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Abstract

The topic of this thesis is relative depth estimation using interferometric sidelooking so-
nar. We give a thorough description of the geometry of interferometric sonar and of time
delay estimation techniques. We present a novel solution for the depth estimate using
sidelooking sonar, and review the cross-correlation function, the cross-uncertainty func-
tion and the phase-differencing technique. We find an elegant solution to co-registration
and unwrapping by interpolating the sonar data in ground-range. Two depth estima-
tion techniques are developed: Cross-correlation based sidescan bathymetry and syn-
thetic aperture sonar (SAS) interferometry. We define flank length as a measure of the
horizontal resolution in bathymetric maps and find that both sidescan bathymetry and
SAS interferometry achieve theoretical resolutions. The vertical precision of our two
methods are close to the performance predicted from the measured coherence. We
study absolute phase-difference estimation using bandwidth and find a very simple
split-bandwidth approach which outperforms a standard 2D phase unwrapper on com-
plicated objects. We also examine advanced filtering of depth maps. Finally, we present
pipeline surveying as an example application of interferometric SAS.
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Chapter 1

Introduction

Detailed seabed mapping plays an important role in a number of different areas such as
offshore exploration, environmental surveillance and military applications. This thesis
presents methods for relative depth estimation using interferometric sidelooking sonar.
Low resolution depth maps (with a few meters horizontal resolution) can be generated
fast and robust by cross-correlating real aperture (sidescan) sonar images. High resolu-
tion maps can be generated using interferometric synthetic aperture processing (InSAS).
We present methods, limitations and performance of both types, along with results from
sample applications.

1.1 Motivation

There are three important quantities in high resolution seabed mapping: Vertical ac-
curacy, horizontal resolution and area coverage rate. Today, multibeam echo sounders
(MBEs) are the most common sensor (de Moustier et al. (1990); Lurton (2002, pages
272-275)). A multibeam echo sounder can not achieve high area coverage rate and high
horizontal resolution simultaneously, since both the range and the resolutions are pro-
portional to range (de Moustier et al., 1990). Another approach is to use an interfero-
metric sidelooking sonar (Denbigh, 1989; Bird and Kraeutner, 2001; Denbigh, 1994). A
real aperture interferometric sidescan (swath bathymeter) has long range and therefore
high area coverage rate (Seebg and Langli, 2010). However, its horizontal along-track
resolution is also limited, unless at very short range and very high frequency.

Synthetic aperture sonar (SAS) processing (Cutrona, 1975; Gough and Hawkins,
1997; Pinto, 2002; Hayes and Gough, 2009) produces sonar images which ideally are
range- and frequency-independent. The resolutions are limited by bandwidth in range
and sonar element size along-track, and can be as low as a few centimeters in both di-
mensions. Although SAS is very similar to synthetic aperture radar (SAR), it is only re-
cently that commercial SAS systems have become available. Interferometric SAS (Grif-
fiths et al., 1997; Bonifant Jr et al., 2000) can potentially produce depth maps with close
to image resolution, but is still an active research field. Most results presented in the
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(a) SAS image (b) SAS bathymetry

Figure 1.1: SAS image (left panel) and SAS bathymetry (right panel) of a German WWII plane
Focke Wulf 190 A-3. The plane was found by the Royal Norwegian Navy Mine warfare flotilla
at 98 m water depth during a search mission with the HISAS 1030 interferometric SAS.

literature are from simulations or from experimental systems.

We believe that SAS systems will replace traditional sidescan sonars in applications
where resolution is important. Such applications include offshore exploration, naval
mine hunting and archaeological surveying. Furthermore, interferometry will be im-
portant on SAS systems for two reasons: It is essential for successful SAS imaging in
non-flat terrain (Jakowatz et al., 1996, pages 176-186) and it provides important depth
information which is not accessible from the SAS images alone (see Figure 1.1).

In order to form a well focused SAS image in non-straight synthetic apertures, the
seafloor depth must be known (Jakowatz et al., 1996, pages 176-186). We believe that
sidescan bathymetry is a good approach to obtain this information. While most sidescan
bathymeters are narrow-band, and has more than two vertically arrays to resolve phase
ambiguities, we argue that two vertical arrays are sufficient as long as we have large
bandwidth. The phase ambiguities of a large baseline, large bandwidth sonar can be
unwrapped using cross-correlations (Seebg et al. (2007a); Lurton (2002, page 267)) or
multi-band techniques (Lanari et al., 1996).

Since most interferometric SAS systems are at an experimental level there is a lack
of well-documented systems, which have been tested on large amount of experimental
data in varying conditions. We believe that most of the INSAS principles can be adapted
from interferometric SAR (Bamler and Hartl, 1998; Hanssen, 2001). However, there are
different challenges which will be revealed in the transition of the technologies. A tho-
rough investigation of all aspects of interferometric SAS will advance the state-of-the-art
of underwater depth estimation and will open for new applications.
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(a) HISAS 1030 (b) HUGIN 1000-MR

Figure 1.2: Picture of the HISAS 1030 arrays (left panel) and the HUGIN 1000-MR with the
HISAS (right panel).

