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ABSTRACT 

Curcumin (I), demethoxy curcumin (II) and bisdemethoxy curcumin (III) are commonly 

called curcuminoids, and derived products from the spice, turmeric. It has reported 

numerous of therapeutic activities including, anti-inflammatory, and anticancer properties. 

The aim of the current study was to develop a formulation which can overcome the 

limitation of curcumin being so poorly soluble in aqueous medium. Our approach has been 

directed toward investigating the potential of using liposomal formulations as carrier 

system for curcumin destined for treatment of vaginal inflammation. Curcumin containing 

liposomes were prepared using soya phosphatidylcholine by the modified film method. 

Moreover, we added cholesterol in various molar ratios to affect the vesicle membrane 

rigidity. Curcumin entrapped in the liposomes was quantified and the entrapment 

efficiency was found to be reaching up to 100%. The size and size distribution of 

liposomes were determined on photon correlation spectroscopy. The results showed an 

increase in size of liposomes containing curcumin in comparison with empty liposomes. 

The accelerated stability testing was used to predict the stability of the formulations. The 

test revealed changes in the characteristics of the liposomes. The free radical scavenging 

activity (DPPH) assay of curcumin and Curcuma extract, as well as isolated pure curcumin 

I, revealed that curcuminoids mixtures have stronger activity. 
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ABBREVIATIONS  

Chol    Cholesterol   

DPPH   1, 1- diphenyl-2-picryl hydrazyl  

EC50   Effective concentration required to reduce DPPH radical by 50%  

E.E.%   Entrapment efficiency  

HPLC                   High performance liquid chromatography  

Lipoid S-100         Soya phosphatidylcholine containing 100% PC  

LUVs    Large unilamellar vesicles 

MLVs   Multilamellar vesicles  

PC    Phosphatidylcholine 

PC/Chol (2:1)   Mixture of phosphatidylcholine and cholesterol with molar ratio 2:1 

PC/Chol (4:1)   Mixture of phosphatidylcholine and cholesterol with molar ratio 4:1 

PCS    Photon correlation spectroscopy 

Rec.    Recovery  

P.I.   Polydispersity index 

SD   Standard deviation  

SEC   Size exclusion chromatography  

SUVs    Small unilamellar vesicles  

vol/vol   Volume ratio  

w/w   Weight ratio  
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1.1. Vagina as Site for Drug Therapy 

The effectiveness of the vagina as a site of drug administration for local effects has been 

well established (Jain et al., 1997; Pavelic et al., 2001). It is an important route for local 

treatment of several gynecological conditions, such as infections and in hormonal therapy. 

This route provides advantages such as reducing or eliminating the incidence and severity 

of side effects, being a non-invasive route of administration and accessibility. These 

benefits could contribute to a better compliance, thus achieving improved therapeutic 

outcome (Knuth et al., 1993; Pavelic et al., 2004a). Furthermore, the vagina possesses 

properties which include: large surface area of the vaginal wall, permeability, a rich blood 

supply and importantly, the ability to bypass first-pass liver metabolism (Vermani and 

Garg 2000; Pavelic et al., 2001). These properties are considered to be advantageous in 

relation to drug absorption.  

 

Currently, there is a variety of pharmaceutical products available on the market designed 

for intravaginal therapy (tablets, creams, suppositories, pessaries, foams, solutions, 

ointments and gels). However, their efficacy is often limited by a poor retention at the site 

of action due to the self-cleansing action of the vaginal tract (Pavelic et al., 2001). 

Furthermore, the vagina has unique features in terms of microflora, pH and cyclic changes, 

and these factors influence the performance of the formulations and must be considered 

during the development and evaluation of vaginal delivery systems (Valenta, 2005). 

Therefore, a successful delivery of drugs through the vagina represents a pharmaceutical  

challenge.  

 

 

1.1.1. Anatomy and Physiology of Vagina 

The human vagina is a tubular, fibromuscular organ that extends from the cervix of the 

uterus to the vaginal vestibule measured in a length of approximately 9 cm (das Neves and 

Bahia, 2006). The vaginal blood supply comes from the internal iliac arteries branching 

into a complex network of arteries and veins surrounding the vaginal wall. Blood leaving 

the vagina enters the peripheral circulation via the internal iliac veins, thus bypassing the 

liver (Richardson and Illum, 1992; Knuth et al., 1993). 
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Histologically vagina consists of three distinct layers: an epithelial layer, a middle 

muscular layer and an outer fibrous layer. The epithelial layer is classified as a non-

cornified, stratified squamous epithelium. This layer is composed of lamina propria and an 

epithelial cell layer which contain particulate glycogen (Figure 1). The normal thickness of 

the vaginal epithelium is approximately 200 µm (Richardson and Illum, 1992). It is usually 

considered to be a mucosal surface, although it has no goblet cells and lacks the direct 

release of mucins (Robinson and Bologna, 1994; Hussain and Ahsan, 2005; Valenta, 

2005). The surface of vagina has a number of folds or also called rugae, which increase the 

surface area of the vaginal wall (Hussain and Ahsan, 2005). 

 

 

Figure 1: Schematic illustration of the vaginal wall (Washington et al., 2001). 

 

Despite of the absence of any glands, the vagina produces a large amount of fluid (Hussain 

and Ahsan, 2005). This fluid is a mixture of several components and includes leukocytes, 

inorganic and organic salts, mucins, proteins, carbohydrates, urea and fatty acids (Vermani 

and Garg, 2000). Like the thickness of the epithelial layer, the amount and composition of 

the vaginal fluid change upon the hormonal activity (Robinson and Bologna, 1994; 

Hussain and Ahsan, 2005). 
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The lactobacilli bacteria are an important component of the vaginal microflora. This 

bacteria converts glycogen from exfoliated epithelial cells into lactic acid, and as a result, 

maintains the pH around 4-5, with lowest being around the cervix. Body fluids such as 

menstrual blood, cervical and uterine secretions will all act as alkalizing agents and 

increase the vaginal pH (Richardson and Illum, 1992). 

 

 

1.1.2. Vaginal Environment 

The volume, viscosity and pH of vaginal fluid as well as the thickness and porosity of 

epithelial layer may have either negative or positive impact on vaginal drug absorption 

(Hussain and Ahsan, 2005). Therefore it is crucial to understand the conditions that might 

influence these parameters. It is noteworthy that the histology and physiology of the vagina 

may vary with age and with the menstrual cycle. Post-menopausal women experience 

important changes in the vaginal physiology. These changes manifest as decline in 

estrogen production during the pre-menopause and ongoing menopause. This leads to a 

permanent decrease in the vaginal glycogen content, and consequently thinning of the 

vaginal epithelium (Valenta, 2005). Furthermore, elevation of vaginal pH to 6.0–7.5, and a 

decrease in the quantity of vaginal secretions have been reported (das Neves and Bahia, 

2006). It was estimated that the vaginal secretion produced by postmenopausal women is 

reduced by 50% compared to that produced by women of reproductive age (Washington et 

al., 2001; Hussain and Ahsan, 2005).  

 

Menstruation is another physiological factor associated with hormonal events. The 

epithelial layer changes in thickness by approximately 200-300 µm as estrogen levels 

change throughout the menstrual cycle (Hussain and Ahsan, 2005). Changes in the vaginal 

pH and viscosity during the menstrual cycle are results of these changes in vaginal 

histology and physiology. The vaginal pH tends to be lowest at ovulation when estrogen 

levels reach a peak and both glycogen accumulation and epithelial desquamation at its 

maximum (Deshpande et al., 1992; Richardson and Illum, 1992).   

 

These physiological cyclic variations will be affected by the use of oral contraceptives. 

Progestin-containing formulations are associated with the production of viscous mucus 
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throughout the treatment cycle (Richardson and Illum, 1992). The vaginal pH can be 

altered by pathological conditions such as infections and inflammations. Diseases such as 

candidal vaginitis may lower the pH to below 4.5, whereas the inflammatory vaginitis 

could elevate the pH to over 6.0 (Deshpande et al., 1992; Milani et al., 2000).  

 

 

1.1.3. Changes in Inflammation     

The inflammation is a complex reaction representing the host defenses to microbial 

infection and irritations. Inflammation may take place in two stages, acute and chronic, and 

mediates tissue repair and regeneration which may occur due to infectious or non-

infectious tissue damage (Kumar et al., 2010). 

 

The acute phase of inflammation has a rapid onset and usually lasts for short duration, 

hours or a few days; and consists of mainly the responses of blood vessels and leukocytes 

infiltration.  

Chemical irritations may initiate inflammatory reactions and cause membrane damage of 

the mucosal epithelial cells, which is followed by release of prepackaged cytokines. 

Mediators initiate and amplify the inflammatory response and cause arteriolar dilation, 

which results in an increase of the blood flow to the injured area. Altering the permeability 

is another effect of these mediators. Increased permeability results in plasma proteins 

leaving the vessels through widened interendothelial cell junctions and cause accumulation 

of protein-rich extravascular fluid. Moreover, circulating leukocytes adhere to the 

endothelium via adhesion molecules and infiltrate to the site of injury under the influence 

of chemotactic agents (Kumar et al., 2010). When acute inflammation is successful in 

eliminating the offenders, the reaction subsides through activation of endogenous anti-

inflammatory response mediated by agents such as interleukin-13 and interleukin-16 

(Fichorova et al., 2005). However, if the response fails to clear the invaders, inflammation 

can progress to the chronic phase.  

 

Chronic inflammation has longer duration. In this phase leukocytes that are activated by 

the offending agent and by endogenous mediators may release toxic metabolites and 

proteases extracellularly resulting in damaging tissue. Furthermore, this phase is associated 
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with the presence of lymphocytes and macrophages, the proliferation of blood vessels, 

fibrosis, causing destruction and remodeling of the tissue (Kumar et al., 2010).  

 

The inflammatory reaction within the female reproductive tract may be essential for 

immune responses in clearance of infections and offending agents. However, if this 

reaction enters the chronic phase and persists, there will be higher probability for 

complications to arise.  

