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ABSTRACT

Change detection in heterogeneous multitemporal satellite images is
an emerging topic in remote sensing. In this paper we propose a
framework, based on image regression, to perform change detection
in heterogeneous multitemporal satellite images, which has become
a main topic in remote sensing. Our method learns a transformation
to map the first image to the domain of the other image, and vice
versa. Four regression methods are selected to carry out the trans-
formation: Gaussian processes, support vector machines, random
forests, and a recently proposed kernel regression method called ho-
mogeneous pixel transformation. To evaluate not only potentials and
limitations of our framework, but also the pros and cons of each re-
gression method, we perform experiments on two data sets. The
results indicates that random forests achieve good performance, are
fast and robust to hyperparameters, whereas the homogeneous pixel
transformation method can achieve better accuracy at the cost of a
higher complexity.

Index Terms— Domain adaptation, heterogeneous image
sources, change detection, regression.

1. INTRODUCTION

Change detection (CD) is a well known task in satellite remote sens-
ing: the goal is to recognise changes in imagery acquired on the
same location but at different times. The applications range from
disaster assessment to long term trend monitoring [1, 2, 3]. Most of
the past works on CD assume that the satellite images are homoge-
neous, i.e. the data were collected by the same kind of sensors and
using the same configurations and modalities [1, 2, 3]. Even though
there are techniques which mitigate the issues due to misalignments
[2, 4, 5], co-registration is another fundamental assumption for CD:
every pixel of the image at time one and its corresponding pixel of
the image at time two are assumed to represent the exact same loca-
tion on the earth.

The development of new sensors and the improvement of their
capabilities has eventually brought the remote sensing community
to consider the use of satellite images acquired under heterogeneous
conditions [1, 3, 6, 7]. This has led to methods based on heteroge-
neous sources of data [1, 2, 6, 8, 9, 10], also referred to as multi-
source [3, 11], multi-modal [4], multi-sensor or cross-sensor [5, 12,
13, 14] and information unbalanced data [15]. As already reviewed
in [3], there is not a unique way to group CD methods. However, the
distinction between techniques aimed at homogeneous and heteroge-
neous data is clear. In the latter case, the assumptions that the same
physical quantities are measured, classes have always the same sig-
natures, and data follow the same statistical behaviour are no longer
valid [7]. Without any additional steps, traditional homogeneous CD

techniques cannot handle this [7, 10]. To overcome the problem, a
possible preliminary step is either project data from both times into
a common domain [3, 11, 12, 13] or transfer data from the time one
to the time two domain [8, 10]. These methodologies are related to
topics such as domain adaptation, data transformation and transfer
learning [4, 6, 10, 11, 16]. Post-classification comparison represents
an exception: the best classifier for the pre-event data and the best
one for the post-event data are selected, then the classification maps
are compared to find the pixels which do not belong to the same class
at both times. Clearly, the performance with this approach depends
highly on the choice and the design of the two classifiers, as well as
on the quality and the size of the training set [1]. The exponential
increase of interest in deep learning has also lead to the develop-
ment of novel methods based on deep learning architectures, both in
the homogeneous [16, 17] and in the heterogeneous case [1, 2, 15].
Most of these methods are examples of feature learning, since they
exploit the capability of e.g. convolutional neural networks (and es-
pecially stacked denoising autoencoders) to infer spatial information
from the data and consequently to learn a new representation of it.

In this work, we suggest a simple, yet effective methodology
to perform CD with heterogeneously acquired data. It consists of
training a regression function to predict how every pixel at time one
would have been if it was acquired by a second sensor at time two,
and vice versa. We will refer to this methodology as image regres-
sion, a term which has on some occasions been used in the CD liter-
ature [18, 19, 20]. Once the predictions of the images are computed,
homogenenous CD methods can be applied to obtain the map of
changes. In particular, we consider three supervised methods to per-
form the regression: Gaussian processes, support vector machines,
and random forests. Moreover, the homogeneous pixel transforma-
tion method recently proposed by Liu et al. [10] is chosen as a rep-
resentative of the state-of-the-art. As main contribution, we evaluate
the performance of the different regression methods in the proposed
framework. By testing a selection of both well-established and more
recent regression methods on two different data sets, we evaluate
the consistency of their performance, as well as their pros and cons,
helping the user to choose the most suitable approach according to
requirements, such as best performance in detection, easiest tuning
of the hyperparameters, shortest training and test time. The remain-
der of this article is the following: Section 2 introduces the reader
to the methodology, the notation, and the regression methods listed
above. Results on two data sets are presented in Section 3. Section
4 concludes the paper.

