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Summary  

This work is focused on understanding the treatment efficacy of patients with ulcerative colitis (UC) 

using a network-based approach. UC is one of two forms of inflammatory bowel disease (IBD) along 

with Crohn’s disease. UC is a debilitating condition characterised by chronic inflammation and 

ulceration of the colon and rectum. UC symptoms occur gradually rather than abruptly, and the degree 

of symptoms differs across UC patients. Only around 20% of all UC cases can be explained by known 

genetic variations, implying a more ambiguous aetiology that is yet not fully understood but is thought 

to involve a complex interplay between genetic and environmental factors.  

The available therapy for UC substantially reduces symptoms and achieves long-term remission. 

However, about one-third of UC patients fail to respond to anti-TNFα therapy and consequently 

develop long-term side effects due to medication. Non-response to existing antibody-based therapies 

in subgroups of UC patients is a major challenge and incurs a healthcare burden. Therefore, the 

disease markers for predicting therapy response to assist individualized therapy decisions are needed. 

To date, no quantitative computational framework is available to predict treatment response in UC. 

We developed a quantitative framework that uses gene expression data and existing biological 

background information on signalling pathways to quantify network connectivity from receptors to 

transcription factors (TF) that are involved in UC pathogenesis. Variations in network connectivity 

in UC patients can be used to identify responders and non-responders to anti-TNFα and anti-Integrin 

treatment. Our findings allow us to summarize the effect of small gene expression changes on the 

overall connectivity of a signalling network and estimate the effect this will have on the individual 

patients' responses. Estimating the network connectivity associated with varied drug responses may 

provide an understanding of individualized treatment outcomes. 

Our model could be used to generate testable hypotheses about how individual genes act together in 

networks to cause inflammation in UC as well as other immune-inflammatory diseases such as 

psoriasis, asthma, and rheumatoid arthritis. 
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1 Introduction 

1.1 Inflammatory bowel disease  

Inflammatory bowel disease (IBD) is a group of ailments with a highly heterogenous disease 

phenotype and response to therapy. IBD consists of two major clinical entities: Crohn’s disease (CD) 

and ulcerative colitis (UC) which are distinct by their pathophysiological states 1,2. Both CD and UC 

share epidemiological, clinical, and therapeutic characteristics. For some, it is difficult to distinguish 

to diagnosis (10-15%) which is termed indeterminate colitis 3. IBD manifests in the gastrointestinal 

tract with chronic, relapsing and remission intervals of mucosal inflammation 4. Patients with IBD 

suffer from diarrhoea, rectal bleeding, weight loss, abdominal cramps and extra-intestinal 

manifestations leading to poor quality of life. IBD is characterised by progressive and destructive 

disease stages with serious complications and an increased risk of developing colorectal cancer 5. 

During the disease course, IBD patients require maintenance treatment to reduce inflammation. As a 

result of therapy, some IBD patients achieve clinically inactive disease (CID) with less or no 

inflammation and usually without symptoms 6–8. IBD is a multifaceted disease triggered by multiple 

factors including genetic, environmental, abnormal gut microbiota, and dysregulated immune 

response 9–11. The disease's aetiology remains elusive despite known factors. IBD is often diagnosed 

in individuals of diverse age groups. Around 25-35 % of IBD patients are above the age of 60, 

however, the prevalence of the disease is rapidly growing in the paediatric population 12. 

1.1.1 Ulcerative colitis (UC) 

UC is a chronic inflammatory illness characterised by persistent, non-transmural (confined to the 

epithelial lining) inflammation and ulcers (sores) of the large intestine, commencing in the rectum 

and extending to proximal segments of the colon. UC is typically characterised by continuous, 

circumferential, and superficial inflammation that is localized to a mucus layer 1,5,13. Extraintestinal 

manifestation (EIM) can occur in UC patients including peripheral arthritis, aphthous stomatitis, 

uveitis, and sclerosing cholangitis 14–16. Because UC is complex, genetic, environmental, and 

microbial variables all have a contribution to disrupting gut homeostasis, leading to epithelial barrier 

impairments and dysregulated immune-inflammatory responses 17. The disease susceptibility 

conferred by genetic factors has a lower impact as compared to Crohn’s disease. Emerging evidence 

supports that the relevance of environmental variables in UC aetiology outweighs genetic association, 

i.e., 5-15 % of UC risk is genetic 18,19. 
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1.1.2 Epidemiology and Pathophysiology of UC 

Epidemiological findings suggest that the incidence and prevalence of UC is rising globally, 

especially in the white population, affecting 0.3% of the population in North America and northern 

Europe20–23. Walker et al. discovered substantial changes in the IBD phenotype and significantly less 

penetrating disease effects in a South Asian IBD cohort compared to a Northern European IBD 

cohort. This indicates that IBD is caused by a combination of genetic, environmental, and behavioural 

factors. A recent systematic analysis that analysed the global disease burden in 195 countries between 

1990 and 2017 discovered that there is a huge social, economic, and healthcare burden expected to 

rise in the future 24. Burisch et al. projected a direct healthcare cost of 4.6-5.6 billion Euros per year 

25. This healthcare burden is projected to increase as the more expensive treatments are developed to 

address the ever-increasing number of affected IBD patients 26. Both UC and CD share remarkable 

epidemiological incidence. However, recent studies have estimated that the incidence and prevalence 

of UC are twice as much as compared to Crohn’s disease. For example, the incidence and prevalence 

of UC range from 1.2-20 and 7.6-245 cases per 100,000 individuals/year respectively 27–30. UC can 

develop at any age, although the incidence age pattern is bimodal, with a significant peak between 

the ages of 30-40 years and a modest increase between the ages of 50-70 years 31–33. 

The growing trend of UC cases in developed countries has reduced over the last decade. According 

to new epidemiological studies, there is a concerning trend in the incidence rate of UC in the 

developing world, which was previously low. One rationale for the increasing prevalence of UC in 

Asia and South America might have been the progressive adoption of Western culture (diet, lifestyle, 

etc.) 34. The explanation for the higher prevalence of IBD in the Western world remains unknown; 

nevertheless, the key variables driving that cause may be an adaptation to a Western lifestyle. The 

significance of gender in UC prevalence is still being debated, some UC studies have indicated male 

predominance or a comparable gender balance 28,30,35, while others have shown contradicting results 

22. The reported studies of patients with UC-related mortality ranged between 11-30 %, with the 

majority of these patients developing colorectal cancer (24 - 44 %), gastrointestinal diseases, 

postoperative complications (17-100 %), non-alcoholic liver diseases, end-stage liver diseases from 

primary sclerosing cholangitis, cholangiocarcinoma, etc. 36,37. 

1.1.3 Pathogenesis of UC 

UC pathophysiology is multifaceted and remains poorly understood. It encompasses a broad range of 

risk factors, including immunological, genetic, epigenetic (environmental), and microbiological 
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factors. These risk factors primarily contribute to epithelial barrier abnormalities and dysregulated 

immunological response, which both contribute to disease onset 1,38,39.  

Genetic factors 

Hereditary factors may play a role in the aetiology of UC, with a family history of UC being the most 

significant genetic risk factor. Around 8-14 % of UC patients have a family history of IBD, which is 

more prominent in UC 40. Danish and Swedish twin studies, for example, demonstrated the 

involvement of genetic factors for UC, with between 6.3% and 18.8% concordance between 

monozygotic twins compared to 0-4.5 % in dizygotic twins 41,42. 

New high-throughput sequencing technologies, such as next-generation sequencing (NGS), have 

made it conceivable to study disease-specific genetic factors in UC. Using genome-wide association 

studies (GWAS), over 200 IBD-specific disease loci were identified, of which about 23 were unique 

to UC and 47 showed overlap with CD, such as interleukins (IL) 23 and 10, and Janus kinase-2 (JAK-

2) pathway genes, etc. 10,43,44. These genes, which are associated with adaptive immune response, 

influence the differential immune response in a UC patient as compared to a control 45. 

Ntunzwenimanahave et al. have identified 145 IBD-associated genetic loci that show endogenous 

expression in the intestinal epithelial cell and play multiple roles in epithelial structure, function, and 

microbial defense 46. Several GWAS studies found that variants in hepatocyte nuclear factor 4-alpha 

(HNF4A) is positively related to UC. HNF4A is an epithelial-specific gene that functions as a 

transcriptional regulator of ion transport. The mucosal ion transport function modulates the overall 

inflammatory condition 47.  

Figure 1. Four key components of IBD pathogenesis 
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A meta-analysis found UC risk genes, revealing that 13% of UC patients had a family history of the 

disease 19. These genetic susceptibility loci and genetic risk factors account for about 20-25 % of UC 

genetic heritability. HLA haplotype DRB1*0103, for instance, shows a substantial association with 

disease susceptibility and is a high-risk factor for colectomy 48,49. There are various HLA complexes 

associated with UC. In the Japanese population, HLA-DR2 has been linked to UC 50. The discovery 

of UC-specific risk alleles that translate into a protein plays an important role in epithelial cell 

adhesion and highlights the significant importance of faulty barrier function in disease development 

51. Other findings revealed that hypermethylation of the protein E-cadherin had a hereditary link to 

colorectal cancer and ulcerative colitis 52. 

Epigenetics is another key aspect of genetics in UC. Epigenetic alterations are both dynamic and 

reversible genetic changes. DNA methylation, histone modifications, non-coding RNAs, and 

nucleosome positioning are all examples of epigenetic alterations that are impacted by environmental 

variables. Chemical adjustments to genomic structure occur rather than changes to genetic sequences 

53. Taman et al. found that in UC treatment-naive patients, hypermethylation of genes is associated 

with homeostasis and microbial defense, while hypomethylation corresponds to immunological 

response 54. The epigenetic changes in UC are being explored as potential biomarkers for 

pharmacological therapy, diagnostic, predictive, and patient-tailored therapeutic tools. DNA 

methylation and non-coding RNA have been thoroughly examined in IBD, and differently expressed 

non-coding RNAs between CD and UC have been discovered 55,56. 

Environmental factors 

Environment factors influence the risk of UC, according to accumulating epidemiological data at both 

the individual and population levels. Western diet and lifestyle, as well as an increasing trend of 

urbanization, is one of these factors. Diet is a major environmental risk factor for people with UC 

because it induces dysbiosis inside the gut microbiota and stimulates proinflammatory substrate 

production, which damages the mucus barrier and increases intestinal permeability 57. Consumption 

of a Western diet high in processed meat, saturated fats, processed sugars, and low consumption of 

high fiber foods have been linked to gut dysbiosis, which results in worse IBD-related outcomes 58–

61. Rising UC incidence levels have been observed in the Western world, which has a long life 

expectancy and higher hygienic status, contributing to the "hygiene hypothesis" 62. According to the 

hygiene hypothesis, early exposure to enteric and general microbial infection renders the immune 

system less diverse for antigen recognition in the late phases of life. Smoking enhances the risk of 
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IBD and is the most recognized environmental factor that modulates immune responses and alters gut 

flora composition 63,64. Chronic smoking has been identified as a latent risk factor that influences 

epithelial mucus profiles, resulting in a dysfunctional mucus barrier with gut inflammation 65. In 

contrast to CD, smokers had a decreased likelihood of developing UC and a lower risk of colectomy 

66,67. However, former smoking has been identified as a strong risk factor for UC disease onset while 

an active smoker has positive effects on reducing the severity of the disease course. Appendectomy 

has been shown to reduce the risk of developing UC, suggesting that the vermiform appendix has a 

direct interaction with the gut flora 68. Exposure to antibiotics also affects the gut microbiota and is 

implicated in the pathogenesis of IBD 69. Several studies have found an inverse connection between 

breastfeeding and the incidence of IBD, with a substantial protective advantage for at least one year 

of nursing 70. Patients with UC who are under psychological stress have an increased risk of disease, 

implicating the brain-gut axis in UC development 71. Stress may exert its effects through a variety of 

pathways, including the production of cytokines, the modification of gut flora, etc. 72. Patients with 

UC who raised their intensity of regular exercise for 6 months had a 24% reduced chance of 

developing active UC 73. 

Gut microbial flora  

The estimated mean size of the gastrointestinal tract (GI) is 32m2 with the large intestine measuring 

around 2m2 74. The human gut has the most diverse bacterial populations (1012 bacteria/cm3) in the 

large intestine, with over 1000 species, however, this number varies by individual.75. The human GI 

tract is the primary location of immune system function due to its diversified and dense bacterial flora 

population. UC disrupts the complex interplay between the immune system and the intestinal flora, 

which is triggered by environmental stimuli in genetically susceptible individuals, resulting in 

inflammation 39. These environmental factors alter the host defense mucosal barrier, resulting in an 

exaggerated immune response and a dysregulated equilibrium between beneficial and harmful 

gut microbial species 76. The epithelial barrier, which is protected by the mucinous layer, is the 

primary defense line that provides mucosal immune response against luminal microbes and 

synthesizes antimicrobial peptides. During UC, there is a decrease in the synthesis of 

sulphation colonic mucin known as mucin-2 77. The epithelial barrier becomes susceptible to damage 

as a result of alterations in protective substances such as mucin 2 and some defective regulation of 

tight junctions, resulting in higher permeability and increased inflow of luminal antigens 78. The 

intestinal immune system during ulcerative colitis can be manifested by changes in the colonic 
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epithelial cells and mucosal barrier defects. Patients with mucosal barrier defects 

have depleted colonic goblet cells as well as a highly permeable mucosal barrier junction 1. 

Immunological factors 

In UC, the mucosa comprises an immune cell population in which homoeostatic balance between 

regulatory and effector T-cells such as T-helper (e.g., TH 1, TH 2, and TH 17) cells is disrupted. 

Traditionally, UC pathogenesis has been identified as a TH2-like disease as compared to CD which 

is associated with TH1 cells. However, some studies have suggested the role of imbalance between 

TH17 and regulatory T (Treg) 
39,79. All TH1, TH2 and TH17 cells are effector T helper (TH) cells and 

subtypes of CD4+ T cells which secrete various cytokines such as interleukin (IL). For example, IL 

4, 5 and 13 are secreted by TH2, whereas TH1 secrete TNF-α, IFN-γ and TH17 secrete IL-17. IL 13 is 

known for its cytotoxic activity against epithelial cells causing apoptosis and damage to a protein 

involved in tight junction functioning 78,80. These T-helper cells play a key protective role for the host 

against pathogens and prevent the inflow of luminal bacteria, thus their regulation is important for 

gut homeostasis 81. Another significant form of immune response is antigen recognition, in which 

antigens trigger innate immune responses by interacting with macrophages and dendritic cells. 

Dendritic cells recognize antigens in the lumen by sending dendrites to the epithelium. 82. There are 

abundant macrophages and dendritic cells in the lamina propria that use B cells and T cells to activate 

adaptive and innate immune responses. The population of activated and mature dendritic cells 

increases dramatically during UC. Dendritic cell's high stimulatory activity plays a significant part in 

the development of inflammation 83. 

Dendritic cells have been shown to express a variety of microbial-recognition receptors, including 

Toll-like receptors (TLR) and NOD-like receptors. TLR signalling protects against pathogens and 

epithelial damage, aiding in homoeostasis and epithelial barrier function. TLR3 and 5 are more often 

expressed by normal epithelial cells than TLR2 and 4, which are either scarce or absent 84. TLR4 

expression was found to be strongly upregulated in patients with UC 85 as well as CD whereas 

expression of TLR2 and 5 remained unaltered in IBD. Thus, there is a significant difference in TLR 

expression levels between normal and active UC intestinal epithelium, suggesting that differences in 

innate immune response may result in UC pathogenesis. TLR polymorphism makes the host more 

susceptible to intestinal infections or enables adaptive immune responses to be more tolerant of 

pathogens. Variation in TLR4 (D299G), for example, may be a significant risk factor for UC in 

Caucasians 86. TLR pathway activation is critical in the activation of key transcription factors such as 
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nuclear factor- κB (NF-κB) connected with the inflammatory signalling cascade 87. The role of NF-

κB is complex and cell-type dependent because NF-κB regulates proinflammatory and cell survival 

functions in macrophages and T cells, 88,89 whereas it has a protective role in epithelial cells 90.  

One of the major causes of inflammation in a UC patient is the migration of leukocytes to the mucosal 

region. During active inflammation, chemoattractants such as CXCL8 are upregulated, contributing 

to the amplification of the inflammatory response 91. The increased production of adhesion molecules 

on the endothelium layer of the mucosa by proinflammatory cytokines such as mucosal addressin 

cellular adhesion molecule-1 (MadCAM-1) enhances leucocyte adherence, perpetuating an 

inflammatory cycle. During inflammation, MadCAM-1 interaction with α4β7 integrin directs 

lymphocyte homing to gut-associated lymphoid tissue 92. Anti-integrin drugs comprise antibodies to 

either MadCAM-1 or its ligand α4β7 (e.g., Vedolizumab) and another subunit β7 of heterodimeric 

integrin (e.g., Etrolizumab) reduces the severe colonic inflammation by preventing lymphocyte 

recruitment. 

1.2 Signal Transduction 

Signal transduction is a biochemical process that translates extracellular signals from the environment 

into specific cellular responses. It occurs in mainly three steps: Reception, Transduction, and 

Response. During the reception, the cell senses a signalling molecule such as ligands, microbes, or 

other external stimuli, that adhere to cell surface receptor molecules, e.g., cytokine receptors, tumour 

necrosis factor receptors (TNFR), etc. The binding of ligand alters the conformation of receptor 

protein which initiates the activation of the signalling cascade resulting in the cellular response 

(Figure 2). Various signalling such as ligands, receptors, kinases, phosphatases, transcription factors 

etc, are involved in the signalling cascade, which generates diverse signal transduction pathways. 

Signal transduction is thought to occur through closely organised networks controlled by a modular 

domain that drives protein-protein interactions and the reversible construction of signalling 

complexes. Anomalies in signalling transduction pathways are involved in the pathophysiology of 
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many diseases. Cancer and diabetes are the most common diseases induced by signalling 

dysregulation. The mechanism of action of many drugs also involves cell signalling pathways 93.  

1.2.1 Inflammatory signalling pathways in UC 

Inflammation is the host's defense response to infection; it induces tissue damage and involves the 

migration of immune cells to the site of injury. It is the primary characteristic of numerous human 

diseases including UC. Understanding the mechanisms of inflammation is crucial for improving 

disease outcomes. The intestine is the primary organ affected by inflammation in IBD, including 

various factors that make disease aetiology immensely complex. Intestinal inflammation is the result 

of an aberrant, chronic mucosal immune response. It is characterised by the release of pro-

inflammatory mediators that disrupt intestinal homeostasis and cause intestinal barrier dysfunction 

95. Multiple inflammatory cytokines such as interleukins (ILs) (e.g., IL-1β, IL-6), interferons, tumour 

necrosis factor- α (TNF-α), and increased leukocyte recruitment to the site of inflammation 

characterise intestinal inflammation. The following illustration describes immune cells and cytokines 

associated with UC aetiology: 

These inflammatory cytokines are expressed at relatively higher levels in the intestinal tissues of 

patients with UC. However, the expression level of these cytokines depends on the disease phase and 

characteristics of patients 96. TNF-α is a pleiotropic cytokine that regulates inflammation by inducing 

IL-1 and IL-6 production, fibroblast proliferation, adhesion molecule expression, and the initiation 

of an acute immune response 97. TNF-α triggers gut inflammation by activating and proliferating 

immune cells, producing cytokines and chemokines, and degrading extracellular matrix 98. As a result 

Figure 2. NF-κB-targeted therapeutics in inflammatory diseases [used with permission from 94] 



 

9 

 

of elevated TNF-α levels, mucosal barrier function diminishes in UC patients with the inflammation 
99.  

There is currently no comprehensive treatment for UC; however, symptoms of inflammation can be 

decreased or prevented by achieving remission through therapies. However, the complex aetiology 

of UC may induce variation in responses to therapy. The key role of TNF in IBD pathogenesis is 

highlighted by the efficacy of anti-TNF monoclonal antibodies such as Infliximab, Adalimumab, and 

Golimumab. Anti-TNF therapies have significantly improved outcomes in UC patients 98.  

Following antigen invasion in the intestinal mucosa, immune cell trafficking occurs, directing T-cells 

to the site of inflammation. T-cells adhere to the inflamed site through adhesion molecules such as 

chemokine receptor 9 (CCR9) and the integrins α4β1 and α4β7. The binding of these adhesion 

molecules promotes the recruitment and activation of immune cells, resulting in the initiation, 

propagation, and amplification of gut inflammation 100. Blocking these adhesion molecules with 

leucocyte infiltrate is an attractive treatment strategy in IBD. This treatment enables the blocking of 

the integrin driven cellular signalling using anti-integrin antibodies 101,102. 