 

Numbers of studies have linked chronic inflammation with increased risk of viral 

infections such as human immunodeficiency virus (HIV). Proinflammatory cytokines and 

the transcription factors controlling the cytokine expression play a major role in HIV-1 

pathogenesis (Fichorova et al., 2005). It was reported that continuous stimulation of 

vaginal epithelial cells by proinflammatory mediators could lead to an increase in the 

availability of potential host cells for infection and viral replication to occur. Furthermore, 

it also leads to higher probability of viral transmission during sexual intercourse 

(Fichorova et al., 2005). 

 

Several inflammatory agents are also linked to cancer promotion and development. An 

example of these mediators is the tumor necrosis factor (TNF). TNF induces death of 

diseased cells at the site of inflammation, and stimulates fibroblast growth. However, if 

this agent is produced chronically, it may act as an endogenous tumour promoter, 

contributing to the tissue remodelling and tumour growth and spread (Balkwill and 

Mantovani, 2001).  
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Figure 2: Association between chemical irritation and inflammatory pathways.  

Abbreviations: TNFα, tumor necrosis factor alpha; STNF-RI, soluble tumor necrosis factor 

α receptor I; NF-κB, nuclear factor-kappa B; IL, Interleukin. (Fichorova et al., 2005) 
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1.1.4. Vaginal Dosage Forms  
 

The majority of commercially available vaginal delivery systems are usually targeting 

topical administration. Pessaries (tablets or suppositories) are among the most widely used 

systems. The principle of their action is that they provide sustained release of the drug as 

they gradually dissolve or melt. However, this mechanism has a drawback and can result in 

low bioavailability if the formulation melted faster than intended, thereby giving shorter 

residence time in the vagina (Brannon-Peppas, 1993). Vaginal tablets may contain binders, 

disintegrants and other excipients that are used to prepare conventional oral tablets 

(Brannon-Peppas, 1993; Hussain and Ahsan, 2005). Formulating very hydrophobic drugs 

as vaginal tablets may not be an ideal approach. However, it was suggested that by adding 

penetration enhancing agents such as surfactants can significantly enhance the drug 

absorption (Hussain and Ahsan, 2005). Moreover, attempts have been carried out to use 

mucoadhesive polymers in vaginal tablet formulations in order to increase the residence 

time. Polyacrylic acid (PAA) is among the bioadhesive polymers that have been utilized 

for vaginal formulations due to its high bioadhesive strength which allows a longer contact 

time with vaginal surface (Ahuja et al., 1997).  

 

Ideally, vaginal drug delivery system that is designed for local effect should distribute 

uniformly throughout the site of action. However, the distribution and coverage of 

formulation within the vaginal cavity varies with the properties of the delivery system. It 

was reported that disintegrating tablet show low coverage whereas solution, suspension 

and emulsions display greater distribution profile (Knuth et al., 1993; Washington et al., 

2001).    

Creams and gels are another type of delivery systems frequently used. Creams are 

normally emulsions whereas gels are usually hydrophilic polymers that utilize covalent 

bonds to create cross-linked three-dimensional structures (Hussain and Ahsan, 2005). 

Some formulations such as antifungal emulsion-based formulations seem to have greater 

advantage over many suppository formulations (Washington et al., 2001). An example of 

gel product is the progesterone gel formulation that is based on a loosely cross-linked poly 

acrylic acid (Noveon AA1®). This formulation was found to remain on vaginal tissue for 

3-4 days, thus allowing dosing intervals of twice a week (Knuth et al., 1993). However, a 

disadvantage that can be associated with the use of creams and gels is that they may not 
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provide an exact dose, thus compromising the efficacy of the drug therapy (Hussain and 

Ahsan, 2005).   

 

 

 

1.2. Curcumin 

The growing public interest in traditional medicine, particularly plants-based medicine, has 

led to extensive research on the potentials of natural origin substances. Hundreds of studies 

were conducted to investigate the effects of natural origin compounds on human health and 

prevention and treatment of chronic diseases (Schmidt et al., 2007). Among studied 

compounds, polyphenols appear as one of the most promising groups. In plants, 

polyphenols are important for growth and protection against pathogens. Polyphenols have 

recently received much attention in disease prevention and treatment due to their proven 

antioxidant capabilities (Zern and Fernandez, 2005). Polyphenols are derived from many 

components of the human food including peanuts, dark chocolate, green and black tea and 

turmeric. Among polyphenols, curcumin is currently one of the most studied substances. It 

is a hydrophobic, low molecular weight polyphenol widely used in form of the spice, 

turmeric (Anand et al., 2007; Suresh and Srinivasan, 2007).  

 

 

1.2.1. Origin 

Turmeric has been used in Asia for thousands of years in food, preservation of food, and as 

traditional medicine (Aggarwal et al., 2007). It is the yellow spice derived from the roots, 

rhizome, of the plant Curcuma longa. The powdered extracts of dried roots, often called 

turmeric, ukon (in Japanese), or haldi (in Hindi), may contain volatile and nonvolatile oils, 

proteins, fat, minerals, carbohydrates, moisture and curcuminoids. The curcuminoids 

which constitute approximately 5% of most turmeric preparations are a mixture of three 

principal compounds: curcumin (sometimes referred to as curcumin I), 

demethoxycurcumin (curcumin II), and bisdemethoxycurcumin (curcumin III) (Strimpakos 

and Sharma, 2008). The majority of commercially available curcumin contains the 

following composition: curcumin I (77%), curcumin II (17%) and curcumin III (3%) (Goel 

et al., 2008). 
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Figure 3: The extraction of curcumin (Goel et al., 2008). 

 

 

1.2.2. Chemical Properties of Curcumin 

As indicated earlier, turmeric contains three different analogues of curcumin. The chemical 

names and properties are shown below (Litwinienko and Ingold, 2004; Scotter, 2009):  

 

Curcumin I: 1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6- diene-3,5-dione.  

Chemical formula: C21H20O6; Molecular weight: 368 g/mol. pKa= 8.54 

 

Curcumin II: 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)-hepta-1,6-diene-3,5,-

dione.  

Chemical formula: C20H18O5; Molecular weight: 338 g/mol. pKa= 9.30 

 

Curcumin III: 1,7-bis-(4-hydroxyphenyl)-hepta-1,6-diene-3,5-dione. 

Chemical formula: C19H16O4; Molecular weight: 308 g/mol. pKa= 10.69 

 

These compounds are practically insoluble in water at acidic and neutral pH, and soluble in 

methanol, ethanol, dimethylsulfoxide, and acetone. The maximum absorption (λmax) of 

curcumin in methanol occurs at 430 nm (Goel et al., 2008). 

 



18 

 

 

Curcumin I : R1 = R2 = OCH3 

Curcumin II: R1 = OCH3, R2 = H 

Curcumin III : R1 = R2 = H 

 

Figure 4: Chemical structures of curcuminoids (Aggarwal et al., 2007). 

 

Molecular configuration of curcumin can exist in tautomeric forms, bis-keto and enolate. 

In acidic, neutral conditions and in solid phase, the keto form predominates, and curcumin 

acts as a potent donor of H-atoms. However, under alkaline conditions the enolic form 

predominates, as shown in Figure 5 (Strimpakos and Shrama, 2008).   

 

Several researchers have proven the sensitivity of curcumin to light, and as a result they 

suggested that biologic samples containing curcumin should be protected from light 

(Strimpakos and Sharma, 2008). Another stability issue is the stability of curcumin in 

phosphate buffer. It was reported that most of curcumin (>90%) is rapidly degraded within 

30 min of placement in phosphate buffer systems of pH 7.2 (Goel et al., 2008). 

 

 

 

Figure 5: Keto-enol tautomerism of curcumin (Strimpakos and Sharma, 2008).  
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1.2.3. Pharmacological Effects of Curcumin Related to Inflammation 

The accumulated evidences over the years have shown that many of anti-inflammatory 

drugs, such as steroids and NSAIDs are associated with numerous of side effects. Probably 

the best example is the cardiovascular complications caused by the use of most coxibs 

(Moodley, 2008). Consequently, there is an increasing demand for safer and more efficient 

anti-inflammatory agents. Curcumin has been reported as one of the most promising 

candidates of natural origin anti-inflammatory agents, with almost no reported side effects 

(Aggarwal and Sung, 2009).   

 

 

Curcumin has been traditionally used in prevention and treatment of several conditions and 

diseases. Several of these effects have been already well documented scientifically. Studies 

indicated that curcumin exerts hepato- and nephro-protective, thrombosis suppressing, 

myocardial infarction-protective properties. Additionally, its strong antioxidant, 

antimicrobial, anticarcinogenic and anti-inflammatory activities were also reported 

(Aggarwal and Harikumar, 2009).   

 

Until recently, many of the anti-inflammatory molecular targets of curcumin were 

unknown. However, the establishment of modern biology in the recent decades led to the 

discovery of more than 90 targets (Aggarwal et al., 2007). The mechanisms implicated in 

the anti-inflammatory potential of curcumin may include (Brouet and Ohshima, 1995; 

Kawamori et al., 1999; Aggarwal et al., 2007; Menon and Sudheer, 2007; Jurenka, 2009):  

 

1) Suppression of the activation of the transcription factor NF–κB, which regulates the 

expression of pro-inflammatory gene products. 

2) Down-regulation of the expression of cyclooxygenase-2 (COX-2), an enzyme 

linked with most types of inflammations. 

3) Decreasing the activity and protein levels of inducible nitric oxide synthase (iNOS) 

enzymes through reducing the expression of iNOS genes.  

4) Inhibition of arachidonic acid metabolism via lipoxygenase and scavenging the free 

radicals generated in this pathway. 
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5) Down-regulation of the expression of various cell surface adhesion molecules that 

have been linked with inflammation.  

6) Decreasing the expression of various inflammatory cytokines, including TNF, IL-1, 

IL-6, IL-8, and chemokines. 

7) Curcumin is a potent antioxidant, which contributes to its anti-inflammatory action. 

 

All these effects are thought to lead to lowering the formation of inflammatory compounds 

and suppressing the inflammatory response. This outcome is considered to be beneficial in 

many abnormal conditions such as autoimmune diseases (Jagetia and Aggarwal, 2007). 

