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0. Introduction

Computation of differential invariants of (unparametrized) curves was an important topic in XIX-th 
century mathematics. Besides Frenet-Serret formulas for Euclidean spaces, curves were extensively studied 
in projective spaces. In particular, Klein and Lie derived special ODEs describing projective invariant classes 
of curves in the plane [11] and Halphen computed the invariants that govern projective equivalence [9], see 
[12] for a modern approach and review. Wilczynski [16] derived a complete set of invariants for such curves 
in any dimension, starting from the Laguerre-Forsyth normal form for linear ODEs.

Invariants of curves were derived in various non-metric geometries, for instance in conformal, Grassman-
nian and others [1,7,8]. Fundamental invariants for some classes of curves in generalized flag varieties were 
computed by Doubrov and Zelenko [5]. This approach was based on the moving frame method [4,15] and the 
theory of parabolic geometries [2]. In particular, it covered general curves in projective spaces and integral 
curves in the G = G2 flag varieties for split algebraic G2 = G∗

2, namely homogeneous space G/P with some 
parabolic subgroup P .

The goal of this paper is to revisit the case of curves in M = G2/P based on the theory of differential 
invariants for which we refer the reader to [14] (we assume the curves are regular, so that its velocity never 
vanishes). The algebra of such (absolute rational) invariants depends on the type of 1-jet of a curve, and 
we compute the Hilbert function counting the number of differential invariants for every type. Then we 
concentrate on the two poles, corresponding to the minimal and the maximal orbits of the action of G on 
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J1(M, 1) = PTM . For integral curves, representing minimal orbits, we obtain the invariants differently and 
more explicitly than in [5]. For generic curves, representing maximal orbits, our results are apparently new.

We give more details to the case M = G2/P1 (labelling of the parabolic subgroups corresponds to the 
Bourbaki numeration), where our tool is the canonical conformal structure associated to the (2, 3, 5) distri-
bution by Nurowski. In the flat case that we discuss, it corresponds to another homogeneous representation 
M = SO(3, 4)/P1 (here P1 is the subgroup of B3 naturally extending the previous P1) induced by the 
inclusion G2 ⊂ SO(3, 4). We also discuss differential invariants of curves in other G2 flag varieties with a 
different choice of the parabolic, namely G2/P12 and G2/P2, but since the formulae are large we do not 
provide full details of computations.

It turns out that there is a transformation (multiple-valued to one side) between generic curves in G2/P1
and G2/P2 based on the twistor correspondence via G2/P12 and the geometry of those spaces. For minimal 
integral curves (no restriction for G2/P1 but corresponding to triple root Petrov type in the case G2/P2) 
such a transformation is known as the prolongation, but it does not exist for all curves. The transformation 
we propose for generic curves (it is 1 : 1 to one side and 1 : 2 to the other) allows to reduce computation of 
invariants to those of G2/P1.

On historical side we note that two realisations of G2 corresponding to homogeneous spaces G2/P1 and 
G2/P2 were obtained in 1893 by E. Cartan [3] and F. Engel [6]. An interplay between these models is a base 
for the above mentioned correspondence.

We also note that the method developed in this paper is applicable to obtain differential invariants of 
curves in curved geometries of type (G2, P ), as we will briefly discuss in the conclusion, though we do not 
provide any explicit formulae for those. It would be interesting to extend the results to parabolic geometries 
of general type (G, P ).

Maple computations supporting the results of this paper, and containing some large formulae, can be 
found in a supplement to arXiv :2107 .03664.
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1. Invariants of curves in M5 = G2/P1

Associated with P1 is the gradation of g = Lie(G2) of depth 3

g = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3 (1)

with dim g±1 = dim g±3 = 2, dim g±2 = 1 and g0 = gl2. The filtration gi = ⊕j≥igj is invariant with respect 
to p = g0 and its Lie group P1 = GL2 � exp(p+), which is equal to Stabo(G2), o = [P1], for the G2 action 
on the 5-dimensional homogeneous space M = G2/P1.

We identify ToM , as well as tangent spaces at other points of M , with m = g/p and it will be convenient 
to interpret it as g− = g−3 ⊕ g−2 ⊕ g−1 though the gradation is not P1 invariant. Furthermore g−1 mod p

defines a G2 invariant rank 2 distribution Π on M with growth vector (2, 3, 5), which exhibits ranks of the 
derived distributions Π2 = [Π, Π] and Π3 = [Π, Π2] = TM .

We use the coordinates (x, y, p, q, z) on M obtained from the model Monge equation y′′ = (z′)2 with 
local G2 symmetry. Namely, denoting y′ = p and y′′ = q the distribution Π is induced from the Cartan 
distribution in jets and has the following expression:
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Π = 〈∂x + p∂y + q∂p + q2∂z, ∂q〉. (2)

The G2 invariant conformal structure [g] is given by the representative

g = q2dx2 − 2q dx dp + 6p dx dq − 3 dx dz − 6 dy dq + 4 dp2. (3)

Let Jk(M, 1) denote the space of k-jets of unparametrized regular curves (for details on jet-spaces we 
refer to [13]). These will be represented as parametrized curves γ : I → M modulo the right action of 
the pseudogroup Diff loc(R) of reparametrizations. A 0-jet is just γ(0) ∈ M , while 1-jet is γ̇(0) �= 0 up to 
rescaling. Thus J0(M, 1) = M and J1(M, 1) = PTM . The fiber of the latter bundle over o ∈ M will be 
identified with (ToM\{0})/R× 	 Pm, on which P1 acts.

A general curve, transversal to the foliation {x = const}, can be parametrized as y = y(x), p = p(x), 
q = q(x), z = z(x). This introduces an affine chart in Jk(M, 1) with coordinates x, y, p, q, z and yi, pi, qi, zi
for 1 ≤ i ≤ k. The action of G2 will be expressed in these coordinates, as well as the invariants of the action. 
We note that the orbits of G2 in Jk(M, 1) are bijective with the orbits of P1 on Jk

o (M, 1), and we begin 
with a discussion of k = 1 case.

1.1. Action and orbits of P1 on 1-jet

It is convenient to describe the action on the vector space m, and then pass to the corresponding projective 
space (here when describing the P action we use linear coordinates on m, and then return to the coordinates 
on M used before).

A basis e1, e2 of g−1 induces bases e3 = [e1, e2] of g−2 and e4 = [e1, e3], e5 = [e2, e3] of g−3. Thus we get 
a basis of m 	 ⊕−1

i=−3gi. This introduces coordinates vi on m considered as a graded nilpotent Lie algebra

v = v1e1 + v2e2 + v3e3 + v4e4 + v5e5 ∈ m ,

and hence also on exp(m) 	 M via the exponential map. Note that the unity o corresponds to 0 and 
the inverse of g ∈ exp(m) is −g. (The Lie bracket on m induces the group structure on exp(m) by the 
Baker-Campbell-Hausdorff formula that is finite due to nilpotency of m.)