The pathogenesis of UC is a partial consequence of signal defects driven by the dynamics of cells 

and cytokines in the signalling pathways. The nature of defects and how it influences disease 

phenotype varies significantly at patient level 103. Pathogenic microbes and viruses also contribute, 

tending to induce a disruption in the signalling events leading to a signal cascade generating a 

dysregulated immune response. The defect in inflammatory pathways leads to the uninhibited release 

Figure 3. Immune cells and cytokines that contribute to the pathophysiology of UC [used with permission from 96]. 
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of effector T cells resulting in a perforated barrier perpetuating inflammation. Major known signalling 

pathways include P38 MAP kinase (MAPK), Janus Protein Tyrosine Kinase/signal transducer and 

activator of transcription (JAK/STAT), Fas/FasL, PI3K/Akt, and NF-κB signalling pathways 104. An 

overview of the inflammatory cascade in IBD is represented in (Figure 4) below: 

For homeostasis in the gut, it is essential to have a controlled, tolerance system to prevent an antigen-

derived immune response. When this balance of the intestinal immune system is disrupted, it 

expedites pathogenic attack, increased epithelial permeability of mucosa, and abrupt immune reaction 

via signalling pathways. Consequently, underlying mucosal tissue gets exposed to the luminal 

antigens via a leaky intestinal barrier.  

Various immuno-inflammatory pathways in UC are associated with epithelial barrier function, 

antigen recognition, commensal microflora, dysregulated immunological responses, leukocyte 

recruitment, and genetic factors 103. NF-κB is one of the major transcription regulators which controls 

the molecular network for various IBD-associated cellular functions and is also an attractive 

therapeutic target for IBD. NF-κB pathways are activated via stimuli e.g., bacteria, cytokines, viruses, 

and growth factors by TLR activation together with MAPK and TNF signal transduction 89,106. In 

IBD, TLR/NF-κB signalling has a protective role in wound healing and tissue repair in the intestinal 

epithelial cell thereby re-establishing gut barrier functionality 107,108. 

Figure 4. The inflammatory cascade in inflammatory bowel disease [used with permission from 105] 
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Moreover, cytokines and their signalling play a significant role in cell communication and 

perpetuation of UC resulting in mucosal injury, tissue damage, and triggering debilitating immune 

responses. Immuno-inflammatory effect of cytokine is exerted in cooperation with other related 

proteins by forming a network of cytokines instead of a single cytokine effect. The cytokine network 

comprises pro-inflammatory as well as anti-inflammatory cytokines which contribute to the up-and 

down-regulation of disease progression respectively 109. The pro-inflammatory cytokines such as IL-

1, TNF-α, IL-12, and IL-23 are NF-κB-dependent mediators found to be elevated in patients with 

IBD 109–111. 

Highly conserved recognisable molecules called pathogen-associated molecular patterns (PAMP) are 

known to initiate the innate immune response when microbes invade intestinal epithelial cells (IEC). 

Toll-like receptors (TLRs) are the receptors that initiate downstream signalling of inflammatory 

pathways and are recognized for their critical involvement in mucosal homeostasis. The expression 

patterns of TLRs in the mucosal epithelial cells vary considerably among individuals 112. TLR4 is 

important for the recognition of lipopolysaccharides (LPS) and activates the NF-κB signalling 

pathway in the regulation of pro-inflammatory cytokines such as ILs, interferons (IFN), and TNF-α 
113. TLR4 has shown an association with UC or/and CD 114,115, TLR2 and TLR4 have been used as 

treatment targets for IBD 116. However, TLR3 and TLR5 are constitutively expressed by healthy 

intestinal cells. Signalling disorders of TLR3 and TLR4 inhibit IRF-3/Type 1 IFN/STAT/ISRE/IRF-

1 pathway using different compounds 104. 

The abnormalities in signalling pathways that influence disease phenotype can be traced back. 

Previous studies have shown that the immuno-inflammatory pathway in UC involves tissue damage 

driven by a complex, dynamic interplay between immune and non-immune cells 117; cytokines have 

a pivotal role in this crosstalk. Therefore, simultaneous investigating of multiple pathways rather than 

single pathways may provide a comprehensive overview of cytokine-directed signalling defects 118 

and identify other potential inflammatory mediators contributing to IBD pathogenesis 119,120. 

1.3 Diagnosis and clinical presentation of UC 

There is no single reference standard for the diagnosis of UC. Diagnosis of UC consists of various 

alternative procedures such as clinical presentation, endoscopic findings, histology, and exclusion of 

alternate diagnosis 40. For the selection of appropriate treatment and prognosis for UC patients, it is 

crucial to characterise the extent and severity of inflammation. Lab testing mainly involves blood and 
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stool testing to confirm the status of inflammatory markers such as elevated erythrocyte 

sedimentation rate (ESR), C-reactive protein (CRP), low ferritin, anaemia, hypoalbuminemia, faecal 

calprotectin, and lactoferrin. To examine the status of the inflammation in the colon, endoscopic 

procedures are used, and biopsies are obtained for further histological analysis. Endoscopic findings 

mainly include erythema, oedema, spontaneous bleeding, and ulcers 40.  

For determining disease activity and clinical outcomes for UC patients, a scoring system has been 

developed by Baron et al., 121 which divides UC classification into mild, moderate, and severe. Mayo 

score is a commonly used classification system measuring UC 122, which assesses the disease 

occurrence and severity. For histological feature assessment, Geboes Index 123 is mostly used. The 

Montreal classification system 124 classifies patients into four subgroups (Figure 2). Based on disease 

severity, the patient groups are classified into four patient subgroups: S0 (Clinical Remission), S1 

(Mild UC), S2 (Moderate UC), and S3 (Severe UC) 40. 

For UC activity assessment, there is a scale of invasiveness that consists of clinical, biochemical, 

endoscopic, and histological activity. UC patients achieve remission (symptom-free state) following 

treatment. There is no validated definition of remission. Clinical remission is simply defined as full 

resolution of symptoms which is further classified into endoscopic, histological, and mucosal 

remission/deep remission. Mucosal remission is an emerging objective in UC treatment 125,126 and is 

associated with improved long-term clinical remission with reduced risk of colectomy 127. 

1.3.1 Treatment interventions 

Ulcerative colitis is a chronic inflammation of the colon resulting in life-threatening complications 

that require lifelong therapy. While UC has no known complete cure and universally effective 

treatment, treatment strategies can significantly alleviate signs and symptoms of the disease and attain 

Figure 5. Ulcerative colitis phenotypes by Montreal Classification [used with permission from Mount Sinai health 
system 1] 
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long-term remission. However, the definition of remission is highly debatable, and it varies in 

different contexts based on the resolution of clinical symptoms and mucosal healing 128–130. The 

treatment of UC is a stepwise procedure in which therapy decisions are made based on the disease 

severity and clinical response of previous treatment 118,131. Following (Figure 6) is the typical 

representation of the therapeutic pyramid of inflammatory bowel disease. 

In UC, there are two major classifications of therapy based on their effects: induction and 

maintenance therapy. Induction therapy is aggressive, effective intervention given to a patient with 

UC to achieve remission quickly (6-8 weeks) by reducing the inflammation of the gut whereas 

maintenance therapy is a long-term intervention (>12 weeks) while gut inflammation is under control. 

Aminosalicylates (aka 5-ASAs, such as Mesalazine and Sulfasalazine), Steroids (such as 

Prednisolone and Budesonide), biologics (such as Infliximab, Adalimumab, Vedolizumab, 

Golimumab and Ustekinumab) are used as induction therapy. Maintenance therapy may be switched 

to a completely new type of drug if there is a relapse. There are various alternatives for maintenance 

therapy such as Aminosalicylates, Immunomodulators (such as Azathioprine, Mercaptopurine and 

Methotrexate), and targeted drugs. 

There are different medications such as topical, systemic administration of drugs and surgery which 

are selectively chosen to treat the patient based on the extent of disease symptoms. In cases, when 

there are severe flare-ups during the disease course, immunomodulators and anti-tumour necrosis 

factor-alpha (anti-TNFα) inhibitors are used in combination or as monotherapy with a top-down 

approach (Figure 6) to avoid relapses. These targeted drugs are known as biologics and their 

mechanism of action is based on targeting TNF and an integrin, respectively 1,133. These TNF 

Figure 6. The therapeutic pyramid of inflammatory bowel disease [Adapted from 132] 
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blocking biologics such as Infliximab, Adalimumab, and Golimumab are mainly effective for 

inducing remission in moderate-to-severe patients with UC 1,134,135. Among anti-TNF alternatives, 

Infliximab is a frequently and widely used induction therapy for out-patients with severe UC 136. The 

action mechanism of Infliximab is that antibodies bind to TNF and block the interactions with its 

receptors. Since TNF is a major inflammatory mediator, inhibiting the results of its effects in 

reduction of the inflammation 137. However, it is still debatable that these molecules have an 

additional role in the drug mechanism than merely TNF blocking 134. TNF has a dual role as a ligand 

as well as a receptor molecule, while in the soluble form it acts as a ligand whereas its precursor 

forms transmembrane TNF (mTNF), which plays a role as a receptor molecule that gets activated 

once in contact with TNF antibody 138.  

The anti-integrin biologics are used as maintenance therapy for the moderate-to-severely active UC 

patients with non-response or loss of response to anti-TNFα therapy 139. Both Vedolizumab (VDZ) 

and Etrolizumab (ETZ) are the next-generation, gut-targeted targeted drugs that are humanised 

monoclonal antibody that selectively blocks β7 subunit of heterodimeric integrin α4β7 140. Following 

(Figure 7) shows the action of targeted therapies such as anti-TNFα and anti-integrin respectively on 

the intestinal immune system in ulcerative colitis. 

In the GEMINI-1 cohort study for UC, VDZ was more effective than placebo as induction and 

maintenance therapy 143. ETZ has a dual action that selectively targets α4β7 and αEβ7 integrins. α4β7 

integrin is a glycoprotein that B and T cells present on the surface of B and T cells 143. α4β7 interacts 

with mucosal addressin-cell adhesion molecule 1(MAdCAM-1), which is preferentially expressed in 

the lamina propria of the gut tract and its associated lymphoid tissues. Anti-integrin therapy mainly 

targets α4β7-MadCam-1 interaction by blocking α4β7integrin, thereby facilitating both prevention of 

lymphocyte requirement to intestinal tissue and inhibiting their inflammatory effect on gut mucosa 

144,145. It was found that VDZ therapy has consistent efficacy in durable clinical remission, mucosal 

healing, and steroid-free remission were all significantly higher in the VDZ groups when compared 

with placebo regardless of previous anti-TNF therapy 146,147. As of now, there is no reliable supporting 

study to guide the choice of individual targeted therapy over others as maintenance therapy in UC. 

However, a network meta-analysis study on all available targeted drugs such as Infliximab, 

Adalimumab, Golimumab, and Vedolizumab has found their higher efficacy over the placebo group 

for maintenance of remission and response 148. Abrilumab and PF-00547659 are other anti-integrin 

drugs both administered subcutaneously, and their mode of action is based on blocking α4β7integrin-

binding with MAdCAM with high affinity and selectivity 149,150.  
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Alternatives to anti-TNF and anti-integrin therapy are interleukin inhibitor (ILI) targeted drugs which 

selectively target IL-12 and IL-23, e.g., Ustekinumab, Risankizumab. These are monoclonal 

antibodies to the p40 (Ustekinumab) and p19 (Risankizumab) subunits of IL-12, IL13 (Ustekinumab) 

and IL-23 (Risankizumab) respectively. ILI targeted drug prevents binding of IL-12 and IL-23 to IL-

12R-β1 receptor chain of IL-12 and IL-23 receptor complexes on the surface of natural killer (NK) 

and T cells, this inhibits the effect of IL-12 and IL-23 mediated responses to produce cytokines. For 

those patients with UC who have failed other available targeted therapies, a new class of therapy 

called small molecule drugs (SMDs) in the league of treatment of patients with moderate-to-severe 

UC is Tofacitinib 151,152. Tofacitinib inhibits phosphorylation and JAK activation, which prevents 

phosphorylation of cytokine receptors. As a result, cytokine receptors cannot dock to initiate 

transduction and activation of STAT for gene transcription and production of cytokines 40. 

The demand for targeted therapy has been dramatically increasing because of its efficacy in attaining 

favourable outcomes for IBD. A recent study has found that the elevated cost of therapy in the USA 

is due to the increasing use of targeted drugs in the last decade 153. As a result, the high cost of targeted 

drugs imposes a significant burden on healthcare. Nevertheless, despite tremendous advances, about 

one-third of the patients with IBD are non-responsive to anti-TNFα and 10% lose their response to 

therapy each year. Moreover, current IBD medications cause infectious, neoplastic side effects 

(tumour growth) and other unfavourable side effects, therefore usually not prescribed for paediatric 

IBD patients. Among other emerging alternate IBD therapies, stem-cell therapy has a major 

advantage for its low immunogenicity profile, and lack of requirement for whole-body chemotherapy 

Figure 7. Summary of current and investigational targeted therapies such as anti-TNFα (left) and anti-integrin drug 

(right) of the intestinal immune system in ulcerative colitis [used with permission from creativebiolabs (left), adopted 

from 144 (right)] 
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following transplant. It is used to treat damage caused by chronic inflammation in IBD through varied 

mucosal immune responses 154. Mesenchymal stem cells (MSCs) are used for their 

immunomodulatory capability which induces regulatory T-cell production for downregulating 

mucosal immune response to promote mucosal healing 155. Another known treatment is called faecal 

microbial transplant (FMT) where a faecal microbiota sample is collected from individuals with 

healthy commensal flora and transplanted to the patient with IBD. It is believed that gut microbiota 

has a pivotal role in the pathogenesis of IBD 95,156. However, multiple FMT is burdensome on the 

patient who requires multiple follow-ups for endoscopies and associated healthcare costs. 

1.4 Biological networks and network-based approaches 

The concept of networks encompasses a wide range of dynamic systems such as natural, social, and 

biological systems e.g., a cell is a complex network of chemicals connected by various chemical 

reactions. A cell consists of densely packed diverse macromolecules present in the interior to the 

extracellular matrix of the cell. The intra- and intermolecular interactions because of molecular 

crowding are known to cause a crucial role in cellular signalling networks. Traditionally, networks 

have been modelled as random graphs, however, later it is increasingly recognized that there are 

underlying robust, organised principles behind network topology and dynamics 157. 

Albert-László Barabási158 has coined the term ‘network medicine’ which emphasises the use of 

network-based methods for system-level understanding of disease mechanisms. These techniques 

seek to deduce network connections and the dynamics of information flow across biological systems 

to identify putative disease markers 159. A biological system is a highly complex web-like structure 

comprising dynamically interacting components such as genes, proteins, and metabolites. A defined 

biological function is rarely linked to a single molecule; rather, it is the result of an interaction 

between constituents of the biological system. The interaction of numerous network components at 

various system-level gives a deep mechanistic knowledge of biological processes. Protein-protein 

interactions (PPIs) and gene regulatory networks are two examples of network types (GRNs) 160,161. 

Unlike random networks, the biological system embraces the complex architecture which is often 

scale-free 163. These networks are interchangeably termed as graphs containing nodes connected by 

links (edges). Nodes with multiple interactions within signalling networks are known as hub nodes, 

and hub nodes constitute network modules 164. The notable feature of network hub nodes is their 

ability to hold the whole network together, although accounting only for 20% of the network nodes. 

Despite decades of research, the p53 (tumour suppressor) is a prototypical example of a hub protein 



 

17 

 

whose biological functions in the signalling cascade are continuously being discovered 165. Each of 

the network modules in the network carries a highly specific biological function. Nodes that connect 

two or more modules are called bottleneck nodes and their primary function is to exchange 

information across network modules for carrying out biological subtasks 166. Bottleneck nodes have 

high betweenness centrality (a measure of the number of the shortest paths that go through each node). 

The identification of network modules has been challenging 167 which has inspired researchers for 

the invention of methods such as random walk-based approaches 168,169. 

Networks are a flexible, quantitative tool that provides a conceptual and intuitive framework for 

visualising and inferring intra- and intercellular molecular interactions. Biological networks are often 

employed as perceptual inference-making tools to describe, integrate, and analyse data. This 

framework is used to model the integration of multi-omics data, analysis of the cellular organisation, 

explore genotype-phenotype association, and the capturing the effect of perturbations on a complex 

intracellular network (Figure 5). The scale-free property of networks allows for the modelling of 

biological systems at all levels, from molecular to population-scale. 170.  

Network-based approaches enable understanding of disease aetiology, identification of putative 

biomarkers, the discovery of drug targets, identifying the disease pathways, and subtypes of disease 

states. Network models are heavily dependent on large biological datasets for constructing models. 

The unprecedented development of high-throughput sequencing and rapid decline in sequencing costs 

provides impetus to produce a large scale of omics datasets e.g., transcriptomics, proteomics, 

Figure 8. An overview of hierarchical biological network representations with different layers involving various 
biomedical data types from the genome, transcriptome, and proteome 162 
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lipidomics, microbiomics, etc 172. These multi-omics datasets facilitate the application of network-

based approaches to decipher new insights into the molecular mechanism of diseases. On longitudinal 

patient data, network-based approaches may be utilised for temporal or dynamic network analysis, in 

which statistical dependencies of a network at distinct gene expression profiles could be examined to 

infer a temporal regulatory relationship 173. To identify disease genes and their associated mechanism, 

network-based approaches are mainly classified into exploratory and analytical methods 174. The 

exploratory method captures biological patterns due to the perturbation whereas analytical methods 

focus on identifying individual genes and disease-associated pathways.   

The perturbation at hubs and bottlenecks across a biological network can be studied using network 

analysis. The use of network techniques in breast cancer research has seen significant progress over 

the last decade 175,176. It has led to the discovery of translatable insights in the study of IBD as well 

as other complex heterogeneous disorders 177. Unlike rare diseases caused by a single gene mutation, 

IBD is driven by complex interactions between different factors such as genetic, environmental, and 

microbial factors. These interactions span numerous cellular, genomic, epigenetic, and protein levels 

to manifest the disease phenotype (Figure 5). Because of disease heterogeneity among IBD patients, 

which is primarily influenced by diverse environmental exposures and distinct genetic 

polymorphisms, multiple pathogenic pathways are activated. Targeting diverse pathways with a one-

size-fits-all therapeutic approach precludes effective treatment options toward precision medicine, a 

key technique for enhancing clinical outcomes with patient-tailored therapy 178–181. 

Figure 9. A gene regulatory network vs. a protein-protein interaction network. A gene's regulatory network nodes 
indicate genes or proteins, and the lines connecting them indicate regulatory interactions [left]. A protein-protein 
interaction network is composed of nodes that represent genes or proteins and lines that represent regulatory 
interactions [left]. Nodes in a protein-protein interaction network are always proteins, and the connecting lines indicate 
physical protein-protein interactions [right] [Adapted from 171]. 
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Biological networks may be constructed in several different ways depending on the type of data. 

Protein-Protein Interaction (PPI) networks, gene regulatory networks, and metabolic networks are 

notable examples of these biological networks 182. Using a single biological network has various 

constraints, such as the gene regulatory network, which requires gene expression measurement and 

transcriptome data. However, the drawback of adopting network techniques based on correlation 

measurements is their exclusive dependency on the correlation between genes connected in the 

network, and correlation does not necessarily imply causation. Some available resources in PPI are 

quite sparse, resulting in biases in network generation approaches. The following are the commonly 

used network-based approaches: 

1.4.1 Protein-Protein Interaction (PPI) Networks  

PPI networks are a mathematical representation of nodes (proteins/peptides) that are connected by 

edges (connections) in the cell (Figure 9). PPI networks provide information about physical 

interactions between proteins derived from experiments, and computational predictions 182. The 

disease context-specific interactions can be incorporated to baseline PPI with the inclusion of an 

additional layer of a biomedical dataset. Different methodologies may be used to evaluate protein 

interactions, including experimental methods (yeast two-hybrid tests and affinity purification coupled 

mass spectrometry) and computational prediction methods (text-mining and machine learning) 183. 

Using comprehensive databases like SignaLink3, Reactome, OmniPath, etc., a PPI network with 

directed PPIs may be utilised to construct intra- and intercellular signalling models. 184. 

By integrating gene expression data that represents proteins with their transcripts in the PPI network, 

PPI network-based approaches may be contextualised to the disease-specific state. These network 

techniques have been widely used in IBD research to construct IBD-relevant PPI networks to identify 

novel IBD-relevant gene pathways represented in IBD gene-enriched modules 185. A recent study 

used scRNAseq data from healthy, non-inflamed UC, and inflamed UC colonic biopsies to establish 

cell-type-specific PPI networks of intracellular and intercellular signalling in the colon in healthy and 

UC states 186. 
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1.4.2 Gene Regulatory Networks (GRNs)  

GRNs are mathematical models that represent the rationale underpinning gene regulatory behaviours. 