2. METHODOLOGY

We follow the notation adopted in [10]: the two images represent the
same region but are acquired by different sensors at a different times



and are denoted as X and Y, respectively. A limited part of the im-
age has changed between time one and time two. A training data set
T of M corresponding pixel pairs, T = {(€m,y,,)}M_1, is man-
ually selected from areas not affected by changes in the two images.
According to [10], this provision of training data is not a strong re-
quirement, although it prompts user interaction. The training data 7
allows us to learn a regression function f (M) such that

Yo = VD (@m) =G + €y m=1,....M (1)

where 9, is the dependent variable, &, is the regressor, and e,(i) is
the residual. We then train the reverse regression equation

T =P (y,)=@m+e?, m=1...M (@

in which &, is predicted starting from the regressor y,,,. With these
two functions it is possible to predict Y, ie. the image which would
have been obtained if sensor ) had observed the reality at time one,
and X, the image of the reality at time two which would have been
acquired by sensor X. Once the two predictions are computed, con-
ventional change metrics such as image differences or ratios can be
applied to highlight the differences between the original images and
the corresponding predicted ones. There is a plethora of more com-
plex and more effective homogeneous CD techniques which could
be applied at this stage, but the main goal of this work is to com-
pare the image regression methods applied to obtain the predicted
images. The two-way regression can be referred to as an ensemble
approach where two weaker results are combined to obtain a stronger
and more reliable outcome.
Let the distance image be defined as
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i.e. a pixel-wise distance between two images of size nl X n2 and
P channels. When the distance images, d(X,X) and d(Y,Y),
are normalised and combined, distances that are consistently high in
both images will indicate high probability of change, whereas false
alarms due to a spurious high value in one of the distances will be
suppressed. We choose to combine the distances by a simple aver-
age. Before normalising, it is reasonable to clip the distances beyond
some standard deviations of the mean value (e.g. d; > d + 404), s0
that outliers do not compromise such a step. At this stage, noise
filtering can be applied if necessary. Finally, a change map can be
achieved by thresholding. Fig. 1 illustrates the methodology. In the
following we briefly describe the regression methods considered in
this work to evaluate £ and f®.

2.1. Gaussian Process Regression

A Gaussian process (GP) is a collection of random variables, any
finite subset of which have a joint Gaussian distribution. It is com-
pletely specified by its mean function m () and covariance (ker-
nel) function kx,;,»; = k (i, ;). For regression purposes, zero
mean GPs are most often used [21]. Given a training set of M in-
put vectors (arranged in rows) X € RM*F| the corresponding set
of target vectors Y € R™*9_ and a set of N new observed vectors
X . ¢ R™P  the joint distribution of the training vectors Y and the
sought regressed vectors Y € R¥?, conditioned on the input data
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where K x x, is the matrix whose (4, j)th entry is the value of the
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Fig. 1: Image regression: the two functions f M) and f ) are trained
starting from the same data points, two predicted images are ob-
tained, and finally two difference images are achieved.

Kx, x,and K x, x, have similar meanings. Thus, the following
posterior distribution is derived (see [21] for details):

Y|X., X, Y~NKx,x Kxx'Y,
Kx,x.—Kx,x Kx'x Kxx,)

The two main factors affecting the quality of the regression are the
choice of kernel function and its hyperparameters. In this work, we
opted for the commonly used radial basis function (RBF)

@
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where 0 = {L, JJQI} is the set of hyperparameters, with signal vari-
ance a?- and I = 1721, if the length-scale parameter [ is a scalar
(isotropic kernel), or L. = diag (l_Q), if 1 is a vector (anisotropic
kernel) [21]. Concerning the optimisation of 6, a gradient ascent
is performed to maximise the marginal likelihood P (Y | X, 0). A
weak point of this optimisation is that it might lead to a local max-
imum instead of the global one, so it is recommended to iterate the
procedure several times starting from different random points in the
hyperparameter space (2g.