Furthermore, there are growing evidences linking many of the targets mentioned above 

with tumor promotion (Suresh and Srinivasan, 2007; Jurenka, 2009). Studies have shown 

that enzymes such as COX-2 and iNOS overexpression have been implicated in the 

carcinogenesis of many tumors (Brouet and Ohshima, 1995; Surh et al., 2001; Menon and 

Sudheer, 2007). Although it has not a direct effect on the human cells, it should be noted 

that antimicrobial activity of curcumin is potentially chemopreventive because an 

increasing evidence that number of pathogens are directly linked with human cancers 

(Strimpakos and Sharma, 2008).  

 

 

1.2.4. Limitations in Formulating Dosage Forms and Delivery Systems 

Despite the demonstrated efficacy of curcumin, it appears that its poor systemic 

bioavailability after oral dosing compromises the potential for therapeutic uses. The major 

reasons contributing to the low bioavailability of curcumin include poor absorption and 

rapid systemic elimination (Strimpakos and Sharma, 2008).  

 

Oral drug administration is usually considered as a practical and easy way to administrate 

drugs. However, in order for a drug from solid dosage form to be absorbed, in this case 

through the epithelial layer of the intestine, these substances must become dissolved. 

Curcumin is a hydrophobic compound with very low solubility in water. The partition 

coefficient and solubility in water was measured to be 3.2 and 0.6 µg/ml, respectively 

(Kurien et al., 2007; Patel et al., 2009). When water-solubility is less than 1 µg/ml, which 

is the case for curcumin, the bioavailability from oral formulations such as conventional 
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tablets may be unacceptable (Pouton, 2006). This was demonstrated in clinical trial study 

to evaluate the pharmacokinetics and effective dose of curcumin in humans. In this study a 

number of patients were given 8000 mg of free curcumin orally per day in order to achieve 

detectable systemic levels. However, beyond 8 grams, the bulky volume of the drug was 

unacceptable to the patients (Cheng et al., 2001; Bisht et al., 2007).  

 

Furthermore, studies performed on humans and animals shown that orally administrated 

curcumin undergoes rapid metabolism in the liver particularly via glucuronidation, while 

curcumin given intraperitoneally or systemically undergoes reduction (Aggarwal and Sung, 

2009). Metabolites produced from these pathways show low or no pharmacological 

activity (Aggarwal et al., 2007; Aggarwal and Harikumar, 2009).  

 

 

1.2.5. Delivery Systems for Curcumin  

It is necessary to improve the bioavailability of curcumin in order to fully utilize the 

potential of this agent, and therefore a growing number of research groups are working on 

this aim. There are studies designed to investigate new approaches that could overcome 

these limitations seen with free curcumin. Number of studies has evaluated the liposomal 

formulation in vivo and their effectiveness. The study conducted by Li et al. (2005) 

investigated the effect of liposomal curcumin on pancreatic carcinoma cells and 

suppression of KF-kB activity. The incorporated curcumin in liposomes showed a dose-

related increase in apoptosis of carcinoma cells and suppression of NF- B activity. 

Moreover, the liposomal curcumin was found to be as effective as or better than free 

curcumin. Another experiment studied the effect unilamellar liposomal curcumin after 

tumor implantation on mice. It concluded that liposomal curcumin could increase the life 

span of the animals by up to 74% in comparison with untreated (Rubya et al., 1995).  The 

study conducted by Kunwar et al. (2006) compared the cellular uptake of liposomal and 

albumin-loaded-curcumin by the spleenic lymphocytes and EL4 lymphoma cells. They 

reported that liposomes were able to deliver more curcumin into the cells than human 

serum albumin.  
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The absorption of a micellular formulation was evaluated using everted rat intestinal sacs. 

This micellular formulation was composed of phosphatidylcholine and sodium 

deoxycholate. The authors reported that after the incubation for 3 hours, the percentage of 

free curcumin absorbed was 49%, whereas the percentage for micellular formulation was 

56%. (Suresh and Srinivasan, 2007).   

In another approach phospholipid complex of soya phospholipid and curcumin was tested 

in vivo on rats. The study showed higher plasma concentrations, and longer half-life of 

phospholipid complex in comparison with free curcumin. Furthermore the bioavailability 

was also seen to be improved significantly after oral administration. The relative 

bioavailability of curcumin was estimated to be around 330% for the phospholipid 

complex as compared to free curcumin (Liu et al., 2006).  

 

Another strategy of delivering curcumin is self-microemulsifying drug delivery system 

(SMEDDS). This system is basically composed of isotropic mixtures of oil, surfactant, co-

surfactant and drug which has the ability to form o/w microemulsion when it comes in 

contact with aqueous medium in gastro intestinal tract after oral intake (Borhade et al., 

2008). The curcumin-SMEDDS formulation was composed of 57.5% surfactant, 30% co-

surfactant and 12.5% oil. The in situ evaluation of this formulation showed that the 

absorption percentage of curcumin-loaded SMEDDS was 3.86 times higher than that of 

curcumin suspension (Cui et al., 2009). 

“Nanocurcumin” is another formulation recently developed for curcumin. The principle of 

this formulation is that curcumin is encapsulated in cross-linked polymeric particle with a 

hydrophobic core and a hydrophilic shell. The size of these particles lies in nanometer 

range and typically less than 100 nm. The group tested the product on pancreatic cancer 

cells and NFkB and reported to be effective in inhibition of these cells and has similar 

activity as free curcumin on inflammatory cytokines (Bisht et al., 2007).  

 

Loaded solid lipid nanoparticles (SLN) is another type of nano-particle based delivery 

formulations. The system is usually consisting of biodegradable solid lipids. At room 

temperature the particles are in the solid state. Therefore, the mobility of incorporated 

molecules is reduced, thus it may offer possibility of modified release (Mühlen et al., 

1998). The study on SLN loaded curcumin was preformed by Tiyaboonchai et al. (2007) 
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and aimed at using this formulation in topical application. The stability and release was 

tested and found that properties of cream containing curcumin incorporated into SLNs was 

improved in comparison to free curcumin in the cream formulation.  

 

Using pharmacological agents such as piperine (a component of black pepper) as 

suppressor of glucuronidation process of curcumin was also investigated. It was reported 

the inhibition of this process which occur primarily in the liver and in the intestine could 

enhance the bioavailability of curcumin (Aggarwal et al., 2007). 

 

As presented, there are numerous studies suggesting different approaches of delivery 

systems in order to improve the absorption of curcumin. All of these studies have 

concluded that it is possible to develop formulations and methods which can improve the 

bioavailability and give higher plasma concentrations. 

 

 

1.3. Liposomes as Drug Delivery System 

A liposome is defined as a self forming structure consisting of one or more concentric 

spheres of lipid bilayers separated by water or aqueous buffer compartments (Lieberman et 

al., 1998). Phospholipids are the backbone of these structures. Phosphatidylcholine (PC), 

also called lecithin, is a biocompatible phospholipid that exists in plants and animals and 

used frequently in liposomal preparation. Moreover, there are other molecules widely used 

in combination with phospholipids, such as cholesterol (Weiner et al., 1989; Torchilin and 

Weissig, 2003). The exact location of a drug in liposomes will depend upon its 

physicochemical characteristics and the composition of the lipids (Weiner et al., 1989). 

However, as a general rule, the hydrophilic drug molecules can be encapsulated in the 

aqueous space whereas the hydrophobic and amphiphilic molecules can be incorporated 

into the lipid bilayer, as presented in Figure 6 (Hupfeld et al., 2006).  

 

Numerous evidences have demonstrated the ability of liposomes to enhance the efficiency 

of drug delivery via several routes of administration (Egbaria and Weiner, 1990). One of 

the major effects of liposomes as drug carriers is altering the pharmacokinetics of drug. It 

is known that pharmacological response is dependent upon the concentration of the drug in 
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the target cell. The drug concentration in the target site is governed by absorption, 

distribution and elimination. These processes may influence the pharmacokinetics of the 

drug and lead to inefficient utilization of the therapeutic agent. Thus, higher doses need to 

be administrated. Furthermore, higher drug doses often lead to resistance and undesirable 

immunological and toxicological effects (Fendler and Romero, 1977).    

 

Liposomes are thought to shield all or most of the drug molecules resulting in decreasing 

the direct contact of drug with biological environment, thus the pharmacokinetic profile of 

the drug will be determined by the physiochemical properties of liposomes, rather than the 

drug itself (Sætern, 2004). Incorporating the drug into a vehicle capable of delivering it 

intact would overcome many of the disadvantages of the free drug administration. 

Improving the pharmacokinetics of the drug by this method could lead to beneficial effects 

such as reduced dosages, increased cellular permeability and delayed drug elimination 

(Fendler and Romero, 1977). It is worth mentioning that liposomes are also non-toxic, 

biodegradable and can be manufactured on large scales (Washington et al., 2001).  

 

The potentials of liposomes to serve as delivery systems have been proven by the number 

of liposomal formulations already approved by FDA for clinical use such as AmBisome® 

(amphothericin B) and DaunoXome® (Daunorubicin). These formulations were clinically 

compared with conventional drug formulations and proved superiority of liposomal 

delivery (Allison, 2007).  
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Figure 6: Schematic illustration of small unilamellar liposome-drug carrier with 

hydrophilic drug in the aqueous compartments and lipophilic drug incorporated into the 

phospholipid bilayer (Hupfeld et al., 2006). 

 

 

1.3.1. Classification of Liposomes  

Liposomes are usually classified according to their lamellarity and size. The following 

categories show the major types of liposomes (New, 1990; Philippot and Schuber, 1995):   

 

Multilamellar vesicles (MLV): This population has a broad range of size distribution that 

occurs in a range of 100-1000 nm. The lipid composition may influence the lamellarity of 

these MLVs. However, the lamellarity typically varies between 5 and 20 concentric 

lamellae.  

 

Large unilamellar vesicles (LUV): The size of these vesicles is normally up to 1000 nm 

and the structure consists of a single lamellae.   

 

Small unilamellar vesicles (SUV): The structure normally consists of single lamellae and 

the diameter of this population is below 100 nm.   
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The choice of preparation method can influence the size and lamellarity of liposomes, 

resulting in different characteristics and fate of entrapped drug in vivo (Philippot and 

Schuber, 1995).  