A GRN describes regulatory interaction which involves transcription factors (TFs) and their target 

genes. A simple GRN model comprises two key events: (1) an active TF binds to gene promoter; (2) 

binding of TF activates /suppresses the expression level of the target gene. By integrating these two 

events derived from high-throughput data and existing literature, the GRN model can be reconstructed 

187. GRN reconstruction has been recognized as a reliable technique to describe how cells assimilate 

biochemical stimuli and respond appropriately, triggering complex cellular programs involving a set 

of genes 188.  

GRNs are a scale-free method for the temporal representation of biological networks. GRN models 

utilise gene expression data obtained under different experimental conditions and aid in deciphering 

the behavioural patterns of biological systems in response to perturbations. This allows the 

identification of important modulators, driver nodes, and subnetwork identification present in the 

network. GRN captures local network features such as degree and other centrality matrices that 

impact network neighbourhoods such as network hubs and core nodes. GRN can examine the 

regulatory pattern of transcription factor (TF) in which TF-target gene information is incorporated 

using ChIP-seq and/or ATAC-seq data. Because of the increased availability of high-throughput 

omics technologies, there is unprecedented potential for constructing a new GRN inference approach. 

(Figure 11).  

Figure 10. A scale-free network vs. a random network. The number below each node represents the degree (number 
of interactions) of that node. The majority of nodes in a scale-free network connect with only a few other nodes (blue) 
[left], whereas only a few interact with many other nodes and act as network hubs (pink). The nodes (blue) in a random 
network connection with a uniform probability, resulting in most nodes having the same number of connections [right]. 
[Adapted from 171]. 
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GRN may be used to obtain quantitative estimates of network components such as DNA, mRNA, 

TFs, and signalling proteins, as well as their interaction patterns. Various gene expression-based 

approaches for constructing GRNs and Gene Co-expression Networks (GCNs) employing 

multimodal genomic data have been developed 182. GCNs are context-specific networks that are 

constructed by estimating gene expression correlations among related genes. GCNs and GRNs 

complement each other by sharing a common input requirement: gene expression data. The GRNs 

and GCNs models can be refined by including biological constraints data, such as potential 

transcription factor-target gene interactions. These models can make inferences about disease 

perturbations by integrating disease or tissue-specific information with a baseline prior network. 

Weighted Gene Co-expression Analysis (WGCNA), a popular GCN technique, estimates a 

correlation between genes and filters out weak connections to create a scale-free network 189. 

ARACNE, C3Net, GENIE3, WGCNA, and other GRN techniques are examples 189–192. ARACNE is 

used to reconstruct gene regulatory networks and signalling networks from large-scale gene 

expression data, as well as to solve network deconvolution challenges 190. This method identifies 

direct transcriptional relationships while eliminating the majority of indirect interactions identified 

by co-expression methodologies. ARACNE and other comparable GRN techniques have a drawback 

Figure 11. An Overview of Popular Omics Technologies and Network Inference Computational Methodologies [used 

with permission from 169] 
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that is most apparent when assessing inferred GRN. This problem will be discussed in further depth 

in the discussion chapter. 

GRNs can be used to construct condition-specific regulatory models that model transcription factor 

binding propensities instead of co-expression. This method facilitates defining the involvement of 

genes or modules in each disease state. These networks can provide useful insights into the highly 

dynamic nature of gene regulation, as well as the molecular underpinnings of observable phenotypes 

as a consequence of perturbations. The discovery of driver nodes and network-based biomarkers, 

such as the differential strength of interactions between TF and target genes in the context of disease, 

is accomplished by condition-specific GRNs. Passing Attributes between Networks for Data 

Assimilation (PANDA) 193 algorithm is an example of a condition-specific GRN that allows prior 

knowledge (PPI, GCN, and a network prior) to be integrated to uncover interaction patterns between 

transcription factors and target genes for differential targeting analysis. PANDA generates network-

derived weighted edge scores that create self-consistent modules which highlight key biological 

processes. PANDA has been applied in cancer research to identify TFs and genes, as well as 

prognostic biomarkers and novel core modules of functionally relevant TFs 194,195. LIONESS (Linear 

Interpolation to Obtain Network Estimates for Single Samples) 196 techniques have been designed to 

capture network variability in a population, and are mainly used for sample-specific network 

inference. LIONESS generates single-sample networks based on correlated gene expression to 

generate a comprehensive, weighted adjacency matrix.  

Network-based biomarkers, typically utilise molecular pathways rather than individual genes, are 

feasible for multifaceted diseases and can be used for diagnostic, predictive, and prognostic purposes. 

By combining multiple types of networks, a molecular interaction network is constructed, which has 

an advantage as a network medicine tool over similarity metrics based solely on expression profiles 

197. This is attributed to the reason that each network type contains information linked to distinct 

biochemical characteristics for representing an individualized network's phenotype. Jostlin et al. 

discovered 73 unique and 163 IBD-associated genomic loci utilising GCNs and GRNs to evaluate 

the influence of IBD-associated loci on IBD pathogenesis in a meta-analysis study of 15 IBD GWAS. 

In this study, 211 co-expression IBD-enriched modules were discovered using WGCNA of gene 

expression data from diverse types of tissues 10. Verstockt et al. estimated gene dysregulation at 

multiple phases of CD 198 using WGCNA-derived GCNs. Aschenbrenner et al. utilised GCNs 199 to 

investigate cytokine (IL23) signalling in a recent study on treatment-naïve paediatric CD and non-
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inflamed controls. IL23 is a pro-inflammatory cytokine that has been linked to the pathogenesis of 

IBD. 

1.4.3 Multi-layered network approach 

Over the last decade, there has been an unprecedented generation of omics data, and it appears that 

their demand for biological applications is expanding over time. Databases such as OmniPath 200, 

SignaLink3 201, and ConsensusPathDB 202 have been developed to construct multi-layered networks 

to incorporate multi-omics data 203. These databases provide a comprehensive knowledge base of 

signalling processes such as interaction, regulation localization, disease, etc. and are valuable 

resources for tissue or compartment-specific pathway interaction analysis in signalling model 

construction. The various signalling processes can be integrated into a multi-layered signalling 

network using network modelling techniques to get valuable insights into disease pathogenesis. These 

techniques are performed by combining GCNs and GRNs using gene expression data 10. In contrast, 

intracellular ligand-receptor signalling networks have recently been studied using single-cell RNAseq 

data, in which the PPI network and GCNs were integrated 204. A cell signalling network is an 

intriguing form of multi-layered network, comprising two key components: upstream and 

downstream. A directed PPI network with intracellular signalling pathways occurs in the upstream 

components, whereas a GRN of transcription factor-target gene interactions occurs in the downstream 

components 166.  

Although an example of a cell signalling network is still restricted to IBD, Brooks et al. recently 

created a pipeline "iSNP" that constructs a UC-specific cell signalling network using non-coding SNP 

data obtained from UC patients 205. Using iSNP, a patient-specific cell signalling network was created 

in which patients were categorised into 4 groups, each with its own set of pathogenic pathways. The 

identification of unique regulatory effects of UC-associated non-coding SNPs in patient subgroups is 

achieved by an iSNP-derived cell signalling network. 

1.4.4 Machine learning-based network approaches 

Machine learning (ML) is a subset of artificial intelligence (AI) that allows machines to learn without 

being explicitly programmed. The learning process of machine learning-based models is automated 

and refined based on repeated experiences with fresh data provided to the computer. Machine 

learning-based approaches decode the complexities of highly complicated biological data using 

mathematical calculations and statistical assumptions. In contrast to other traditional network-based 
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techniques, the input to ML approaches are features, such as patient characteristics in disease, and 

these characteristics predict patterns in an unknown volume of data in the future. ML approaches 

have been extensively used in reconstructing gene regulatory networks 206, PPI networks 207, 

prognosis prediction 208 and recently used in the analysis of scRNAseq data 209,210. ‘nnet’, a feed-

forward neural network algorithm 211 has recently been used in biomarker discovery 212. 'nnet' is a 

generic machine learning approach that uses regularization model parameters to control overfitting. 

However, deep learning approaches have two important limitations: it requires a significant quantity 

of data, which is not practical in all clinical trials, and it is prone to low interpretability for model 

parameters due to their complex model structure. Despite recent advances in network-based 

techniques for understanding complex UC disease mechanisms, there is still insufficient information 

to accomplish the goal of precision therapy in IBD 213. As a result, significant progress in strong novel 

and integrative network techniques is necessary to broaden the scope of precision medicine in IBD 

research. 

  



 

25 

 

2 Aim of thesis  

The patient at risk of developing non-response to the UC treatment is not well understood and 

approximately one-third of the patient is non-responsive to available targeted therapies. This suggests 

more complex disease pathogenesis is involved in the development of UC. Identification of patients 

with a high risk of non-response is a major clinical challenge. The overarching aim of the thesis is to 

contribute to the understanding of the individualized therapy response. Thus, contributing to the 

development of precision medicine. To achieve this objective, a quantitative, individualized, 

computational, framework is developed. Identifying putative complex biomarkers and predictive 

signalling pathways that can stratify patient subgroups within UC. This may enable patient-tailored 

therapy selection. 

2.1 Hypothesis 

The working hypothesis was that modelling patient-specific receptor to transcription factor (TF) 

network connectivity might provide a tool for more accurate prognosis and precision of treatment in 

the clinical management of UC. 

2.2 Objective of thesis 

Objective 1: Developing a model that identifies predictive biomarkers for stratifying anti-TNF 

treatment responder and non-responder patients with UC. 

Objective 2: To identify a predictive signalling network for anti-integrin treatment response in UC. 

Objective 3: Predict individual variability in pattern recognition receptor stimulation response. 
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A complex system that works is invariably found to have evolved from a simple system 

that works. 

- John Gaule 
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3 Methodology  

3.1 Diffusion model 

Diffusion has been studied in a variety of scientific fields, including physical, chemical, and 

biological sciences. The diffusion of salts in water is a well-known phenomenon with analogies in 

other physical processes such as electrical conduction, heat conduction, and more. In his research 214, 

Fick described the relationship between the rate of diffusion and concentration gradient. A molar flux 

due to diffusion is proportional to the concentration gradient. 

We opted to represent the biochemical processes that occur during signal transduction using a 

network that connects cell surface receptors to TFs in the nucleus. In signal transduction, receptor 

proteins transmit a signal to the adjacent proteins and the signal received by TF controls gene 

expression. To build a model, we chose a network in which IBD-relevant receptors are connected to 

TFs. This model represents the molecular events that occur during signal transduction. To quantify 

these molecular events, we calculate patient-specific network edge weights. The output of the model 

is the signal received by the TFs over time which is simplified as a time to reach 50% of the maximum 

signal at the TF (t50). An obtained output contains a matrix of t50 score with receptors-TF pair per 

patient. This matrix can then be used for further statistical analysis or machine learning. We used t50 

score for the separation of treatment response subgroups. However, in this simplified model the 

network contains only signal transduction nodes and does not include any negative regulation of 

transduction or feedback mechanism.  

Consider a patient-specific signalling network in which nodes represent proteins such as cytokines, 

receptors, and kinases that build a signal transduction cascade. If a signal S, which corresponds to a 

chemical concentration in Fick's law, is applied to a node i the signal flux F along a network edge 

connecting node i to node j at time t is given by: 𝐹𝐹(𝑡𝑡) 𝑖𝑖→𝑗𝑗 = �𝑆𝑆 𝑖𝑖 − 𝑆𝑆 𝑗𝑗� ∗ 𝐸𝐸 𝑖𝑖 ∗ 𝐸𝐸 𝑗𝑗 
Where the edge connectivity weight, corresponding to the diffusion constant in Fick’s law, is 

computed using the patient’s normalized gene expression levels, E⁠, of the genes coding for the 

proteins i and j⁠. The signal present at each protein node i connected to J other protein nodes j ϵ 1. J is 

then updated at time t + 1 using the sum of all fluxes: 
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𝑆𝑆(𝑡𝑡 + 1) 𝑖𝑖 = 𝑆𝑆(𝑡𝑡) 𝑖𝑖 + � 𝐹𝐹(𝑡𝑡)     𝐽𝐽
     𝑗𝑗=1 

 𝑖𝑖→𝑗𝑗 

The computation is initialized at time zero by setting all signal levels to zero and then placing one 

unit of signal on a starting receptor protein. The signal propagates through interconnected proteins 

throughout the network. To quantify the connectivity, we take the number of time steps to reach 50% 

of the maximum signal at the TF of interest (t50)⁠. This methodology was implemented in R (4.1.0). 

Simulations were run for 2000 timesteps for all samples in each dataset, generating a new data matrix 

of t50 data with rows for each sample and a column for each receptor-TF pair. All the analysis 

conducted was implemented with packages in R version 3.6.3 and 4.2.0 (www.r-project.org). 

Software is available at https://github.com/Amy3100/receptor2tfDiffusion. 

In paper III the model is expanded to include genes that can negatively regulate signalling. These 

nodes function identically but have their signal value (S) reset to zero between each time step. This 

allows adding nodes that remove signals, acting as signal sinks. 

3.2 Network construction 

A signalling network was constructed using UC-relevant receptors (IBD GWAS risk genes) and key 

TFs that describe the connectivity from receptors to key TFs. Gene Ontology (GO) terms were used 

to restrict the network to relevant signal transduction genes. The final signalling network contains 

nodes and edges that comprise receptors, signal transducer proteins, and TFs. The network interaction 

in pattern recognition receptor (PRR), a signalling pathway focusing on negative regulation was used 

216. The network interaction was validated in the STRING database and corresponding gene symbols 

were updated accordingly. Networks were created individually for TLR2, TLR4, TLR7, TLR9 and 

NOD2. 

3.3 Subnetwork identification 

A subnetwork is a modulization of a signalling network into a manageable size which improves the 

interpretability in the simplified form of the signalling network. It contains multiple TFs that 

cooperate for regulating target genes in the subnetwork 217. Subnetworks are constructed by finding 

the shortest path (using gene t50 values) between the receptor and the TFs. It should be noted that a 

lower t50 for each gene suggests a larger accumulation of diffused signals. The AUC for the top 10 

receptor-TF pairings is all greater than 0.78. (VDZ response vs non-response). The subnetworks were 

plotted using the igraph (https://igraph.org/) software. For each subnetwork, the sum of the gene t50 
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values per branch (receptor to TF) for each sample was calculated. Then, the group branch sums were 

used to compare the patient sample groups. 

3.4 Data sources 

3.4.1 Gene Expression  

Gene expression datasets were retrieved from a publicly available repository: Gene expression 

omnibus (GEO). These datasets include Affymetrix microarray e.g., Illumina HT12 arrays and 

highthroughput RNAseq of patient samples with UC (paper I). For Affymetrix microarray gene 

expression data, the pre-processing and normalisation (Robust Multi-Array Average) was performed. 

For RNAseq and Illumina microarray data, quantile normalisation was performed. 

Paper-I: The clinical samples were obtained from the public repository Gene expression omnibus 

(GEO) with accession id: GSE16879. This dataset contains Affymetrix microarray gene expression 

data of UC patients along with non-IBD controls. This dataset contains the colonic biopsies before 

the week (W) 0 and after treatment (W6) with an anti-TNF drug (Infliximab). This dataset was used 

to develop the model. We used three other microarray gene expression datasets for model testing. To 

evaluate the performance of the model on relevant autoimmune diseases, we retrieved and merged 

two gene expression datasets of rheumatoid arthritis (RA). This dataset contains gene expression data 

obtained from paired synovial biopsy samples from the affected knee of RA patients. The samples 

were collected before (W0) and after treatment (W12) with anti-inflammatory drugs such as 

Tocilizumab (TCZ), Methotrexate (MTX) or Rituximab (RTX). 

Paper-II: In this study, clinical samples of patients with UC were obtained from GEO (GSE73661) 

218 containing Affymetrix gene expression data before and after treatment with Vedolizumab (VDZ) 

or Infliximab (IFX) targeted drugs. This dataset also contains non-IBD controls making a total of 178 

samples with 120 colonic mucosal biopsies obtained at week (W) 0 (before treatment) and W6, W12, 

and W52 (after treatment). Only 112 patient samples treated with VDZ and 12 non-IBD control 

samples were selected for analysis. The baseline characteristics of patients are summarised in paper-

II 218. For the further testing performance of the model on another anti-integrin targeted drug 

(Etrolizumab), we retrieved a publicly available high-throughput RNAseq dataset from GEO 

(GSE72819). This dataset contains baseline colonic biopsies obtained from Etrolizumab (ETZ)-

treated patients. A total of 70 samples: 58 non-responder and 12 responder UC patient samples were 

used. 
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Paper-III: The clinical samples were obtained from GEO: GSE80325 219 and GSE137680) 199. 

GSE80325 comprises an Illumina HumanHT-12 V4.0 expression array of healthy adult blood 

stimulated with 15 different stimuli with a total of 291 samples. The baseline characteristics of 

patients are summarised in paper-III 220. The stimuli used for induction include agonists for surface 

TLRs, intracellular TLRs and NOD receptors, recombinant cytokines, and protein kinase C. 

Following ex-vivo infusion of 15 stimuli in adult healthy blood samples, transcriptional responses 

were observed after 6 hours. GSE137680 199 contains ex vivo samples of peripheral blood 

mononuclear cells (PBMCs) from IBD patients stimulated with the PRR ligands LPS and MDP. 

3.4.2 Knowledge-based databases  

Following prior knowledge, databases were used for building a signalling network.  

3.4.2.1 comPPI 

For generating PPI for the network-based diffusion model, comPPI database was used. comPPI 

prevents biologically irrelevant interactions where two proteins share no subcellular localizations and 

predict compartment-specific biological functions 221. This PPI database contains 8 subcellular 

localization datasets with a hierarchical structure of >1600 subcellular localizations, each containing 

confidence scores based on the likelihood of their interactions. The only interaction with a confidence 

score > 0.60 was used in constructing the network used in constructing the model. 

3.4.2.2 Regulatory circuit 

For the true representation of relevant inflammatory cells involved in UC, regulatorycircuit.org was 

used. It is a comprehensive resource of 394 cell type- and tissue-specific gene regulatory networks, 

derived from 37 genome-wide mapping studies. These networks contain genome-wide connectivity 

among transcription factors, enhancers, promoters, and genes 222. Using this resource, regulatory 

motif binding site information using general immune cells (high-level network 

‘14_immune_organs.txt’) was obtained. 

3.4.2.3 OmniPath 

To select TF-target genes OmniPath was used. OmniPath database contains a signalling network, 

enzyme-PTM connections, protein complexes, protein annotations, and intercellular communication 

functions 200. 
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3.4.3 Gene ontology (GO) terms 

To extract sub-network from PPI connecting key TFs to surface receptors which are known UC risk 

genes and signal transduction genes, GO terms annotated for the cytokine-related signalling were 

used. For example, GO:0002768 (cell surface receptor signalling pathway) or GO:0019221 

(cytokine-mediated signalling pathway) were used in paper-I which extract the subnetwork 

connecting key TF to only cytokine receptors present in the PPI network. The resulting network was 

used for all UC datasets used in training and model testing. Gene annotation was conducted using the 

Bioconductor ‘org.Hs.eg.db’ package version 3.12.0 [10.18129/B9.bioc.org.Hs.eg.db]. GO 

enrichment analysis was performed using cluster Profiler, an R package 223. In paper II, genes specific 

to cell surface receptors signalling pathway were selected using the GO term (GO:0007166) which 

limits the network to known receptors. 

3.5 Reference methods 

In papers, I and II, nnet, a deep learning-based method 212 was used. The parameters of nnet were 

optimised over a grid of the number of hidden nodes (size) and regularization (decay) parameters. In 

nnet, 10-fold cross-validation was performed with 20 iterations using average accuracy to select the 

final model. This process was repeated to identify the optimum model structure for each dataset. 

Prediction results in the testing datasets were evaluated by area under the curve (AUC) analysis. The 

remaining parameters were kept at their default settings in the nnet. The available reference biomarker 

discovery method ‘Linear Interpolation to Obtain Network Estimates for Single Samples 

(LIONESS)’ was used to stratify treatment responder and non-responder UC patients. LIONESS is 

an algorithm for quantifying the network edge weights for individual samples in a population 196. 

LIONESS approach was developed as a function within the PANDA (Passing Attributes between 

Networks for Data Assimilation) regulatory network reconstruction framework. 

