with the competitive inhibitor
Trp.15 A major breakthrough in the field of NSS transporters
occurred in 2013, when a report on the first eukaryotic NSS
transporter, the Drosophila melanogaster DAT in complex with
the antidepressant nortriptyline, was published.22 In addition,
12 crystal structures of LeuT with key binding pocket residues
mutated to hSERT (named LeuTBAT) and co-crystallized with
four classes of antidepressants were also released.23 Similar to
LeuT co-crystallized with Trp, the crystal structures of DAT
and LeuTBAT show that the antidepressants are competitive
inhibitors and stabilize the transporters in an outward-open
conformation.22,23

New SERT compounds may increase our knowledge of both
transport and inhibition mechanisms and could potentially lead
to the development of new therapeutic drugs. One approach for
identification of novel compounds is virtual screening (VS), i.e.,
the rapid, in silico assessment of large compound libraries,
which may be performed using ligand- and/or structure-based
approaches. Ligand-based VS can be employed using two-
dimensional (2D) methods such as fingerprint similarity
searching algorithms and three-dimensional (3D) pharmaco-
phore models.24 Ligand-based 3D pharmacophore models are
generated by superimposing a set of active molecules (termed
reference ligands), determining ligand conformations that can
be overlaid in such a way that a maximum number of important
chemical features geometrically overlap.25 In comparison with
ligand-based VS, which does not rely on protein 3D
information, structure-based VS is performed by compound
docking into either X-ray structures or homology models or by
using implicit methods such as structure- or structure-docking-
based pharmacophore models.24,26

Only a limited number of SERT, NET, and DAT VS studies
have been published.27−38 In the majority of studies, ligand-
based approaches have been used, although five structure-based
VS studies were recently published.30,33−35,38 In these studies,
docking into the central S1 site,35 the S2 site,30,33,34 or a
putative allosteric site outside the proposed substrate trans-
location pathway38 in outward-occluded homology models was
performed. In the present study, a protocol combining ligand-
and structure-based VS approaches has been used to screen five
commercial databases containing ∼3.24 million druglike
compounds. The VS protocol comprised 2D and 3D ligand-
based screening of the databases and docking of compounds
into multiple conformations of the ligand binding pocket
detected in an outward-open SERT homology model.39

Following VS, compounds were evaluated using in vitro
screening and full binding assays and the structures of active
compounds were used as queries in a subsequent hit-to-lead
(H2L) screening of the databases. In total, 97 compounds
belonging to 22 structural classes (chemotypes) were evaluated
using in vitro full binding assays. More than three of four
compounds tested (74 of 97) were found to be active (Ki ≤
5000 nM).

■ METHODS

Databases. The screening and building block collections of
five commercial databases were screened: Asinex,40 Chem-
Bridge,41 ChemDiv,42 Enamine,43 and Life Chemicals.44 Prior
to screening, the databases were filtered using the Lipinski’s
“rule of 5” and Veber filters45,46 to obtain druglike compounds.

Reference Ligands. The following compounds, belonging
to five classes of SERT inhibitors, were used as reference
ligands during the 2D and 3D ligand-based steps of the VS
protocol: (S)-citalopram, desmethyl-(S)-citalopram, didesmeth-
yl-(S)-citalopram, (S)-LU-08-052-O, (S)-LU-33-086-O, (RS)-
fluoxetine, desmethyl-(RS)-fluoxetine, fluvoxamine, sertraline,
desmethyl-sertraline, (RS)-venlafaxine, and O-desmethyl-(RS)-
venlafaxine [SSRI/SNRI (5-HT-NE reuptake inhibitor) class],
amitriptyline, clomipramine, desipramine, imipramine, protrip-
tyline and (RS)-trimipramine [TCA class], cocaine, AB-248,
AB-338, β-CFT, CPT-D-tartrate, RTI-31, RTI-32, RTI-55 (β-
CIT), RTI-83, RTI-112, RTI-121, RTI-142, RTI-311 and SN-1
[3-phenyltropane class], (RS)-mazindol, (RS)-mazindane,
(RS)-MAZ-10, (RS)-MAZ-85, and (RS)-MAZ-89 [mazindol
class], and ADAM, 4FADAM, AFM, DAPA, DASB, IDAM,
MADAM, ODAM, and 403U76 [radioligand class]. The
structures and affinities of the reference ligands are shown in
the Table S1 in the Supporting Information.
Individual queries were constructed for the reference ligand