 

 

1.3.2. Methods of Preparation  

There are various methods to produce different types of liposomes. However, all 

preparation methods can be simplified as to involve three basic steps: 1) Preparation of the 

dispersion of the lipids in aqueous media 2) purification of prepared liposomes, and 3) 

analysis of final product (New, 1990). The following is a brief description of methods that 

are considered among the most widely used in liposome preparation: 

 

Hand-shaking, (MLV)  

The principle of this method is to dissolve the lipid in efficient solvent. Lipophilic drugs 

can be dissolved in compatible solvent which can be added later to the lipid solution. This 

mixture will be dried down under pressure till it forms lipid films. Hydrophilic drugs can 

be dissolved in aqueous solution which will be added to the lipid films under shaking. This 

will produce swelling and peeling of the lipid films and gives a milky suspension of 

MLVs. Using this technique, one can entrap as high as 100% of the lipid soluble 

molecules, whereas hydrophilic compounds are often encapsulated in amount of 5-10% 

(New, 1990). 

 

Sonication, (SUV)  

Sonication is the most widely used method for producing small vesicles. It is usually used 

to convert MLVs to SUVs through the employment of energy at high levels by exposure of 

MLVs to ultrasonic irradiation. Probe-sonication and bath sonication are frequently used 

techniques to reduce the size of liposomes. The probe has the most efficient transfer of 

energy to the liposomal dispersion. However, it is associated with metal particle shedding 

from its probe and therefore one must be aware of the potential contamination. Bath 

sonication is much milder than probe sonication, but it is time-consuming and may result 

in low yield of smaller liposomes (New, 1990).   
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Extrusion, (LUV)  

The principle in extrusion technique is based on employment of moderate pressure to force 

MLVs through polycarbonate filters with defined pore size. At low pressures (100 psi), 

MLVs display a reduced-size while maintaining their multi-lamillarity, whereas at higher 

pressure the liposomes are broken down as they pass though the membrane filter resulting 

in reorganizing of the phospholipid bilayer giving rise to unilamellar vesicles (Philippot 

and Schuber, 1995). It is simple method and easy to use and there are several products 

available on the market. Among the equipments are the Hamilton® syringes. These are two 

syringes connected by a filter holder allowing the samples to pass back-and-forth through 

the polycarbonate filter. However, this method can be limited by production of small 

volumes of LUVs and the back pressure that can be tolerated by the syringe and filter 

holder is limited (Gregoriadis, 2007).   

 

Unprocessed MLVs have limited uses in in vivo studies because of their large diameter and 

heterogeneity of size (Gregoriadis, 2007). However, the techniques used to change these 

parameters may influence physical properties of liposomes. The conversion to SUVs from 

MLVs may result in vesicles with very low trapped volumes. Furthermore, SUVs can be 

unstable and prone to fusion process due to the high curvature of the lipid bilayer (New, 

1990). Extrusion technique used to produce LUVs may result in rupturing and resealing 

which leads further to leakage of the entrapped drug and the final vesicles may have lower 

amount of entrapped material, depending on the lipophilicity of the drug (Gregoriadis, 

2007). 

 

 

1.3.3. Topical Administration 

Liposomes have been widely used to enhance the efficiency of drug delivery though 

various routes of administration and have been shown to be significantly superior to 

conventional dosage forms especially for intravenous and topical administration (Egbaria 

and Weiner, 1990). However, therapeutic applications of systemically administered 

liposomes have been limited by their rapid clearance from the bloodstream and their 

uptake by reticuloendothelial system (RES) in liver and spleen. Furthermore, the use of 

liposomal formulations in oral administration has been limited due to physiological factors. 
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The three major factors are pH, bile salt, and pancreatic enzymes in the gastrointestinal 

(GI) tract can destabilize the structure of the vesicles and limit their potential (Lian and Ho, 

2001).  

 

Topical liposomal administration might offer an opportunity for developing a novel 

delivery system that could overcome these limitations experienced with the systemic and 

oral liposomal formulation as well as conventional products. The major advantages of 

topical liposomal drug include (Egbaria and Weiner, 1990):  

1) Reduction of side effects and incompatibilities that may arise from undesirably high 

systemic absorption of drug.  

2) Markedly increasing the liposomal drug accumulation in the desired tissues.  

3) Capability for incorporation of a wide variety of hydrophilic and hydrophobic drugs.  

 

Additionally, their ability to provide a sustained/controlled release and an enhancement of 

the cellular penetration of the incorporated material could improve their potential for being 

applied vaginally (Pavelic et al., 1999; Pavelic et al., 2004b).  

 

 

1.3.4. Vaginal Application 
 

Liposomes due to their ability to encapsulate both lipophilic and hydrophilic active 

ingredient, represent a promising delivery system in regard to vaginal therapy. Some of 

studies have investigated the release profiles of number of pharmaceutical agents 

incorporated in liposomal formulations in simulated vaginal conditions. The study 

conducted by Pavelic et al. (1999) had an aim to investigate the stability of liposomal 

formulations for metronidazole, clotrimazole and chloramphenicol, drugs which are 

frequently applied in the treatment of vaginal infections. The group concluded that the 

liposomes retained approximately 28-40% of the entrapped drug even after 6 hours of 

incubation in an environment that mimics the vaginal cavity of pre- and post 

postmenopausal women.  

The cervical mucus present in the vagina is believed to assist in the bioadhesion process 

(Brannon-Peppas, 1993). However, being in a liquid form as liposomal suspensions, there 

might be higher probability for the formulation to be expelled from the vagina and reduce 
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the retention time at the site of action (Pavelic et al., 2001). Therefore research groups are 

considering incorporation of liposomes in a bioadhesive base, such as hydrogels.  

 

Among various types of hydrogels, Carbopol hydrogels have demonstrated a good 

compatibility with liposomal formulations (Skalko et al., 1998). The polymer adhesion to 

tissues permits intimacy of contact and also improves the drug absorption. Furthermore, it 

also prolongs the residence time at the site of administration (Knuth et al., 1993).  

 

One study investigated the comparison of the release profiles between liposomal gels 

containing hydrophilic marker substance (FITC-dextrans) with the same gel with the 

marker present in non-liposomal form. The conditions in this study were set to be close to 

the physiological environment. The retention of encapsulated hydrophilic model compound 

FITC-dextrans was much higher than the control gel without incorporated liposomes. It 

was found that about 20% of dye was released from liposomes incorporated in the gel after 

72 hours, whereas the control gel released approximately 89% during the same period 

(Pavelic et al., 2004b). Another study was investigating the effect of Carbopol gel on the 

stability of liposomal chloramphenicol. It was calculated that more than 40% of the 

entrapped drug was in the liposomal gel even after 24 hours of incubation in simulated 

vaginal conditions. The authors concluded that the gel formulation provided a stable 

vehicle suitable for vaginal application in which liposomes are distributed uniformly and 

their original size distribution of liposomes is preserved (Pavelic et al., 2004a).  

 

The same group compared the in vitro stability of liposomal suspensions and liposomal 

Carbopol gel formulations of acyclovir, an antiviral agent with low bioavailability 

especially in topical dosage forms. Acyclovir was encapsulated in three types of liposomes, 

namely neutral, negatively- and positively- charged liposomes. However, even with 

incorporation of different liposomes in hydrogels the results showed the slower release 

profile of drug from liposomal gel in comparison with liposomal suspension, as well as 

protective effect of a hydrogel matrix on liposomes which yielded in improvement of 

stability (Pavelic et al., 2005).  
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2. AIM OF THE STUDY  

The aim of this project has been to develop liposomal formulation for curcumin in order to 

improve its solubility. Liposomes would serve as carrier system enabling the highly 

lipophilic substance to be prepared in aqueous formulation. For that purpose liposomal 

preparations were optimized in order to: 

• Study the size and methods of size reduction for liposomes containing curcumin. 

• Measure the entrapment efficiency in prepared formulation and optimize the 

preparation method. 

• Investigate the stability of liposomal formulations using accelerated stability 

testing.  

• Evaluate the curcumin potential as an anti-inflammatory agent by using DPPH 

assay. 
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3. METERIALS AND METHODS 
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3.1. Materials   

3.1.1. Chemicals  

Table 1: Chemicals  

Chemical Manufacturer / provider 

 

Calcium chloride hexahydrate AnalaR, UK 

Cholesterol (lanolin) Sigma Aldrich, USA 

 

Curcumin Sigma Aldrich, India 

Chloroform  Merck, Germany 

Ethanol 96% Acrus, Norway 

 

Ethyl acetate 

 

Merck, Germany 

Lipoid S100 Lipoid, Germany 

 

Methanol (LiChrosolv) Merck, Germany 

Sepharose CL-4B Pharmacia Biotech, Sweden 

Tris-HCl 

(Tris(hydroxymethyl)aminomethane- 

hydrochloride) 

Merck, Germany 

Triton X-100 Merck, Germany 
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 3.1.2. Solutions  

The following solutions are given in examples of 1L volume: 

 

Triton 2.5% Buffer pH 8.0  

- Used to prepare standard solutions for measurements of lipid content in supernatant 

and pallets in the evolution of the separation method for formulations which dose not 

contain cholesterol. 

1. Calcium chloride hexahydrate                   0.075 g  

2. TRIS-HCl            7.88 g 

3. Triton X-100                     26.74 g 

4. Adjust to pH 8.0 by adding 1 M NaOH                 q.s. 

5. Distilled water               ad 1000 mL 

 

Triton 10% Buffer pH 8.0  

- Used to prepare standard solutions for measurements of lipid content for the evaluation 

of the separation method for cholesterol containing formulations. 

1. Calcium chloride hexahydrate                     0.075 g 

2. TRIS-HCl                    7.88 g 

3. Triton X-100                                             107 g 

4. Adjust to pH 8.0 by adding 1 M NaOH            q.s. 

5. Distilled water                                           ad 1000 mL 

 

 

 

 

 

 

 

 



34 

 

3.2. Methods 

3.2.1. Preparation of Liposomes  

Preparation of lipid solutions:  

PC solution: A solution of soya phosphatidylcholine (PC; Lipoid S100) was prepared by 

dissolving 200 mg of PC in 5 mL methanol.  

PC/Chol 4:1 solution: An amount of 25.4 mg of cholesterol was dissolved in 5 mL 

methanol/chloroform with (4:1; vol/vol). Then 200 mg of PC was added to the solution to 

obtain the molar ratio of 4:1.  

PC/Chol 2:1 solution: The same procedure as PC/Chol 4:1 solution was used to prepare 

this solution except the amount of cholesterol used was 50.9 mg.  