In these coordinates the canonical conformal structure (3) has constant coefficients:

〈v, w〉 = v1w5 + v5w1 − v2w4 − v4w2 + v3w3. (4)

Indeed, this is a unique (up to scale) left-invariant metric on M that is also invariant with respect to semi-
simple part of the reductive component GL2 of P1 (this preserves the grading on m) and has weight 4 with 
respect to its center:

〈Adg(v),Adg(w)〉 = 〈v, w〉 ∀ g ∈ exp(m) and 〈Av,Aw〉 = (detA)2〈v, w〉 ∀A ∈ GL2 .

To obtain P1 action on m = g/p we derive first the action of p+ using the root diagram of g. We choose 
the basis fi of p+ 	 m∗ dual to ei: these are the root vectors indicated near the corresponding roots 
on the diagram below (gradation is shown by a family of parallel lines). Their commutator relations are 
[f1, f2] = f3, [f1, f3] = f4, [f2, f3] = f5.
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f1e1

f2

e2

f3

e3

f4

e4

f5

e5

Brackets between basis elements in p+ and m correspond, up to scale, to vector summation of the 
corresponding root vectors in the root diagram: [eα, eβ ] = kαβeα+β . The factors kαβ can be fixed by the 
condition that the metric is invariant under p+:

〈adfi v, w〉 + 〈v, adfi w〉 = 0.

The diagram implies that g3 = 〈f4, f5〉 acts trivially on m and p+ acts trivially on g−1. The remaining 
commutation relations are as follows.

[f1, e3] = e2, [f2, e3] = −e1, [f3, e3] = 0,

[f1, e4] = e3, [f2, e4] = 0, [f3, e4] = e1,

[f1, e5] = 0, [f2, e5] = e3, [f3, e5] = e2.

Thus the action of exp(p+) is encoded through the action of ρ = exp(s1f1 + s2f2 + s3f3) with real 
parameters s1, s2, s3 as follows:

ρ(v1, v2, v3, v4, v5) =(
v1 − s2v3 + (s3 − s1s2)v4 − 1

2s
2
2v5, v2 + s1v3 + 1

2s
2
1v4 + (s3 + s1s2)v5, v3 + s1v4 + s2v5, v4, v5

)
.

With these at hand we can now compute that, under the action of P1, a general point v1e1 + v2e2 +
v3e3 + v4e4 + v5e5 ∈ m \ {0} can be mapped to one of the following 5 representatives:

• e5 ± e1 if (v4, v5) �= (0, 0) and 2v1v5 − 2v2v4 + v2
3 ≷ 0,

• e5 if (v4, v5) �= (0, 0) and 2v1v5 − 2v2v4 + v2
3 = 0,

• e3 if v4 = v5 = 0 and v3 �= 0,
• e1 if v3 = v4 = v5 = 0.

Associated to the conformal structure (4) is the null cone

N =
{
v1e1 + v2e2 + v3e3 + v4e4 + v5e5 ∈ m

∣∣ 2v1v5 − 2v2v4 + v2
3 = 0

}
.

Its relation to the distributions Π and Π2 is the following:

N ∩ Π2 = Π .

Each of the 5 points above and the singular orbit 0 represent orbits of the action of P1 on m. Therefore 
there are 5 orbits of the action of P1 on Pm.
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N

Π2

Π

m

The points e5 ± e1 represent 2 open orbits, separated by the null cone (both orbits connected, the above 
3D picture is just an analogy). The other orbits are (projectivizations of) Π \ {0} 
 e1, Π2 \ Π 
 e3, 
N \ Π 
 e5.

1.2. Number of invariants

Define sk to be the transcendence degree of the field of rational differential invariants of the G2 action 
on Jk(M, 1). By [14] this value is equal to codimension of the regular orbit of the action, and so sk can be 
interpreted as the number of invariants of order k. By the preceding computations, s0 = s1 = 0.

Hilbert function is defined as hk = sk − sk−1 and it can be interpreted as the number of invariants of 
pure order k. We will consider curves of a fixed type t of their 1-jet. In other words, we assume that at any 
point 1-jet of the curve belongs to the same P1 orbit in Pm.

If dt is dimension of the orbit, then such curves are given by 4 − dt equations of the first order. 
Geometrically this specifies a submanifold Et ⊂ J1(M, 1) of codimension 4 − dt, and prolongations 
Ek
t := E(k−1)

t ⊂ Jk(M, 1) form a tower of bundles with the rank of πk,k−1 : Ek
t → Ek−1

t equal to dt. 
Because G2 is finite-dimensional, we will occasionally have hk = dt for k � 1.

Let us consider the case of open orbits in J1(M, 1). Even though there are two types of such, the count 
is the same because under complexification these become one orbit and the action is algebraic. Due to 
transitivity we can fix 0-jet to be a0 = (0, 0, 0, 0, 0) in (x, y, p, q, z) coordinates. A generic 1-jet a1 over a0

can be represented by (y1, p1, q1, z1) = (0, 0, 0, −1); note that z1 = +1 for the other open orbit but we will 
focus on the first.

Denote by p(k) the prolongation of the isotropy p of the point o = a0 in g. The action in the fibers of 
πk,k−1 for k > 1 is affine, so we can restrict to usage of Lie algebras (not groups). Denote the isotropy 
subalgebra at the point a1 by

staba1 = {v ∈ p(1) : v(a1) = 0}

and by stabk
a1

its prolongations to k-jets. As an abstract Lie algebra, stab(a1) is solvable and it is defined 
by the following structure relations

[s1, s2] = s2, [s1, s3] = s3, [s1, s4] = s4,

[s1, s5] = 2s5, [s2, s4] = 3s5, [s3, s4] = 4s5.
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The action of stab2
a1

on π−1
2,1(a1) 	 R4(y2, p2, q2, z2) is generated by the following vector fields

∂p2 − z2∂q2 + 4y2∂z2 , ∂q2 , ∂z2 , p2∂p2 + 2q2∂q2 + z2∂z2 , 3y2∂p2 + 4p2∂q2

and so the orbits have dimension 3. We have one invariant I ′2 = y2 in π−1
2,1(a1). Let a2 = (I ′2, 0, 0, 0) ∈

J2(M, 1) be a point above a1 (the expression for I ′2 is invariant only above a1).
The isotropy algebra of a2 is a 2-dimensional solvable subalgebra staba2 ⊂ p(2). Its prolongation to 3-jets, 

namely to π−1
3,2(a2) 	 R(y3, p3, q3, z3), has generators

3y3∂p3 + (3y2z3 + 4p3)∂q3 − 12y2y3∂z3 , y3∂y3 + 2p3∂p3 + 3q3∂q3 + 2z3∂z3 ,

and so we get 2 independent invariants in π−1
3,2(a2). The isotropy algebra of a generic point in 3-jet is already 

trivial, so there will be 4 more independent invariants for every jet of order k ≥ 4.
The count of invariants for other types t of 1-jet is performed similarly, so we omit the details. Summa-

rizing, the Hilbert function hk counting differential invariants is given in the table:

t � k 0 1 2 3 4 5 6 7 8 9 10 . . .
TM\(N ∪ Π2) 0 0 1 2 4 4 4 4 4 4 4 4
N\Π2 0 0 0 1 2 3 3 3 3 3 3 3
Π2\Π 0 0 0 0 0 1 2 2 2 2 2 2
Π\ {0} 0 0 0 0 0 0 0 0 0 0 1 1

Let us observe from the first two rows that for the corresponding t-types there is dimensional freedom for 
the group to act freely on the level of 2- and 3-jets, respectively, yet there appear invariants. The situation 
with the last two rows is what could be expected in a general position.