classes; however, because of the structural heterogeneity of the
compounds in the SSRI/SNRI group, additional (S)-
citalopram, sertraline, fluvoxamine, and fluoxetine/venlafaxine
queries were also built. Finally, a general query was prepared
from the structures of all 56 reference ligands. Hence, in the 2D
and 3D steps of the VS protocol, 10 reference ligand queries
were used for screening.

VS Protocol. 2D Fingerprint-Based Screening. To max-
imize the screening performance and to obtain structurally
diverse compounds, 2D pharmacophore-based fingerprints and
structural (hashed chemical) fingerprints were generated based
on the 56 reference ligands in the 10 queries.39

Two-dimensional (2D) pharmacophore-based and structural
(hashed chemical) fingerprints were generated using the
GenerateMD command line tool of JChem,47 using default
settings. The pharmacophore-based fingerprints were con-
structed from the 2D molecular structures of the reference
ligands by defining the collection of all-atom pharmacophore
feature pairs along with their topological distances. The
chemical fingerprints encoded the topological structure of the
ligands into bit strings using atom type and bond type
information (linear and cyclic patterns were detected).
The metrics-threshold pair was determined by three

optimization iterations for each query which were performed
using test sets containing compounds from a given group and
randomly selected assumed inactive compounds from the
ZINC database.48 The optimized metrics and threshold values
used during the screening can be found in Table S2 in the
Supporting Information. The optimization of parametrized
Tanimoto or Euclidean metrics and subsequent 2D fingerprint-
based screening were performed using the Screen command
line tool of JChem.47

Basic Property and ADMET Filtering. First, for all 56
reference ligands, the strongest basic pKa descriptor was
calculated using the Instant JChem calculator plugin.49 Next,
the obtained range of this parameter (pKa = 3−11.5) was used
in the filtering of compounds that passed the 2D fingerprint-
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Table 1. Novelty Analysis Results, Showing the Core Structures, SERT Ki Range (nM), and Number of Compounds in Each
Chemotype (the Number of Similar Compounds, Their Potency Values (nM), and the Structure of the Most Similar Compound
from the ChEMBL62 or MDDR51 Databases is Shown)
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based screening step. Compounds with unfavorable ADMET
profiles were then removed from the dataset using the
Schrödinger software module QikProp.50 The following
ADMET descriptor values were accepted: number of functional
groups (rtvFG = 0−2), predicted aqueous solubility (QPlogS =
−6.5 to 0.5), model for gut-blood barrier (QPPCaco > 500),
and predicted blood-brain coefficient (QPlogBB = −3.0 to 1.2).
3D Pharmacophore-Based Screening. Ten ligand-based

pharmacophore models were obtained using the Catalyst
module of Discovery Studio (Accelrys),51 employing the
FAST algorithm52 for generation of ligand stereoisomers and
conformational sampling.

The HipHop algorithm53 implemented in Catalyst51 was
used for pharmacophore mapping of the compounds that
passed the filtering steps of the VS protocol (see above). The
compounds were allowed to deviate from the pharmacophore
models with maximum one feature except the positively
ionizable (PI) group. Following the 3D pharmacophore-based
screening, overlap analysis was performed using the Instant
JChem tool from ChemAxon54 in order to remove repeated
structures.