 

Table 2: Composition of lipid solutions.  

Amount of Lipids  Formulations Molar Ratio 

Phosphatidyl 

choline (mg) 

Cholesterol  

(mg) 

Solvent  

 

PC 1 200 - Methanol 

 

PC/Chol  

 

4:1 200 25.4 Methanol/Chloroform 

(4:1; vol/vol)  

PC/Chol  

 

2:1 200 50.9 Methanol/Chloroform 

(4:1; vol/vol)  

 

 

Preparation of Curcuma extract 

Curcuma powder (100 g) was extracted with 1) water (2000 mL), 2) 96% Ethanol (2000 

mL) and 3) Ethyl acetate (200 mL), respectively. For each extraction the mixture was bath 

sonicated for 10 minutes and left overnight with occasional shaking prior to filtration. The 

residues were separated after filtration and solvents in the filtrate evaporated with rotary 
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evaporator at low pressure. Percentage yield was expressed as w/w of dry powder from the 

market. 

 

Preparation of lipid film by rotary evaporation and hydration  

The dissolved lipids (5 mL) were transferred into three separate round bottom flasks of 500 

mL. In the case of curcumin containing liposomes, the drug was dissolved in methanol 

yielding a concentration of 5 mg/mL (extract or curcumin mixture) or 1 mg/mL (curcumin 

I) and mixed with lipid solutions. The solvent was removed under vacuum of 55 hPa and 

rotation of 60 rpm at 25 °C in 90 minutes by a Büshi R-124 rotary evaporator with vacuum 

pump 500-system (Büshi, Switzerland). The deposited lipid film was removed from the 

rotary evaporator and left at room temperature for an additional period of 60 minutes to 

remove traces of solvent. Subsequently the lipid film was hydrated using 10 mL of freshly 

distilled water. The resultant liposomal suspension was manually shaken for 15 minutes till 

homogeneous suspension was obtained. The suspension was left at room temperature over 

night prior to further treatments.    

 

 

3.2.2. Size Reduction of Liposomes  

Sonication  

Liposomal suspension of MLVs (1.8 mL) transferred to a 2 mL round bottom vial 

(Eppendorf, Germany) and placed in ice bath. The position of a needle probe tip 407 

probe-sonicator Labsonic U (B. Braun Biotech, Germany) was fixed in vial. Vertically, it 

was fully immersed into the vial and horizontally, it was positioned in the middle of the 

volume. The liposomal suspension was exposed to ultrasonic irradiation with an output of 

30, 40 and 50 Watt and duration of continuous 30 and 150 seconds, as described in Table 

3. The sample was left to cool down and placed in the fridge at 4 °C for 1 day prior to 

further test e.g. size analysis and centrifugation. This experiment was executed in order to 

determine suitable sonication procedure. After comparing the results a final method for 

sonication was chosen to be 40 W for 150 sec.  
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Table 3: Preliminarily experiments to investigate sonication variables in order to 

determine their influence on size and size distribution.   

Output (Watt) Duration (Seconds) 

 30 150 

30 Empty PC,  

PC/Chol (2:1) 

Empty PC,  

PC/Chol (2:1) 

40 Empty PC,  

PC/Chol (2:1) 

Empty PC,  

PC/Chol (2:1) 

50 Empty PC, 

PC/Chol (2:1) 

Empty PC,  

PC/Chol (2:1) 

For each sonication conditions the experiment was performed in duplicate. 

 

 

Extrusion   

The liposomal suspension was filter-extruded through a polycarbonate membrane Track-

Etch Nuclepore membrane (Whatman, UK). Up to 1 mL of MLVs were passed five times, 

back-and-forth, through the 0.4 µm polycarbonate membrane filters at room temperature. 

The extrusion was done by hand with a syringe extruder Liposofast™ (Avestin Inc., 

Canada). The resultant products were stored in the fridge at 4 °C over night prior to size 

analyses and centrifugation.   

 

 

3.2.3. Separation of Unentrapped Active Ingredients 

Centrifugation 

For separation of liposomes from unentraped active ingredient, a portion of the liposomal 

dispersion was transferred to 3-mL thick wall polycarbonate centrifuge tubes. The samples 

were then centrifuged using SW60Ti rotor and Beckman Optima L8-M centrifugator 

(Beckman Inc., USA). The centrifugation was done at a temperature of 10 °C and speed of 
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35000 rpm (150000 g) for 150 minutes. The content of active ingredient in both 

supernatant and pellet was determined. 

 

Size Exclusion Chromatography 

Suspension of liposomes was fractionated by size exclusion chromatography as well. A 

MLVs sample of PC/Chol (molar ratio 2:1) formulation containing 5 mg curcumin was 

exposed for mild ultra-sonic irradiation in bath-sonicator for 5 minutes and vortexed for 1 

minute prior to the separation. The sample was then added to a glass tube packed with 

Sepharose CL-4B (Pharmacia Biotech, Sweden) to approximately 25 mL (25 cm). Distilled 

water was added repeatedly to insure continues flow and prevent the column from drying. 

The collection of the portions was started immediately and continued until 6 samples after 

yellow color disappeared from the column, in total 30 mL including the void volume. The 

flow rate was estimated to be 0.5 mL·min
-1

 and took about 60 minutes for a sample of 1 

mL of PC/Chol (2:1) liposomal formulation to pass through. 

 

3.2.4. Particle Size and Size Distribution Analysis 

Photon correlation spectroscopy (PCS):  

Also known as dynamic light scattering is a simple and rapid method to determine the 

particle size and size distribution of liposomes. The principle is based upon the Brownian 

motion of particles in medium. As the particles diffuse in the fluid the collisions with 

medium molecules causes a random movement of the particles. When the PCS machine 

focuses laser light on the sample, it registers the signals from the moving particles as 

fluctuations in the scattered light. The analysis is based on the time dependence of these 

fluctuations. Small particles diffuse more rapidly than larger ones, thus the fluctuations 

vary accordingly. The software then calculates the radius of the particles by using Stokes-

Einstein equation (NICOMP, 1997; Torchilin and Weissig, 2003). 
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Experiment 

PCS measurements were performed on NICOMP Submicron particle sizer, Model 370 

(NICOMP Particle Sizing Systems, USA). Sample preparations were preformed in a 

laminar airflow bench. The cuvettes (borosilicate glass) were cleaned and filled with 

distilled water and sonicated in bath-sonicator for 30 minutes to reduce the possibility of 

contaminations. Before measurements were preformed, the instrument parameters were 

adjusted according to the values listed in Table 4. The samples were diluted with freshly 

filtrated distilled water using an Acrodisc 0.2 µm syringe filter (Pall Corp., USA) to obtain 

an intensity count rate between 250 and 350 kHz.  

Table 4: PCS parameters. 

Parameters Values 

Temperature 23 °C 

Viscosity 0.933 cp 

Liquid index of refraction 1.333 

Intensity set point 300 ± 50 

Channel width Auto  

Number of cycles 1 cycle 

Run time 5 minutes 

 

 

3.2.5. Determination of Entrapment Efficiency  

The entrapment efficiency measurements were preformed on UV-spectrophotometer 

Aligent 8453 equipped with deuterium and tungsten lamp (Agilent Technologies, 

Germany). In order to quantify the content of curcumin in supernatant and pellets in 

samples, series of standard solutions were prepared. The known amounts of curcumin were 

dissolved in ethanol and diluted to obtain a stock solution of 1000 ng/mL. The standard 

solutions were then prepared using the stock solution the respective concentrations (100, 

200, 400, 600, 800 and 1000 ng/mL). The absorbance was measured at 425 nm based on 
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the spectral analysis. A calibration curve of curcumin was developed by plotting 

absorbance versus concentration of standard solutions.  

The supernatant and pellets were each dissolved in methanol. The measurements were 

done in triplicate. The entrapment efficiency was calculated using the following equation: 

Equation 1: 

 

Where A is amount of curcumin in pellet and B is amount of curcumin in supernatant.  

 

 

3.2.6. HPLC Analysis of Standard Curcumin and Curcuma Extracts 

High performance liquid chromatography (HPLC) (Waters, USA) system consists of a 

HPLC Water 2690 Separation Module, a Water 996 Photodiode Array detector. Column 

was YMC pro C18 (250 x 4.60 mm) joined with precolumn. Mobile phase: CH3CN-2.5% 

acetic acid (54:46); Injection volume: 10 µL. The temperature of column was maintained 

35 °C during the chromatoghaphic separation. The flow rate was 1.0 mL/min and run for 

12 minutes. The eluting compounds were monitored at UV 425 nm. 

 

Analysis of standard curcumin 

Standard curcumin was evaluated for its purity as well as it was expected that standard 

curcumin contains the mixture of curcumin (curcumin I), desmethoxy curcumin (curcumin 

II) and bisdesmethoxycurcumin (curcumin III). 

 

Analysis of Curcuma extracts 

Water extract, ethanol extract and ethyl acetate extract were analyzed by the HPLC method 

as described above.  
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3.2.7. Phosphatidylcholine Quantification 

Enzymatic phospholipid assay: 

The principle of quantitative enzymatic phospholipid assay is based on a sequence of 

reactions preformed by three enzymes (Phospholipase D, Choline oxidase, Peroxidase) 

allowing the colorimetrical quantification of the lipid content. The chain starts with 

phospholipids (lecithin, lysolecithin and sphingomyelin) being hydrolyzed by 

phospholipase D and which results in choline to be released (Figure 7). The liberated 

choline acts as a substrate in a reaction preformed by choline oxidase which forms an 

amount of hydrogen peroxide. The latter takes part in a peroxidase-catalyzed coupling 

reaction resulting in red dye. The amount of choline is proportional to the amount of 

resulting
 
quinoneimine, thus the amount of phospholipids contained in the sample can be 

determined by measuring the absorbance of the red color (Grohganz et al., 2003; 

BioMérieux sa, 2009).  

 

 

Figure 7: Schematic illustration of reactions in colorimetric determination of lipid content 

(BioMérieux sa, 2009)  

 

Experiment  

The amount of phospholipids was determined in terms of quantification of the 

phosphatidylchline content according to the protocol developed by Grohganz et al. (2003) 

and using an enzymatic kit, phospholipids enzymatique PAP 150 (BioMérieux sa, France) 

as a coloring reagent. The method can be divided into three stages namely, activation of 
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coloring reagent, preparation of standard solutions and finally measurement of the 

absorbance.  