1.2 Thesis scope

The main scope of this thesis has been to develop methods and algorithms for measu-
ring relative depth using the HISAS 1030 interferometric sidelooking sonar; (see Figure
1.2). We have divided this subject into two parts: Real aperture sonar and synthetic
aperture sonar.

For depth estimation using real aperture sonar (swath bathymetry) the literature is
scarce, so we build upon methods from other research fields, like time delay estimation.
The goal has been to develop, implement and verify a method which is fast, robust and
accurate enough for mapping of large areas (i.e. a few meters horizontal resolution). The
depth estimation performance when it comes to horizontal resolution, vertical precision
and sustainability should be established through theory, and verified by simulations
and real-data measurements. The scope has not been to develop a method which is
optimum from a stand point of information theory.

For depth estimation using synthetic aperture sonar (interferometry) the scope has
been to learn from the interferometric synthetic aperture radar literature, and transfer
existing algorithms. This means adapting the algorithms to a new environment, e.g. a
different phase velocity and different geometry. Again, the methods have to be robust
and applicable on large amounts of data. The scope of this thesis also include advanced
concepts for filtering of depth estimates, resolving phase ambiguities using bandwidth,
and investigation of possible applications like pipeline surveying. However, these to-
pics will be presented at a concept level, and will not be subject to the same extensive
testing as the main interferometric method.

Another important part of this thesis has been to implement the methods on a spe-
cific sensor platform; in this case the HUGIN 1000-MR autonomous underwater vehicle
(AUV) showed in Figure 1.2(b). This includes solving interference issues, importing
navigation and environmental data, and calibrating lever-arms. However, as long as
the geometry is suitable, the methods in this thesis should be applicable to almost any

3



interferometric sidelooking sensor on almost any platform. An important topic is a com-
parison of the performance of our depth estimation algorithms with the performance of
an EM 3000 mounted on the same AUV. An EM 3000 is an advanced multibeam echo
sounder and represents in this case an excellent validation sensor.

In summary, this thesis advances the state-of-the-art of underwater depth estimation
by describing and verifying methods for swath bathymetry and interferometry using
AUV based interferometric synthetic aperture sonar.

1.3 Thesis contribution

The contributions of this thesis to the research area of relative depth estimation using
sidelooking sonar are the following (in order of appearance):

e The design and evaluation of the HISAS sensor and the development of the FO-
CUS software package for SAS processing (Hansen et al., 2010a). Much of the
work during this period has contributed to the development of HISAS, which
has become a commercially available product from Kongsberg Maritime (Fossum
et al., 2008). This sensor is bundled with the FOCUS processing software, which
among other things contains all methods described in this thesis. HISAS with FO-
CUS is now sold to a number of international costumers, including two Navies.

e A thorough mathematical description of the geometry in relative seafloor depth
estimation. Although equivalent methods exist, our novel description provides an
approximation-free and alternative solution. This description was first presented
in Seebg et al. (2007b) and appears here in Section 3.1.3.

e The refined estimate of the time delay from time series with asymmetrical spectra.
This method was first presented in Seebg et al. (2007b) and appears here in Section
4.1.4.

e The use of the cross-uncertainty function as a time- and dilation-estimator in swath
bathymetry. This work was first presented in Sebg et al. (2007a) and appears here
in Section 4.3, 4.4 and 8.2.

e The use of a coherence weighted bilateral filter to smooth interferometric depth
maps. This method was first presented in Seebg et al. (2009) and appears here in
Section 8.4.

e The in-depth comparison of a swath bathymeter with a multibeam echo sounder,
on data collected simultaneously using the same sensor platform. This study was
first presented in Seebg and Langli (2010) and appears here in Section 8.5.
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1.5 Outline

The outline of this thesis is as follows. Chapter 2 gives an introduction to interferometric
synthetic aperture sonar. The main topics of the chapter is imaging and interferometric
processing, but it also covers statistics of synthetic aperture images. We conclude with
a comparison of interferometric synthetic aperture radar and interferometric synthetic
aperture radar (InSAR). The material presented here is a review of earlier work.

In Chapter 3 we give a thorough description of the geometry in interferometric side-
looking sonar. We describe the interferometric time delay and time dilation and present
a ground-range co-registration technique which corrects for both effects. We also dis-
cuss effects of aperture length and deduce the accuracy of the relative depth estimate.

In Chapter 4 we discuss time delay estimation and time dilation estimation. We
introduce the cross-correlation function, the cross-uncertainty function and the phase-
difference technique. We present a number of likely model errors, before we conclude
with a short section on coherence estimation.