In what follows we will focus on two particular cases: curves with minimal and maximal t-types of 1-jet 
(last and first rows) for which we describe the algebra of differential invariants explicitly. These algebras of 
differential invariants will be denoted by Aı and Ag respectively.

1.3. Invariants of integral curves

Consider curves in M tangent to Π. For such there are no absolute differential invariants up to jet-order 
9, and the first invariant arises in order 10. There are however relative differential invariants: such functions 
R of order k satisfy LvR = α(v)R for v ∈ g(∞) and α ∈ C∞(Jk) ⊗ g∗. We find those by the method of 
Sophus Lie, namely via a computation of the loci where the rank of prolongations e(k)

j ∈ X(Jk) drop, for a 
basis ej ∈ g.

The integral curves are subject to the constraints

y1 = p, p1 = q, z1 = q2, (5)

their prolongation define the equation EΠ ⊂ J∞(M, 1) with coordinates x, y, p, q, z, qk, k ≥ 1.
The simplest relative differential invariant is q2. Next, such invariant arises in order 8, namely

R8 = 196 q5
2q8 − 2352 q4

2q3q7 − 5040 q4
2q4q6 − 3255 q4

2q
2
5 + 16632 q3

2q
2
3q6 + 59598 q3

2q3q4q5

+ 13772 q3
2q

3
4 − 83160 q2

2q
3
3q5 − 174735 q2

2q
2
3q

2
4 + 297000 q2q4

3q4 − 118800 q6
3.

One more relative invariant of order 10 is given by the formula

R10 = 21q2R8Dx

(
q2DxR8

)
− 91(

q2DxR8
)2 + 9R2

8
(
13q2

3 − 19q2q4
)
.
4
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The two latter relative invariants have proportional weights (that is, 1-forms α), which makes a combi-
nation of them an absolute differential invariant

I10 = R3
10

R7
8
.

This is accompanied by an invariant derivation, i.e. a linear map � : C∞(Jk) → C∞(Jk+1) that satisfies 
the Leibniz rule and commutes with the action of G2. We search for it in the form � = hDx, h ∈ C∞(Jk), 
where

Dx = ∂x + p∂y + q∂p + q2∂z +
∞∑
i=0

qi+1∂qi

is the operator of total derivative on EΠ. Then the invariance condition

[v(∞),�] = 0 ∀v ∈ g

applied to x writes for a basis ej ∈ g

L
e
(k)
j

(h) = hDx(ej(x)).

Finding h from this equation, we get the following invariant derivation (ı for ‘ıntegral’):

�ı = q2

R
1/6
8

Dx.

The invariant derivation �ı produces the next differential invariant I11 = �ı(I10) of order 11, then I12 =
�ı(I11) of order 12, and successively generates all the higher order invariants.

Theorem 1. The algebra Aı of (micro-local) differential invariants of integral curves is generated in the 
Lie-Tresse sense by I10 and �ı.

Remark 1. The invariant derivation �ı has non-rational coefficient. This is sufficient for micro-local in-
variants (defined in open non-invariant sets in jets), however is at odd with the claim that the global 
differential invariants are rational in jets [14]. To remedy this one passes to rational invariant derivation 
(Tresse derivative associated to I10)

�̄ı = d

dI10
:= I10�ı(I10)

· �ı.

Then the algebra Āı of global differential invariants for integral curves is generated by I10, Ī11 = I6
11 and 

�̄ı. Note that �̄ı(I10) = 1.

Proof. By the count of invariants there is precisely one independent differential invariant of pure order k
for any k ≥ 10. These are �k−10

ı I10. The micro-local claim follows.
To obtain the algebra of rational differential invariants let us note that the invariants �̄k−11

ı Ī11 are affine 
in jets of order k > 11. Invariants of order ≤ 11 are algebraically generated by I10 and Ī11 since the ideal 
generated by them (in the ring of rational functions that are polynomial in jets of order > 9) is radical. 
This proves the claim. �
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1.4. Invariants of generic curves

Now we consider curves transversal to the distribution and not null with respect to conformal structure 
(3). Investigation of curves of both general type t of 1-jets goes parallel, so we may assume that the tangent 
X = γ̇ to the curve satisfies g(X, X) > 0 (one has to take another normalization below for g(X, X) < 0).

When the curve is parametrized coordinately γ(t) = (x(t), y(t), p(t), q(t), z(t)), its tangent vector

X = ∂x + y1∂y + p1∂p + q1∂q + z1∂z (6)

is given by the truncated total derivative. Recall it is defined up to scale. We are going to exploit the change 
of scales in order to construct an invariant frame along the curve.

The metric g in (3) is defined up to rescaling. Another representative of [g] is given by ḡ = e2fg. Let 
∇, ∇̄ be the Levi-Civita connections of g, ̄g. They are related as follows:

∇XU = ∇XU + X(f)U + U(f)X − g(X,U)∇f (7)

for X, U ∈ X(M). Therefore ∇XU is defined up to X, U and ∇f . The latter is difficult to control, so we 
will apply this formula only for g(X, U) = 0. Also, to obtain invariant quantities we can only differentiate 
in the direction of the curve, so X will be taken as in (6).

Since Π2/Π has rank 1, there is a conformal identification Π 	 TM/Π2 based on g−1 	 [g−1, g−2] = g−3
of (1). Since γ is a generic curve, its tangent X /∈ Π2 has a conformal dual Y ∈ Π. For instance, choosing 
the vector e3 = [∂q, ∂x + p∂y + q∂p + q2∂z] = ∂p + 2q∂z ∈ Π2 we find a unique Y ∈ Π from

[Y, e3] = X mod Π2.

This Y is defined up to scale and satisfies g(X, Y ) = 0. Therefore the covariant derivative ∇XY is defined 
up to X, Y and determines unambiguously the subspace

ΠX = 〈X,Y,∇XY 〉 ⊂ TM.