Activation of the coloring reagent  

The preparation was done according to the user manual. The coloring reagent was 

activated by adding 25 mL of buffer solution (consisting of Tris pH 7.8, surfactant and 

phenol) to the dry enzyme reagent (Choline oxidase, Phospholipase D, Peroxidase and 4-

aminoantipyrine).  

Preparations of standard solutions  

PC formulations: An amount of 100 mg of PC were dispersed in 10 mL of Triton 2.5% 

buffer in order to obtain a concentration of 10 mg/mL. The phospholipids in this mixture 

were not homogenously dissolved, and therefore it was necessary to use Retsch MM200 

mixer mill (F. Kurt Retsch, Germany). To the mixture, 5 glass beads (diameter ~1 mm) 

were added and placed in mixer mill for 25 minutes at frequency of 30 Hertz. The mixture 

was warmed in a Memmert incubator (Memmert, Germany) for 16 hours to assure that all 

phospholipids are solubilized. After cooling down, 2 mL of 10 mg/mL stock solution was 

mixed with 18 mL Triton 2.5% buffer in order to get a concentration of 1000 µg/mL. This 

concentration was then used as a starting point for further dilutions. Six concentrations 

namely, 50, 100, 200, 400, 600 and 800 µg/mL were used in experiments. 

 

PC/Chol (4:1) and PC/Chol (2:1) formulations: The same procedure was used as for PC 

formulations except that the amount of cholesterol and composition of Triton buffer were 

different. The amount of cholesterol used for PC/Chol (molar ratio 4:1) formulation was 

12.7 mg, whereas the amount for PC/Chol (2:1) was 25.4 mg. The buffer used in these two 

measurements was Triton 10%.  
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Measurements of the absorbance  

A volume of 50 µL for the standards and samples were mixed with 250 µL activated 

phospholipids reagent solution in a microplate Costar 96 plate (Corning Inc., USA).  The 

plates were shaken for 5 minutes and incubated at 37 °C for 45 minutes. Some of the 

samples were diluted in order to get an absorbance within the standard curve range. The 

absorbance was measured with excitation filter A-492 nm on microplate reader PolarStar 

Galaxy (BMG  Labtechnology, Germany). The measurements were executed in triplicates.   

 

 

3.2.8. Stability Experiment  

This experiment was preformed in order to predict the stability of the formulation using 

accelerated stability test (Florence and Attwood, 2006). The stability of empty and 

liposomes containing active ingredient were measured according to the method given 

below:  

• Empty PC liposomes and liposomes containing curcumin, curcumin extract or 

curcumin, as well as empty PC/Chol (2:1) liposomes were sonicated at 40 W for 

150 sec and left to cool down.  

• Sonicated and untreated samples (MLVs) were centrifuged at the same conditions 

as decribed earlier. 

• The quantity of curcumin was determined both in supernatant and pellet. The size 

of liposomes was measured in the PCS. 

•  All liposomal formulations were incubated at 40 °C in an incubator (Memmert, 

Germany) for 1 month period. 

• Loss of entrapped curcumin (where applicable) and change in vesicle size were 

determined. 
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3.2.9. Determination of Antioxidant Activity of Curcumin and Curcuma  

  Extract by DPPH assay 

The radical scavenging (antioxidant) activity and the superoxide anion radical scavenging 

activity were determined as described by Basnet et al. (1997). The 1, 1- diphenyl-2-picryl 

hydrazyl (DPPH) (Sigma Aldrich, Germany) is a relatively stable free radical.  

In brief, 1 mL of methanolic solution of each sample at various concentrations (10, 50 and 

100 µg/mL) was mixed with 1 mL of methanolic solution of DPPH (approx. 60 µM). The 

reaction mixture was shaken vigorously and left for 30 min at room temperature.  

The radical scavenging (antioxidative) activity of samples corresponding to the scavenging 

of DPPH radical was measured at 520 nm by absorbance of UV-spectrophotometer Aligent 

8453 (Agilent Technologies, Germany) by following formula: 

Equation 2: 

 

Where A is the absorbance of the control and B is the absorbance of the sample. Control 

represents the test solution without sample. Throughout all the determinations, ascorbic 

acid was used as the positive control. 

Calibration curve was plotted and effective concentration (EC50) value was calculated. 

The antioxidative activity was expressed by EC50. The EC50 value is defined as the 

concentration (µg/mL) of the sample required for 50% reduction of the DPPH radical 

absorbance.  

Each value represented the mean of three readings. Statistical comparisons were made by 

Student’s t-test. 
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4. RESULTS AND DISCUTIONS  
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4.1. Optimization of Liposomal Preparation Method 

4.1.1. Sonication Procedure  

It is well known that the sonication process may influence the size and size distribution of 

liposomes (Woodbury et al., 2006). In order determine the optimal conditions for 

sonication, it was necessary to preform number of trials and evaluate the impact of 

duration of sonication and energy output on the liposomal characteristics. Sonication 

parameters were evaluated in regard to vesicle size and size distribution by using PC and 

PC/Chol (2:1) liposomal compositions (Table 5). 

Table 5: Selection of sonication conditions. 

Duration (Seconds) 

30 150 

Output 

(Watt) 

Liposomal 

composition 

 

Mean size 

(nm ± SD)  

P.I. 

(mean ± SD) 

Mean size 

(nm± SD)  

P.I. 

(mean ± SD) 

30 PC 

 

805 ± 145 0.63 ± 0.03 145 ± 28 0.34 ± 0.01 

30 PC/Chol 

(2:1) 

912 ± 0 0.58 ± 0.09 665 ± 270 0.37 ± 0.03 

40 PC 

 

447 ± 76 0.43 ± 0.02 97 ± 5 0.34 ± 0.01 

40 PC/Chol 

(2:1) 

909 ± 4 0.39 ± 0.05 237 ± 122 0.37 ± 0.02 

50 PC 

 

236 ± 30 0.42 ± 0.02 162 ± 12 0.39 ± 0.04 

50 PC/Chol 

(2:1) 

489 ± 324 0.50 ± 0.02 199 ± 45 0.32  ± 0.01 

The amount of phosphatidylcholine used was 200 mg. The results represent the mean of 

two separate experiments. 

P.I. represents the polydispersity index used as indication of size distribution of vesicles. 

Lower values of P.I. indicate more homogeneous liposomal sample.  

 

It is important to note that the PCS machine used for measurements was equipped with 

mono-modal (Gaussian) distribution and multimodal (NICOMP) distribution options. Both 

systems can give useful information about the size and size distribution in submicron 
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range. When the size distribution shows bimodal or tri modal vesicle population 

distributions (NICOMP), it is rather difficult to determine the actual mean diameter. The 

polydispersity index over 0.3 indicates that the vesicle populations are very polydispersed 

as can be seen by the SD as well (Table 5).  

The size of the liposomes before the sonication was measured for all samples and found to
 

have very high P.I. and Chi square (χ
2
), which is used to describe the quality of the fit. If 

the χ
2
 range between 0 and 2; the Gaussian can be used to determine the size. However, if 

the value is higher than 3 it seemed reasonable to choose the NICOMP system.  

The measured size of the liposomes was found to be very large and beyond the submicron 

range. The upper size limit that can be displayed on the NICOMP distribution is usually 

given as 912 nm, although this is not necessary to the actual size of the liposomes but it 

could indicate that the samples contain very large particles (> 1µm) as well.  

 

Two samples from different batches of PC formulations were tested. By keeping one 

parameter constant while changing the other, all the parameters presented in Table 5 were 

tested on both PC and PC/Chol (2:1) formulations. The test started with low energy output, 

in this case 30 W, and lasted for a short time e.g. 30 sec. The result obtained from this 

condition suggested that by operating with short durations, the particle size will be large 

and P.I. is high indicating that the efficiency of size reduction is low and the samples are 

still containing highly polydispersed population of liposomes. However, as the energy 

output increases, the size appears to decrease in both formulations. In the case of PC/Chol 

(2:1), the results show larger particle size with larger standard deviations in comparison 

with PC only formulation.  The duration of the sonication process was increased from 30 to 

150 seconds. The result showed an obvious decrease in size and P.I. suggesting that it is 

rather more efficient to prolong the sonication time to 150 seconds instead of 30 seconds. 

Furthermore, the difference in liposome size between PC and PC/Chol (2:1) formulations 

appears to decrease as the energy output increases.    

The primary goal was to obtain a sufficient size reduction and more monodispersed 

liposomal size for both liposomal compositions. The targeted size of liposomes was set to 

be around 300 nm (Skalko et al., 1998). After comparing the results, it seemed that there 

are two conditions e.g. (40 W or 50 W for 150 sec) that could give desired size of 

liposomes. Although in the case of sonication with 50 W the difference in size between the 
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PC and PC/Chol (2:1) formulations appears to be relatively small, the batches sonicated 

with 50 W (150 sec) showed tendency to agglomerate upon standing. Moreover, having in 

mind that as the size of liposomes is reduced, the amount of drug in liposomes may be 

reduced as well (Gregoriadis, 2007), the conditions of sonication under 40 W for 150 sec 

were selected. These conditions were again tested in preparation PC/Chol (4:1) liposomes. 

The mean diameter was found to be 126 ± 20 nm (P.I. of 0.38 ± 0.02). This size of 

PC/Chol (4:1) was between PC and PC/Chol 2:1 (see Table 5) and confirmed that the 

conditions of 40 W for 150 seconds were indeed suitable for sonication. It is expected that 

the inclusion of cholesterol in liposomal membrane makes liposomes more rigid and more 

resistant to size reduction (New, 1990). 

Table 6: The effect of the amount of curcumin taken into the liposome preparation on 

liposomal size. 

Mean particle size 

(nm ± SD) 

P.I. 