2.2. Multi-output Support Vector Regression

Support vector machines (SVMs) are a very well known machine
learning approach used for classification and regression. By solving
the so-called dual problem, it is possible to find the best separating or
fitting curve with respect to a loss function that accounts for misclas-
sification or reconstruction error and with respect to a regularisation
parameter which defines the width of a soft margin around such a
curve. In addition, the support vectors, i.e. the training points that
define the margin, are highlighted from the rest of the training set.
Instead of coping with multi-output problems all at once, the so-
lution usually adopted is to tune a different SVM for each regressand



variable. Therefore, the standard implementations of support vector
regression (SVR) are designed to predict a single output feature, ig-
noring the potentially nonlinear relations across the target features
[22]. Tuia et al. [22] proposed a multi-input multi-output (MIMO)
SVR method to overcome this limitation. During the training phase,
it aims to minimise the cost function
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Here, W = [wi,...,wg], wqg € R and b = [q1,...,qo] are
the coefficients and the bias of the linear combination of the data
points «,, transferred in the Hilbert space by the kernel function
¢. The penalty factor C' sets the trade-off between the regularisa-
tion term and the sum of the error terms L (p.m, ). If it is too large,
nonseparable points would highly penalise the cost function and too
many data points would turn into support vectors, causing overfit-
ting. Vice versa, a small C' would lead to underfitting. € is half the
width of the insensitivity zone. This zone delimits a “’tube” around
the approximated function and all the training data points within the
insensitivity zone do not contribute to the cost function (see Eq. 7).
For too small values of €, too many data points would be consid-
ered as support vectors (overfitting), the generalisation performance
would be affected and the variance of the fitted curve would be too
large. On the contrary, a too large ¢ would cause underfitting and
the overall accuracy would be low. Another critical hyperparameter
is the width o of the RBF kernel ¢. To select the right combination
of hyperparameters @ = {C,¢,0}, a grid search for the smallest
cross-validation error or the minimization of an error bound can be
applied.

2.3. Random Forest Regression

Random forests (RF) were proposed by Breiman in [23] to per-
form both classification and regression, by exploiting the simplicity
of random decision trees and the robustness of ensemble methods.
From now on, only regression will be considered, but for classifica-
tion purposes the approach is similar.

A RF consists on T trees, at whose nodes m randomly se-
lected features are compared to random thresholds (e.g. feat; >
thr; &...& feat,,, > thry,). In each tree, the training data points
are divided over the branches according to these conditions, and the
trees expand until only one data point is contained in each of the
final nodes (leaves). Thus, the corresponding training vectors y,,,
are assigned to the leaves. During the test phase an input vector
x,. goes through each tree and reaches one of the leaves, giving as
output the assigned training vector vy,,,. Finally, the average of the
T outputs is computed, thereby obtaining the final regressed vector
7.

To generalise better, every tree is trained on a bootstrap sample
drawn from the training set, and a randomly drawn subset of features
(of fixed cardinality) is used on each node of each tree. The valida-
tion is carried out through out-of-bag estimation [23]. Moreover, the
behaviour of a RF can be controlled by tuning three parameters: the

size of the forest (i.e. the number of trees 1"), the number of features
m considered in every node, and the depth of the trees. A common
remedy against overfitting is to prune the trees by leaving p > 1
data points in each leaf node, which will give in output the average
of their corresponding training vectors y,,,. Concerning the num-
ber of features considered at every node, in [23] it is suggested by
empirical results to set m = Lll‘;i }2) |, where P is the dimension of
the vectors y. It is common practice to follow the rule of thumb:
m = | P/3] [23]. However, there are no practical rules to choose the
size of the forest. One may think that for a larger number of trees
the outcomes become better, but [23] proved that at some point the
overall accuracy saturates due to the rise of a strong correlation be-
tween the trees. Therefore, a compromise between gained accuracy
and computational load must be found.