Generically ΠX has rank 3, ΠX mod Π rank 2, and ΠX mod Π2 rank 1. We change the generator ∇XY of 
ΠX to

Z ∈ ΠX ∩ Π2 such that g(X,Z −X) = 0.

This Z is defined up to Y and up to scale. However, due to the above relation, X and Z are subject to 
rescaling by the same factor. Therefore we have

ΠX = 〈X,Y, Z〉

and we use Z to fix the scale of Y : the conformal identification [Y, Z] = X mod Π2 determines Y uniquely.
The Gram matrix of Y, Z, X (in this order) is

⎛
⎜⎝ 0 0 0

0 κ2 κ1
0 κ1 κ1

⎞
⎟⎠

where κ1 = 2R1, κ2 = R4
1

2 and
162R2
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R1 = (q + 2p1)2 + 6(q1(p− y1) − qp1) − 3z1 ,

R2 = − (q+2p1)3
18 + (p− y1)

(
qp2 − z2

2
)

+ (q + y2)
(
qp1 − z1

2
)

+ p1z1 − q2 y2
2

(8)

are relative invariants of orders 1 and 2 respectively. Their ratio

I2 = κ1

324κ2
= R2

2
R3

1
(9)

is the first absolute differential invariant in J2(M, 1); note that this invariant, when restricted to π−1
2,1(a1), 

differs from I ′2 of subsection 1.2 only by a power and a factor: 108I2 = (I ′2)2.
As long as κ1 �= κ2, which is generically true, the conformal metric has rank 2 on the 3-dimensional ΠX . 

Hence Π⊥
X has rank 2 and ΠX ∩ Π⊥

X = 〈Y 〉. Choose

V ∈ Π such that g(X,V −X) = 0.

This V is defined up to Y and up to scale with the same factor as X. Therefore we have

ΠX + Π⊥
X = 〈V, Y, Z,X〉 .

To complete to a (yet non-canonical) frame we add the vector

W = ∇X(Z −X).

Since g(X, Z −X) = 0, this W defined up to scale, and up to X and Z, which in turn is defined up to X
and Y . The vectors X and W are independent mod Π2.

The Gram matrix of Y, V, Z, X, W (in this order) is

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 κ3
0 0 0 κ1 k4
0 0 κ2 κ1 k3
0 κ1 κ1 κ1 k2
κ3 k4 k3 k2 k1

⎞
⎟⎟⎟⎟⎟⎠

where κ3 = 2R1

(
108I2 − 1

3

)
is a relative invariant.

Keeping track of the choices, we change our vectors and the Gram matrix changes accordingly. Precisely, 
the freedom we have in defining our vectors allows us to make the following transformations:

X �→ c1X ,

Y �→ Y ,

Z �→ c1Z + c2Y ,

V �→ c1V + c3Y ,

W �→ c21W + c4Z − (c4 + c1c2k5)X + c5Y ,

where k5 = p1−q
3 + 3R2

R1
and we have 5 degrees of freedom given by c1, c2, c3, c4, c5. We find c2, c3, c4, c5 such 

that k1 = k2 = k3 = k4 = 0. Under this transformation of our vectors, the Gram matrix of Y, V, Z, X, W
takes the form
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⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 c21κ3
0 0 0 c21κ1 0
0 0 c21κ2 c21κ1 0
0 c21κ1 c21κ1 c21κ1 0

c21κ3 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

It only remains to fix the scale of X and the scale of the metric g.
We fix c1 by the condition LXI2 = 1, that is, by setting

c1 = 1
DxI2

,

where Dx is the operator of total derivative:

Dx = ∂x +
∞∑
i=0

(
yi+1∂yi

+ pi+1∂pi
+ qi+1∂qi + zi+1∂zi

)
.

Then we fix the scale of the metric ḡ = e2fg by

ḡ(X,X) = 1. (10)

This fixes an invariant frame adapted to the distribution and the conformal structure. With this the above 
Gram matrix becomes ⎛

⎜⎜⎜⎜⎜⎝

0 0 0 0 108I2 − 1
3

0 0 0 1 0
0 0 1

324I
−1
2 1 0

0 1 1 1 0
108I2 − 1

3 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

The next step is to generate differential invariants of orders 3 and 4 in J4(M, 1). In order to do so first note 
that the new metric given by (10) involves rescaling depending on 3-jet, and so its Levi-Civita connection 
is uncomputable (we can only differentiate along the curve), yet formula (7) applied to U ∈ 〈X〉⊥ has a 
well-defined output ∇̄XU modX.

Let wi denote the basis Y, Z −X, V −X, W of 〈X〉⊥. Then we decompose

∇̄Xwi =
4∑

j=1
aijwj modX, 1 ≤ i ≤ 4.

The coefficients aij are differential invariants. Some of them are constants or expressed through I2, some are 
related due to the fact that ∇̄X ḡ = 0, but the others will determine 2 differential invariants I3a, I3b of order 
3 and 4 differential invariants I4a, I4b, I4c, I4d of order 4 (all rational and independent). The formulae are 

too large to be given explicitly, but in π−1
4,2(a2) the invariants I3a, I3b are equal to 4I2p3+z3

y2
3

, 16p2
3−24y3q3−3z2

3
y4
3

, 
while I4j are affine in y4, p4, q4, z4.

Finally the normalized X yields the invariant derivation (Tresse derivative associated to I2)

�g = d

dI2
:= 1

DxI2
· Dx

which on scalars coincides with LX = ∇̄X .



B. Kruglikov, A. Llabrés / Differential Geometry and its Applications 82 (2022) 101889 11
Theorem 2. The algebra Ag of differential invariants of generic curves is generated in the Lie-Tresse sense 
by seven differential invariants I2, I3i, I4j and one invariant derivation �g.

Proof. By construction the seven invariants generate all differential invariants of order ≤ 4. Invariant deriva-
tion provides independent invariants affine in jets of order k > 4 in the totality equal to the number of those 
jets. Thus any differential invariant from Ag can be rationally expressed through the given generators. �
2. Invariants of curves in M̂6 = G2/P12

Associated with P12 is the gradation of g = Lie(G2) of depth 5

g = g−5 ⊕ g−4 ⊕ g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3 ⊕ g4 ⊕ g5 (11)

with dim g±1 = dim g0 = 2 and dim gi = 1 otherwise. The filtration gi is introduced as in Section 1 and 
it defines the distribution Δ of growth (2, 3, 4, 5, 6) invariant with respect to G2; the stabilizer of o ∈ M̂ is 
P12 = (R1

× ×R1
×) � exp(p+).