3.6 Data analytics 

3.6.1 limma 

The statistical significance testing was performed for differentially expressed genes using linear 

modelling (limma) 224. limma analysis was performed to identify significantly changed edge weights 

between inflamed vs non-inflamed samples and anti-TNF responder vs non-responder samples 

obtained from LIONESS results. 
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3.6.2 PCA and PLS 

Exploratory data analysis was performed using principal component analysis (PCA) and partial least 

square (PLS) regression 225. PCA of diffusion score of all receptor-TF pairs and all samples in the 

training dataset was performed while PLS on the same dataset was performed to find better 

stratification between treatment response subgroups. 

3.6.3 pandaR 

pandaR (Passing Attributes between Networks for Data Assimilation) 226, was used to create a gene 

regulatory network (GRN) with weighted edges between transcription factors (TFs) and gene targets 

regulated by TFs. The regulatory network connections were calculated with weighted edges on the 

testing dataset. To evaluate which TFs significantly contributed to the variation in gene expression, 

a null distribution regulation network edge weight was computed by randomizing the TF-target gene 

connections in the input. Then, the value of null distribution was used to calculate an empirical p-

value for each TF. 

3.7 Statistical tests 

Wilcoxon test, student T-test and empirical p-value testing were used for evaluating statistical 

significance. For correcting for multiple testing, the method of Benjamini and Hochberg was used 

227. Procrustes rotation was performed to compare new information obtained from the diffusion model 

to gene expression data. Procrustes rotation was also used to evaluate if the t50 data reflected the gene 

expression levels of just a few highly connected or ‘hub’ genes or global gene expression changes 

due to variations in proliferation rate or infiltration of immune cells. 

3.8 Cell deconvolution method 

To estimate the global change in gene expression in all samples by immune cell infiltration or 

proliferation rate, cell deconvolution tool 228 was used. This method gives an estimate of the diffusion 

score reflected in the gene expression levels of just a few highly connected or ‘hub’ genes or global 

gene expression changes due to variations in proliferation rate or infiltration of immune cells. 
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4 Summary of results  

4.1 Paper-I 

 

Identifying anti-TNF response biomarkers in ulcerative colitis using a diffusion-based 

signalling model 

Amrinder Singh, Endre Anderssen, Christopher G Fenton, Ruth H Paulssen 

Bioinformatics Advances, Volume 1, Issue 1, 2021, vbab017 

 

In this study, we developed a model for quantitative network analysis of the connection between 

receptors and transcription factors (TFs). We used key TF identified using pandaR and known 

cytokine and chemokine receptors. Network connectivities between immune-specific receptor-TF 

pairs were computed using network diffusion in non-IBD controls and UC patients treated with anti-

TNF drugs. The network connectivities between 83 receptors and 58 TFs were calculated using the 

gene expression of each patient to generate a signalling network. Using this signalling network, the 

diffusion model has identified connectivity between well-known pro-inflammatory receptors such as 

TNFRSF11B, OSMR, and CCR2 to inflammation-related TFs. The diffusion model generates a 

feature space that contains novel information as compared to the gene expression feature space alone.  

We found three top-scoring receptor-TF pairs with AUC > 0.91 in 20 responders and 36 non-

responder patients, improving on reference methods such as LIONESS and nnet for predicting anti-

TNF response in UC. The receptor-TF pairs identified might be considered potential prognostic 

biomarkers of anti-TNF treatment responders. The model was further tested in rheumatoid arthritis 

(RA) where it successfully discriminated against responder and non-responder patients to tocilizumab 

treatment with 86 samples. 
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4.2 Paper-II 

 

Identifying predictive signalling networks for Vedolizumab response in ulcerative colitis 

Amrinder Singh, Christopher G Fenton, Endre Anderssen, Ruth H Paulssen 

International Journal of Colorectal Disease (2022) 

 

This study aims to identify signalling pathways that may predict the efficacy of anti-integrin therapy 

in UC patients. We used a network-based diffusion model to highlight genes and their interactions in 

signalling pathways which may be predictive in response to the anti-integrin targeted drugs. We used 

12 non-IBD controls and 41 UC patients treated with Vedolizumab therapy. Initially, we tested 4 

Vedolizumab (VDZ) specific genes, known for the VDZ drug inhibition mechanism using a linear 

model and found a significant p-value ~ 0.03 and AUC=0.68 for VCAM1 out of four integrin-specific 

genes. 

To compare the diffusion model with the reference method; nnet, a deep learning approach was used. 

nnet uses gene expression data to stratify treatment responder and non-responder patients. However, 

nnet did not outperform the network-based diffusion model. Using the diffusion model, we found 

AUC ~ 0.78-0.80 for the top-scoring predictor receptor-TF pairs such as FFAR2-NRF1, FFAR2-

RELB, FFAR2-EGR1, and FFAR2-NFKB1 in VDZ treatment subgroups before and after treatment. 

To estimate the predictive ability of the diffusion model, we compared the diffusion feature score 

with the gene expression alone. We found that the diffusion feature score has relatively better 

predictive power for the stratifying VDZ patients’ subgroups than gene expression alone. Receptor-

TF pairs with FFAR2 receptor demonstrate the best predictor ability with an AUC score (~ 0.81) in 

comparison to gene expression of FFAR2. 

To characterise individualized pathways for treatment response, we identified a subnetwork that 

highlights the network interactions connecting receptors and transcription factors (TFs). Patients with 

VDZ non-response exhibit quicker signalling as compared to the patients with VDZ response and 

controls. We also tested the predictive power of the diffusion model on an alternate anti-integrin 

targeted drug (Etrolizumab) and found an AUC of 0.72. The obtained sub-networks feature genes 

involved in cytokine and fatty acid signalling. These findings may contribute to the development of 

a promising clinical decision-making tool for the stratification of UC patients. 
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4.3 Paper-III 

 

Modelling individual variability in pattern recognition receptor pathway response in IBD 

Endre Anderssen, Amrinder Singh, Christopher G Fenton, Ruth H Paulssen 

 

This study focuses on quantifying individual responses to a stimulus that may contribute to the 

pathological immune response involved in UC. To model this, we have analysed publicly available 

gene expression data before and after stimulation with pattern recognition receptor (PRR) agonists. 

Two datasets were used: the first dataset (a) contains 26 donors with unstimulated ex vivo blood 

samples and the same samples were stimulated with ligands to PRRs such as TLR -2, -4, -7, -9, and 

NOD2. The donors are normal controls and systemic juvenile idiopathic arthritis (sJIA) patients. The 

second dataset (b) contains 34 donors that contain ex vivo samples of peripheral blood mononuclear 

cells (PBMCs) from IBD patients stimulated with the PRR ligands lipopolysaccharide (LPS) and 

muramyl dipeptide (MDP). Canonical pathway models and network diffusion were used to predict 

an individual’s transcriptional response using the gene expression profile before stimulation. 

To identify the individual variability in the response to the same PRR signal, we used the diffusion 

model. We adopt a network analysis method to evaluate network connectivity between PRRs and 

transcription factors (TFs). The method uses input gene expression data to personalise the signalling 

network connecting PRRs to downstream TFs. These individualized network connectivities are then 

compared to activation levels for known TF target genes following PRR stimulation. A statistically 

significant correlation was found between the estimated network connectivities and activation of TF 

target genes. The correlation for extracellular PRRs is higher, at a shorter time of stimulation and for 

exterior membrane PRRs. 

This is a novel method to quantify individualized PRR response based on gene expression profiles 

and network models. Improved understanding of an individual’s response to PRR ligands may have 

implications for treatment choices and may open treatment opportunities using PRR ligands as 

alternatives or adjuvants to current treatment options. 
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Whether you can observe a thing or not depends on the theory that you use. 

Albert Einstein (1879–1955) 
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5 Discussion 

5.1 Selection of patient datasets with treatment response 

Why is a prediction of patient treatment response important in UC? Each patient has unique 

environmental, immunological, and genetic systems, which may contribute to their variable therapy 

responses. Evidence of induction trials with targeted therapies in UC suggests that there is a low 

remission rate (20-30%) in UC patients because of patient-to-patient variability 6,229–231. A poor 

response to the therapy incurs an enormous financial burden on health care and insurance providers 

and adds more to patient suffering. Current therapeutic strategies in UC classify patients based on 

clinical symptoms and then select appropriate therapy. At present, there are various treatment 

strategies for managing UC based on the disease severity and clinical response to previous treatment 

(Figure 6). A moderate-to-severe patient with UC who fails to respond to these targeted therapies 

may require surgical interventions. To select a better therapy alternative, it is therefore important to 

predict and stratify non-responder from the responder patient subgroup at the earliest phase of disease 

development. 

In this project, we initially searched for the ex-vivo stimulus-based experimental dataset on human 

samples. Unfortunately, due to the unavailability of a stimulus-based dataset, we selected the 

available IBD dataset on anti-TNFα therapy response to develop our diffusion model in paper I. When 

the dataset on stimulus-induced IBD response became publicly available in 2021, we used that dataset 

focusing on pattern recognition receptor (PRR) signalling to predict individualized variability in PRR 

pathway response in IBD. This dataset contains individual stimuli and stimuli-in-combinations to 

predict induction response. Using that dataset in the paper-III, we have studied how strongly 

transcription factors are activated by PRR in each patient. In papers I and II, we used patient datasets 

with targeted therapies such as Infliximab (anti-TNFα), and Vedolizumab (anti-integrin). The key 

consideration for selecting these datasets is that the drugs used in these datasets target a single 

molecule e.g., TNFα, integrin. Modelling the therapy efficacy may be arduous if the model involves 

a wide range of target molecules as compared to a single molecule. Additionally, both targeted 

therapies are often used for moderate-to-severe UC patients. Therefore, the prediction of the 

differential response following these targeted therapies is important. 
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5.2 Why study individual differences in UC using a network-based approach? 

A key clinical goal of precision medicine is to implement effective individualized therapy. A complex 

and multifactorial disease such as UC 232. Due to its complex aetiology, it is challenging to identify 

disease mechanisms that lead to UC pathogenesis. Inter-individual differences in how UC patients 

respond to a particular drug are dependent on their genetics, environmental exposure such as gut 

microbiota, and the proportion of cell types contributing to the disease pathogenesis 233,234. Each 

individual has a difference in their regulatory wiring which influence the efficacy of the drug e.g., the 

drug target in individual A activates the key driver gene whereas the interaction between the drug 

target and key driver gene is absent in individual B. Therefore, there is a difference in drug efficacy 

in individual A vs individual B 235. UC involves dysregulated immuno-inflammatory signalling 

pathways; it is, therefore, important to understand how perturbations in these pathways contribute to 

heterogeneous treatment outcomes. This could be because the signalling pathways involved in 

therapy response vary among patients despite the same diagnosis and induction therapy in UC 236 

[paper-II]. Capturing individualized variability at the system level may enable the improvement of 

the identification of patient-specific pathomechanisms 237,238.  

The disease aetiology of UC cannot merely be described by single-gene defects; instead, approaches 

that capture the combined effect of multiple genes at the system level are required 239. Network-based 

approaches capture disease modules which contain genes interacting at the system level which 

otherwise is neglected in single-gene studies 163. However, gaining novel insights into biological 

phenomenon through a network is not often trivial. Networks are perceived to be convoluted 

structures and quantifying the network connectivity using a biologically intuitive approach enables 

the extraction of subnetworks. These subnetworks are relatively easier to interpret as compared to the 

‘furball-like’ structure of the original network. Many existing network-based methods generate 

network topologies that are difficult to interpret 240. These methods also do not consider cell 

compartmentalization parameters as prior biological knowledge 241. 

Using the t50 score obtained from the diffusion model, we estimated the network connectivities which 

helps to extract visually interpretable subnetworks. These subnetworks capture the most relevant 

interaction details and reduce the complexity of the convoluted network. These subnetworks 

characterise the individuals based on the network connectivities rather than merely generating a 

convoluted network visualisation. Our approach differs considerably from the previously published 

GRN-based approach in which sample-specific network connectivities were estimated 242. This is 

because the simple methodology of our model that incorporates gene expression profiles with 
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networks does focus on signalling not on gene regulation. Our findings show that our model 

consistently outperformed existing GRN-based approaches to stratify the treatment response 

subpopulation of UC patients. 

5.3 From network furball into patient information 

The representation of a biological network is complex and densely connected as a furball e.g., PPI, 

which contains extensive information about interactions between proteins. However, it lacks context-

specific information about in which cells, tissues, and specific mechanisms the interactions occur 240. 

Most available databases contain context-free information which might lead to the false interpretation 

of biological results. On the other hand, existing biological networks are incomplete e.g., PPI data is 

yet 80 % complete despite the availability of high-throughput datasets 170. Another example is 

signalling networks which have been compared to dumpling soup due to the lack of a formal 

schematic representation of multiple layers of complexity involved in signalling processes 240. With 

around 700 publicly available pathway and molecular interaction repositories, it is still tedious to 

develop a context-specific patient-centric quantitative approach for clinical applications. 

This abstruse structure of biological networks prevents interpretation of mechanistic interactions 

occurring in disease and normal state 240. To extract patient information, patient-centric methods are 

required to link data to the context of interest such as patient disease, tissue, and cell type. GRN 

approaches are used to infer networks. However, the use of these networks beyond visualization is 

rarely demonstrated. Thus, GRN methods are of limited utility to model the therapy response of 

patients. We have tested the pandaR-LIONESS method which is a patient-centric method for 

generating sample-specific networks. However, it did not perform well to generate sample-specific 

networks to predict the therapy response of UC patients. Therefore, we utilised a diffusion model 

which uses the network-based approach and generates network connectivities to predict therapy 

response in UC patients. 

The normal immune system functioning is determined by the interplay of pro-inflammatory and anti-

inflammatory immunological activity, whilst excessive or inadequate activation of triggering factors 

is evident in many autoimmune diseases 243. It is well studied that UC is induced by over-stimulation 

of pro-inflammatory signalling pathways and disruption of regulatory systems 103. It is important to 

understand individual response and feedback variability that contribute to inflammation and the lack 

of resolution to inflammation over time. We tested the patient-wise variability (discussed in paper-

III) using stimulation-induced PRR pathway response data. To date, there is no quantitative model 
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for quantifying the effect of stimuli in ex-vivo stimulation experiments to test inter-patient excitability 

using the PRR signalling pathway. We found that there is patient-specific variability in the PRR 

signalling pathway. This individualized variability was previously depicted in the study of anti-TNFα 

and anti-integrin therapy responses using a diffusion model to quantify patient-specific network 

connectivity [paper-I and II]. We hypothesised that there are alternate potential targets that might be 

associated with a potential compensatory inflammatory mechanism in a UC patient with non-response 

to anti-TNFα and anti-integrin therapy. As a result of other unidentified potential targets, there is non-

response to targeted therapy such as anti-TNFα and anti-integrin agents.  

5.4 Current network-based approaches and their drawbacks  

Cellular processes are not merely governed by individual genes but rather by networks of interacting 

genes 163. The network-based approaches have increasingly been used in the identification of disease 

genes and drug targets 244,245. These approaches are gene-centric and generate a network-based 

inference based on regulatory relationships among genes using gene expression data. These biological 

networks can be used as an input to generate novel testable hypotheses in a patient-tailored manner. 

Given numerous potential interactions comprising ~20,000 genes in humans, network-based 

approaches are perceived as an excellent tool to restrict merely context-relevant interactions. 

However, it is important to understand that network generated using these approaches is not the final 

result; these networks should also be utilised for modelling complex biological phenomena, 

catalysing actionable biological discoveries (biomarkers), and personalized disease interventions 

170,246. The assessment of inferred networks obtained from these network-based methods is important 

and challenging because the network is high-dimensional structured objects that can be used as input 

to model biological mechanisms. There are challenges while assessing the quality of inferred 

biological networks: i) identifying true interactions and ii) choice of statistical measures to 

quantitatively assess the quality of the network. Usually, published literature describing true 

interaction information can be utilised to identify true interactions 170. However, there is a scarcity of 

approaches that focus on individualized network interactions. 

Many network-based methods utilise a network to identify a cluster of genes present in a network. 

These methods are often used to generate metagene that is further used to relate to disease/treatment 

outcomes. The advantage of these methods is their ability to reduce random noise by averaging across 

multiple genes in a network which might allow a certain extent of model improvement by acting as a 

limited OR filter; however, network structures are no longer used after the initial clustering of genes 
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in a network. The network-based approaches e.g., Algorithm for the Reconstruction of Gene 

Regulatory Networks (ARACNE), Weighted Gene Correlation Network Analysis (WGCNA), 

C3Net, BC3Net, are based on gene correlation-based inference 247. These tools use gene expression 

data to construct a network disregarding the gene function such as receptors, transcription factors or 

signal transducers. WGCNA describes transcriptional interaction with high confidence in the 

biological network using a weighted correlation pattern between gene expression profiles. For the 

construction of gene regulatory networks, these algorithms use indirect interactions inferred by co-

expression methods to identify modules representing gene clusters (modules) of highly correlated 

genes. Several correlation-based network methods generate a network-based module containing a 

cluster of genes which no longer uses the network structure for the application e.g., biomarker 

discovery, and prediction of therapy response. These genes are then converted into scores or disease 

modules, which are linear transforms of the original gene expression data. Whereas methods like 

LPLS and diffusion model use the network and contribute to generating novel hypotheses which can 

be used to test individualized differences in disease subgroups. For instance, LPLS summarises the 

background information on regressor variables for improved predictive performance and the diffusion 

model uses a network which generates t50 score to estimate network connectivities in a patient-

specific manner as compared to merely using original gene expression data (see paper II for more 

details).  

The most sought application of network-based approaches for personalized medicine is to extract 

networks for individual samples in a patient population. The key characteristic of these methods is to 

model personalized networks for each sample in a dataset and capture heterogeneity in a population. 

LIONESS 242 is an example of this method which uses a network. LIONESS is used as a wrapper 

function on PANDA (Passing Attributes between Networks for Data Assimilation), regulatory 

network reconstruction framework 248. However, the LIONESS-pandaR method could not predict 

biomarkers for therapy response in UC, which may be due to a large number of calculated network 

edge weights and consequential penalization for multiple testing. Thus, LIONESS-pandaR lacks the 

sensitivity to capture more subtle differences between subclasses of patient samples with therapy 

response as compared to large differences between normal and inflamed tissue. Whereas methods 

such as Partial Least Squares regression (LPLSR) 249 and diffusion-based signalling model 250 identify 

subtle differences between patient subgroups in disease populations. LPLSR algorithms function by 

the addition of an extra data matrix which summarises the background information on regressor 

variables for improved predictive performance. Whereas the diffusion model uses the network 
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structure to define new variables for the prediction of patient subgroups. We believe that the potential 

use of these approaches will increase since the knowledge of genetic networks is rapidly expanding. 

Machine learning (ML) approaches have emerged as an indispensable tool with rapidly increasing 

clinical applications 259–261 and demonstrated a better performance than that of other peer methods, 

particularly in the modelling of image-based data 212. A study by Ghosh et al. has used seven deep 

learning models: Artificial neural network (ANN), convoluted neural network (CNN), gated recurrent 

unit (GRU), long short-term memory (LSTM), multi-layer perceptron (MLP) neural network, 

probabilistic neural network (PNN), and recurrent neural network (RNN) to study whole blood cell 

(WBC) dataset and found that the best performance among all DL models, achieving a performance 

accuracy over 99% for the early detection of Breast Cancer 262.  

ML approaches are typically classified as prediction/modelling tools which are used for analysing the 

high-throughput heterogeneous data; predicting and identifying intricate patterns, and treatment 

outcomes 263,264. However, ML-based approaches e.g., neural networks do not explain their prediction 

in a manner that humans can understand. This lack of explainability in clinical interpretation may 

lead to misleading findings. It is the widespread belief that there is a trade-off between accuracy and 

interpretability, however, it is not often the case that more complex models tend to have better 

accuracy and predictive performance 265. Rather than developing a model which is interpretable, there 

has been an explosion of new ‘explainable ML’ where another model is developed to explain the first 

Figure 12. Illustration of various existing approaches/tools divided into four axes: Gene-centric to patient-centric and 

ML-based to prior knowledge-based approaches. FINDER 251; C3Net 191; BC3Net 252; ARACNE 253; WGCNA 189; 

LIONESS 242; L-PLS 249; Diffusion Model 250, nnet 212; SVM 254; Decision Tree 255, BNN 256 ; AdaBoost 257; MLP 258. 
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‘black box’ model. In this study, we used nnet 212, a deep learning model that uses gene expression 

information alone as compared to diffusion model 250, a biologically interpretable model that utilises 

prior biological knowledge to predict treatment response in IBD.  