2.4. Homogeneous Pixel Transformation

The homogeneous pixel transformation (HPT) method proposed by
Liu et al. [10] is a kernel regression based on the K-nearest neigh-
bours (KNN) of each data point. This technique recalls the distance
weighted averaging or locally weighted regression previously pre-
sented in [24], where many related aspects are also studied: pos-
sible kernels, distance measures, choices of the bandwidth, denois-
ing techniques, and outlier detection. For every data point in the
first image @;, the K nearest neighbours among the training vectors
T, € T are sought for. The regression consists of the weighted sum

K
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d; 1 is the Euclidean distance between x; and its k'™ nearest neigh-
bour y, y, ; is the corresponding vector of @y in T, whereas the
kernel width ~y regulates how strongly the farthest neighbours are pe-
nalised. If v is too small, the addends tend to be equally weighted
and the sum is close to an average, if y is too large, few main addends
contribute to the sum whilst the rest are heavily penalised. Before
computing the weights, a relative normalisation of the distances is
applied:

dy = i — 2]

s
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The normalisation in [10] is defined as relative, because it considers
the maximum among the distances between the data point &; and its
neighbours. However, while testing our implementation, we found
that it is better to perform an absolute normalisation, thus seeking
the maximum among all the computed distances.

3. EXPERIMENTAL RESULTS

The performance of the CD framework, configured with the pro-
posed regression methods, is evaluated on two different data sets in
terms of accuracy and computational speed. Accuracy is measured
in terms of area under the curve (AUC), a value between 0.5 (poor)
and 1 (optimal) which indicates the area below the receiver operat-
ing characteristic curve, which plots the false positive rate against
the true positive rate. The measured speed is the elapsed time dur-
ing computation of the regressions in both the directions, starting
from the training phase and ending after the test phase. It must
be pointed out that two of the methods are implemented in Python
libraries (GP and RF), whereas the code provided by [22] for the
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Fig. 2: Distance images obtained by applying the proposed approach with different regression methods: (a) Gaussian process regression, (b)
MIMO support vector regression, (¢) random forest regression, (d) homogeneous pixel transformation [10], (e) ground truth.

MIMO SVR method is written in MATLAB, and so is our imple-
mentation of the HPT method. Therefore, an exact comparison of
execution time of each algorithm is not possible, even though the
two programming languages yield similar performance. Neverthe-
less, the running times are indicators that can help us rank the four
algorithms in terms of speed.

3.1. Forest fire in Texas

The first data set is composed of a multispectral image acquired by
Landsat 5 TM before a forest fire in Bastrop County, Texas, during
September-October, 2011. An EO-1 ALI multispectral acquisition
after the event completes the data set!. Both images are optical with
7 and 10 channels, respectively, some of which cover the same spec-
tral bands, so the signatures of the classes involved are very similar.
Among the possible heterogeneous CD scenarios, this is one of the
easiest. The ground truth of the event (see Fig. 2e) is provided by
Volpi et al. [13]. The training set (roughly 2% of the total data points)
is selected manually with several rectangular patches taken from ar-
eas not affected by the fire event. In a preliminary study phase, the
hyperparameters of the GPs are set after only one iteration of the
gradient ascent. For the SVR, C' = 1, ¢ = 0.1, and 0 = 1 are set
following [22]. Concerning the RE, T' = 128, m = [P/s], p = 5 are
chosen after a coarse grid search on 71" and p. Last, the HPT is tuned
by setting K = 300 and v = 100, as empirically found in [10].
After the combination of the two image differences, a 3 x 3
median filter is applied to remove salt and pepper noise. In Fig. 2,
the outcomes of the median filter for the four methods are depicted,
showing how well they all behave. The only exception is the HPT,
which tends to overfit, as can be noticed in Fig. 2d. One example is
the black rectangular patch on the left of the area interested by the
event, which actually corresponds to one of the selected patches of
the training set. However, all the AUCs reach values above 98%,
showing how well all four methods tackle the image regression task.
On one hand, this image pair is not especially challenging for the
proposed approaches. On the other hand, conventional CD methods
designed for homogeneous data would be unfeasible here. Hence,

! Distributed by LP DAAC, http://Ipdaac.usgs.gov

this result demonstrate the effectiveness of the proposed regression-
based approach to heterogeneous CD.