To introduce coordinates on M̂ it is convenient to identify it with the prolongation of (M, Π), namely 
the P 1 bundle PΠ over M : its points are â = (a, �), where a ∈ M is a point and � ⊂ Πx is a line. Thus we 
can use the coordinates (x, y, p, q, z, r) for an open chart in M̂ , where the first 5-tuple gives a chart in M
as in Section 1 and the line � has coordinates [1 : r] in the basis (2) of Π. This gives the representation

Δ = Π̂ = 〈∂x + p∂y + q∂p + q2∂z + r∂q, ∂r〉 (12)

where both generators are distinguished: the first by the prolongation procedure described above and the 
second as the kernel of the differential of the projection πl : M̂ → M .

This projection relates the derived distributions as follows: π−1
l (Π) = Δ2 and π−1

l (Π2) = Δ3. In addition, 
the pullback of the conformal structure on M gives a degenerate conformal structure on M̂ with the null 
cone N̂ = π−1

l (N) 	 N ×R1 in TM̂ .
We parametrize the curves again by x, so the jet-coordinates on J∞(M̂, 1) are (x, y, p, q, z, r) and 

(yk, pk, qk, zk, rk). The null cone is given by the condition R1 = 0 of the G2/P1 case (8). The equation 
for derived flag is given by the following conditions

EΔ =
{
q1 = r, p1 = q, y1 = p, z1 = q2}

EΔ2 =
{
p1 = q, y1 = p, z1 = q2}

EΔ3 =
{
y1 = p, z1 = 2qp1 − q2}

EΔ4 =
{
z1 = 2pr − 2ry1 + 2qp1 − q2}

that determine some types of 1-jets; curves with the given fixed type are solutions to the corresponding 
prolonged first order systems EΔs ⊂ J∞(M̂, 1). There are however more types of 1-jets of curves in M̂ as 
we will describe next.

2.1. Action and orbits of P12 on 1-jets

The generators of (12) correspond to a basis e1, e2 of g−1 in (11), which generates a basis {ei} of m via 
commutation:

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e3, e4] = e6, [e2, e5] = −e6,

[f1, f2] = f3, [f1, f3] = f4, [f1, f4] = f5, [f3, f4] = f6, [f2, f5] = −f6.



12 B. Kruglikov, A. Llabrés / Differential Geometry and its Applications 82 (2022) 101889
This and its dual basis {fi} of p+ are indicated on the root diagram as before.

f1e1

f3

e3

f4

e4

f5

e5

f6

e6

f2

e2

From Serre’s relations we find brackets involving g0:

[h1, e1] = 2e1 [h1, e2] = −3e2 [h2, e1] = −e1 [h2, e2] = 2e2 [e1, f1] = h1

[h1, f1] = −2f1 [h1, f2] = 3f2 [h2, f1] = f1 [h2, f2] = −2f2 [e2, f2] = h2

The remaining structure relations are written basing on the root arithmetic with unknown coefficients, 
which are then uniquely determined from the Jacobi identity.

With this knowledge we compute the action of p+ on m. This in turn determines the action of ρ =
exp

(∑5
k=1 skfk

)
∈ exp(p+) on v =

∑6
k=1 vkek (f6 acts trivially) as follows:

ρ(v1, v2, v3, v4, v5, v6) =(
v1 − s2v3 + (4s3 − 2s1)v4 + (6s1s3 − 2s2

1)v5 + (1
2s

2
1s

2
2 − 6s2

3 + 12s2s4)v6,

v2 + 3s1v3 + 6s2
1v4 + 6s3

1v5 − (6s2
1s3 + 3

2s
3
1s2 + 18s1s4)v6,

v3 + 4s1v4 + 6s2
1v5 − (2s2 + 6s3 + 1

3s4)v6, v4 + 3s1v5 − (3s3 + 3
2s1s2)v6, v5 − s2v6, v6

)
.

The group G0 = R× × R× action on g−1 extends to an automorphism of m. So we derive the action of 
P12 = G0 � exp(p+) on m \ {0} and this yields the decomposition into orbits as follows:

• 3 orbits in TM̂ \ Δ4: one closed in N̂ and two open separated by N̂ ,
• ∞ orbits in Δ4 \ (Δ3 ∪H3): there is an absolute invariant in Δ4 \ N̂ ,
• 3 orbits in H3 \ Δ3: one closed in N̂ and two open separated by N̂ ,
• 2 orbits in Δ3 \ Δ2: one closed in H2 and one open in the complement,
• 1 orbit in Δ2 \ Δ,
• 3 orbits in Δ \ {0}: two lines and the complement.

Here H2 = {a1 ∈ Δ3 : h2(a1) = 0} and H3 = {a1 ∈ Δ4 : h3(a1) = 0} have the defining equations:

h2 = 8p1r1 − 8qr1 − 3q2
1 + 6rq1 − 3r2,

h3 = 9p2r1 + 9pq1p1 − 9prp1 − 9pqq1 + 9pqr − 18pr1y1 + 4p3
1 − 12qp2

1

+ 12q2p1 − 9p1q1y1 + 9rp1y1 − 4q3 + 9qq1y1 − 9qry1 + 9r1y2
1 .

We note that h2 is a relative invariant in Δ3 and h3 is a relative invariant in Δ4. Moreover, h3 = R2|Δ4 , 
where R2 is the same relative invariant as in G2/P1 (note that the order of R2 drops to 1 when we restrict to 
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the prolongation of the equation for Δ4). Actually, the restriction of I2 to Δ4 \ N̂ is an absolute differential 
invariant, where I2 is the second order differential invariant of generic curves in G2/P1 pulled back to 
G2/P12.

The relative invariant h2 comes from a relative invariant for integral curves in G2/P2.

2.2. Number of invariants

Similar to what is done in Section 1, we compute the Hilbert function hk counting the number of 
differential invariants of pure order k, depending on the type t of the orbit of 1-jet, and tabulate it as 
follows.

t � k 0 1 2 3 4 5 6 7 8 9 . . .

TM̂\(Δ4 ∪ N̂) 0 0 2 5 5 5 5 5 5 5 5
N̂\Δ4 0 0 1 3 4 4 4 4 4 4 4
Δ4\(Δ3 ∪ N̂ ∪ H3) 0 1 0 3 4 4 4 4 4 4 4
H3\(Δ3 ∪ N̂) 0 0 0 1 3 3 3 3 3 3 3
(Δ4 ∩ N̂)\(Δ3 ∪ H3) 0 0 0 1 3 3 3 3 3 3 3
(N̂ ∩ H3)\Δ3 0 0 0 0 0 2 2 2 2 2 2
Δ3\(Δ2 ∪ H2) 0 0 0 1 3 3 3 3 3 3 3
H2\Δ2 0 0 0 0 0 2 2 2 2 2 2
Δ2\Δ 0 0 0 0 0 2 2 2 2 2 2
Δ\{0} 0 0 0 0 0 0 0 0 0 1 1

Again we consider in more details only differential invariants of curves of constant type with either 
minimal (actually next to it: integral) or maximal type t of the orbit in 1-jets.