In Chapter 5 we describe our specific implementation of the methods presented in
Chapters 3 and 4. We have divided the subject into depth estimation using sidescan so-
nar, depth estimation using SAS and use of relative depth estimation in SAS processing.
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In Chapter 6 we present detailed specifications of the HISAS 1030 sonar and com-
pare HISAS to a number of SAR systems. We also briefly discuss the HUGIN 1000-MR
autonomous underwater vehicle.

In Chapter 7 we present a theoretical study of the horizontal resolution and vertical
precision of the relative depth estimates. We distinguished between depth estimation
using sidescan sonar and depth estimation using SAS. We verify our findings using
simulated data.

In Chapter 8 we present results from a number of studies using experimental HISAS
data. These topics are comparison of HISAS with a multibeam echo sounder, filtering
of interferograms and depth maps, resolving phase ambiguities and using HISAS for
pipeline inspection.

The conclusion of this thesis is presented in Chapter 9.
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Chapter 2

Interferometric synthetic aperture
processing

This chapter provides a summary of the appropriate background knowledge needed to
follow subsequent parts of this thesis. For an extensive coverage on the topic see e.g.
Hanssen (2001) or Franceschetti and Lanari (1999).

2.1 Imaging

Echo imaging is an inverse problem where the goal is to construct an image which re-
presents the locations of discrete targets, or the spatial distribution of a continuous para-
meter related to the physical properties of a target (Soumekh, 1994, chapter 1). In sonar
imaging, large-bandwidth acoustic pulses are transmitted and pulse compressed on re-
ceive. The pulse compression is a matched filtering with maximizes the signal-to-noise
ratio (SNR) in white Gaussian noise (DiFranco and Rubin (1980, chapter 5); Levanon
(1988, chapter 5); Richards (2005, pages 161-167)). Each target in the illuminated scene
produces an echo which after pulse compression appears as a sinc-like pattern in the re-
ceived time series, dependent on the transmitted pulse form (Franceschetti and Lanari,
1999, pages 15-24). We define slant-range to be the direction of the acoustic waves for
a given range. Often, range and slant-range are used interchangeably. The 3dB range
resolution is a measure of the range-distance needed to separate two targets of equal
strength by 3 dB (Franceschetti and Lanari, 1999, page 23)
ssi ¢
0 =on (2.1)
where c is the speed of sound and B the signal bandwidth. To suppress sidelobes at the
expense of increased resolution we apply a mild window after the matched filter.
In this thesis we define an imaging coordinate system, where z is the coordinate
along the receiver array, r is the slant-range coordinate, z is pointing down towards
the seafloor and y is ground-range orthogonal to = and =z (the zyz system forms a right
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Figure 2.1: Sketch of the imaging geometry. The along-track direction (or equivalently, the re-
ceiver array direction) is x, z points down towards the seafloor and y is cross-track.

hand coordinate system, see Figure 2.1). In sonar it is common to have an horizontal
array of receiver hydrophones. In this case the received time series can be dynamically
focused or beamformed in different directions. A narrow-band beamformer uses phase
multiplicators to phase-delay the time series relative to each other (Van Trees, 2002, page
34). A broad-band beamformer, time delays each time series in order to achieve a focused
image (Johnson and Dudgeon, 1993, pages 112-119). A common definition of a narrow-
band signal is that the signal bandwidth is significantly less than the frequency (Taylor,
1994, page 2). Modern imaging sonars can be broad-band.

The along-track 3dB image resolution of a physical array with N, elements of along-
track size d is (Van Trees, 2002, pages 46-51)

A A A
Nrdr = 0.89lzr NI (2.2)

55 = 0.891

where )\ is the wavelength of the transmitted signal, » is the range and L = N,d is
the receiver array-length. Since the frequency is defined as f = ¢/, the along-track
resolution can be increased either by increasing the array-length or by increasing the
frequency. As very large arrays are impractical, the along-track resolution is usually
improved by increasing the signal frequency. However, high-frequency signals suffer
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from attenuation (Brekhovskikh and Lysanov (1982, pages 9-11); Lurton (2002, pages
18-26)) and will therefore decay at a shorter range.

A sidelooking imaging sonar which is based on beamforming a physical array is
sometimes referred to as a real aperture sonar (in contradiction to a synthetic aperture
sonar). When such a sonar is moved along a path and repetitive pulses are transmitted,
it is called a sidescan sonar.