(mean ± SD) 

Liposomal 

composition 

Curcumin 

(mg) 

Nonsonicated Sonicated 

 

Nonsonicated Sonicated 

PC 0 912* 

 

98 ± 4 1.03 ± 0.70 0.35 ± 0.01 

PC/Chol (4:1) 0 912* 112 ± 28 0.44 ± 0.07 0.37 ± 0.03 

PC/Chol (2:1) 0 912* 174 ± 61 0.45 ± 0.21 0.36 ± 0.06 

PC 5 912* 196 ± 88 0.48 ± 0.09 0.34 ± 0.02 

PC/Chol (4:1) 5 912* 138 ± 36 0.48 ± 0.16 0.38 ± 0.03 

PC/Chol (2:1) 5 912* 175 ± 43 0.48 ± 0.07 0.33 ± 0.01 

PC 10 912* 209 ± 20 0.42 ± 0.03 0.37 ± 0.02 

PC/Chol (4:1) 10 912* 203 ± 82 0.50 ± 0.10 0.38 ± 0.02 

PC/Chol (2:1) 10 912* 177 ± 28 0.49 ± 0.10 0.35 ± 0.02 

* The size was too large to be accurately determined on PCS. The sonication conditions 

applied were 150 sec at power of 40 W. The amount of phosphatidylcholine used was 200 

mg. The values denote the mean of three separate sets of experiments ± SD. 

For easier comparison, the same results are presented in the Figure 8, and it appears that 

the size of sonicated PC formulations increases as the amount of drug used in liposomal 

preparation increased in comparison with empty control liposomes. These results 
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correspond to previous finding by Takahashi et al. (2008). The group measured the size of 

liposomes from soybean lecithins with different amounts of curcumin and discovered that 

as the amount of the drug increases the size of vesicles increases as well.  

 

 

Figure 8: The effect of the presence of curcumin in liposomal membrane. 

The sonication conditions applied were 150 sec at power of 40 W. The amount of 

phosphatidylcholine used was 200 mg. The values denote the mean of three separate sets 

of experiments ± SD. 

 

The size of both PC and PC/Chol (4:1) liposomes containing curcumin appears to be larger 

than the size of empty liposomes. However, in the case of PC/Chol (2:1) liposomes, the 

size appears not to be affected by the presents of curcumin.  

 

Regardless of the sonication conditions and type of liposomes, the standard deviation of 

the mean diameter and P.I. suggest that probe sonicator is not reducing the size in 

reproducible manner (Table 6).  
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4.1.2. Extrusion  

Due to the problems with rather large SD measured for sonicated liposomes, we applied 

the extrusion process to reduce the particle size in more controllable manner. 

Table 7: The effect of extrusion on liposomal size. 

Mean particle size 

(nm ± SD) 

P.I. 

(mean ± SD) 

Liposomal 

composition 

Curcumin 

(mg) 

Nonextruded Extruded Nonextruded Extruded 

PC 0 912* 347 ± 21 1.03 ± 0.70 0.22 ± 0.02 

PC/Chol (4:1) 0 912* 359 ± 39 0.44 ± 0.07 0.22 ± 0.01 

PC/Chol (2:1) 0 912* 382 ± 8 0.45 ± 0.21 0.21 ± 0.02 

PC 5 912* 310 ± 47 0.48 ± 0.08 0.22 ± 0.02 

PC/Chol (4:1) 5 912* 362 ± 50 0.47 ± 0.16 0.15 ± 0.01 

PC/Chol (2:1) 5 912* 408 ± 87 0.48 ± 0.07 0.21 ± 0.02 

* The size was too large to be accurately determined on PCS.   

The empty and liposomes containing 5 mg curcumin samples were extruded through a 0.4 

µm polycarbonate membrane five times back-and-forth using Liposofast™ syringe at room 

temperature. The values denote the mean of three separte sets of experiments ± SD.  

 

The size of extruded samples appears to correlate to the content of cholesterol. As the 

amount of cholesterol increases in the liposomes, the size of extruded liposomes increases 

as well. It is important to clarify that cholesterol dos not form liposomes by itself but it is 

known to cause an increase in the thickness of the lipid layer (Papahadjopoulos et al., 

1972). This could probably be the reason for the cholesterol containing liposomes to show 

more residence to the reduction process, thus giving larger particles.  
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Figure 9: The size of extruded formulations. 

The empty and liposomes containing 5 mg curcumin samples were extruded through a 0.4 

µm polycarbonate membrane five times back-and-forth using Liposofast™ syringes at 

room temperature. The values denote the mean of three separte sets of experiments ± SD.  

 

It appears that there is no size difference between the empty and liposomes containing 5 

mg curcumin. This might be expected since the extruded samples typically have narrow 

particle size distribution, which is determined by the size of the pores they pass through 

(Thassu et al., 2007). However, during the extrusion process, an increase in resistance to 

the passage through the Liposofast™ syringes was noticeable when extruding the curcumin 

liposomes in comparison to the empty ones. Moreover, the samples with 10 mg of 

curcumin taken into the preparation were very difficult to extrude through the 

polycarbonate membrane, therefore it was necessary to preform the extrusion procedure 

only with empty and formulations containing 5 mg of curcumin. This might indicate that 

the size of the starting MLVs with 10 mg curcumin were larger or more tightly packed than 

empty or formulation with less curcumin, thus required more energy to perform the size 

reduction process.  
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Theoretically, it is possible to extrude samples first through larger pores and gradually 

decreases the size till the desired size is obtained. However, this process is not risk-free, in 

fact by doing so, there will be higher probability of the drug leaking out after each 

reduction step (Gregoriadis, 2007). Moreover this process can be very time consuming.  

 

 

4.2. Entrapment Efficiency  

4.2.1. Curcumin  

The entrapment efficiency of curcumin in liposomes was calculated after centrifugation. In 

the case of untreated and extruded liposomes the amount of curcumin in the pellet medium 

was similar in all samples and ranged from 98-100%. Began et al. (1999) have reported 

that curcumin showed high binding affinity towards lecithin, apparently due to its 

hydrophobic nature.  

In comparison with literature, Patel et al. (2009) and Takahashi et al. (2007) as well 

reported an entrapment efficiency of curcumin in liposomes of various compositions to be 

as high as 90% and 85%, respectively. However, a direct comparison with these values is 

difficult to make due to differences in experimental approaches.   

In the case of sonicated samples, it appears that the entrapment efficiency increased as the 

amount of the added curcumin increased. Moreover, it was also observed that the PC/Chol 

(2:1) liposomes had the highest amount of the active ingredient whereas PC only 

liposomes had the lowest. The relationship between the amount of lipid used for 

preparation and the drug incorporated in the liposomes was investigated by Takahashi et al. 

(2009) and reported that as the content of lipid increases, the amount of curcumin 

incorporated in the liposomes increased as well. Similar tendency was also observed in our 

study. It appears that the entrapment of the drug is dependent on the composition of the 

liposomes and partly on the starting amount curcumin used in preparation of liposomes. 
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Figure 10: Entrapment efficiency for curcumin in sonicated liposomes. 

The applied sonication conditions were 150 sec at output of 40 W. The samples were 

separated using centrifugation at 150000g for 150 minutes. The values are the mean of 

three separte sets of experiments ± SD. 

 

It is important to note that the centrifugation conditions were extensive and expected to be 

sufficient to separate the pellets from supernatant in the sonicated formulations. The 

recovery of the entrapped drug varied between the formulations. In the case of PC only 

formulations, generally higher (over 90 %) curcumin recovery was observed whereas the 

PC/Chol (2:1) liposomes had the lowest recovery (80-90%). One explanation might be that 

the volume of methanol used to dissolve the liposomes was optimized for PC only 

formulations. This applies for liposomes prepared with lower amount of curcumin. 

However, it was difficult to obtain good recovery from the liposomal samples where 10 mg 

curcumin was used in preparation.  

We tried to prepare liposomal preparations with curcumin by starting with 12.5 and 15 mg 

of curcumin, respectively. The visual examination of untreated 15 mg formulations 

revealed crystals sedimentation after centrifugation indicating unentrapped curcumin was 

precipitating out of dispersions, whereas the appearance of nonsonicated liposomes with 
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12.5 mg curcumin sample did not show any sediment formation in the first week after 

preparation. However, one month later at a temperature of 4 °C the same precipitate was 

observed and these preparations were not further tested. 

The liposomal suspensions did not show any signs of precipitation before centrifugation 

and even the PCS measurements did not detect any unusual size distribution. However, the 

centrifugation probably induced loss of curcumin from the liposomes through the 

mechanical stress from this process which may have an impact on the drug present in the 

liposomes (Torchilin and Weissig, 2003). It would be advisable to use other separation 

methods, such as column chromatography. However, the process duration would than be 

much longer.  

 

 

4.2.2. Curcuma Extract and Curcumin I 

Curcuma Extract  

The prepared Curcuma extracts yielded the following content expressed as the amount of 

curcumin present in the extract: 

Water extract 11.3%  

EtOH extract 18.3% and  

Ethyl acetate extract 8.7%.  

Percentage yield was expressed w/w of dry Curcuma powder from the market. 

 

Curcumin I 

Curcumin I was isolated from the standard curcumin as the UV spectroscopy, HPLC, 

NMR and Mass spectroscopy analyses data confirmed that the commercially available 

standard curcumin contains the mixture of curcumin (curcumin I), desmethoxy curcumin 

(curcumin II) and bisdesmethoxycurcumin (curcumin III). 
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The Curcuma extract and the pure curcumin I were incorporated into liposomes and the 

vesicle characterized as for preparations where standard curcumin was used, in 

corresponding amount of curcumin. 

 

Table 8: Entrapment of Curcuma extract and pure curcumin in liposomes. 

Material 

to be entrapped 

Treatment E.E.  

(%) 

Size  

(nm) 

P.I. 

Extract  Nonsonicated 100** 911* 0.406 

Curcumin I Nonsonicated 100** 912* 0.666 

Extract Sonicated 81 103 0.353 

Curcumin I Sonicated 82 158 0.376 

* The size was too large to be accurately determined on PCS; ** It was not possible to 

separate extract resides from the MLVs containing curcumin during the centrifugation. 

The applied sonication conditions were 150 sec at output of 40 W. The samples were 

separated using centrifugation at 150 000g for 150 minutes. The values are the mean of 

three separte sets of experiments ± SD. 

 

During the entrapment efficiency determination, the same volume of methanol was used to 

dissolve curcumin I as for the rest of the experiment. However, the solubility of curcumin I 

in methanol was low, and as a consequence the volume of methanol need to be increased 

from 1 to 5 mL.   