2.3. Invariants of integral curves

The first absolute differential invariant Î9 of curves tangent to Δ in M̂ = G2/P12 occurs in order 9. It 
coincides with the invariant I10 for curves tangent to Π in G2/P1 after the change of coordinates ri = qi+1
∀i. (Recall that the differential equation for Δ is obtained from that of Π by intersecting with q1 = r and 
its prolongation.)

An invariant derivation is

�̂ı = r1

R̂
1/6
7

D̂x ,

where R̂7 coincides with R8 from Section 1.3 after the same change of coordinates, and

D̂x = ∂x + p∂y + q∂p + q2∂z + r∂q +
∞∑
i=0

ri+1∂ri

is the operator of total derivative on EΔ.
Thus the algebra of differential invariants Âı is generated similarly to Section 1.3, and this is not sur-

prising: there is a bijection between integral curves of Π and those of Δ = Π̂. Indeed, the prolongation 
γ(t) �→ (γ(t), γ̇(t)) lifts the integral curves of Π to the integral curves of Δ, and the projection gives the 
inverse map.

2.4. Invariants of generic curves

We have the same relative invariants R1 and R2 as in G2/P1. In addition, we have the first order relative 
invariant
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R3 = 2pr + 2qp1 − 2ry1 − q2 − z1 ,

that is the pull-back of the contact condition (integral curves) in G2/P2.
Some other differential invariants have been computed, like relative invariant R4 of order 2 (in Maple), 

but their formulae are long and we describe the algebra Âg of invariants differently.
For a generic curve γ̂(t) ⊂ M̂ its projection γ(t) = πl ◦ γ̂(t) ⊂ M is also generic, and hence by the results 

of Section 1.4 possesses a frame Y, V, Z, X, W along it. A point γ̂(t) over γ(t) can be interpreted as a line 
�γ(t) ⊂ Πγ(t). There exists a unique � = �(t) ∈ R̄ = R ∪∞ such that Y + �V ∈ �γ(t). This � is a function 
on the curve, and it defines a rational function on the space of jets of generic curves in M̂ , denoted by the 
same symbol.

Let us also note that the differential parameter along the curve γ̂ can be induced from the differential 
parameter along its projection γ. In other words, the invariant derivation �g from Section 1.4 induces the 
following invariant derivation in J∞(M̂, 1):

�̂g = 1
DxI2

· D̂x,

where we use the operator of total derivative

D̂x = ∂x +
∞∑
i=0

(
yi+1∂yi

+ pi+1∂pi
+ qi+1∂qi + zi+1∂zi + ri+1∂ri

)
.

Theorem 3. The algebra Âg of differential invariants of generic curves in M̂ is generated by the differential 
invariants from Theorem 2, pulled back from J∞(M, 1) to J∞(M̂, 1), the invariant � and the derivation �̂g.

Proof. A curve γ̂ ⊂ M̂ is uniquely encoded by its projection γ ⊂ M and its enhancement �γ , equivalently 
represented by the function �. Hence it suffices to add this invariant to the generating set for Ag to generate 
Âg. �
3. Invariants of curves in K5 = G2/P2

Associated with P2 is the contact gradation of g = Lie(G2)

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 (13)

with dim g±1 = 4, dim g±2 = 1 and g0 = gl2. The manifold K = G2/P2 possesses G2-invariant contact 
structure D ⊂ TK and a field of rational normal curves (RNC) in PD, corresponding to the minimal orbit 
of (the reductive part of) the structure group G0 = GL2, also identified with its cone field Γ ⊂ D (in 
projectivization we will write [Γ]).

In coordinates (x, y, p, q, z) on K the contact structure is the annihilator of α = dz − p dx − q dy and the 
rational normal cone (also abbreviated RNC) is given by the following ideal in S•D∗:

〈3 dx dp− dy dq,
√

3 dx dy − dq2,
√

3 dp dq − dy2〉.

In other words, RNC is given by the union of 1-parametric family of lines

Γ =
⋃

ξr ⊂ D, where ξr = 〈(∂x + p ∂z) + r
√

3 ∂q + r2√3 (∂y + q ∂z) + r3∂p〉. (14)

r∈R̄
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The tangent to the RNC is the hypersurface in D of degree 4 given by

TΓ = {a(∂x + p ∂z) + b ∂q + c(∂y + q ∂z) + d∂p : 4 (ac3 + b3d) =
√

3 (b2c2 − 3a2d2 + 6abcd)}.

The curves tangent to those varieties are given by the following equations respectively:

ED = {z1 = p + q y1},
ETΓ =

{
4 (y3

1 + p1q
3
1) =

√
3 (y2

1q
2
1 − 3p2

1 + 6y1p1q1), z1 = p + q y1
}
, (15)

EΓ =
{
y1 = q2

1√
3
, p1 = q3

1

3
√

3
, z1 = p + qq2

1√
3

}
.

Note that in our coordinates (x, y, p, q, z) the invariant conformally symplectic structure has the canonical 
form ω = dα = dx ∧ dp + dy ∧ dq, while the RNC has coefficients involving 

√
3 (if we normalize RNC 

standardly, then the symplectic structure has a coefficient 3).

3.1. Action and orbits of P2 on 1-jets

The action of p+ on m = g/p for p = p2 is nontrivial only on g−2. Moreover g2 acts trivially and 
parametrizing g1 by the coefficients s1, s2, s3, s4 in the basis f1, f2, f3, f4 of g1 dual to the basis e1, e2, e3, e4
of g−1 as described on the picture

f3

e3

f2

e2

f1

e1

f5

e5

f4

e4

we encode the action as follows:

(v1, v2, v3, v4, v5) �→ (v1 + s1v5, v2 + s2v5, v3 + s3v5, v4 + s4v5, v5),

where vi are coordinates on m = g−1 ⊕ g−2 associated to the basis e1, . . . , e5.
The action of G0 = GL2 on g−1 is given by the matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

a3 √
3 a2c

√
3 ac2 c3

√
3 a2b a2d + 2 abc 2 acd + bc2

√
3 c2d

√
3 ab2 2 abd + b2c ad2 + 2 bcd

√
3 cd2

b3
√

3 b2d
√

3 bd2 d3

⎞
⎟⎟⎟⎟⎟⎟⎠

in coordinates (v1, v2, v3, v4) and it extends to g−2 by v5 �→ (ad − bc)3v5.
Hence the action of P2 decomposes m into the following orbits

• One orbit in TM\D,
• Two orbits in D\TΓ,
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• One orbit in TΓ\Γ,
• One orbit in Γ\{0}.

The curves of fixed type t of their 1-jet according to the orbit type as above, are given by the equations 
Et described in (15).