2.2 Synthetic aperture processing

A real aperture sonar is limited by a range-dependent along-track resolution. In or-
der to achieve high along-track resolution, one must have very high frequency and
short range. This reduces the area coverage rate and makes the sonar impractical for
surveying of large areas. A solution adapted from radar is to use synthetic aperture
processing (Franceschetti and Lanari, 1999; Jakowatz et al., 1996). In synthetic aperture
processing successive pings (or pulses in radar terminology) are coherently combined to
synthesize a longer array. The range-resolution is the same as for real aperture imaging

5sas'1 _ 655'1 - 23
T r 2B7 ( )

However, the along track resolution becomes

- A
(SSaSl ~ 2 '4

where Lg, 1S the length of the synthetic aperture, and the factor two in the denominator
is caused by the motion of the transmitter along the synthetic aperture (Lurton, 2002,
page 173). The length of the synthetic aperture is limited by the beamwidth of the
receive elements

Lsa < 37“- (2.5)

This means that the maximum along-track resolution achievable is given by (Curlander
and McDonough (1991, page 16-21); Franceschetti and Lanari (1999, pages 24-31))

sasi ~_ d

05 5" (2.6)
The most important property of Equation 2.6 is that it is range-independent. This is
guite counter-intuitive for people trained within classical beamforming; the shorter the
element, the better the resolution. Note that the diffraction limit (Jakowatz et al., 1996,
page 75) is given by \/4, so there is no benefit in having elements smaller than /2.
Similar to the pulse compression, we apply a mild window in the synthetic aperture
processing to suppress along-track sidelobes in the synthetic aperture images. Figure
2.2 shows an illustration of the difference between real aperture and synthetic aperture
imaging.
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Figure 2.2: Illustration of sidescan sonar imaging geometry (upper panel) and SAS imaging
geometry (lower panel).

In synthetic aperture processing one has to move less than half the receiver element
size between pings, in order to avoid undersampling lobes (Franceschetti and Lanari,
1999, pages 28-29). Since the phase velocity is a factor of 2 - 10° lower for acoustic waves
in seawater than for electromagnetic waves, this imposes an impractical limitation. It
is therefore common to use a large number of elements along-track to increase the area
coverage rate (Cutrona, 1975; Bruce, 1992).

Another serious constraint is the need for accurate navigation. Navigation errors lar-
ger than a fraction of a wavelength over the synthetic aperture will cause defocus in the
synthetic aperture images (Jakowatz et al., 1996, pages 228-238). Since the length of the
synthetic aperture increases with range, the navigation constraint becomes range de-
pendent. Thus the image quality is often range dependent even if the theoretical image
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Figure 2.3: The principle of interferometry is based on estimating the time difference of arrival
of two vertically displaced receivers.

resolution is not. On small platforms such as AUVSs, inertial navigation systems alone
can not provide the desired navigational accuracy, so micronavigation techniques which
use redundancy in the data to estimate sensor translation has been developed. One of
the most common methods is the displaced phase center antenna principle (DPCA)
which uses cross-correlations on element data (Bellettini and Pinto, 2002).

Another approach adapted from SAR is autofocus, which is a method for blind cor-
rection of image degradations using the complex synthetic aperture image as input.
The most common technique both in SAR and SAS is called phase gradient autofocus
(PGA) (Jakowatz et al. (1996, pages 251-269); Carrara et al. (1995, pages 264-268); Callow
(2003)).

2.3 Interferometry

Interferometry means to determine the angular direction of an arrival signal, by means
of the time delay between the arrival of the signal at spatially separated receivers (Hans-
sen, 2001; Franceschetti and Lanari, 1999). Figure 2.3 shows a simple sketch of a typical
interferometric sonar. A single transmitter and two vertically separated receivers are
used to determine the depression angle of the arriving echo.

The distance between the interferometric receivers is called the baseline. Usually, one
assumes that the baseline, D is small relative to the range so the arrival wavefronts can
be considered parallel (Hanssen, 2001, page 36). The relative depth, z is then found from

CT

z= r<5) 2.7

where 7 is the interferometric time delay between the arrival signals. The time delay is
usually estimated from the phase-difference between the signals (Hanssen, 2001, page
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15). The precision of the time delay estimate is a function of SNR, and the estimate can
thus be very precise for high SNR. However, the phase-difference is ambiguous mo-
dulo 27 (Ghiglia and Pritt, 1998). A number of different approaches have been made
to unwrap the phase. 2D phase unwrappers find the most likely phase assuming that
the data are continuous (Ghiglia and Pritt, 1998), multi-receiver or multi-frequency sys-
tems use redundancy to resolve the ambiguities (Hanssen, 2001, pages 72-79) and cross-
correlation based methods estimates the ambiguities at the expense of poorer horizontal
resolution and increased processing time (Lurton, 2002, page 267).

The accuracy of the time delay estimate is proportional to the baseline (Hanssen,
2001, pages 35-38). However, increasing the baseline to much will reduce the coherence
between the signals (Lurton, 2000) and also deteriorate the accuracy of the time delay
estimate. Other limiting factors are

e Layover (Franceschetti and Lanari, 1999, page 37-41). In layover regions, there
is a mixture of signals arriving from different directions. The different directions
cannot be resolved and the coherence drops.

e Shadow (Franceschetti and Lanari, 1999, page 37-41). In shadow regions, there is
a lack of signal energy and a time delay can not be estimated.

e Multipath (Brekhovskikh and Lysanov, 1982, chapter 9). Signals arriving from
other directions than directly from the seafloor (e.g. via the sea surface or from an
elevated object and via the seafloor) will deteriorate the time delay estimate.