The recovery of Curcuma extract and curcumin I appear to be very low (below 50%). 

However, as indicated earlier, the curcumin extract usually contains variety of substances 

which may interfere with the readings. In the case of curcumin I, the reason for the low 

recovery is unclear, but we suspect that it could be due to very limited solubility of 

curcumin I as compared to standard curcumin. Furthermore, we observed faster 

sedimentation of the curcumin I formulations both in the sonicated samples and MLVs. 

The reason for this phenomenon is unknown but this may influence the stability of the 

formulation and therefore further investigation is recommended.     
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As we observed that centrifugation has serious drawbacks in regard to separation of highly 

lipophilic natural origin substances from liposomes, we tried to evaluate the suitability of 

the separation method by determining the amount of phosphatidylcholine in both 

supernatants and pellets obtained after the centrifugation. 

 

4.3. Evaluation of the Separation Method  

4.3.1. Centrifugation 

The relative content of phosphatidylcholine (PC) in the pellets as compared with whole 

dispersion revealed that nonsonicated formulations with 5 mg and 10 mg curcumin as well 

as extruded liposomal samples with 5 mg samples were separated sufficiently. There was 

no difference between the untreated and extruded formulations as all samples showed high 

recovery of phospholipids (>97%).  

 

Figure 11: Phosphatidylcholine (PC) recovery from sonicated formulations.  

The amount of phosphatidylcholine used for liposome preparation was 200 mg. 

Centrifugation was used as separation method (conditions 150000g for 150 min). The 

phosphatidylcholine was quantified by phospholipid assay and the relative amount of 

phosphatidylcholine calculated. 
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The relative percentage of recovered PC is similar to that of recovered curcumin in the 

supernatant as well as in the pellets. This similarity confirms that there is high entrapment 

efficiency of curcumin in the sonicated formulations.  

The separation of liposomes from unentraped drug by using centrifugation is an easy and 

fast method. However, it appears that the chosen conditions in our experiment were not 

optimal. It was difficult to distinguish between supernatant and pellets for the sonicated 

formulations, especially when using pure Curcumin I and Curcuma extracts. 

Cholesterol containing liposomes appear to be larger and denser than PC only liposomes 

and therefore the percentage of lipid recovered was higher (Figure 11). It thus appears that 

the addition of cholesterol to phospholipids modifies their molecular packing, which 

results in membranes which are more condensed than pure phospholipids 

(Papahadjopoulos et al., 1972). 

 

We tried to evaluate another method of separation, column chromatography as well. 

 

4.3.2. Size Exclusion Chromatography  

This evaluation was preformed on PC/Chol (2:1) liposomes with 5 mg curcumin. The 

liposomes suspension of large MLVs was applied to gel column to separate any residual of 

free curcumin associated with the liposomes. The particle size of all fractions were 

measured in PCS. However only fractions 5-8 contained particles (Figure 12). The 

recovery from the fractions was calculated and found to be 70%. This low recovery is 

assumed to be due to sample loss during the fractionation. An explanation for this loss is 

probably that some agglomerated liposomes were too large to pass through the gel and 

remained on the top of the column. Nevertheless, the loss of curcumin in the column was 

calculated and amount of curcumin was normalized for this loss. 

By this method the percentage of the free curcumin was calculated using Equation 3 and 

found to be 1.97% of the theoretical amount used in the test. In order to compare the 

results, a sample from the same batch was centrifuged and the amount of the free curcumin 

was calculated after normalizing for recovery and found to be 0.2%.  
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Figure 12: Size measurement of fractions collected during size exclusion chromatography 

(SEC) (Sepharose 4B-CL). 

Equation 3: 

 

Where A is amount of curcumin in fraction #. And B is total theoretical amount.    

 

Both methods of separation confirmed that there is high content of curcumin in the 

liposomes. Moreover this finding confirms that results obtained from the centrifugation are 

reliable, and therefore it was no need to use another separation method, especially one as 

time consuming as column chromatography. Moreover, the chromatography dilutes the 

liposomal samples as well.  

Moreover, the results also implicate that the majority of curcumin is in the larger 

liposomes, and that the majority of formed liposomes are relatively large.  
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Figure 13: Determination of curcumin content in the fractions separated by size exclusion 

chromatography. 

The amount of curcumin in samples was determined using UV-spectrophotometer at 425 

nm.  

 

 

4.4. Stability of Formulations   

The accelerated stability test was preformed on empty liposomal formulation (control) and 

liposomal samples containing 10 mg of Curcuma extract, curcumin and curcumin I. The 

chosen formulations were prepared according to the section 3.2.1. and exposed to the same 

conditions e.g. sonication, centrifugation and temperature to insure comparative results as 

described in the section 3.2.8.  

We could not observe the increase in mean particle size during the accelerated stability 

testing (Figure 14). On the contrary, in the case of some formulations, the actual size 

appeared to be smaller, which might be explained by the effect of temperature on the 

separation of agglomerated particles. 
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Figure 14: Changes in particle size during storage at 40 °C for 4 weeks. 

 

Regarding the loss of entrapped curcumin during the accelerated stability testing, the 

findings in the stability experiment showed that the loss of drug was seen among the 

sonicated formulations. This finding is as we expected as unilamellar vesicles have 

tendency to lose the entrapped or exchange the entrapped material more easily than the 

multilamellar vesicles (New, 1990). The results presented in Figure 15 show significant 

loss of drug content for sonicated PC formulation with 10 mg curcumin. Apparently the 

incorporation of cholesterol increased the retention of curcumin in the liposomes and 

limited the changes in size seen with PC formulations, thus improved the stability. MLVs 

were clearly more stable than SUVs with respect to leakage.  
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Figure 15: Loss of entrapped curcumin during the accelerated stability testing. 

 

Visual examination of the samples showed that liposomes formed sedimentation, probably 

due to fusion and agglomeration of the liposomes. These agglomerations appeared to affect 

the recovery from the tested samples.  

 

 

4.5. Antioxidant Activity of Curcumoids 

The radical scavenging (antioxidant) activity was determined using the test described in 

section 3.2.9. The results presented in Figure 16 shows that liposomal formulations appear 

to have an antioxidant activity. Moreover, the mixtrure of curcumoids in curcmin appears 

to be more potent than the pure compound (curcumin I). This finding is suggesting that it is 

rather more cost-effective to use the mixture of curcumoids directly in the formulations 

than purifying the mixture to get pure compounds. However, this concept of using 
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mixtures could be difficult to apply in pharmaceutical industry, therefore it is necessary to 

standardize the composition of the mixture in order to obtain reproducible results.  

 

 

Figure 16:  Radical scavenging activity of curcumoids.  

A sample of 1 mL with 5 µg/mL of each liposomal formulation was mixed with 1 mL of 

methanolic solution of DPPH. The scavenging of DPPH radical was measured at 520 nm.  

Each value represents the mean of three readings.  
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5. CONCLUSION  

We were able to entrap curcumin and curcumin from Curcuma extract successfully in 

liposomes. Moreover, the entrapment efficiency was found to be dependent on the ratio 

between phospholipids and curcumin used. The stability experiment showed that the 

characteristics of liposomes were dependent on liposomal compositions. The inclusion of 

cholesterol in liposomal membrane affected membrane rigidity as well as stability of 

vesicles. During the process, we discovered that the standard curcumin, commercially 

available, was not really pure compound, rather a mixture of three curcuminoids. However, 

DPPH radical scavenging activity study revealed that pure curcumin has less potency as 

compared to curcuminoids mixture and Curcuma extract. In regard to the development of 

industrial product, the liposomal formulations with curcumin or Curcuma extract would be 

more cost-effective than liposomal formulations with pure curcumin I. 
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6. FUTURE PERSPECTIVE  

It would be of interest to optimize the stability of the formulations. Incorporation of 

liposomes into a vehicle with suitable viscosity and bioadhesiveness would modify the 

properties of liposomes and make the formulation more suitable for the topical application. 

In this case, adding liposomes into hydrogels such as Carpobol would be interesting since 

it could theoretically provide the desired properties. Moreover, it would be interesting to 

investigate the release profile of the drug from liposomes.  
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8. APPENDIX  

ABSTRACT SUBMITTED 

LIPOSOMAL CURCUMIN: THE WAY TO IMPROVED ANTIINFLAMMATORY 

ACTIVITY 

Purusotam Basnet, Haider Hussain, Ingunn Tho, Natasa Skalko-Basnet 

Drug Transport and Delivery Research Group, Department of Pharmacy, 

Faculty of Health Sciences, University of Tromsø, Tromsø, Norway 

Email: natasa.skalko-basnet@uit.no 

Purpose: Curcumin (I), demethoxy curcumin (II) and bisdemethoxy curcumin (III) are 

commonly called curcuminoids and are major constituents of the widely used spice, 

turmeric powder (Curcuma longa rhizome). Curcumin has shown diverse pharmacological 

effects in treatment of various diseases due to its strong antioxidant and anti-inflammatory 

activities. Its therapeutic potential is acknowledged in over 10,000 research papers and 

over 40 clinical trials. Its broader use is limited by its poor solubility. We propose that drug 

delivery system such as liposomes can provide a mean of improved therapeutic action. 

Methods: We standardized water-, alcoholic- and ethyl acetate-extracts of turmeric 

powder and characterized compounds I, II and III by HPLC, NMR and MS. The extracts 

with major curcuminoid constituents and/or individual compounds I, II and III were 

incorporated in liposomes. Formulations were optimized in regard to vesicle size, lipid 

composition entrapment efficiency and stability. The in vitro antioxidant and anti-

inflammatory activities of free and liposomally entrapped curcuminoids were determined. 

Results: Ethanol extract of turmeric powder contains almost exclusively three 

curcuminods. Liposomal preparation significantly enhanced in vitro anti-inflammatory 

activity, however antioxidant activity based on DPPH assay was not significantly changed. 

Ethanolic extract expresses stronger biological response than individual curcuminoids. 

Conclusions: Use of turmeric powder extract in form of liposomal preparation is found to 

be superior and cost-effective. Anti-inflammatory activity of curcumin/curcuminoids 

enhanced by liposomal carrier makes the proposed system especially interesting for topical 

treatment of vaginal inflammation. 
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