3.2. Number of invariants

Similar to what is done in Section 1, we compute the Hilbert function hk counting the number of 
differential invariants of pure order k, depending on the type t of the orbit of 1-jet, and tabulate it as 
follows.

t � k 0 1 2 3 4 5 6 7 8 9 10 . . .
TM\D 0 0 0 3 4 4 4 4 4 4 4 4
D\TΓ 0 0 0 1 2 3 3 3 3 3 3 3
TΓ\Γ 0 0 0 0 0 1 2 2 2 2 2 2
Γ\ {0} 0 0 0 0 0 0 0 0 0 0 1 1

Again we consider in more details only differential invariants of curves of constant type with either 
minimal or maximal type t of the orbit in 1-jets.

3.3. Invariants of minimal integral curves

There are several types t of integral curves for G2/P2, we consider those that are tangent to RNC Γ. 
The algebra of differential invariants Iı of these curves is generated by

Ĩ10 = R̃10

R̃
7/3
8

and �̃ = q2

R̃
1/6
8

Dx ,

where Dx is the operator of total derivative restricted to EΓ,

R̃8 = 196 q8q5
2 − 3136 q4

2q3q7 − 5936 q4
2q4q6 − 3605 q4

2q
2
5 + 26208 q3

2q
2
3q6 + 83538 q3

2q3q4q5

+ 18252 q3
2q

3
4 − 144144 q2

2q
3
3q5 − 281853 q2

2q
2
3q

2
4 + 555984 q4

3q4q2 − 247104 q6
3

corresponds to the invariant R8 from the case G2/P1, and similar for R̃10 (see Theorem 1 and Remark 1). 
Explicitly this correspondence will be explained in the next section.

3.4. Invariants of generic curves

For generic curves γ ⊂ K transversal to the distribution D, the first relative invariant appears in order 
1 and it corresponds to tangency with D:

R̃1 = z1 − p− qy1.

The second order relative invariant R̃2 has more complicated formula, but the most difficult are absolute 
differential invariants Ĩ3a, Ĩ3b, Ĩ3c, Ĩ4d of orders 3 (×3) and 4, which together with the invariant derivation 
�̃g generate the algebra of differential invariants Ig. Below we explain how to obtain an invariant frame 
that, in principle, determines all basic invariants.
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It is known [2] that for every contact parabolic geometry, in particular for K = G2/P2, there is a 
unique (up to projective reparametrization) canonical (distinguished) curve through any point a ∈ K in any 
direction v ∈ TaK \Da. For γ(0) = a choose X = γ̇(0) and denote this curve by δX . We treat both curves γ
and δX as unparametrized. They have the same 1-jet, and therefore their difference canonically determines 
2-jet ζX ∈ S2T ∗

a γ ⊗ νa, where νa = TaK/〈X〉 is the normal to γ at a. The image ζX(X, X) ∈ TaK modX

defines uniquely a 2-plane in TaK, containing X, the intersection of which with Da is a line denoted ΥX .
Next we use the projective geometry of PD equipped with RNC [Γ]. The above construction gives a point 

[ΥX ] ∈ PD. We assume the genericity condition [ΥX ] /∈ T [Γ]. In this case there exists a unique bisection 
L of [Γ] containing [ΥX ], intersecting the RNC in two points λ±

X (there is no canonical way to distinguish 
between ±, so these points enter non-numerated; in the case [ΥX ] ∈ T [Γ] \ [Γ] they coincide and in the case 
[ΥX ] ∈ [Γ] there are infinitely many lines L).

Moreover we can introduce two more points μ±
X = Tλ±

X
[Γ] ∩ T 2

λ∓
X

[Γ] on the (unique) intersection of the 

first and second tangents at the points λ+
X and λ−

X (or interchange). The corresponding lines in D can 
be normalized so that to form a conformally symplectic basis with respect to ω. Only one overall scale is 
missing to obtain the frame from those vectors jointly with X and to fix the contact form. This can be 
normalized via a differential invariant.

The formulae are rather complicated, so instead we show in the next section how to relate the equivalence 
problem for generic curves in K = G2/P2 to those in M = G2/P1.

4. Twistor correspondence

The three realizations of G2, acting on various G2/P as discussed above, are conveniently related by the 
following double fibration (parabolic subgroups P correspond to crosses on the Dynkin-Satake diagrams).

× ×

× ×

The arrows are projections corresponding to the inclusions P1 ←↩ P12 ↪→ P2. Below we explain how this 
correspondence relates three equivalence problems studied in this paper.

4.1. Correspondence for points

For G2/P12 we used the nomenclature M̂ because it was the geometric prolongation of M = G2/P1. In 
coordinate language the affine chart R5(x, y, p, q, z) of M is covered by the affine chart R6(x, y, p, q, z, r), 
where r is such that the point of M̂ is represented by the line � = 〈∂x + p∂y + q∂p + q2∂z + r∂q〉 in the 
distribution (2). The rank 2 distribution Δ of G2/P12 with the canonical split into 1 + 1 line subbundles is 
given by (12).

We can also represent G2/P12 as the geometric prolongation of K = G2/P2, so that its points b̂ = (b, ξr)
are lines in RNC ξr ⊂ Db, b ∈ K, see (14). In coordinates this gives G2/P12 = K̂ with affine chart 
R6(x, y, p, q, z, r), and this is naturally equipped with the rank 2 distribution of growth (2, 3, 4, 5, 6) that is 
canonically split into 1 + 1 lines subbundles as follows:

Δ̃ = 〈(∂x + p ∂z) + r
√

3 ∂q + r2√3 (∂y + q ∂z) + r3∂p, ∂r〉. (16)

There is a diffeomorphism ϕ : (M̂, Δ) → (K̂, Δ̃) that interchanges the first and the second generators of 
the distributions. In other words, the vertical line (fiber to πl) in Δ is mapped to the horizontal line in Δ̃
and the horizontal line in Δ is mapped to the vertical line (fiber to πr) in Δ̃. This fits the following diagram
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G2/P12 : (M̂,Δ) (K̂, Δ̃)

G2/P1 : (M,Δ) G2/P2 : (K,D,Γ)

πl

ϕ

πr

where πl(x, y, p, q, z, r) = (x, y, p, q, z) and πr(x, y, p, q, z, r) = (x, y, p, q, z) in the corresponding coordinates. 
The required transformation is given by formula

ϕ(x, y, p, q, z, r) =
(
−1
r
,
√

3
(
2p− q2

r

)
, 3z − q3

r
,
√

3
(
x− q

r

)
, 6(xp− y) − 3

r

(
z + xq2

)
+ 2q3

r2 , q

)
.

4.2. Correspondence for integral curves

Integral curves for (M, Π) are given by equation (5) and their prolongations to (M̂, Δ) are determined 
by the additional constraint r = q1. Thus there is a 1:1 correspondence between integral curves of (M, Π)
and integral curves of (M̂, Δ). The invariant constraint r1 = 0 (or r = const) determines a 1-parametric 
family of integral curves through any point called abnormal extremals for Π. They are projections of the 
integral curves for the horizontal line distribution given by the first generator of (12).