In benign bathymetries, the interferometric performance is limited by baseline decorre-
lation at close range and SNR at long range (Lurton, 2000). In area with large bathy-
metric variations or with large man-made objects, layover, shadow and multipath will
limit the interferometric performance.

2.4 Synthetic aperture image statistics

When the image resolution is significantly larger than the wavelength of the transmitted
signal, many scatterers will contribute to the response for each resolution cell (Hanssen,
2001; Oliver and Quegan, 2004, page 89-91). It is then not possible to determine the
response of individual scatterers within a resolution cell. The result is the characteris-
tic speckle response (Hanssen, 2001, page 89-91). A common method is to model the
measured reflection as a sum of many scatterers. Applying the central limit theorem,
the observations can be considered complex (circular) Gaussian random variables. The
following assumptions are made (Hanssen, 2001, page 89-91)

e No single scatterer should dominate the others in a resolution cell

e The phase of the individual scatterers must be uniformly distributed between —rx
and 7. This holds since a very large phase (r > \) is wrapped into the —7 to 7
interval.
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e The phases of the individual scatterers must be uncorrelated.

e The amplitude must be independent from the phase for every scatterer. This holds
because the phase is a function of propagation length and is independent of the
scattering mechanism

The joint probability density function (PDF) for the image amplitude, « and the
image phase, v can be written (Hanssen, 2001, page 89-91)

2o

pla,v) = (2.8)

=25 exp (—%) : fora>0and — 7 <v<nm
0 . otherwise,

where o = /E{I}/2. Here I is the intensity of the resolution cell and E{/} its expecta-
tion value. The marginal PDF of « is obtained by integrating » from —x to .

a _a? : >
pa) = { ~5 €XP < 202) fora >0 2.9)

0 :  otherwise.

Equation 2.9 is the Rayleigh distribution (Hanssen, 2001, page 89-91). The marginal PDF
og v is found by integrating a from 0 to oo

L for —n<v<nm

_ W -
Plv) = { 0 : otherwise. (2.10)

Equation 2.10 describes a uniform distribution. Since p(a,v) = p(a)p(v), a and v are
uncorrelated. The pixel intensity variation using the above model is known as speckle.
The effect of speckle is often reduced by assuming ergodicity and averaging pixels inco-
herently. The resulting PDF of the intensity of N averaged pixels is the x2-distribution
with 2NV degrees of freedom (Hanssen, 2001, page 89-91)

! ), (2.12)

TR TN Y G@

where I' is the Gamma function (Rottmann, 1995). For N = 1, Equation 2.11 reduces to
the exponential PDF. For N — oo, it equals a Gaussian PDF.

]2N71

p(I; N)

2.5 Relation to radar

The principle of synthetic aperture radar and synthetic aperture sonar is the same, but
there are fundamental differences (Hansen et al., 2010a):

e For electromagnetic signals in air, the phase velocity is typically 3 x 10 m/s. For
acoustic waves in seawater, ¢ ~ 1.5 x 10> m/s, which limits the forward velocity in
SAS. In practice, it is difficult to make a stable SAS-platform with a low enough ve-
locity. The solution is to use multi-element receiver arrays (Cutrona, 1975; Bruce,
1992).
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The atmospheric attenuation of electromagnetic signals depends on the weather
conditions, but is often considered a minor effect in SAR. In SAS, however, the
seawater absorbs the acoustical signal energy through viscosity and chemical pro-
cesses (Brekhovskikh and Lysanov (1982, pages 9-11); Lurton (2002, pages 18-
26)). This limits the range for a given frequency, as the practical range is roughly
constant measured in wavelengths.

The phase velocity has to be known along the wave path. In SAR the speed of light
is accurately known, but in SAS the speed of sound varies with depth (Brekhovs-
kikh and Lysanov (1982, pages 2-9); Lurton (2002, pages[pages 39-41)). In coastal
waters, there are also local horizontal and temporal variations. The variation may
be as high as 2% along the wave path. The effect is two-fold: An error in the ave-
rage sound speed leads to defocusing of the SAS images (Rolt and Schmidt, 1994;
Hansen et al., 2007), while an error in the sound speed profile also causes position
errors (Hegrenzes et al., 2010).

The imaging geometry of existing SAS systems are very similar, with a swath rea-
ching from nadir to roughly ten times the altitude. This geometry is very different
from spaceborne SAR systems, which have a much more vertical geometry. The
vertical geometry reduces the effect of shadowing, but increase the effect of fore-
shortening and layover (Franceschetti and Lanari, 1999, pages 37-42). An airborne
SAR system usually has an imaging geometry somewhere between a SAS and an
spaceborne SAR.