Flexible Docking. The construction of the homology model
and the 47 binding pocket conformations has been described in
detail elsewhere.39 The model was constructed based on the
LeuT crystal structure co-crystallized with the competitive

Table 1. continued

aChEMBL version 13. bMDDR version 2011.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400742s | J. Chem. Inf. Model. 2014, 54, 933−943936



inhibitor L-tryptophan (PDB id 3F3A)15 and a comprehensive
alignment of NSS transporters,1 using Internal Coordinate
Mechanics (ICM) software.55

The compounds were docked using a flexible docking
protocol that previously has been used for reference ligands.39

The protocol consisted of (1) detection of the ligand binding
pocket using the ICM PocketFinder,56 (2) biased-probability
Monte Carlo (BPMC)57 sampling and minimization of the
pocket side chains in the presence of a repulsive density
representing a generic ligand to prevent collapse of the binding
pocket, and (3) four-dimensional (4D) docking58 of fully
flexible ligands into multiple pocket conformations generated
during step (2). In the present study, the compounds were
docked into 47 low-energy conformations of the ligand binding
pocket.
The protein−ligand complexes were scored using the virtual

ligand screening (VLS) scoring function of ICM.55 Compounds
passed the structure-based screening step when their scores
were less than −10 and their protonated amine moieties were
located in the vicinity of D98 (TM1). The selected compounds
were clustered using Molprint2D fingerprints and Tanimoto
metrics using the Schrödinger software module Canvas.59 In
addition to the flexible docking results and the clustering of the
compounds, the final selection of compounds for in vitro
evaluation was based on financial and laboratory limitations and
stock availability.
In Vitro Evaluation of the Virtual Hits. The assay was

performed according to a previously described procedure60

with slight modifications. Rat neocortical tissue was homogen-
ized in 20 volumes of ice-cold 50 mM Tris-HCl buffer, pH 7.7
containing 150 mM NaCl and 5 mM KCl using an Ultra Turrax
T25B (IKA Labortechnik, USA) homogenizer (3 pulses, each
of 10 s, 19 000 rpm). The homogenate was centrifuged at
20 000 g for 20 min. The resulting supernatant was decanted
and pellet was resuspended in the same buffer and centrifuged
two more times in the same conditions. The final pellet was
resuspended in an appropriate volume of buffer. [3H]-
Citalopram (spec. act. 85.6 Ci/mmol, PerkinElmer) was used
for 5-HT transporter labeling. Two hundred forty microliters
(240 μL) of the tissue suspension (5 mg/mL), 30 μL of 1 nM
[3H]-citalopram, and 30 μL of the analyzed compound or 1 μM
imipramine (displacer) were incubated at 24 °C for 1 h.
During the screening experiments the compounds were

analyzed at a single concentration of 1.66 × 10−6 M. For
compounds that exhibited at least 30% [3H]-citalopram binding
full competition experiments were performed in concentration
range from 10−9 to 10−4 M. After incubation, the reaction mix
was filtered immediately onto a GF/B glass fiber filter, using a
96-well FilterMate Harvester system (PerkinElmer, USA). The
filter mate was dried in a microwave oven for 10 min at a power
setting of 40% (700 W total power), and then it was placed in a
sample bag and 10 mL of liquid scintillation cocktail was melted
onto the filter. After even distribution of the scintillantion
cocktail, the sample bag was sealed. The radioactivity on the
filter was measured using a MicroBeta TriLux 1450 scintillation
counter (PerkinElmer, USA). The radioligand binding data
were analyzed using iterative curve fitting routines GraphPad
Prism 3.0 (GraphPad Software), which used the built-in three
parameter logistic model to describe the ligand competition
binding to radioligand-labeled sites. The log IC50 value was
estimated from the data used to obtain the Ki by applying the
Cheng−Prusoff approximation.61 Results are expressed as the
means of at least two separate experiments.

Hit-to-Lead (H2L) Screening. A second in silico screening
of the druglike subset of the five databases was performed using
core structures of the compounds in chemotypes C01−C13
(see Table 1) as queries. The Instant JChem substructure
searching algorithm and the symbolic query definition language
module were employed.54 Following the substructure screening
step, the obtained compounds were screened using the basic
property and ADMET filters, 3D pharmacophore models, and
flexible docking procedure, as described above.