5.5 Methodological consideration 

Statistical evaluation of a new method to suggest complex biomarkers is crucial for the interpretation 

of the clinical data. The lack of statistical measures allows statistical bias, overfitting, and potential 

false positives to go undetected. In our study predicting the efficacy of the treatment outcome in UC, 

the method was evaluated to assess the predictive accuracy when stratifying the patient subgroups. 

Thus, statistical evaluation of the model can contribute to successful complex biomarker discovery. 

However, the procedure of clinical evaluation of complex biomarkers is arduous. Following are the 

important statistical considerations for clinical data analysis. 

5.5.1 Feature Selection 

While handling high-throughput datasets, it is important to reduce dimensionality to extract the 

relevant features of interest and remove irrelevant or redundant variables and identify confounding 

variables. There are several techniques for dimensionality reduction and some of them involve feature 

selection. The process of feature selection consists of the selection of the number of input variables 

that improve the model’s performance and reduce the computational cost of predictive modelling. 

In the era of big data, a myriad of data from high-throughput-omics approaches is increasingly being 

generated where the sample size is dwarfed by the number of available features. Clinical 

characteristics such as gender, ethnicity, age, and gene expression level are the features of the 

samples. A selection of these different clinical features defines a feature space. A predictive 

biomarker can be identified by training an algorithm to map out how these features can classify target 

groups. That trained algorithm can be further used to classify the new samples using the selected 

features 266.  

A broad range of machine learning algorithms and statistical tests are available for feature selection. 

Examples include stepwise regression and support vector machines; decision tree-based models, e.g., 

classification, regression trees and random forest; and regularization-based models such as LASSO 

or ridge regression 177. To date, no single method has been developed that has performed better than 

all other methods in all contexts. Therefore, applying combinations of methods may enhance the 

probability of obtaining improved model performance. An appropriate validation approach prevents 
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overfitting, and false assumptions about expected outcomes, thus increasing the generalizability of a 

model on future datasets. To prevent overfitting, regularization is a useful method that works on the 

principle of adding a penalty to the parameters of the model. This penalty is applied over a coefficient 

that is multiple products of the predictor variable. Lasso regularization enables the shrinking of the 

coefficients to zero and removes those reductant and irrelevant features from the model. 

5.5.2 Overfitting 

Various computational approaches are being developed that use multiple variables for predicting 

clinical parameters e.g., patient response to treatment 267,268. However, these approaches are 

susceptible to overfitting. One of the major reasons for the occurrence of overfitting is the number of 

predictor variables is much larger than the number of patient samples. Overfitting leads to biassed 

estimates of classification accuracy (e.g., between patients responding or not responding to a given 

treatment). Overfitting can also be an issue of concern even for low-dimensional data, where the 

relationship between predictor variable and outcome is weak. Importantly, low sample numbers may 

also result in overfitting e.g., a model trained on a small dataset is more likely to generate patterns 

that do not exist in the new test dataset. To counter that issue, the classification accuracy of candidate 

predictor variables should be estimated using cross-validation, resampling or test sets for validation 

269.  

5.5.3 Multiple testing penalty 

While conducting statistical validation in genomics or related fields, random events occur that cause 

variables to appear significant even if they have no real predictive ability. To avoid these issues, 

statistical confidence measures either analytical or empirical can be used to reduce the odds of being 

tricked by random variability. Confidence measures such as p-values, false discovery rates (FDR) or 

q-values are probability measures to reject null hypotheses in a given biological experiment. 

However, p-values can be problematic in a high-throughput experiment that generates many scores, 

making the p-value inappropriate to determine significance. 

To prevent the chances of obtaining a false-positive variable (type I error/α) while performing 

multiple testing, Bonferroni correction (BC) is used. In BC, the p-value (P) for each test must be less 

than or greater than its alpha (probability of a Type I error) divided by the number of tests performed 

on the dependent variable (P ≤ α / n). It is the simplest and most conservative approach when multiple 

pairwise comparisons on a single set of data are involved simultaneously. In contrast to the Tukey 
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test (testing on a high number of means), BC has more power when a small number of comparisons 

are involved. Moreover, FDR estimates can be computed from p-values using Benjamini-Hochberg 

(BH) procedure. BH correction procedure relies on p-values to be uniformly distributed under the 

null hypothesis, implying the p-value of 5% of the sorted list should be ∼ 0.05 to obtain an estimate 

of accurate FDRs 227. Several methods have been developed for achieving improved and accurate 

FDR estimates for multiple testing correction 270. Nevertheless, multiple testing corrections tend to 

introduce bogus significant results after performing thousands of tests 271. Therefore, it is important 

to formulate experiment strategies accordingly to minimise the need for multiple tests required for a 

set of hypotheses 272. Only a few biomarkers overcome statistical testing and clinical validation for 

successful translational use. The clinical therapeutic value of the biomarker depends on its predictive 

strength associated with disease characteristics. 

5.5.4 Statistical power 

The statistical power is the probability of correctly rejecting the null hypothesis. Power calculations 

help to detect true effect size by considering the number of samples and events in an experiment. 

Power estimation allows estimating a minimum number of samples required given desired 

significance level, effect size, and statistical power. The higher the statistical power in an experiment, 

the lower the probability of Type II error. Low statistical power may result in invalid conclusions 

about experiment results. 

In all, using a panel of multiple candidate biomarkers can be useful to attain improved performance 

than a single biomarker. Multiple biomarkers which are in a non-dichotomized state provide optimal 

information for model development and clinical validation 273. The choice of biomarker is challenging 

and depends on the sample size and clinical question. Involving multiple variable selection such as 

shrinkage reduces overfitting and increases the likelihood of validation. 

5.6 Potential clinical implications 

The clinically relevant question is how early “non-response” can be predicted with an acceptable 

level of reliability. Currently, it is feasible to conduct high-throughput sequencing within a week. 

How this would work in clinical practice is dependent on a variety of economical and organisational 

variables that vary between healthcare systems. However, rapidly developing technology and quicker 

turnaround times will certainly become achievable in the future. This is important to reduce the 

overall time of the experiment because therapy decisions need to be made within a few days. 
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Therefore, it is important to have a robust and reliable predictive tool that provides results in clinical 

routine.  

We propose to reduce the risk of overfitting as compared to pure machine learning methods, using 

the diffusion model and identifying relevant genes by focusing on modelling gene combinations that 

connect extracellular signal receptors to transcription factors through PPI. The diffusion model can 

be used to generate testable hypotheses toward a better understanding of the treatment of the patients 

more effectively in UC and other autoimmune diseases such as RA, psoriasis, and asthma. 

5.7 Future perspectives 

We have used the UC patient datasets with frequently used targeted therapies such as anti-TNFα and 

anti-integrin treatment. We would like to implement our model to study therapy response outcomes 

on inhibitor-based therapies such as JAK-inhibitor targeted therapy. We assert that the predictive 

performance of our model might improve by incorporating the inducer, promotor, and inhibitor 

molecules in a newer version of the diffusion model.  

We also would like to incorporate cell-and tissue context-specific data using single-cell 

transcriptomics and spatial transcriptomics to construct a context-specific network model. To obtain 

a broader picture of the pathogenesis of UC, omics analysis would be useful to estimate the network 

connectivity of patient's profiles with genomics, proteomics, and metabolism data. We are also 

interested in studying the influence of gut microbiota on heterogenous therapy response. Our findings 

have revealed the receptor-TF pairs and signalling pathways which can be validated as a prognostic 

biomarker to stratify subgroups of patients with UC. These future perspectives may open avenues to 

investigate therapy response outcomes in an unprecedented manner. 
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Abstract

Motivation: Resistance to anti-TNF therapy in subgroups of ulcerative colitis (UC) patients is a major challenge and

incurs significant treatment costs. Identification of patients at risk of nonresponse to anti-TNF is of major clinical im-

portance. To date, no quantitative computational framework exists to develop a complex biomarker for the progno-

sis of UC treatment. Modelling patient-wise receptor to transcription factor (TF) network connectivity may enable

personalized treatment.

Results: We present an approach for quantitative diffusion analysis between receptors and TFs using gene expres-

sion data. Key TFs were identified using pandaR. Network connectivities between immune-specific receptor-TF pairs

were quantified using network diffusion in UC patients and controls. The patient-specific network could be consid-

ered a complex biomarker that separates anti-TNF treatment-resistant and responder patients both in the gene

expression dataset used for model development and separate independent test datasets. The model was further

validated in rheumatoid arthritis where it successfully discriminated resistant and responder patients to tocilizumab

treatment. Our model may contribute to prognostic biomarkers that may identify treatment-resistant and responder

subpopulations of UC patients.

Availability and implementation: Software is available at https://github.com/Amy3100/receptor2tfDiffusion.

Contact: ruth.h.paulssen@uit.no

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

1.1 About disease
This paper focuses on ulcerative colitis (UC) a subtype of inflamma-
tory bowel disease (IBD) along with Crohn’s disease. UC is a com-
plex chronic inflammatory disease with dysregulation of the
immune responses in the colonic mucosa. The disease features
chronic acute relapsing disease activity, with intervals of remission
(Khor et al., 2011). Emerging evidence implicates immunological,
microbial, environmental and genetic factors in the disease patho-
genesis (Zhang and Li, 2014). Analysis of UC risk genes from gen-
ome-wide association studies (GWAS) implicates processes such as
cell–cell communication, response to cytokine stimulus, and cell sur-
face receptor intracellular signalling (Jostins et al., 2012). Targeted
treatments that induce remission in subpopulations of UC patients
act by inhibiting signalling pathways between extracellular signal-
ling molecules such as cytokines, and key transcriptional regulators
of inflammatory processes (Schwartz et al., 2017). However, there is
significant patient-to-patient variability in treatment response, as

shown by the low response rates in clinical trials (Hindryckx et al.,

2015; Jairath et al., 2015). Therefore, we seek a method of quantify-

ing patient-specific differences through receptor to transcription fac-

tor (TF) signalling.

1.2 Disease biomarkers
Successful personalized medicine for UC requires accurate bio-

markers that can identify resistant and responders, but no individ-

ual molecular biomarker is currently recommended for clinical use

to predict the treatment effects in UC (Kim et al., 2017). Patient-

specific biomarker discovery methods are prone to overfitting,

resulting in the identification of clinically unreliable biomarkers

(Hernández et al., 2014). Embedding biological information from

networks in the biomarker discovery process may reduce the risk

of overfitting (Guo and Wan, 2014).
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1.3 Proposed method
In this study, we propose quantifying patient-specific network con-

nectivities between pairs of genes as complex biomarkers. However,

with over 20 000 genes in the human genome, the number of poten-

tials pairwise connections approaches 200 million. Therefore, it is

necessary to identify a limited number of biologically relevant con-

nections that explains a plausible biological mechanism central to

UC aetiopathogenesis. This prevents overfitting caused by the large

number of potential connections. Hence, we focus on the network

connectivities between disease-relevant receptors and TFs that regu-

late the expression of genes involved in the inflammatory process

(Fig. 1A and B). This connectivity can be quantified by network dif-

fusion. Network diffusion describes the gradual spread of an ab-

stract signal throughout a network. Diffusion is a global network

process that considers all available paths, not just direct links or the

shortest paths (Di Nanni et al., 2020). Thus, the diffusion time rep-

resents the overall network connectivity between two genes, e.g.

from a receptor to a TF (Fig. 1A).

2 Methods

The methods are briefly described (see the Supplementary Method

for details). Statistical analysis and processing of the data were per-

formed using R version 3.6.3 (www.r-project.org). To identify rele-

vant TFs, the Bioconductor R package, pandaR (10.18129/

B9.bioc.pandaR; Schlauch et al., 2017) was used. IBD-relevant cyto-

kines were selected from the list of GWAS risk genes for IBD

(Supplementary Table S1). The comPPI database (Veres et al., 2015)

was used to create a signalling network connecting receptors to TFs.

Network diffusion was performed on this network to estimate net-

work connectivity between each receptor-TF pair. The differential

connectivity between sample groups was tested using linear model-

ling (Ritchie et al., 2015).

2.1 Initial data mining
The Gene expression Omnibus (GEO) was searched for datasets
containing gene expression data from the colon biopsies obtained
before treatment with anti-TNF and with treatment response data
available. The detailed search protocol is available in the
Supplementary Methods. Gene expression data for mucosal gene ex-
pression in IBD before and after treatment with anti-TNF (inflixi-
mab) were downloaded from the GEO (Supplementary Table S2).
GSE16879 was used as a training dataset for model development
(Arijs et al., 2009a). The remaining datasets were used for testing.

Regulatory motif binding information was obtained from the
regulatory circuits database (Marbach et al., 2016), which contains
available TF binding sites in several tissues and cell types. The bind-
ing motif-set representing general immune cells (high-level network
‘14_immune_organs.txt’) was chosen from a regulatory circuits
database as a relevant representation of the inflammatory cells
involved in UC. Protein–protein interaction (PPI) data were
obtained from the ComPPI database (Veres et al., 2015). This is a
cellular compartment-specific database of proteins and their interac-
tions (http://ComPPI.LinkGroup.hu). Only interactions with a confi-
dence score >0.6 were used in the network construction.

To identify key TFs, pandaR (Passing Attributes between Networks
for Data Assimilation), was applied to the training Gene expression
dataset (Schlauch et al., 2017). pandaR creates a gene regulatory net-
work (GRN) with weighted edges between TFs and gene targets regu-
lated by these TFs. To evaluate which TFs significantly contributed to
the variation in gene expression, a null distribution regulation network
edge weight was computed by randomizing the TF gene target informa-
tion. Then, the resulting null distribution was used to calculate an em-
pirical P-value for each TF.

A sub-network was extracted from the PPI connecting key TFs
to cytokine receptors. Genes annotated with the transducer Gene
Ontology (GO) terms: GO:0002768 (cell surface receptor signalling
pathway) or GO:0019221 (cytokine-mediated signalling pathway)
were included in the intermediate network between the TFs and

signal
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Fig. 1. Outline of diffusion model. (A) A schematic figure illustrating how the same biological pathway associated with a specific function may be perturbated leading to a dif-

ferent route of signal transduction from receptor to TF in different patients. This model can be adapted to data to build a patient-specific model (alternatively, the model can

be completely generated from the data). The model can then be used to generate predictions of therapies for the patient. (B) Concept of diffusion model based on calculating

patient-specific network edge weights in a network connecting cytokine receptors to TFs through a protein-PPI network. In the diffusion process, receptors receive a signal,

and it diffuses through the network to the TFs. The model output is signal received by the TFs over time which is simplified as time to reach 50% of maximum signal at the TF

(t50). The output t50 data matrix contains t50 values for each receptors-TF pair per patient. This matrix can then be used for further statistical analysis or machine learning
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receptors. In the resulting signalling network, the nodes represent

the genes coding for the interacting proteins, and the edges represent

physical interactions that may pass a biological signal. ComPPI was

used to obtain PPIs. The network includes interactions involving the

selected TFs, surface receptors which are known UC risk genes and

signal transduction genes, such as kinases, that may contribute to

passing information between the receptors and TFs. The same sig-

nalling network was used for all the UC datasets.

2.2 Reference methods for biomarker discovery
To separate treatment-resistant and responder patients, we initially

tried the biomarker discovery tool LIONESS which quantifies

patient-specific GRNs (Kuijjer et al., 2019) and ‘nnet’ a deep

learning-based method (Venables, 2002). The neural network

parameters were optimized over a grid of the number of hidden

nodes (size) and regularization (decay) parameters. We used ‘nnet’

with 10-fold cross-validation repeated 20 times using average accur-

acy to select the final model. This process was repeated across a grid

of number of hidden nodes and the regularization parameter to iden-

tify the optimum model structure for each dataset. Prediction results

in the testing datasets were evaluated by area under the receiver

operating curve (AUC). In the algorithm, other parameters were

kept at their default settings.

2.3 The diffusion model
We chose to model the results of the biochemical events that occur

during signal transduction using a network connecting cell surface

receptors to TFs in the nucleus. The model is adapted from Fick’s

law of chemical diffusion to a network structure. See e.g. Philibert

(2005) for a review. Consider a patient-specific signalling network

with nodes representing proteins e.g. cytokines, receptors and kin-

ases create a signal transduction cascade. If a signal S, analogous to

a concentration of a chemical in Fick’s law, is placed on a node i,

the signal flux F along a network edge connecting node i to node j at

a time t is given by:

F tð Þi!j ¼ ðSi � SjÞ � Ei � Ej:

Where the edge connectivity weight, analogous to the diffusion

constant in Fick’s law, is calculated using the patient’s normalized

gene expression values, E, of the genes coding for the proteins

i and j. The signal present at each protein node i connected to

J other protein nodes j � 1:J is then updated at time t þ 1 using the

sum of all fluxes:

S t þ 1ð Þi ¼ S tð Þi þ
XJ

j¼1
F tð Þi!j:

The computation is initialized by setting all signal levels to zero

and then placing one unit of signal on a starting receptor protein.

The signal propagates through interconnected proteins throughout

the network. To quantify the connectivity, we take the number of

time steps to reach 50% of the maximum signal at the TF of interest

ðt50Þ. This methodology was implemented in R (4.1.0). Simulations

were run for 2000 timesteps for all samples in each dataset, generat-

ing a new data matrix of t50 data with rows for each sample and a

column for each receptor-TF pair. To evaluate if the obtained matrix

of diffusion data contains new information or is merely a linear

combination of the original gene expression data, the t50–feature

space was compared to the original gene expression matrix using

Procrustes rotation (Peres-Neto and Jackson, 2001). This method

was also used to test if the t50 data reflected the gene expression lev-

els of just a few highly connected or ‘hub’ genes or global gene ex-

pression changes due to variations in proliferation rate or

infiltration of immune cells. Cell deconvolution was used to estimate

the infiltration of different immune cells in all samples (Becht et al.,

2016) and a gene expression signature (Sotiriou and Pusztai, 2009)

was used to estimate the proliferation rate.

2.4 Statistical analysis
Significance testing for differentially expressed genes, regulatory net-
work connectivities and diffusion ðt50Þ on the training dataset was
performed using limma (Ritchie et al., 2015).

Patients were grouped as normal controls, i.e. non-UC diagnosis.
Responders, which attained a complete mucosal healing with a de-
crease of the Mayo endoscopic subscore and histological score to 0
or 1. Patients that did not attain the mentioned level of response
were placed in the resistant group despite some of them showing
endoscopic or histologic improvements (Arijs et al., 2009b).

Three comparison tests were made:

1. Inflamed versus non-inflamed: To identify pathways that may be

involved in active inflammation, we compared samples from

patients with active endoscopic inflammation to non-UC con-

trols and UC patients that had responded to treatment. The

inflamed group comprised all patient samples taken from an ac-

tive site of inflammation before treatment or from a treatment-

resistant patient after treatment. The non-inflamed comprise

normal control samples (N ¼ 6) and responders after treatment

(N ¼ 8).

2. Resistant versus responder: To look for a biomarker of drug re-

sponse, we compared samples from resistant and responder

patients obtained before treatment.

3. Male versus female. As a negative control of samples concordant

for inflammation, we compared samples obtained from males

and female patients before treatment.

Correcting for multiple testing was done with the method of
Benjamini and Hochberg (1995). Exploratory data visualization was
done using principal component analysis (PCA) and Partial least
squares (PLS) regression (Gidskehaug et al., 2007). Gene annotation
was performed using the Bioconductor org. Hs.eg.db package ver-
sion 3.12.0 [10.18129/B9.bioc.org.Hs.eg.db]. GO enrichment ana-
lysis was performed using the clusterProfiler, Bioconductor package
(Yu et al., 2012).

3 Results

3.1 Data mining and network definition
Fifty-three IBD-relevant cytokines were selected from the 1067 iden-
tified GWAS risk genes for IBD (Supplementary Table S3). Key 58
TFs were identified using the sum of their regulatory network con-
nections from pandaR (empirical P-value < 0.05). A list of the
selected TFs and receptors is available in the supplements
(Supplementary Table S3), and a full list of all TFs considered with
their annotations and relevant target genes (Supplementary Tables
S4 and S5). The comPPI database (Veres et al., 2015) was used to
create a signalling network connecting the cytokines to the TFs
through 83 receptors and 266 intracellular signal transduction pro-
teins generating a signalling network with 407 nodes and 4546
edges (Fig. 1B).