To make a diffraction limited image, the sensor position has to be known within a
fraction of a wavelength over the synthetic aperture. Satellite tracks are determi-
nistic and accurately known within this limit, but on airborne SAR systems and
SAS systems (which can not use GPS) the navigation is often a limiting factor.

While SAR, being available for decades, has reached a very high level of maturity,

SAS has only recently become commercially available. This is partly due to the diffe-
rences listed above. SAR interferometry is today very sophisticated, using techniques
such as repeat-pass image collections over years and multi-baselines for tomographic
(or 3D) imaging. SAS interferometry has been demonstrated successfully at numerous
occasions, but has yet to reveal its full potential. It is likely that advanced methods in
interferometric SAR will be adapted by the SAS community. Current technology trends
in SAR interferometry are:

e Differential and repeat-pass interferometry for deformation monitoring, where
multiple images are collected over a large time span (up to years). A major li-
mitation is that the effect of the atmosphere has to be estimated and compensated
for.

e Multi-baseline SAR tomography for 3D imaging, e.g. used in forest mapping (to
estimate the average height of the trees).
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Single pass multi-platform interferometric SAR for increased baseline and map-
ping accuracy using several platforms in formation flying.

Bistatic SAR using one moving antenna and one stationary antenna, or two mo-
ving antennas.

Multi-frequency and ultra wideband SAR for characterization of areas and targets.

Multi-channel along-track interferometry for moving target indication.
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Chapter 3

Geometry

Interferometry can be looked upon as an advanced form of stereometri (Franceschetti
and Lanari, 1999, pages 167-171). Geometrical differences in signals recorded at dif-
ferent positions are used to resolve the angle of arrival of the signal. In relative depth
estimation using a bistatic sonar, the echo from the seafloor recorded at individual re-
ceivers is exploited (Lurton, 2002, pages 266-267). This method is closely related to ra-
dar interferometry (Hanssen (2001, pages 51-58); Franceschetti and Lanari (1999, pages
185-195); Jakowatz et al. (1996, pages 303-317)). However, the geometry can be quite
different for sidelooking sonar. While a radar system may have a very large depression
angle and baseline, a sonar is usually operated close to the seafloor and with a relati-
vely small interferometric baseline (see Section 6.3). Figure 3.1 shows a schematic of the
geometry for a sonar system on an autonomous underwater vehicle.

In more detail, the time delay for a location on the seafloor, 7, caused by travel path
differences, is converted to a direction of arrival, or a depression angle, . By combi-
ning this angle with the range to the seafloor we can determine the relative depth of
the seafloor, z. A description of the relation between 7 and z can be found from the
vertical geometry alone, which means that a common set of equations apply for both
relative depth estimation using sidescan sonar and interferometric SAS. However, SAS
interferometry has some additional effects in the horizontal plane, due to the integra-
tion along-track. We will start by describing the common vertical geometry and then
discuss the effects of synthetic aperture processing later in this chapter.

3.1 Geometry in the vertical-plane

Figure 3.1 shows an interferometric sonar with two receivers illuminating a seafloor
with relative depth, z,. Without loss of generality, the coordinate system is chosen such
that the transmitter is placed at origin. The upper receiver is at position (y;, z;) relative
to the transmitter and the lower receiver at (v, 25). For a given position (yo, zo) at the
seafloor, each receiver records a backscattered signal f(r(yo, 20)) Where r(yo, zo) is the
two-way range from the transmitter, to the seafloor and back to the receiver. The re-
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Figure 3.1: Schematic of the vertical plane of a sidelooking sonar with a transmitter at origin
and two receivers at positions (y1, z1) and (y2, z2). The signal is transmitted down to a position
(yo, z0) at the seafloor and reflected back to the receivers. The z-axis points down toward the
seafloor.

ceived signal is a geometrical transformation of a single realization of the underlying
reflectivity function of the seafloor, s(y, z).

3.1.1 Interferometric time delay

The basis of relative depth estimation and interferometry is an accurate description of
the time delay caused by the bistatic configuration (Hanssen (2001, pages 51-58); Fran-
ceschetti and Lanari (1999, pages 185-195); Jakowatz et al. (1996, pages 303-317)). From
Figure 3.1 we see that the backscattered signal for a reflector at (y, z) arrives at the two
receivers with the time delay

T(y7 Z) = t1<y7 Z) - t2(y7 Z) = %((To(y, Z) + Tl(yv Z)) - (T0<y7 Z) + T2<y7 Z))),
(3.1)

= %(Tl(y, z) — 12y, 2)),

where t1(y, z) and t,(y, z) are the receive times for receiver #1 and #2, respectively, and
c is the sound velocity. The time delay, 7, is in the literature sometimes referred to as
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the time difference of arrival (TDOA), while t,(y, z) and ¢(y, z) are the time of arrivals
(TOA) (Falsi et al., 2006). The ranges can be written

roly, 2) = (2 + 2%)"%, (3.23)
m(y,2) = ((y— )’ + (. — 21)%) %, (3.2b)
ra(y,2) = ((y— y2)* + (2 — 22)2)1/2. (3.2¢)