Theoretical Novelty Analysis. To determine the novelty
of the identified compounds, the similarity between the
compounds with Ki ≤ 5000 nM and known SERT compounds
found in the MDL Drug Data Report (MDDR, version 2011)51

and ChEMBL_1362 databases was assessed using chemical
hashed fingerprint and Tanimoto metric >0.7 (Instant
JChem).54

■ RESULTS
The VS Protocol. 2D Fingerprint-Based Screening. In the

first step of the VS protocol, screening of the druglike subsets of
the Asinex,40 ChemBridge,41 ChemDiv,42 Enamine,43 and Life
Chemicals44 databases using 2D pharmacophore-based finger-
prints and structural (hashed chemical) fingerprints and 56
reference ligands resulted in a great decrease in the number of
compounds: nearly 98.5% of the druglike compounds did not
pass this screening step (see Table 2).

Basic Property and ADMET Filtering. Experimental studies
have suggested that D98 in transmembrane helix 1 (TM1) may
anchor substrates as well as inhibitors in SERT.63−66 A filter
was thus employed to select compounds with basic pKa values
between 3 and 11.5, i.e., compounds containing at least one
protonable nitrogen moiety. An ADMET filter was also used to
remove compounds that had an unfavorable number of
functional groups, and/or unfavorable aqueous solubility,
blood-brain barrier, and/or gut-blood barrier coefficients.

Table 2. Summary of the Number of Compounds That
Passed Each Step of the Virtual Screening (VS) and Hit-to-
Lead (H2L) Screening Protocols

Number of Compounds

VS H2L

Lipinski’s “rule of 5” and Veber filters ∼ 3.24 million

2D fingerprint-based screening 51.006

substructure searching 8740

basic property filter 17.511 8511

ADMET filter 13.555 5030

3D pharmacophore-based screening 2293a (5396b) 3855a (7791b)

flexible docking 564a 504a

in vitro screening 202 198

in vitro full binding evaluation 46 51
aUnique compounds. bStereoisomers.
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Approximately 13 500 compounds passed the filtering steps
(see Table 2).
3D Pharmacophore-Based Screening. The compounds

were then screened using ten 3D pharmacophore models
constructed based on the reference ligands. All 3D
pharmacophore models contained one positively ionizable
(PI) feature, one hydrophobic (HYD) feature, and one or two
aromatic (AR) features (Figure 1, Figure S1 in the Supporting

Information). The simplest pharmacophore models were the
general hypothesis, SSRI and TCA models, all of which
contained one PI, HYD, and AR feature, and the sertraline and
mazindol models, which contained one additional AR group
(see Figure 1, as well as Figure S1 in the Supporting
Information). The remaining pharmacophore models were
more complex: the 3-phenyltropane, (S)-citalopram, fluox-
etine/venlafaxine and fluvoxamine models possessed an
additional H-bond acceptor (HBA) feature, whereas the
radioligand and fluvoxamine models included an additional
H-bond donor (HBD) feature and HYD region, respectively
(Figure S1 in the Supporting Information). During mapping to
the pharmacophore models, the compounds were allowed to
deviate from the pharmacophore models with maximum one
feature (except the PI feature) in order to be selected.
Approximately 2300 unique compounds passed the 3D
pharmacophore-based screening step of the VS protocol (see
Table 2).
Flexible Docking. In the structure-based step of the VS

protocol, a homology model generated based on an outward-
open LeuT X-ray structure15 was used for docking of the
compounds that passed the 3D pharmacophore-based screen-
ing. In the outward-open conformation, the central S1 site of
SERT was accessible from the extracellular environment and
the putative inhibitor binding region constituted both the
central substrate binding site (including D98 (TM1)) and
extracellular vestibular regions (including the S2 site) of the
transporter (Figure 2). Protein flexibility was included by
docking the compounds into 47 low-energy conformations of
the ligand binding pocket,39 using the 4D docking approach.58