Minimal integral curves for (K, D, Γ) are given by equation EΓ of (15) and their prolongation to (K̂, Δ̃)
are determined by the additional constraint r = q1/

√
3. Thus there is a 1:1 correspondence between integral 

curves of (K, D, Γ) and integral curves of (K̂, Δ̃). The invariant constraint r1 = 0 (or r = const) determines 
straight line generators of the RNC through any point of K. They are projections of the integral curves for 
the horizontal line distribution given by the first generator of (16).

This correspondence on the level of jets is summarized in the following diagram, where we denote by jl,r
the lifts defined above, they are right inverse to the projections πl,r.

EΔ

EΠ EΓ

πl πrjl jr

Note that EΠ ×P 1 	 EΔ 	 EΓ ×P 1 (since any integral curve is uniquely lifted given a point in the fiber) 
and EΠ 	 EΓ, which explains isomorphism of the algebras of differential invariants.

4.3. Correspondence for generic curves

The above correspondence cannot be extended to all curves, however we can produce lifts for generic 
curves.

On the left side of the double (twistor) fibration the lift is determined from the observation of Section 1.4
that X given by (6) determines Y ∈ Π up to scale by the condition g(X, Y ) = 0. Setting Y = ∂x + p∂y +
q∂p + q2∂z + r∂q this and (3) gives the formula for r, from which we conclude that the lift is given by the 
following formula (and its prolongations):

jl(x, y, p, q, z) =
(
x, y, p, q, z,

2qp1 − z1 − q2)
.
2(y1 − p)
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On the right side of the double fibration the computation is a bit more involved. First we derive the 
formula for distinguished curves in direction g−2. By the mentioned general result [2, §5.3.7], there is a 
unique unparametrized distinguished curve of that type in any non-contact direction on TK. This gives an 
invariant section J1(K, 1) ��� J2(K, 1) defined on a Zariski open set. (An alternative way to check it: the 
stabilizer of a generic b1 ∈ J1 is GL2 × R× that acts on π−1

2,1(b1) 	 R4 via an irreducible representation of 
GL2 that has one fixed point.)

The explicit formula involves matrix realization G2 ⊂ SO(3, 4) described in [10] on the level of Lie 
algebras; the reference specifies the p1 grading but one can also identify p2. The corresponding parabolic 
subgroup P2 can be coordinized via GL2�exp(p+) and the action of this on m = g− is then explicitly derived. 
The formulae for the distinguished curves (omitted here, see Maple’s supplement) imply the formula for the 
above section, or equivalently for a point [ΥX ] ∈ PD as defined in Section 3.4:

ΥX = 2
√

3 q3
1 − 9 qy2 − 18 y1q1 + 9 z2

9(qy1 + p− z1)
(∂x + p∂z) +

(
q2 −

2
√

3 y2
1 + 3 qq1y2 + 2 y1q

2
1 − 3 q1z2

3(qy1 + p− z1)

)
∂q

+
(
y2 + 2

√
3 p1q

2
1 − 3 qy1y2 − 4 y2

1q1 − 6 y1p1 + 3 y1z2

3(qy1 + p− z1)

)
(∂y + q∂z)

+
(
p2 −

2
√

3 y3
1 + 9 qp1y2 + 18 p2

1 − 9 p1z2

9(qy1 + p− z1)

)
∂p.

Next, given a point [a : b : c : d] ∈ PD the RNC secant line through it intersects [Γ] at the points 
corresponding to the parameter r from (14) so:

λ±
X =

3 ad− bc±
√

(3 ad− bc)2 − 4(
√

3ac− b2)(
√

3bd− c2)
2(
√

3ac− b2)
.

Equivalently, the points r = λ±
X are the solutions of the quadratic equation

(
√

3 ac− b2)r2 + (bc− 3 ad) r +
√

3 bd− c2 = 0.

This formula for r composed with the formula for ΥX (the coefficients a, b, c, d are extracted in the order of 
appearance) defines two lifts of generic curves from K to K̂ 	 M̂ :

j±r (x, y, p, q, z) = (x, y, p, q, z, λ±
X ◦ [ΥX ]).

This correspondence on the level of jets is summarized in the following diagram:

J∞(M̂, 1)

J∞(M, 1) J∞(K, 1)

πl πrjl jr
±

The dashed arrows are defined on open dense subsets of their domains, are right inverse to the corresponding 
projections, and in addition, j±r is 1:2 map. This can be seen as an analog of the Bäcklund transformation, 
so that for one (jet of) curve in K we obtain two such in M . This allows to derive the algebra of differential 
invariants Ig of curves in G2/P2 from the results of Section 1 by averaging the invariants thereof on the two 
branches πl ◦ j±r .
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5. Concluding remarks

The computations in this paper demonstrate the method of differential invariants for G2 action on curves 
in generalized flag varieties. The group is more complicated than the projective group PSLn+1 mentioned 
in the introduction, and we address the corresponding challenges.

For (minimal) integral curves the approach is very effective and provides a complete description of the 
algebra. This has to be compared with the method of moving frame [4]; a moving frame for this problem 
was constructed in [5] but the algebra of invariants was not derived.

A modification of this method, the equivariant moving frame [15], is not applicable as it relies on an 
explicit Lie group parametrization, which is non-trivial for G2 (one has to resolve the quadratic and cubic 
equations defining the group). We worked mainly with the Lie algebra. Even in this case for generic curves 
the direct computations fail, and we had to evoke geometric arguments to arrive to the basic invariants, in 
particular exploiting the ideas of moving frames.

The results of this paper concern only curves in homogeneous flag varieties G2/P , but they can be 
extended to more general case of curves in curved M5 of type (G2, P1) etc. Indeed in this more general case 
the symmetry algebra of such M5 is smaller than G2 yet the invariants can be found by the same method. 
In particular, the stratification of 1-jets makes a perfect sense in the curved case and one can derive relative 
invariants similar to R1, R2 in Section 1 (for R1 this is straightforward) leading to absolute differential 
invariants.

The invariance is meant here in the following sense: If φ : M1 → M2 is an equivalence between two 
different spaces with their (2, 3, 5) distributions, sending one curve γ1 ⊂ M1 to another γ2 ⊂ M2 then the 
invariants are superposed. Since the structural group P1 for the Cartan bundle associated to this normal 
parabolic geometry [2] was central in our computations, the basic invariants are expected to generalize.

For the geometry of type (G2, P12) the situation is completely similar because it is functorially equivalent 
to the geometry of type (G2, P1). However in the curves case (G2, P2) type geometry fails the twistor 
correspondence, so this would require a separate consideration.
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