3.2 Diffusion model creates a feature space that

contains novel information compared to gene

expression
The diffusion model describes network connectivity from receptors
to key TFs, using the time it takes a signal to diffuse from the recep-
tor to the TF (Supplementary Fig. S1 for an example), generating a
new feature space of 4814 receptor-TF pairs. Procrustes rotation
was used to compare this feature space to the original gene expres-
sion space and estimate the fraction of t50variability that is linearly
dependent on gene expression (Table 1). Overall, in the four datasets
examined, between 70% and 80% of the t50 information is directly
linearly dependent on the gene expression data. To investigate if the
t50 data were primarily driven by highly connected ‘hub’ genes in
the signalling network, we extracted a subset of gene expression

Diffusion-based signalling model of ulcerative colitis 3
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Table 1. Dataset comparisons using Procrustes rotation

Dataset GEO Acc# Expression (%)a Hub genes (%)b Global (%)c Expression and hub genes (%)d

Training GSE16879 79 75 64 87

Test GSE12251 79 75 64 87

Test GSE23597 71 66 47 71

Test GSE73661 69 60 48 77

Notes: Percentage of t50 dataset variability linearly explainable by (a) gene expression of all genes, (b) expression of genes that are highly connected in the sig-

nalling network (hub genes with more than 50 edges), (c) global expression changes due to changes in proliferation rate or immune cell infiltration. For compari-

son, (d) Percentage of gene expression data not explainable by the highly connected hub genes.
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data for 46 genes with more than 50 edges. These hub genes could
explain between 60% and 75% the variability in the t50 data. In
comparison, the hub genes could explain between 71% and 87% of
the total gene expression data variability.

Global changes in gene expression can be caused by large-scale
tissue changes such as immune cell infiltration or changes in the pro-
liferation rate. To investigate if this controlled the t50 data, we esti-
mated the proliferation rate using a proliferation gene expression
signature (Hamed et al., 2015) and immune cell infiltration using a
cell deconvolution tool developed for tissues analysed using
Affymetrix data (Becht et al., 2016). These data were compared to
the t50 data in the same manner as the gene expression data, but it
could explain only from 57% to 64% of the diffusion data (Table
1).

3.3 Diffusion model outperforms LIONESS and ‘nnet’

for predicting anti-TNF response in UC
We used a linear model to relate t50 to inflammation status and drug
response in the training dataset. This enabled us to identify the
receptor-TF pairs significantly related to active UC. We obtained
2362 receptor-TF pairs with adjusted P-values less than 0.01 (Fig.
2A).

PCA of network connectivities ðt50) shows postresponders clus-
tered with the control group as expected but shows no clear separ-
ation between resistant and responders before treatment (Fig. 2B).
Using PLS of t50, we obtained some separation of treatment-resistant

and responder patients (Fig. 2C). We used a linear model to relate
the t50 data to the anti-TNF treatment-resistant and responder pa-
tient groups and identified 114 receptor-TF pairs with significant
differences in network connectivity (adj. P.val < 0.05;
Supplementary Table S6). Using the receiver operating characteristic
curve (ROC), we evaluated the individual receptor-TF pairs for their
ability to discriminate anti-TNF resistant from responders. We
found 35 receptor-TF pairs with AUC higher than 0.84 in the train-
ing dataset (Supplementary Table S7). The top-scoring discrimina-
tors in the training UC dataset were the receptor-TF pairs
TNFRSF11B-ELF1, TNFRSF11B-ZNF219 and TNFRSF11B-
NFKB1, each with an AUC of ¼ 0.91 (Supplementary Fig. S2).
These pairs show distinct differences between treatment resistant
and responders and between resistant and controls (Fig. 3,
Supplementary Fig. S2 and Table 2). As a negative example, we
compared male (n¼14) and female (n¼10) patient samples before
treatment and found no significant differences in network connectiv-
ity (adj. P<0.05). We then tested the ability of the top three
receptor-TF pairs to predict anti-TNF response in the test datasets
(Supplementary Table S2). The predictive ability of these receptor-
TF pairs was compared with a deep learning method, ‘nnet’, a feed-
forward neural network algorithm trained on the same dataset. We
also tested LIONESS, a method for computing sample-specific
GRNs. Surprisingly, the diffusion model outperformed the neural
network, giving higher AUC scores (Table 2) in the UC training
dataset and the majority of the independent test datasets. We com-
pared inflamed versus noninflamed, i.e. normal controls and res-
ponders after treatment versus before treatment and resistant after
treatment, in addition to the treatment resistant versus responders.
LIONESS estimates a total of 2 678 095 regulatory edge weights per
sample. Significantly changed edge weights were then identified
using linear modelling (limma). Between the inflamed and nonin-
flamed samples in the training set, 161 052 statistically significant
edge weights (adj. P-value < 0.01) were found. However, no signifi-
cant results were obtained (adj. P-value � 0.99) for the more im-
portant comparison of anti-TNF resistant versus responder
comparison (Supplementary Table S8). LIONESS was therefore not
applied to the test datasets.

3.4 Validation with rheumatoid arthritis
To assess our model’s generalizability for other autoimmune dis-
eases, we applied the diffusion model to the rheumatoid arthritis
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Fig. 3. Box plots of t50 data for the different patient groups. This figure indicates receptor–TF pairs with top AUC score in UC training dataset

Table 2. Testing of predictive ability of diffusion model compared

to neural network modelling in Training and Test datasets

Dataset GEO Acc# nnet-AUC TNFRSF11B-ELF1 TNFRSF11B-NFKB1

Training GSE16879 0.80 0.91 0.91

Test GSE12251 0.77 0.88 0.78

Test GSE23597 0.72 0.66 0.59

Test GSE73661 0.50 0.65 0.68

Notes: nnet-AUC shows AUC scores calculated by ‘nnet’. Columns

represent receptor-TF pairs TNFRSF11B-ELF, TNFRSF11B-NFKB1,

TNFRSF11B-ZNF219 having the best AUC scores using diffusion model on

the training dataset.

Diffusion-based signalling model of ulcerative colitis 5

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
a
d
v
a
n
c
e
s
/a

rtic
le

/1
/1

/v
b
a
b
0
1
7
/6

3
5
4
3
4
8
 b

y
 U

iT
 T

h
e
 A

rc
tic

 U
n
iv

e
rs

ity
 o

f N
o
rw

a
y
 u

s
e
r o

n
 1

9
 M

a
y
 2

0
2
2



(RA) dataset. UC and RA share many inheritable risk loci and have
many overlapping pathogenic pathways (Bae et al., 2017; Halling
et al., 2017; Hemminki et al., 2009). Therefore, we selected and
merged two RA gene expression datasets: GSE24742 (Ducreux
et al., 2014) and GSE45867 (Gutierrez-Roelens et al., 2011) to val-
idate our modelling method. The chosen dataset is a microarray
gene expression study of paired synovial biopsy samples collected
before therapy (T0) and after therapy (T12) from the affected knee
of RA patients treated with tocilizumab (TCZ), methotrexate
(MTX) or rituximab (RTX). The experiment design of the valid-
ation dataset was similar to the UC dataset in terms of before treat-
ment biopsy, underlying disease mechanism (inflammation), and a
sufficient number of samples used in the study. We used a dataset
with 86 RA samples to validate the model for testing the perform-
ance of the model.

For validation, we used the same pipeline developed with the
same score thresholds. We created a literature curated list of RA-
relevant receptors (McInnes et al., 2016; Mockridge et al., 2017;
Supplementary Table S3) which was subsequently integrated with
expression data to create an RA-relevant diffusion model. Our ROC
results found a remarkable AUC ¼ 1 for receptor-TF pair PTPRZ1-

NFKB1 (Fig. 4A), AUC ¼ 0.94 each for PTPRZ1-JUN (Fig. 4B) and

PTPRZ1-ETS2 (Fig. 4C) which accurately separates the TCZ

treatment-resistant and responder patients (Fig. 4D–F). High AUC

receptor-TF pairs are listed in Supplementary Data (Supplementary

Table S5). GO analysis of the TFs identified in RA highlighted proc-

esses such as response to oxidative stress, cellular response to pep-

tide, negative regulation of protein phosphorylation, etc. GO

analysis highlights key immune processes associated with RA patho-

physiology regulated by key TFs such as SPI1, RARA, PPARG,

NFKB1, ETS1 and MAF (Supplementary Fig. S3; Giaginis et al.,

2009; Ikuta et al., 2012; Kang et al., 2017; Manuel Sánchez-

Maldonado et al., 2020; Zisakis et al., 2007).

4 Discussion

We have developed a diffusion model; a molecular pathway inspired

method to model patient-specific treatment response. It creates a

new feature space by using key TFs, receptors, biological prior infor-

mation in the form of a PPI and gene expression data. This new fea-

ture space is a nonlinear transformation of the original gene
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expression variables, designed with the goal of being more relevant
for describing cytokine signalling in UC. We have compared the
ability of the new features to predict anti-TNF response in UC to
two other methods. We used ‘nnet’, a machine learning method that
has recently been used in biomarker discovery (Mallik et al., 2020)
and LIONESS, a regulatory network reconstruction method that
estimates patient-specific regulatory connections. These methods
represent two extremes in the analysis of biological data. The ‘nnet’
is a general machine learning method that controls overfitting by
regularization model parameters. LIONESS–pandaR, however, uses
a large amount of biological background information about TF-
targets and PPI to estimate patient-specific GRNs. Although both
the ‘nnet’ and the t50 features may serve as useful biomarkers of
drug response in independent datasets, the LIONESS-pandaR
method fails to identify any biomarkers for drug response. This may
be due to the large number of calculated network connection
weights and the consequential penalty for multiple testing.
Therefore, pandaR-LIONESS may lack the sensitivity to pick up the
more subtle differences between subclasses of the patient samples,
compared to the much larger difference between normal and
inflamed tissue.

The diffusion-based features outperform the ‘nnet’ both in fitting to
the training data and two out of three test datasets. This may be an indica-
tion that the combinations and transforms of the gene expression data
derived from the signalling network topology might have more biological
relevance than features obtained by a pure fit to the gene expression, des-
pite the regularization penalties in ‘nnet’. Our method identified well-
known pro-inflammatory receptors such as TNFRSF11B, OSMR, NRP1
and CCR2 which exhibited stronger connectivity (low t50Þ to most
inflammation-related TFs in UC patients with active inflammation than
in non-UC controls and responders after treatment (Fig. 2A and
Supplementary Fig. S4). These results must be interpreted with a caution
as the responder samples may still contain residual microscopic inflamma-
tion and have lasting changes to their epithelial cells (Fenton et al., 2021;
Planell et al., 2013). However, the goal of this analysis is to identify the
receptor-TF pairs involved in active inflammation that requires treatment.
Notably, our model also identified TFs ESRRA and HNF4A, which play
an important role in the regulation of intestinal homeostasis. ESRRA is a
regulator of intestinal homeostasis (Kim et al., 2020), and HNF4Amodu-
lates inflammation in UC and maintains epithelial barrier integrity in the
normal intestine (Ahn et al., 2008; Barrett et al., 2009).

Despite the good predictive performance, it is also noteworthy
that both ‘nnet’ and the diffusion model performed worse on test
dataset 3 (GSE73661). A dataset analysed with a different array de-
sign than the training dataset. This highlights the importance of ro-
bust and repeatable measuring processes for the practical use of
complex gene expression-based biomarkers. Unfortunately, no
large-scale modern RNA-seq datasets are currently available to test
for predicting anti-TNF response in UC.

The diffusion model may also be susceptible to predictive errors be-
cause of the assumptions made in the initial data mining. We have chosen
to focus on cytokines as the source of the inflammatory signal (Chen and
Sundrud, 2016), but inflammatory diseases may also involve other signal-
ling systems such as pattern recognition receptors and metabolic factors.
The method is also highly simplified, ignoring molecular functions such as
activation, repression and feedback loops, which are not considered expli-
citly. In addition, biological molecules of unknown function that may in-
fluence true network connectivity are ignored. Moreover, epigenetic
factors have a crucial role in determining the transcriptional activation of
genes targeted by a specific TF (Gibney and Nolan, 2010). However,
obtaining epigenetic signatures for every individual patient is currently
cost-prohibitive. Additionally, the evaluation does not take into account
changes in the patient’s gene expression as the disease progresses. They
may therefore be expected to give a more reliable prediction of short-term
effects than in long-term remission. In conclusion, we assert that our diffu-
sion model can be used to generate testable hypotheses applicable to UC
and other autoimmune diseases such as RA, psoriasis and asthma. This

framework outlines the receptor-TF-specific network connectivity which

varies with the gene expression of each individual patient. Estimating the

receptor-TF network connectivity associated with varied drug responses

in disease subpopulations may yield valuable insights into a patient’s treat-

ment outcome.
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Abstract

Background In ulcerative colitis (UC), the molecular mechanisms that drive disease development and patient response to 
therapy are not well understood. A significant proportion of patients with UC fail to respond adequately to biologic therapy. 
Therefore, there is an unmet need for biomarkers that can predict patients’ responsiveness to the available UC therapies as 
well as ascertain the most effective individualised therapy. Our study focused on identifying predictive signalling pathways 
that predict anti-integrin therapy response in patients with UC.
Methods We retrieved and pre-processed two publicly accessible gene expression datasets (GSE73661 and GSE72819) of UC 
patients treated with anti-integrin therapies: (1) 12 non-IBD controls and 41 UC patients treated with Vedolizumab therapy, 
and (2) 70 samples with 58 non-responder and 12 responder UC patient samples treated with Etrolizumab therapy without 
non-IBD controls. We used a diffusion-based signalling model which is mainly focused on the T-cell receptor signalling 
network. The diffusion model uses network connectivity between receptors and transcription factors.
Results The network diffusion scores were able to separate VDZ responder and non-responder patients before treatment better 
than the original gene expression. On both anti-integrin treatment datasets, the diffusion model demonstrated high predictive 
performance for discriminating responders from non-responders in comparison with ‘nnet’. We have found 48 receptor-TF 
pairs identified as the best predictors for VDZ therapy response with AUC ≥ 0.76. Among these receptor-TF predictors pairs, 
FFAR2-NRF1, FFAR2-RELB, FFAR2-EGR1, and FFAR2-NFKB1 are the top best predictors. For Etrolizumab, we have 
identified 40 best receptor-TF pairs and CD40-NFKB2 as the best predictor receptor-TF pair (AUC = 0.72). We also identi-
fied subnetworks that highlight the network interactions, connecting receptors and transcription factors involved in cytokine 
and fatty acid signalling. The findings suggest that anti-integrin therapy responses in cytokine and fatty acid signalling can 
stratify UC patient subgroups.
Conclusions We identified signalling pathways that may predict the efficacy of anti-integrin therapy in UC patients and 
personalised therapy alternatives. Our results may lead to the advancement of a promising clinical decision-making tool for 
the stratification of UC patients.

Keywords T-cell receptor signalling · Ulcerative colitis · Immune regulation · Network connectivity · Therapy response · 
Vedolizumab · Infliximab · Signalling pathway · Personalised therapy
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Background

Ulcerative colitis (UC) is a multifaceted, chronic, immune-
mediated inflammatory disorder. UC exhibits inflamma-
tion in the mucosa and submucosa, ranging from the rec-
tum, and can spread to proximal segments of the colon 
[1–4].The patients may undergo periods of remission and 
relapses [5]. The immunopathogenesis of UC features 
exaggerated immune response inducing epithelial damage, 
microbial dysbiosis, abnormal activation of lymphocytes, 
and infiltration of innate immune cells [6]. The aetiology 
of UC is multifactorial and potentially caused by genetic, 
immunological, microbial, and environmental factors [3, 
6]. Given the nature of the disease aetiology, there is no 
single effective therapy for all UC patients. Thus, the use 
of ineffective UC therapies for moderate-severe cases con-
stitutes a significant burden on the healthcare system [7, 
8].

Standard conventional therapies for UC are sulfasala-
zine, mesalazine (5-ASA), and corticosteroids for the 
mild-to-moderate disease activity. Some UC patients 
are unresponsive or intolerant to the standard therapies 
[4, 9–11] which have prompted the development of new 
drugs that target tumour necrosis factor (TNF), leukocyte 
adhesion, JAK-STAT pathway, IL-12 and IL-23, T-helper 
cell (Th)-1 polarisation, or T-cell activation [12, 13]. UC 
immunopathogenesis involves the altered immunoregu-
latory activity by crosstalk between T cell subsets that 
modulate inflammation [6, 14]. An example of T-cell 
directed therapy for IBD is a gut-selective anti-α4/β7 
integrin heterodimers monoclonal antibody, Vedolizumab 
(VDZ). Integrin α4/β7 is expressed on immune cells such 
as T-cell(s). VDZ selectively inhibits the adhesion of inte-
grin α4/β7 to the mucosal vascular address in cell adhe-
sion molecule 1 (MAdCAM-1) which is expressed in the 
lamina propria [15–18]. Targeting integrin α4β7 prevents 
the influx of T-cells to the lamina propria, thereby sup-
pressing the gut inflammation [19–21].

VDZ can be used as primary biologic therapy after fail-
ure of the standard therapy and also as a secondary therapy 
for UC patients showing primary non-response, loss of 
response, or intolerance to anti-TNFα (Infliximab) therapy. 
It can also be used for the maintenance of clinical remis-
sion and is considered a safer yet less efficacious alterna-
tive to infliximab [22]. VDZ reduces inflammation in the 
gut tissue as the gut expresses vascular cell adhesion mol-
ecule 1 (MADCAM1) and vascular cell adhesion molecule 
1 (VCAM1) molecules [23, 24] In contrast anti-TNFα is 
associated with systemic immunosuppression [25]. About 
30% of UC patients fail to respond to VDZ and suffer tis-
sue damage, and leukocyte-driven inflammatory activity 
which is associated with TNF-dependent pathways [15]. 

Other targeted treatment alternatives are Ustekinumab 
and Tofacitinib. Ustekinumab is a monoclonal antibody 
biologic targeting both IL-12 and IL-23 to reduce chronic 
inflammation [26] while Tofacitinib works as an inhibi-
tor which targets the JAK-STAT pathway by inhibiting 
phosphorylation and activation of JAKs to decrease the 
inflammatory response [27]. Ultimately, non-responders 
may require surgical interventions [28]. Therefore, it is 
important to identify non-responding patients as early 
as possible during disease development to provide better 
therapy alternatives.

Our major objective is to seek patient-specific networks 
that separate VDZ treatment responders and non-responders. 
In our recent work, we could successfully stratify infliximab 
responder vs non-responder patients using cytokine signal-
ling network diffusion rates [29]. In this study, we imple-
mented a diffusion model to discriminate UC patients (VDZ 
responders vs non-responders) to construct patient-specific 
subnetworks.

Methods

Data source

To identify VDZ related studies, a public dataset search on 
Gene Expression Omnibus (GEO) was performed using 
the keywords ‘Vedolizumab’ and ‘Ulcerative colitis’. The 
only hit found was GSE73661 containing Affymetrix Gene-
Chip Human Gene 1.0 ST arrays of UC patients before and 
after treatment with VDZ or IFX, and non-IBD controls 
for 178 samples [17]. This dataset contains patients who 
were recruited from two phase 3 VDZ trials (GEMINI & 
LTS) (Table 1). Biopsies were taken at week (W) 0 before, 
and W6, W12, and W52 after VDZ treatment giving a total 
of 124 colonic mucosal biopsies. The sampling location 
includes UC left-sided colitis/pancolitis biopsies collected 
at the edge of ulcers (if present) or at the most inflamed 
colon segment (absence of ulcers). The colonic biopsies 
for histological healing assessment were scored using the 
Geboes index [30, 31]. For endoscopic healing assessment, 
Mayo subscore was used [32] before and after treatment. 
VDZ-treated UC patients were classified as responders 
(n = 14) and non-responders (n = 27) (Table 2) based on the 
colonic healing sub-score of Geboes index for histological 
assessment.In this study, patients treated with VDZ all had a 
previous history of treatment with IFX. We used 112 VDZ-
treated patient samples and 12 non-IBD control samples in 
the analysis. In this dataset, 27 patients did not respond to 
therapy (non-responder) while 14 had responded (responder) 
to VDZ therapy (Table 2). We also used a publicly avail-
able RNAseq dataset (GSE72819) of another anti-integrin 
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biologic (Etrolizumab) containing UC patients with baseline 
biopsies (Table 4). This dataset contains a total of 70 sam-
ples with 58 non-responder and 12 responder UC patient 
samples but no non-IBD controls.

Treatment groups classification

Samples were classified into pre-resistant, post-resistant, 
pre-responder, and post-responder groups (Table 2). Sam-
ples collected at week (W) 0 from patients who did not 
respond to VDZ at W6, W12, and W52 were labelled as 
VDZ pre-resistant. Samples collected at W6, W12, and W52 
from patients who did not respond to VDZ were labelled 
as VDZ post-resistant. Samples collected at week 0 from 
patients who did respond to VDZ at W6, W12, and W52 

were labelled as VDZ pre-responders. Samples from patients 
who did respond to VDZ at W6, W12, and W52 were 
labelled as VDZ post-responders. Response in this context 
refers to endoscopic healing at any of the after-treatment 
time points (W6, W12, and W52) [17].