A total of 564 unique compounds had scores of less than −10
and a protonable nitrogen moiety in the vicinity of that of D98
(TM1) and, hence, passed the structure-based step (Table 2).
In Vitro Radioligand Competition Binding Assays. A

total of 202 compounds from 37 chemotypes were purchased

and screened in vitro using a [3H]-citalopram competition
binding assay (see Table S3 in the Supporting Information).
Twenty-three (23) of the compounds that exhibited at least
30% inhibition of [3H]-citalopram binding at a concentration of
1.66 × 10−6 M were further evaluated in full binding assays (see
Table S4 in the Supporting Information). In addition, less-
potent compounds were also selected to obtain structure−
activity relationship (SAR) data and to increase the structural
diversity of the evaluated compounds (Table S4 in the
Supporting Information). In total, 46 compounds from 22

Figure 1. Schematic of the 3D “general hypothesis” pharmacophore
model with desmethyl-(R)-fluoxetine mapped (PI, positive ionizable
feature; AR, aromatic feature; HYD, hydrophobic feature).

Figure 2. Docking results: (a) outward-open SERT homology model
(gray and red ribbon representation) with ligand binding region
detected by ICM PocketFinder56 (gray wire mesh) and (b) docking
orientation of C466-0145 (chemotype C09). Selected amino acid side
chains are shown (xstick representation). For clarity, only polar
hydrogen atoms are shown. The localization of the S1 and S2 binding
sites are also indicated in the figure.

Journal of Chemical Information and Modeling Article
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chemotypes were evaluated using [3H]-citalopram competition
full binding assays (see Table 2).
The results of the full binding assays revealed that 24 of the

46 compounds had Ki ≤ 1000 nM (see Table S4 in the
Supporting Information). The affinities of 13 compounds
ranged between 1000 nM and 3100 nM, whereas the remaining
9 compounds may be regarded as nonbinders (Ki > 10 000 nM)
(Table S4 in the Supporting Information). Thirteen (13)
chemotypes (C01−C13) contained compounds with Ki ≤ 1000
nM, 3 (C14−C16) had compounds with Ki between 2300 and
2700 nM, while 5 (C17−C22) only contained compounds
regarded as nonbinders (Ki > 20 000 nM) (Table S4 in the
Supporting Information).
Hit-to-Lead (H2L) Screening. To detect analogues of the

compounds identified using the VS protocol, an in silico H2L
screening of the druglike subsets of the five databases was

performed (recall Table 2). The substructure search, using the
core structures of the compounds in chemotypes C01−C13
(Table 1) as queries, resulted in the detection of ∼8700
analogues (see Table 2). Application of the basic property and
ADMET filters reduced the number of compounds to ∼5000,
while 3855 unique compounds were selected during the 3D
pharmacophore-based screening step and 504 unique com-
pounds passed the flexible docking step (Table 2). In total, 198
compounds were selected for in vitro [3H]-citalopram screen-
ing during H2L (Table 2). Based on the results of the in vitro
screening, 33 compounds that exhibited ≥30% inhibition of
[3H]-citalopram binding at a concentration of 1.66 × 10−6 M
and 18 less-potent analogues were selected for evaluation in full
binding studies (see Table S4 in the Supporting Information).
Using the H2L approach, active analogues were identified in

11 of the 13 chemotypes (see Table S4 in the Supporting

Figure 3. Structures of selected reference ligands and highest affinity ligand in chemotypes C01−C16, identified using the VS/H2L protocol.
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Information). In total, 22 of the H2L compounds had Ki values
≤1000 nM and compounds with higher affinity than their
“parent” compounds were identified in five chemotypes
(chemotypes C01, C03, C04, C08 and C10; see Table S4 in
the Supporting Information). The structures of the highest-
affinity binder from each chemotype identified using the VS
and H2L approaches are shown in Figure 3.
Novelty Analysis. In addition to the number and affinity of

compounds identified using VS, the compound novelty is an
important VS performance indicator. The structural similarity
between the compounds identified in the present study and
known SERT binders found in the ChEMBL62 and MDDR51

databases was hence determined. The results of the analysis
indicated that compounds in 9 of the 16 chemotypes were
structurally nonrelated to known SERT ligands while the
compounds in the remaining seven chemotypes showed varying
degrees of similarities (Tanimoto coefficients values ranging
from Tc = 0.50 to Tc = 0.96; see Table 1).