From Equations 3.1 and 3.2 it is possible to find a solution for z. Notice that only the
return paths are different in the time delay calculation. By relocating the origin to the
lower receiver and rotating the coordinate system (see Figure 3.2) the ranges can be
written as

1/2
n.?) = () + & +D7) ", (3.3a)
1/2

ra(, ) = (W) + () (3:3b)

where D is the baseline between the receivers. The seafloor position (y/, z’), relative to
the lower receiver in the new rotated coordinate system is given by

Yy = ycos Py + zsin Py, (3.4a)
D
2 = zcos @y — ysin Py — > (3.4b)
where @, is the rotation between the (y, z)-frame and the (y/, 2’)-frame, or the tilt-angle
of the sonar relative to vertical. For simplicity, we have assumed that the transmitter is
centered between the receivers.
From Equations 3.1 and 3.3 we get the time delay on a functional form

Ty Z 1/2
(v, 2 =rmy, ) =y, 2) =71(y,2) = 7(ry) = - <<1 + D@7 + D) :— D)) - 1). (3.5)

T3

The upper panel of Figure 3.3 shows the bistatic time delay as a function of range (in
a non-rotated coordinate system). We see that for typical sidescan sonar of 100 kHz
center frequency and higher (Lurton, 2002, page 264), the delay is multiple wavelengths
for almost all ranges (a wavelength is equivalent to a delay of 0.01 ms for 100 kHz). This
means that the phase-differences are wrapped modulus 27 and cannot be used as an
estimate for the time delay without some sort of phase unwrapping (see Section 4.6.8).
An alternative is to use short-time cross-correlations along the range axis.

Inverting Equation 3.5 gives the relative seafloor depth in the rotated coordinate
frame as a function of the measured time delay 7 = 7(v/, 2/), and the range r, = (v, 2’)

, ct [ cT D
- — 1) == 3.6
=R D (27‘2 ) 2 (3.6)
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Figure 3.2: Schematic of the vertical plane of a sidelooking sonar with one receiver at origin and

one receiver at a distance D above origin. The coordinate system is rotated so the two receivers
both lie along v’ = 0. The signal is reflected from a position (y;, z{,) at the seafloor.

Usually, the incoming sound paths can be assumed to be parallel with 27, > ¢7, which

simplifies the solution to
, cr D
N ry— — —. 3.7
< T2 D 9 (3.7)
The effect of this approximation is illustrated in the lower panel of Figure 3.3.
The depth of the seafloor in a non-rotated coordinate system can now be calculated

based on simple trigonometry

D
z=\/r2— (')’ sin ®y + (z' + 5) cos P (3.8)

Another common way of solving the geometry is to use angles. For a sonar with tilt-
angle &, the relative depth is given by

z =rsin (P + dy), (3.9

where the estimated depression angle relative to the tilt-angle @, is
O ~ sin! (Z) 3.10
sin o) (3.10)
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Figure 3.3: Interferometric time delay and reconstructed seafloor depth. Panel (a) shows the time
delay in milliseconds between signals recorded at the interferometric receivers, as a function of
range. Panel (b) shows the corresponding calculated seafloor depth from the time delay, as a
function of range. The solid line shows the result using Equation 3.6 and the dashed line shows
the result using Equation 3.7. In both panels we have used a sonar with ¢ = 1500 m/s, z = 15m,
D = 30cm and &, = 22 degrees.
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Here we have assumed that the incoming sound ways are parallel, an approximation
which is identical to assuming 2r, > c7. For &, = 0, this method gives the same answer
as Equation 3.7 (ignoring the % translation of the coordinate systems). However, it is
more difficult to find an exact answer using this approach.

3.1.2 Interferometric time dilation

In this section we study details of the interferometric time delay and show how the
delay can be interpreted as a dilation of the spatial geometry. A sidelooking sonar mea-
sures a realization of the underlying seafloor reflectivity function, s(y, z), as a function
of time, ¢. We assume that there is only one depth for each position, i. e. s(y, z) = s(y).
By replacing the bistatic sonar with a phase center antenna (PCA) (Bellettini and Pinto,
2002), time is related to the one-way range through the relation ¢ = 2r/c. Since time is
only a scaled version of range, we use the latter for convenience. We will show that the
coordinate transform from y to r can be regarded as a dilation of the spatial y-coordinate.
Without loss of generality we adopt the rotated coordinate system from the previous
section and omit the apostrophe for simplicity.