Gene expression data pre‑processing

Data pre-processing was done using quantile normalisation. 
We annotated the gene expression matrix with matching 
gene symbols available in the metadata of the Affymetrix 
platform (https:// doi. org/ 10. 18129/ B9. bioc. hgu13 3plus2. 
db). Non-coding genes, e.g. microRNAs, pseudogenes, and 
lncRNAs, were filtered from gene expression data. The final 
expression matrix contains row values with gene symbols 
and columns with patients’ sample IDs.

Transcription factor (TF) identification

We used pandaR [33] to identify important TFs that poten-
tially regulate the gene expression in the UC. The gene IQR 
(geneIQR > 0.30) was calculated on the gene expression 
to remove genes with low variance across the samples. To 
identify the TFs using pandaR, we input protein–protein 
interaction information using comPPI [34] and regulatory 
circuits [35] for the regulatory motif binding information 
in several tissues and cell types. The motif binding set was 
retrieved from regulatorycircuits.org representing CD4 
and CD8 immune cells as relevant T-cell specific immune 
responses. We selected CD4 and CD8 regulatory circuit 
because it contains cell types which are surface markers for 

Table 1  Baseline characteristics of the patient treated with vedolizumab *

Baseline Characters�cs UC_VDZ (n=41) non-IBD_controls (n=12)

Age (years) - Median (IQR) 40.5 (32-49.4) 68.2 (59–72.7)

)8.84/2.15(02/12)%(elamef/elaM 6/6 (50/50)

Dura on of disease (years) - Median (IQR) 10.2 (4.4–14.6) NA

Extent of disease

UC le�-sided coli s/pancoli s (%) 18/23 (43.9/56.1) NA

Histology (Geboes score) (2-5(%)) 41 (100) NA

Mayo Score (2-3 (%)) 41 (100) NA

Median (IQR) - total Mayo score (2-3(%)) 10 (8–11) NA

Concomitant medica�on -no. (%)

AN)7.07(92setalycilasonimA-5

Cor costeroids 17 (41.5) NA

Methotrexate 1 (2) NA

Azathioprine/6-mercaptopurine 7 (17.1) NA

Prior an -TNF treatment -no. (%) 0 (0) NA

Ac ve smoking (%) 5 (12.2) 0 (0)

*Data adapted from Arijs et al. 2018 [17]

Table 2  VDZ response dataset including the number of controls, 
responder, and non-responder patients. The patient samples were 
classified into pre-resistant, post-resistant, pre-responder, and post-
responder groups at the given time of biopsy of W0 and W (6–52), 
respectively

Patient classification Number 

of patients 

(n = 41)

Non-responder patients
  • Pre-resistant (patient biopsies) at W0
  • Post-resistant (patient biopsies) at W (6–52)

27

32
49

Responder patients
  • Pre-response (patient biopsies) at W0
  • Post-response (patient biopsies) at W (6–52)

14

09
22

Controls 12
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T-cell. We used the threshold for pandaR result with a score 
cutoff > 0.01. The result is obtained from pandaR containing 
TF-gene target edge scores which define confidence for each 
TF regulating the corresponding target gene. To test which 
TFs significantly regulate gene expression, a null distribu-
tion of TF edge weight was calculated by randomising the 
TF-gene target 512 times and TFs were selected with an 
empirical p-value [36] (p < 0.05).

Generating signalling network

We used a previously constructed diffusion model that esti-
mates network connectivity between receptors and TFs 
through a signalling network. For creating a signalling net-
work, we used gene expression data, TFs, and receptors. A 
list of 80 receptors was used which includes IBD GWAS risk 
genes, cytokines-, chemokines-, pattern recognition-receptors 
as well as adhesion molecules (Table S1 and Figure S1). To 
select genes specific to cell surface receptors signalling path-
way, we used GO term (GO:0007166) which limits the net-
work to known receptors. Thus, we obtained 24 IBD-relevant 
cell-adhesion receptors and 37 cytokines receptors with a 
total of 61 extracellular signalling molecules (Table S1 and 
Figure S1). By applying significance testing with empirical 
p-value < 0.05, 34 key TFs were obtained using the sum of 
their regulatory network edge weights of a total of 643 TFs 
from pandaR [33]. A complete list of TFs selected for further 
analysis is provided with their annotations and target genes 
(Table S2). Genes such as TP53, HSP’s, UBC which have a 
high number of protein–protein interactions were removed to 
reduce the complexity of the global network. To further restrict 
the network, we used GO terms which are associated with cell 
surface receptor signalling pathway, cytokine-mediated signal-
ling pathway, and integrin α4β7 complex pathway (Table S3). 
Thus, the final signalling network contains only 309 nodes 
and 2645 edges for T-cell specific receptors, signal transducer 
proteins, and TFs.

Diffusion model

We used our previously published diffusion model [29] 
which uses gene expression data to generate edge-weighted 
signalling network graphs for quantifying connectivity from 
receptors to TFs for each patient. The edge weight is calcu-
lated by the product of the gene expression levels of the two 
genes connected by an edge. The signalling network was 
used to generate  t50 variable with 2074 receptor-TF pairs 
for all samples.  t50 is defined as the number of time steps 
needed to reach 50% of the maximum signal received by the 
TFs over time. The obtained  t50 data matrix contains scores 
for each receptors-TF pair per sample representing sample-
specific network connectivity. For each gene, a faster  t50 (low  

t50 score) means that more signal is being transduced to the 
connected gene by connected genes.

Subnetwork identification

The subnetwork is a simplification of the entire global net-
work. The subnetwork is created by shortest paths (using 
 t50 values of a gene) between the receptor and the ten top 
TFs. Note that for each gene, a lower  t50 indicates a greater 
accumulation of diffused signal. The top ten receptor-TF 
pairs (Table S4) all have an AUC > 0.78 (VDZ response vs 
non-response). The igraph (https:// igraph. org/) package was 
used to plot the subnetworks. For each subnetwork, the sum 
of the gene  t50 values for each branch (receptor to TF) for 
each sample was calculated. The group branch sums were 
used to compare the groups.

Statistical analysis

Statistical significance for differentially expressed genes was 
performed using linear modelling. Multiple testing correc-
tion was done with the method of Benjamini and Hochberg 
[37]. Exploratory data visualisation was done using prin-
cipal component analysis (PCA). ‘nnet’ a deep learning-
based method was used [38] with tenfold cross-validation 
repeated 20 times using average accuracy to select the final 
model. Prediction results were evaluated by area under the 
receiver operating curve (AUC). GO enrichment analysis 
was performed using the clusterProfiler, Bioconductor pack-
age [39]. For comparing the responder and non-responder 
sample groups, we used Wilcoxon test which is then evalu-
ated using p-value measure.

Results

Testing VDZ‑specific gene expression

We first assessed four VDZ-specific genes such as MAD-
CAM1, VCAM1, Integrin Subunit Beta 4 (ITGB4), and 
Integrin Subunit Beta 7 (ITGB7) which are pivotal players 
in the VDZ drug inhibition of the interaction between α4β7 
integrin on T cells with MAdCAM1. To test if these genes 
can predict VDZ response, we used a linear model on the 
four integrin-specific genes. Only VCAM1 obtained a sig-
nificant p-value (0.003, AUC = 0.68) and no significance was 
found in the other three genes (Table 3).

Comparison with a reference method

We used a deep learning method, ‘nnet’, a feed-forward neu-
ral network algorithm to test the predictive ability to separate 
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treatment responder and non-responder patients. Using ROC 
(receiver operating characteristic curve), we obtained an 
AUC of 0.76 for the gene expression (Fig. 1). Similarly, 
we did a ROC analysis for the diffusion model to compare 
the predictive ability. We found 39 receptor-TF pairs with 
AUC > 0.78 (Table S4). The top-scoring discriminators 
were receptor-TF pairs free fatty acid receptor 2 (FFAR2) 
nuclear respiratory factor 1 (NRF1), colony-stimulating fac-
tor 3 receptor (CSF3R)-RELB, and integrin subunit beta 4 
(ITGB4)-ETS proto-oncogene 1, transcription factor (ETS1) 
with AUC ~ 0.80. These pairs show distinct differences 
between VDZ responder and VDZ non-responder patients 
before and after treatment (Fig. 1A and C).

Comparing gene expression vs. diffusion model

To compare the predictive ability of the diffusion model 
against the gene expression data, we used ROC analysis to 
select the best predictor receptor-TF pairs. Then, we applied 
PCA on gene expression vs. diffusion model feature score 
 (t50) for all VDZ responders, non-responders, and controls 
samples (Fig. 2A and B). The diffusion model demonstrates 
an improved predictive power for the separation of patients 
with VDZ therapy response (see PC1, Fig. 2A) as compared 
to gene expression. In addition, we applied PCA on recep-
tor FFAR2 which is the best predictor for a subnetwork 
using the diffusion model result with top receptor-TF AUC 
score (~ 0.81) and compared it with FFAR2 gene expres-
sion (Fig. 3A and B). We found that the PCA of the diffu-
sion model using  t50 branch sums of the shortest paths could 
separate VDZ responder and the non-responder group as 
compared to the gene expression.

Characterising individualised pathways 
for treatment response patient groups

Each UC patient exhibits heterogeneity in their network con-
nectivity. Differences in patient-specific networks related 
to immunological pathways may cause UC pathogenesis. 
Anti-integrin therapies perturb immunological and inflam-
matory pathways besides cell trafficking interference [40]. 
For generating individualised subnetworks, we selected 
the top 10 receptor-TF pairs (AUC > 0.79), which show the 
best discriminatory ability (Figure S2). To discriminate 
VDZ treated responders and non-responders with pre-and 

post-treatment status, we used  t50 scores of the diffusion 
model. We found that diffusion results with the FFAR2 
receptor gene to TFs such as NRF1, ETS Like-1 (ELK1), 
RELB, ETS Like-1 (RFX3) and transcription factor AP-2 
alpha (TFAP2A) demonstrate the best discriminatory ability 
for separating therapy responder and non-responder patients 
(Fig. 4B and Table S4). To test individual-level differences 
in the signalling pathway for the patient groups, we gener-
ated a simplified version of the overall signalling pathway 
into the subnetwork describing the diffusion of signal from 
receptor FFAR2 that passes transducers, to downstream TFs 
(Fig. 4A). For FFAR2 subnetwork, we selected the top 10 
TFs selected with receptor-TF pairs (AUC > 0.77) that sepa-
rate VDZ responders from non-responder UC patient groups. 
We found that patient with VDZ non-response exhibits 
quicker signalling as compared to the patients with VDZ 
response and controls.

Identification of patient‑specific signalling 
pathways

To identify patient-specific signalling pathways, we use the 
shortest paths in the subnetwork of identified top receptor-TF 
pairs (Table S4). The top pairs were selected by ROC analy-
sis (Figure S3). Using selected genes in the branch length of 
the shortest paths, we found the distinct separation of VDZ 
responders and controls from the non-responders by diffu-
sion model in contrast with gene expression (Fig. 5A and B).

Testing on the alternate anti‑integrin biologic drug 
(Etrolizumab)

For testing the diffusion model on an alternate anti-integrin 
biologic, we retrieved the publicly available published RNA 
seq data (GSE72819) with baseline biopsies from Etrolizumab-
treated UC patients (Table 4). This dataset contains 70 samples 
with 58 non-responder and 12 responder UC patient samples 
with non-IBD controls. We used the same network generated 
in VDZ training dataset. We found an acceptable AUC of 
0.72 for Etrolizumab dataset (Table S5). Next, we compared 
the obtained diffusion result with ‘nnet’ prediction, and we 
found an AUC of 0.69. To check the consistency of the predic-
tive ability of the model on two separate datasets, we applied 
Pearson’s product-moment correlation test [41] on two sets of 

Table 3  Adjusted p-value of 
VDZ-specific genes calculated 
using linear modelling

eulav-p.jdAseneG

270.04BGTI

49.07BGTI

94.01MACDAM

300.01MACV
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AUCs obtained from Vedolizumab and Etrolizumab datasets. 
We found a significant correlation of 0.68 (95% Confidence 
interval) with p-value < 0.01.

Discussion

In this study, we focused on the signalling pathway signa-
tures that stratify VDZ responders from non-responders. 
UC patients with non-response to VDZ and other biologic 
therapies have differences in their immune and inflamma-
tory pathways [42]. Using a diffusion model, we generated 
subnetworks that represent the signalling signatures to dis-
criminate VDZ treatment responders from non-responders. 
These subnetworks highlight the underlying UC-associated 
immuno-inflammatory pathways. The diffusion model uses 
the original gene expression data as well as prior biological 
knowledge for generating edge-weighted signalling network 
graphs to delineate the T-cell receptor signalling pathway.

After applying a linear model for gene expression of four 
pivotal VDZ-specific genes, only VCAM1 was found signifi-
cantly different between the responder and non-responder 
patient groups (Table 3). In a previously published study 
on dextran sodium sulphate (DSS)-induced colitis, Soriano, 

A. et al. demonstrated the functional role of VCAM1 as 
a mediator of leukocyte adhesion in colitis and a potent 
therapeutic effect on immunoneutralisation as compared to 
MAdCAM-1 and intercellular adhesion molecule 1 (ICAM-
1) [43]. Increased expression of VCAM1 in colonic biopsies 
from patients with IBD is associated with flare-ups leading 
to disease onset [44]. Gene expression variability is much 
higher in VCAM1 as compared to MADCAM1. VCAM1 
has previously been shown to provide a reliable measure of 
predicting anti-TNFα therapy response [44].

Exploratory analysis using the diffusion model provides 
a better stratification of treatment response groups as com-
pared to gene expression alone (Fig. 2). For testing alter-
nate prediction tools for treatment response stratification, 
we used ‘nnet’ a deep learning algorithm that has recently 
been utilised for biomarker discovery [38]. We have found 
that ‘nnet’ and diffusion model features facilitate separation 
of the VDZ treatment response groups, however, ‘nnet’ fails 
to outperform the diffusion model (Fig. 1A and B). Here, we 
can argue that the higher predictive ability of the diffusion 
model is because of the non-linear transformation of gene 
expression which is derived from the nature of the signal-
ling network. Another argument could be that the diffusion 
model enables the inclusion of relevant prior knowledge 

Table 4  Baseline characteristics of the patient treated with etrolizumab*

*  Data adapted from reference Tew et al. [66]
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which explains the underlying biological determinants of 
VDZ therapeutic response as compared to ‘nnet’ which con-
siders only gene expression.

A previous study has shown that reduction in faecal cal-
protectin after induction with anti-TNFα treatment, corre-
lates with endoscopic remission. However, the calprotectin 
level at W0 is a poor predictor of therapy response [45]. 

Whereas diffusion model could predict the therapy response 
at W0 using gene expression data, therefore contributing a 
prognostic value at an early stage of UC.

A recently published study has found distinct signature 
genes with mucosal gene expression at baseline for VDZ 
treated UC patients [40]. While comparing these identi-
fied genes with the independent VDZ cohort, only about 
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Fig. 1  Predictive analysis (A) ROC analysis using diffusion model 
represents AUC = 0.81 for receptor-TF pair (FFAR2-NRF1), which 
separates treatment responder and non-responder sample groups. (B) 
ROC analysis of ‘nnet’ method represents AUC = 0.76 with a com-
plete gene expression matrix. (C) Dot plot represents the differences 
of  t50 in the treatment response groups for best discriminant receptor-

TF pair FFAR2-NRF1, separating responder pre-and post-treatment, 
non-IBD controls from the non-responder group. preResponseVDZ, 
postResponseVDZ represents biopsies obtained at W0 or W (6–52), 
respectively, from patients that respond to treatment. PreResistant-
VDZ, postResistantVDZ represents biopsies obtained at W0 and W 
(6–52), respectively, from patients with non-response
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a quarter of the significantly differentially regulated genes 
were reproducible in the independent cohort. For assessing 
the model’s reproducibility and generalisability, we used 
the alternate anti-integrin drug (Etrolizumab) comprising 
UC patients with treatment responders and non-responder 
without non-IBD controls. We found 40 best receptor-TF 
pairs with an AUC > 0.68 with a best receptor-TF pair 
CD40-NFKB2 (AUC = 0.72) (Table S4). Notably, on both 
anti-integrin treatment datasets, the diffusion model demon-
strated high predictive performance for stratifying respond-
ers from non-responders in comparison to ‘nnet’.

Our analysis revealed 48 receptors-TF pairs with 
AUC > 0.76 that separate the VDZ non-the responders from 
the responders’ group before and after treatment (Table S4). 
As expected, the top identified receptor-TF pairs include 
genes that have a role in regulating intestinal inflammation 
and involvement in UC pathogenesis. In Fig. 4B, FFAR2 
receptor gene to TFs such as NRF1, RELB, early growth 
response 1 (EGR1), and nuclear factor-kappa B subunit 
1 (NFKB1) separates the pre-treatment non-responder vs. 

responders using branch sum  (t50) of the shortest path. 
FFAR2 is a G protein-coupled receptor (GPCR) reported 
to be a critical precursor of signalling molecules involved 
in regulating whole-body energy homeostasis, inflam-
matory and immune responses in the intestine [46, 47]. 
Non-responder patients have more signals from connected 
genes that result in quicker signals as compared to the con-
trols and patients in the responder group. The subnetwork 
obtained using the best receptor-TF pair FFAR2-NRF1 
shows the signal from receptor FFAR2 through transducer 
route 1 (TNF-RACK1-TRAF2) and transducer route 2 
(TNF-CAV1-TRAF2) to TF NRF1 (Table S6).TRAF2 is 
a member of the TNF-receptor-associated factor (TRAF) 
protein family which directly associates with TNF as a 
major signal transducer for TNFα-mediated activation 
of JNK and NFκB [48, 49]. Through NFκB activation, 
TRAF2 regulates anti-apoptotic signalling by interacting 
with apoptosis inhibitors [50]. Adjacent to TRAF2 in the 
signalling network (Fig. 4), RACK1, which is an adap-
tor molecule that binds to the key signalling molecules 
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Fig. 2  PCA plot showing the difference in UC VDZ treatment 
response groups. (A) Gene expression of non-responder VDZ pre-
treatment, Non-responder VDZ post-treatment, responder VDZ pre-
treatment, non-responder VDZ post-treatment, and controls. (B) Dif-

fusion score  (t50) of non-responder VDZ pre-treatment, non-responder 
VDZ post-treatment, responder VDZ pre-treatment, non-responder 
VDZ post-treatment, and controls
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Fig. 3  PCA plot on FFAR2 receptor gene on the shortest path between 
receptor and TFs showing the difference in UC VDZ treatment 
response groups. (A) FFAR2 receptor gene subnet using gene expres-
sion of non-responder VDZ pre-treatment, non-responder VDZ post-
treatment, responder VDZ pre-treatment, non-responder VDZ post-

treatment, and non-IBD controls. (B) FFAR2  t50 sample branch sums 
of the shortest paths to top 10 AUC TFs from receptor FFAR2 of non-
responder VDZ pre-treatment, non-responder VDZ post-treatment, 
responder VDZ pre-treatment, non-responder VDZ post-treatment, 
and non-IBD controls

BA

Fig. 4  Explanatory analysis (A) A simplified subnetwork gener-
ated by the shortest paths between FFAR2 to the top 10 AUC TFs. 
The shortest paths were defined by network diffusion values  (t50). 
The size of the node represents the differences between  t50 between 
the responder and non-responder groups. A solid black line from 
FFAR2 to NRF1 represents the shortest path for the top receptor-TF 

pair FFAR2-NRF1. Red colour indicates receptors, white indicates 
transducers, and blue colour indicates TFs. (B) Box plot shows a 
separation of treatment response groups using the mean distance of 
branches in the sub-network. Higher branch length represents slower 
diffusion of signal in the responder and the non-IBD controls as com-
pared to the non-responder group
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involved in the cell migration, integrin adhesion and 
activity, and T-cell apoptosis [51–54]. A previous study 
demonstrates the role of RACK1 as a negative regulator 
of NF-κB signalling, NF-κB-mediated cytokine induc-
tion and inflammatory reactions [55]. Next, CAV1 is a 
gene involved in diverse signalling pathways and plays an 
essential role in cell proliferation, apoptosis, lipid migra-
tion, and exhibits a protective role in intestinal inflamma-
tion for IBD [56–58]. We hypothesise that TNF, RACK1, 
CAV1, and TRAF2 are part of the protein complex in 
which TNF and TRAF2 are connected to the TNFRSF1A. 