■ DISCUSSION
In the present study, a multistep VS protocol (see Table 2) has
been used to screen for novel, structurally diverse SERT
compounds in commercially available databases. To accomplish
this objective, (i) five databases containing ∼3.24 million
druglike compounds were screened, (ii) multiple compounds
from several structural classes of SERT inhibitors were used as
reference compounds in the ligand-based steps, (iii) docking
into 47 low-energy conformations of the binding pocket
detected in the outward-open SERT homology model was
performed in the structure-based step, and (iv) a H2L
screening of the databases using the structures of the
compounds identified using VS as queries was performed. In
vitro evaluation of the compounds was followed by novelty
analysis of the identified hits.
A combination of ligand- and structure-based VS approaches

was used to screen five commercial databases, which were
chosen for screening because they contain numerous, as well as
a high percentage of, exclusive compounds.67 The ligand-based
approaches have the advantages of not heavily relying on
macromolecular target information. In ligand-based VS, 3D
pharmacophore models are commonly used; however, screen-
ing of large compound databases using pharmacophore models
can be time-consuming.26 By reducing the number of
compounds in the databases prior to pharmacophore-based
screening by applying a series of filters, as in the present study,
the screening process can be accelerated.26 Another challenge
in using ligand-based pharmacophore models is that these
implicit models normally only cover a limited chemical space.26

In the present study, this shortcoming was addressed by
constructing ten pharmacophore models based on structurally
diverse groups of reference ligands and allowing partial
mapping of compounds to the pharmacophore models.
By docking compounds into their 3D protein targets, steric

and distance-sensitive interactions between the compounds and
the protein that are not so easily explained using
pharmacophore models, can be modeled.26 However, exper-
imentally determined 3D structures are not always available.
Because of the lack of a SERT X-ray structure, a homology
model39 constructed using the prokaryotic LeuT as a template
was used for docking in the present study. Despite the low
overall sequence identity between LeuT and the eukaryotic
NSS transporters,1 LeuT is considered to be a good homology
modeling template.68,69 An important consideration during

homology modeling of NSS transporters, however, is which
LeuT conformation to use as template, i.e., whether to use an
outward-open, outward-occluded, or inward-open conforma-
tion. Because studies have indicated that most SERT ligands
stabilize outward-facing conformations of the transporter,70−74

the two former conformations may be good choices of
templates for models used for docking. LeuT has been co-
crystallized in the outward-occluded conformation with TCA
and SSRI antidepressants, which, in LeuT, are noncompetitive
low-affinity inhibitors.17−19 In the present study, however,
LeuT co-crystallized with the competitive inhibitor L-
tryptophan (Trp), which stabilizes LeuT in an outward-open
conformation,15 was used as a template. Our previous results
from docking of the reference ligands into outward-open and
outward-occluded SERT models suggested that the former
conformation best accommodated these compounds.39 In the
outward-open conformation, the central substrate binding site
of SERT, containing D98 (TM1), which was indicated to be
important for the binding of 5-HT and inhibitors in SERT,63−66

was accessible from the extracellular environment and, hence,
the putative inhibitor binding region constituted both the
central substrate binding site and extracellular vestibular regions
of the transporter (Figure 2). Furthermore, during preparation
of the current manuscript, crystal structures of D. melanogaster
DAT and LeuTBAT were published.22,23 In support of our
findings, these crystal structures show that the antidepressants
indeed are competitive inhibitors of the human transporters
and stabilize the transporters in outward-open conforma-
tion.22,23