3.2. Flood in California

The second data set represents a more challenging scenario, as it
involves an optical image and a synthetic aperture radar (SAR) im-
age. The image at time 1 is a Landsat 8 acquisition covering Sutter
County, California, on 5 January 2017'. It is composed of 9 chan-
nels covering the spectrum from deep blue to short-wave infrared,
plus two long-wave infrared channels (Fig. 3a shows the RGB chan-
nels). Fig. 3b shows the image acquired on 18 February 2017 by
Sentinel-1A over the same scene, after the occurrence of a flood>.
The sensor uses two different polarisations (VV and VH), and the
ratio between the two intensities completes the set of 3 channels. To
obtain a reasonable ground truth without recourse to manual selec-
tion, we considered two other single-polarisation SAR images ac-
quired approximately at the same times as the previous ones. The
normalised ratio between these images is depicted in Fig. 3c, and the
ground truth obtained by thresholding it at 0.5 can be seen in Fig. 3d.
The selection of an appropriate training set is not trivial. There are
many different kind of terrain involved, and excluding any of them
might lead to poor results. Therefore, the training set is drawn ran-
domly from the parts of the images which are clearly distinguished
as unchanged areas, to avoid to inadvertently exclude classes by a
manual selection. Again, the size of the set 7 is 2% of the total
image size.

The optimisation of the hyperparameters is carried out dif-
ferently for every method. Concerning the GP method, five it-
erations of the gradient ascent from random starting points are
performed. For the SVR method, a grid search on {2¢ leads to se-
lection of the best combination of C e and o after cross-validation.
A grid search for the RF hyperparameters investigates the values
T = {32,64,128,256,512} and p = {5,10, 15,20}, while m is
kept equal to |P/3]. The same procedure is applied for the HPT
over the values K = {16,32,64,128} and v = {1072,...,10%}.
A series of 100 runs is performed, each of these with a different

2Data processed by ESA, http://www.copernicus.eu/
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Fig. 3: Flood in California: (a) Landsat 8 (¢1), (b) Sentinel-1A (¢2), (c) Ratio between SAR intensities at 1 and ¢2, (d) ground truth.

training set, to evaluate the mean and standard deviation of the AUC
and the training and test times for the four methods. The results are
summarised in Table 1.

Table 1: Mean and standard deviation of the AUC and the elapsed
time for the four methods applied on the second data set.

| [ mave | cave | mi [ ou
GP 0.74692 0.00043 257.11 1.47016
RF 0.81680 | 0.00541 132.00 0.77075
SVR 0.81299 | 0.05455 || 2024.58 | 396.86244
HPT || 0.84001 | 0.01450 924.91 8.99086

Similar results can be achieved by RF, SVR, and HPT. On the
contrary, the GP method produce worse results. It could be thought
that more iterations of the gradient ascent might lead to better solu-
tions, but the consistency of the results throughout the whole series
of runs suggests the opposite. Instead, the main drawback of the
SVR algorithm is the computing time. Even a coarse grid search
over the three hyper-parameters implicates a long training and val-
idation phase. Although it is capable of reaching peaks of 0.89 for
the AUC, it is also sensitive to the selection of the hyper-parameters.
This brings to a larger o auc, and examples of low AUCs. On the
other hand, both the HPT and the RF method have their strong suit.
The former can reach better results, whereas the latter is computa-
tionally faster. In Fig. 4, the elapsed time vs AUC scatter plot for the
series of runs supports the previous comments.

Focusing on the RF, the scatter plot in Fig. 5 shows that the com-
putational time grows linearly with respect to the number of trees.
However, a larger 7' does not necessarily provide benefits, as this
example demonstrates. Instead, smaller values of m brings on av-
erage to better results, at the cost of small additional times. Conse-
quently, it can be recommended to not exaggerate with the pruning.
We also recall that, in many formulations of the RF approach, trees
are not pruned at all. About the HPT method, no significant trends
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Fig. 4: Elapsed time vs AUC scatter plot for GP (red), SVR (black),
RF (green), and HPT (blue)

are recognised in its scatter plot (which is not reported), suggesting
that the best option is to select a small number of neighbours K to re-
duce the amount of computations, and to perform a log-scale search
on +y to find the most suitable.

4. CONCLUSIONS

In this paper, we proposed a CD framework based on image regres-
sion and evaluated the performance obtained using four different re-
gression methods. The experiments on two data sets proved the ef-
fectiveness of the methodology, especially for two of the regression
algorithms. Although the HPT method achieved the best results, RF
regression proved capable of reaching close results with a shorter
computation time. A future work would be to investigate further the
role of the hyperparameters, also on other data sets, and to experi-
ment with smaller or more difficult training sets. Another important
subject of future research will be the development of an unsuper-
vised version of the methodology.
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