This might modulate downstream signalling to transcrip-
tion factor NRF1 (Fig. 4) which is involved in maintain-
ing organ integrity by regulating cytoprotective defences 
through cellular redox homeostasis [59, 60] by preventing 
cells against proteasome inhibition through regulation of 
proteasome gene expression. With a higher accumulation 
of proteasome inhibitors, NRF1 loses its potency to initi-
ate transcription [61]. Some studies showed a reduction of 
intestinal inflammation by targeting immunoproteasome 
that attenuates proinflammatory signalling in DSS-induced 
colitis study on mice and IBD patients [62–64]. Targeting 

BA

Fig. 5  Comparison of gene expression vs.  t50 diffusion values in path 
‘FFAR2-TNF-CAV1-TRAF2-NRF1’ (A) Gene expression of shortest 
path genes. (B)  t50 diffusion values of path genes. The horizontal dot-

ted line represents the mean values in controls. Pre-VDZ responders 
(pink), pre-VDZ non-responders (red), and controls (green) are indi-
cated
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NRF1-mediated endoplasmic reticulum-associated deg-
radation (ERAD) pathway could increase the therapeutic 
efficacy of proteasome inhibitor drugs for providing readily 
actionable targets [65].

Conclusions

We used a network-based diffusion model to highlight genes 
and their interactions in signalling pathways which may be 
predictive in response to the anti-integrin treatment. In our 
case, the diffusion model outperformed a deep learning 
method (nnet) and can give comparable prognostic ability at 
initial diagnosis to longer-term monitoring of calprotectin. 
The obtained subnetworks feature genes involved in cytokine 
and fatty acid signalling. The results suggest that anti-integrin 
drug responses in cytokine and fatty acid signalling pathways 
can discriminate UC patient populations. As the availability 
of high throughput RNA sequencing in the clinic increases, 
these findings may offer useful insights into the development 
of clinical decision-making to aid in selecting UC treatment 
strategies.
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Modelling individual variability of pattern recognition receptor



Abstract 

Background 

Autoinflammatory diseases like inflammatory bowel diseases (IBD) have complex 

multifactorial etiologies that often include the interaction between the immune system and the 

microbiome. The immune system uses pattern recognition receptors (PRRs) to detect molecules 

associated with pathogens and damaged cells. These receptors are connected to transcriptional 

regulators of the immune system including Nuclear Factor κB (NF-κB), Activator protein 1 

(AP1), and interferon-regulatory factor (IRF) protein family members. How strongly these 

transcriptional programs are activated by PRR can vary greatly from person to person.In this 

study, we aim to use canonical pathways to predict the magnitude activation of NFKB-, AP1- 

and IRF- target genes after stimulation with PRR ligands. 

Results 

A network analysis method to evaluate network connectivity between PRRs and transcription 

factors has been adapted. The method uses gene expression data to personalize signalling 

networks that connect PRRs to downstream transcription factors (TFs). The personalized 

network connectivities are compared to activation levels for known TF target genes after PRR 

stimulation. In two independent datasets, statistically significant correlations are found between 

the estimated network connectivities and activation of TF target genes. The correlations are 

higher for extracellular PRRs and at shorter times of stimulation.  

Conclusion 

To our knowledge, this is the first method to quantify individualized PRR responses based on 

gene expression data and network models. Improved understanding of an individual’s response 

to PRR ligands may have implications for treatment choices and may open treatment 

opportunities using PRR ligands as alternatives or adjuvants to current treatment options.  

 

 

 

 

 



Introduction 

Ulcerative colitis (UC) is a chronic, inflammatory disease and the exact aetiology of UC is still 

elusive. The major factors inciting the pathogenesis of UC are genetic, immunological, 

environmental, and microbial 1. Among these factors, cellular receptors with innate immune 

response functions recognise the foreign molecules which trigger the immune responses. Toll-

like receptors (TLRs) are among the pattern recognition receptors with a role in innate as well 

as adaptive immunity (T cell activation). TLRs sense and recognize pathogen-associated 

molecular patterns (PAMPs) 2,3. PAMPs are highly conserved microbial structures e.g., 

unmethylated double-stranded DNA, single-stranded RNA, lipoproteins, lipopolysaccharide 

(LPS), and flagellin. TLR 1, 2, 3, 4, 5, and 9 identified variants of TLRs expressed in the small 

and large intestines of humans, whereas TLR 6, 7, and 8 are expressed only in the colon 4. TLR 

1, 2, 4, 5, 6 are transmembrane innate receptors and deliver signalling through IRAK-4 while 

TLR 3, 4, 7, 8, 9 are expressed in intracellular endosomes which form homodimers after 

interacting with their ligands via IRAK-4 and IKK 5. 

The activation of TLR signalling initiates a cascade of downstream events that may have a role 

in promoting UC. A study by Sánchez-Muñoz et al. have observed differential expression of 

TLRs in colonic mucosa from UC patients (both quiescent and active) as compared to healthy 

individuals (p < 0.04). This study showed that the expression of TLR 2, 4, 8, and 9 are 

upregulated in patients with active UC, whereas TLR5 is often overexpressed in patients with 

active UC as compared to quiescent UC disease, and downregulated in quiescent UC compared 

to controls with healthy colonic mucosa 6. TLR4 is the first known important TLR that 

recognizes LPS in gram-negative bacteria and mediates inflammatory response against 

invading bacteria and promoting mucosal integrity in UC 7. TLR4 is induced when derivates 

from the cell wall of gram-negative bacteria, like lipopolysaccharides, bind to TLR4 on the 

surface of mononuclear cells. Activation of TLR4 signalling induces activation of nuclear 

factor-κB (NF-κB) and mitogen-activated protein kinases (MAPK), causing increased cell 

proliferation and differentiation of macrophages as well as inducing expression of pro-

inflammatory cytokines, e.g., TNF-α, interleukin (IL)-6 and IL-12. Increased TNF-α expression 

might decrease the mucosal barrier function in patients with IBD exacerbating the inflammation 

8. 

TLRs have multiple roles in UC aetiology such as immune responses, genetics as well as 

microbiota 2,5,6,9,10.  Besides the role of TLRs in UC pathogenies, there has been growing 



attention to UC treatment strategies that highlight immune dysfunction pathways especially 

toll-like receptors (TLRs)-mediated innate immune dysfunction. 

Stimulation of TLRs triggers the activation of signalling cascades, leading to the induction of 

immune and pro-inflammatory genes. After ligand binding, TLRs dimerize and undergo 

conformational changes. This is followed by recruitment to the receptor of TIR-domain-

containing adaptors including myeloid differentiation primary response protein 88 (MyD88) 

and TIR-domain-containing adaptor protein-inducing IFN-β (TRIF), which are responsible for 

the activation of distinct signalling pathways. For appropriate homeostasis, the balance is 

maintained by multiple negative regulators. The expression of most negative regulators can be 

induced by the activation of TLRs which uses a negative feedback mechanism to terminate 

TLRs activation. The regulation of TLR signalling pathways constitutes a complex network. 

Although it has been studied for many years, additional new components and regulatory aspects 

of known components continue to be revealed. We believe that additions to the body of 

information concerning this regulation may provide added possibilities for therapeutic 

manipulation of these pathways and thus for more effective treatment of human diseases 

involving TLRs 11. 

Another important nucleotide-binding oligomerization domain (NOD)-like receptor] (NOD-2) 

receptor has a vital role in recognizing pathogen and damage-associated molecular patterns 

(PAMPs and DAMPs, respectively) in the cytoplasm and eliciting innate immune responses. 

The expression of NOD2 is induced by bacterial components (e.g., LPS, muramyl dipeptide 

(MDP)), and thereby largely dependent on the presence of gut microbiota.  Mutation of NOD-

2 causes dysbiosis between ileal microbiota and mucosal immunity 12. NOD2 and TLR work in 

a synergy that affects the polarization of T cell adaptive immunity13,14. 

This study aims at quantifying individual responses to signals that may contribute to the 

pathological immune response. To model this, we have analysed publicly available gene 

expression data where gene expression is available before and after stimulation with PRR 

agonists. Canonical pathway models and network diffusion was used to predict the activation 

of an individual’s transcriptional response using the gene expression profile before stimulation. 

 

 

 



Materials and Methods 

Data sets  

The Gene Expression Omnibus (GEO) was searched for gene expression data from human 

samples stimulated with pattern recognition ligands (Toll receptors and NOD2) obtained from 

a large number of different individuals. The stimuli include LPS, MDP R837 CpG-C, LTA, and 

peptidoglycan, datasets were considered candidates if they contained gene expression data from 

before and after stimulation of at least 20 subjects.  

Signalling network definition 

Network interactions were initially taken from a recent review of PRR signalling pathways with 

a focus on negative regulation 15. The interaction was validated in the STRING database 16. 

Gene symbols were updated using GeneCards 17. Networks were created individually for TLR2, 

TLR4, TLR7, TLR9 and NOD2. Networks were stored as R data frames and visualised using 

the iGraph package in R [igraph.org]. 

Personalized network connectivity estimation 

Network connectivity between PRRs and TFs was computed adopting a recently developed 

network diffusion algorithm 18. In brief, the method works as follows: A network model 

connecting a receptor to one or more TFs is defined as a set of vertexes and edges where the 

vertexes represent genes/proteins, and the edges represent physical interactions that pass or 

inhibit signals. The network edges are then initialized with a connectivity value passed on the 

product of the expression level of the two interacting genes. This in effect personalizes the 

network as the network layout is shared between samples but the connection weights will 

depend on the gene expression levels of the individual sample.  

At time zero, a unit of the signal is placed on the receptor node. Then at each time interval 

fluxes along vertexes are calculated. These fluxes are then used to move signal along edges 

between vertexes and the amount of signal at each vertex is updated. This process is repeated 

in several time steps. The network connectivity is then evaluated by identifying the time point 

of maximum variance at the transcription factor and using the accumulated signal from the 

receptor as a measure of connectivity. 

The original implementation of the diffusion method for estimating network connectivity did 

not account for potential negative feedback mechanisms. All genes accumulated and passed on 



signal to neighbours with less signal according to the diffusion law 19. Negative feedback genes 

are included as signal sinks that contribute to fluxes but cannot accumulate signals. 

Consequently, the signal reaching negative regulator genes disappears, and will not be 

propagated further throughout the network. 

Procrustes analysis of gene expression and signal diffusion 

To assess if the network diffusion process creates new information or just acts as a linear 

transform of the original gene expression data, the TLR4 network was run to maximum overall 

variance and the signal accumulated on all nodes was compared to the original gene expression 

data on the nodes using Procrustes rotation 20.  

Statistical methods 

The linear models in the R stats package were used to create trend lines for all samples or just 

healthy controls. P values were computed to test the hypothesis that the slope of the fitted line 

is different from zero. Gene expression changes were determined using limma 21. Genes with 

an FDR 22 adjusted p-value <0.05 were taken as significantly changed. TF target genes were 

obtained using OmniPath 23 with the encode-proximal dataset. TF activation was estimated as 

the average fold change of differentially expressed target genes. 

Results 

Data sets  

The GEO was searched for datasets containing transcriptional data (microarrays or sequencing-

based) both before and after stimulation with PRR ligands for a large number of human subjects. 

Two datasets were identified as suitable for the analysis. Dataset A (GSE103500) 24 contains 

microarray data for transcriptional response in pairs of unstimulated ex vivo blood samples and 

samples from the same donors stimulated with the PRR ligands for TLR 2,4,7,9. The donors 

are normal controls and systemic juvenile idiopathic arthritis (sJIA) patients that are either 

untreated or undergoing treatment with anakinra, an IL-1R antagonist.  

Dataset B (GSE137680) 25 similarly contains ex vivo samples of peripheral blood mononuclear 

cells (PBMCs) from IBD patients stimulated with the PRR ligands LPS and MDP. Both data 

sets passed quality controlled by PCA density plots and expression of the gender-specific 

protein XIST was consistent with the listed gender of the participant (Supplementary S1). The 

datasets are summarized in Table 1. 



Table 1 Overview of PRR stimulation experiments 

Dataset Stimuli PRR Stimulation 

time [H] 

Number 

of donors 

Diagnosis 

A LPS TLR4 6 25 Ctrl:13/sJIA:12 

A LTA TLR2 6 26 Ctrl:14/sJIA:12 

A R837 TLR7 6 24 Ctrl:14/sJIA:10 

A CpG-C TLR9 6 26 Ctrl:14/sJIA:12 

B LPS TLR4 16 34 IBD:34 

B MDP NOD2 16 33 IBD:34 

 

Initial TLR4 model 

A signalling network model was created based on a review of Toll-like receptor signalling 15. 

For LPS signalling through TLR4, MYD dependent and an MYD independent pathway was 

defined with connections to the transcription factors NFKB1, FOS, and IRF3. The signalling 

network is illustrated in Figure 1A. 

The signal diffusion from TLR4 to the TFs was calculated for the control samples matching 

LPS stimulated individuals. One unit of signal on the TLR4 receptor and running the diffusion 

algorithm for 2000-time steps. To obtain a consistent measure of network connectivity from the 

time vs. signal curves, the time of maximum variability is identified and the accumulated signal 

at the TF for a given receptor at this time was used as a measure of the receptor to TF 

connectivity (Figure 2 A-C).  

Activation of the downstream transcription factors after LPS stimulation was then estimated by 

first identifying differentially expressed genes (see Materials and methods). Then, the average 

log2 fold change of the differentially expressed genes that are target genes of NFKB1, FOS, 

and IRF3 was calculated to estimate the level of activation of each of these transcription factors. 

A linear model was then fitted relating These activation levels were then correlated to the 

network connectivity between TLR4 and each TF. 

The estimated connectivity on the control samples was then related to the activation of NFKB1, 

FOS, and IRF3 target genes using a linear model. In all cases, the fitted line has a positive slope, 

and the correlation coefficients are highly significant (Figure 2 D-F). 

 



Comparing network results to gene expression data 

Procrustes analysis of accumulated signal on all pathway members at time step 1000. One 

matrix of gene expression data for the pathway members was compared to a matrix of an 

accumulated signal using Procrustes rotation. Only 0.39% if the variability of the diffusion 

result is a linear fit from the gene expression. 

Remaining receptors in dataset A 

Network diffusion and TF activity estimation were then carried out in the same manner as for 

TLR4 for the networks connecting TLR2, TLR7 and TLR9 to the TF NFKB1 and FOS. In all 

cases, the slope of the linear fit between the network connectivity and the corresponding TF 

activation are all positive. However, a trend was identifiable among the normal controls only 

as a large number of the sJIA patients show little or no activation upon stimulation with R837 

and CpG-C. Correlations and P-values for these Toll receptor agonists are therefore calculated 

for using the normal control samples only (Figure 3).     

PBMCs from IBD patients 

Finally, the method was applied to samples from Dataset B where the connectivity between 

TLR4 and NOD2 and activation of NFKB1, FOS, and IRF3 target genes were examined. 

Significant correlations were identified for LPS confirming the findings in Dataset A and a 

marginal significant finding for MDM via the NOD2 pathway (Figure 4). The correlations and 

significance values are all listed in Table 2. 

Table 2 Summary of correlations p values and experimental conditions 

Dataset Stimuli Receptor TF Correlation P-value  Extra/Intra 

-cellular 

A LPS TLR4 NFKB1 0.71 0.00007 Extra 

A LPS TLR4 FOS 0.6 0.002 Extra 

A LPS TLR4 IRF3 0.33 0.1 Extra 

A LTA TLR2 NFKB1 0.71 0.00006 Extra 

A LTA TLR2 FOS 0.58 0.002 Extra 

A R837 TLR7 NFKB1 0.51* 0.06 Intra 

A R837 TLR7 FOS 0.38* 0.18 Intra 

A CpG-C TLR9 NFKB1 0.28* 0.34 Intra 



A CpG-C TLR9 FOS 0.16* 0.59 Intra 

B LPS TLR4 NFKB1 0.35 0.04 Extra 

B LPS TLR4 FOS 0.36 0.03 Extra 

B LPS TLR4 IRF3 0.10 0.58 Extra 

B MDP NOD2 NFKB1 0.34 0.055 Intra 

* sIJA patients excluded from statistical analysis 

Discussion 

There is a highly significant correlation between the network connectivities and TF activation 

for TLR4 and TLR2 but only marginally significant for TLR7 and NOD2 and quite weak for 

TLR9. 

It is noteworthy that the diffusion model works quite well for the two examples of extracellular 

receptors TLR4 and TLR2. While showing the worst performance with receptors canonically 

located to the membrane of liposomes. The current formulation of the method ignores the 

transport of the ligand into a liposome. Individual differences in drug transport into the cell, 

liposome formation and any mechanisms preventing the ligand from getting to the receptor will 

therefore be ignored.    

Dataset A overall gives the best correlations. This could be due to the difference in stimulation 

time between Dataset A (6H) and Dataset B (16H). The longer period allows more time for 

feedback mechanisms and secondary effects to act, thereby reducing the predictive ability of 

the network connectivity at the time of stimulation. Indeed, macrophages stimulated with LPS 

for 4,8,12, and 24H showed that the biggest increase in TNF-α level occurred between 4 and 8 

hours, and the TNF-α level remained largely constant thereafter 26. 

It is also apparent in Dataset A, that the sIJA patients show less transcriptional activation than 

predicted. This can be most strongly observed in the case of TLR7, but the effect is also apparent 

for TLR2-FOS, TLR9-NFKB1, TLR4-FOS, and TLR4 IRF3. In the case of TLR7 stimulation, 

the degree of TF activation is essentially zero for these patients. This may be due to saturation 

effects, where the sIJA patients are already responding to the PRR stimuli to a greater or lesser 

extent. Further stimulation, therefore, gives limited additional effect, despite the genes of the 

signalling pathways being expressed.  It has been suggested that single-strand RNA from the 

synovial fluid of RA patients can function as a TLR7 endogenous agonist 27. 



The worst model performance is seen in the case of TLR9. This receptor is canonically 

expressed in dendritic cells 28, a much less in more abundant cell types in the blood. Indeed, the 

gene expression levels of TLR9 in Dataset A are close to the microarray background level 

(Supplementary S2). TLR9 is also unique among PRRs as it requires extensive post-

translational modification before it can function as a receptor. It interacts with numerous 

proteins that mediate trafficking to the endosomes, whereupon cleavage of the protein is 

necessary before it can interact with CpG DNA 29. An expanded signalling network model 

including the proteins responsible for TLR9 trafficking and processing may therefore be 

necessary to obtain good correlations. This may be of interest because it has been suggested 

that TLR9 agonists may be able to induce wound healing in UC 30. 

Pattern recognition receptors are the eyes and ears of the innate immune system. They are 

central to the interaction between the microbiota and the host and play an important role in 

autoimmune and autoinflammatory diseases. To our knowledge, this is the first attempt at 

modelling individual patients’ response to PRR ligands based on their gene expression data. 

Analysing the gene expression data using signalling networks and diffusion generates new 

information that is not merely a linear transform of the original gene expression data.  Currently, 

there are considerable individual differences in response to therapy with pro-biotics and faecal 

microbiota transplantation 31. Therefore, an improved understanding of an individual’s response 

to PRR ligands may have implications for treatment choices. 
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Figure Descriptions 

 

Figure 1 (A-B) Network models for PRR stimulation. Signalling network model connecting 

TLR-2, -4,-7,-9, and NOD2 to the transcription factors NFKB1, FOS, and IRF3. Nodes or 

vertexes represent proteins/genes and edges represent interaction that signal can travel along. 

Receptor nodes are given in cyan, signal transduction molecules in white and transcription 

factors in beige and negative regulators in pink. 



 

Figure 2 (A-C) Starting a simulation with one unit of signal on TLR4. The graph shows the 

signal accumulated on the transcription factors NFKB1, FOS, and IRF3 as a function of time. 

The time point of maximum between sample variance is indicated with a solid vertical line, and 

the signal intensity of this TF at this time is used as a measure of overall connectivity. (D-G) 

Scatter plot showing estimated network connectivity between TLR4 estimated as signal 

accumulated at the TF at the time of maximum variability vs. activation of TF targets after 

stimulation with LPS for 6 hours.  



   

Figure 3 Network connectivity between receptors TLR -2, -7 and -9 and transcription factors 

NFKB1 and FOS vs. activation of the target genes of NFKB1 and FOS after stimulation with 

LTA, R837, and CpG-C respectively for six hours. 



 

Figure 4. Network connectivity between receptors TLR4 and NOD2 and transcription factors 

NFKB1, FOS, and IRF3 vs transcription factor target gene activation after stimulation with LPS 

and MDP for sixteen hours.  

 

 