In addition to the lack of protein X-ray structures, other
limitations of structure-based VS may be a lack of the inclusion
of protein flexibility during docking and the difficulties in
scoring the protein−ligand complexes. The degrees of freedom
needed to keep proteins fully flexible during docking makes
such simulations computationally unfeasible and most standard
docking programs use a semiflexible approach, keeping the
ligands fully flexible but the proteins rigid. One method to
include a degree of protein flexibility is docking into multiple
receptor conformations, which is known to improve the results
of VS.75,76 In the present study, the compounds were docked
into 47 low-energy conformations of the ligand binding pocket
that had been generated prior to docking by BPMC side-chain
sampling.57 Docking into multiple conformations of the
binding pocket was also a way of obtaining structurally diverse
compounds, since studies have indicated that SERT binders
most likely stabilize different outward-facing transporter
conformations.70−74 Furthermore, the BPMC side-chain
sampling resulted in an increased distance between the
aromatic amino acids of the extracellular gate (Y176 (TM3)
and F335 (TM6)), hence resulting in a widening of the ligand
binding pocket.39 This was important for the binding of the
SERT binders which are larger in size than the co-crystallized
LeuT inhibitor Trp.15

In structure-based VS, scoring is used to separate potential
binders from nonbinders. Empirical scoring functions such as
the ICM VLS function55 consist of weighted energy terms that
describe known ligand binding properties (e.g., hydrogen
bonding, ionic, lipophilic and aromatic interactions and the
conformational entropy loss of the ligand).77 However, accurate
prediction of protein−ligand interactions is challenging.77 The
limitations of the current scoring functions may, to some
degree, be addressed by evaluating the docking results using
additional parameters. In the present study, the ability of the
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highly scored compounds to form an ionic interaction with D98
(TM1) was used to evaluate the top-scored ligands. Analysis of
the docking orientations of the compounds identified as SERT
binders showed that they, when interacting with D98 (TM1),
occupied the central substrate binding and lower vestibular
regions (Figure 2). Halogenated moieties of the compounds
were furthermore often located in the vestibular region.
Interestingly, several amino acids in this regionnamely, L99
(TM1), G100 (TM1), W103 (TM1), R104 (TM1), Y176 and
I179 (TM3), and F335 (TM6)have been suggested to form
a halogen binding pocket (HBP) in SERT.19

The results of the in vitro full binding assays showed that
more than 80% of the compounds evaluated were active (C01−
C16; Ki ≤ 5000 nM) (see Table S4 in the Supporting
Information). In order to find analogues of the highest-affinity
binders, a H2L screening of the five databases was undertaken
using the core structures of chemotypes C01−C13 as queries
(recall Table 1). The H2L screening resulted in the
identification of compounds that would not have been detected
using the VS approach alone: comparison of the unique
compounds that passed the structure-based steps of the VS and
H2L protocols revealed that only 134 compounds had been
selected in both approaches (results not shown).
The results of the in vitro full binding evaluation showed that

46 of the 97 compounds selected using the VS and H2L
approaches had Ki values of ≤1000 nM (see Table S4 in the
Supporting Information). The highest affinity obtained was 1.5
nM (T6125232, chemotype C04) (see Table S4 in the
Supporting Information, as well as Figure 3), which is in the
range of the affinities of marketed antidepressants.78,79 The
clustering of the identified binders furthermore showed that
they were structurally diverse, belonging to 16 different
structural classes (Figure 3), and the theoretical novelty
analysis suggested that compounds in multiple of the
chemotypes were structurally unrelated to known SERT
binders in the MDDR51 and ChEMBL62 databases. These
databases, which contain information on compounds derived
primarily from the patent51 and primary scientific literature,62

respectively, are, however, not fully comprehensive. The
novelty analysis did not reveal that T6275452 in chemotype
C04 is a known SERT binder,80 showing that the compound is
not annotated as such in the databases. Hence, although the
results indicate that multiple compounds are novel SERT
binders, the results of the novelty analysis must be more
rigorously evaluated.

■ CONCLUSION
In the present study, virtual screening (VS) of ∼3.24 million
druglike compounds has resulted in the identification of 74
active SERT binders belonging to 16 structural classes, of which
46 compounds in 13 chemotypes had Ki values of ≤1000 nM.
By combining VS and hit-to-lead (H2L) approaches and
selecting compounds that show varying degrees of [3H]-
citalopram inhibition in the in vitro screening assays,
compounds in multiple chemotypes can be used for SAR
analysis. SAR data may be useful for elucidating the inhibition
mechanism of SERT and may also be used for the development
of compounds as antidepressants.
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