A signal, g(u), is dilated relative to a reference signal, h(v) if g(u) = h(au) for some
dilation-factor «. Through the use of the chain-rule we see that the dilation-factor is
given by
_ du
- do’
At the receivers we measure a realization of the reflectivity function, s(y), as a function
of time or range, r(y). From Equation 3.3, we differentiate r(y) with respect to the spatial
y-coordinate, which is equivalent to the Jacobian used in a one-parameter transform

N (3.11)

d’/’éz(/y) = rlizy) = cos P1(y) = a1 (y), (3.12a)
d”f’;g(j/) = T;(/y) = cos P (y) = az(y), (3.12b)

where ®,(y) and ®,(y) are the depression angles for receiver #1 and #2, respectively, and
a;(y) and ay(y) are the dilation-factors. The dilation-factors are functions of y, which
induces a range-dependent dilation, equal to the usual cosine-transform between slant-
range and ground-range (Jakowatz et al., 1996, pages 317-320).

We express the two time signals received at the interferometric array as

fl(T1)
fé(rz)
where f;(r;) is the recorded signal at receiver #1 and f,(r) is the recorded signal at

receiver #2. The two signals are time dilated or time scaled versions of the seafloor
reflectivity function, s(y). For a constant seafloor depth, z, and a fixed baseline, D,

(a1(y) - 71), (3.13a)
(aa(y) - 12), (3.13b)
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®

I
®
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a; = ay for y — oo. From Equation 3.13 we see that there is in fact no time delay
between the two signals, only a different dilation of the seafloor reflectivity function.
However, when comparing a small subset of two signals dilated differently from an
origin outside the selected subset, one can perceive the dilation as a delay and a local
dilation. The upper panel of Figure 3.4 shows the dilation of the seafloor reflectivity
function for the two receivers. The dilation is almost identical for the two receivers
since z > D.

In seafloor depth estimation, the relative dilation between f,(r) and f,(r) is more
important than the dilation of the seafloor reflectivity function, s(y), itself. By using the
signal at receiver #2 as a reference signal and differentiating r;(y) with respect to ry(y)

we get
d d d 2 2 1/2
o(y) — W) :( 7’1(1/))( rz(@/)) :( e ) | 3.1
dra(y) dy dy >+ (z+ D)
where a(y) is the relative time dilation between the received signals. Equation 3.14
shows that the dilation-factor is unity for D = 0 or for y — oo, which is consistent
with our intuition. The lower panel of Figure 3.4 shows the relative dilation between
the signals in a non-rotated coordinate frame. Notice the rapid decrease in the dilation-
factor for close ranges.
To be able to resolve the seafloor depth at different positions, we divide the received

time series into a number of time intervals. The relative dilation around a position y,
becomes

1/2 12
+ Ay)? + 22 24 22
oo+ Ay) = | — L E2W) ;| = (%) =a(y), (315)
(yo £ Ay)” + (2 + D) Yo + (2 + D)

where the assumption
(yg + 2°) > Ay(2yo + Ay) (3.16)

gives the approximate form. This assumption is approximately equivalent to r, > 2Ay.
Hence, the time dilation can only be regarded as constant for ranges that are large com-
pared to the patch length. Figure 3.5 shows the comparison between the approximated
dilation and the exact dilation for patches at 30 and 100 meters. The patch length is
two meters in both cases. While the approximation is very good at 100 meters, it is
significantly less accurate at 30 meters.

We have now established the following properties for our interferometric model:

e The received signals are time dilated versions of the seafloor reflectivity function
with «;(y) and as(y) as dilation-factors for receiver #1 and #2, respectively (see
Equation 3.12).

e There is a relative dilation given by a(y) between the signals received at receiver
#1 and receiver #2 (see Equation 3.14).
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Figure 3.4: Dilation of the reflectivity function. Panel (a) shows the time dilation of the seafloor
reflectivity function seen by the two receivers as a function of range. Circles show the dilation
seen by receiver #1 and squares the dilation seen by receiver #2. Panel (b) shows the relative
dilation between the two signals as a function of range. In both panels we have used a sonar
with ¢ = 1500 m/s, z = 15m, D = 30cm and & = 22 degrees.
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Figure 3.5: Dilation of the reflectivity function. Panel (a) shows the relative time dilation bet-
ween the signals received at the two receivers for a two meters patch around 30 meters, as a
function of range. The solid line shows the exact dilation and the dashed line an approximated
dilation constant over the displayed range interval. Panel (b) shows the same for a patch around
100 meters. In both panels we have used a sonar with z = 15m, D = 15cm and &, = 22 degrees.
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e The relative dilation can be approximated as constant over a small patch, i.e.,
a(y + Ay) =~ a(y) (see Equation 3.15).

e In effect, the relative dilation causes a time delay, 7(y), between the two receivers
for an echo from the same seafloor location (see Equation 3.5).

3.1.3 Depth estimation in co-registrated ground-range

As we saw in the previous section, interferometric signals are both time shifted (Lur-
ton, 2000) and time dilated (Gatelli et al., 1994) relative to each other. In Section 4.2
we present an estimator suited for time delay estimation on such signals. A different
approach is to use a priori information to eliminate most of the shift and dilation. This
method is in many cases desirable because

e Pre-processing the data increases the coherence between the signals

e Standard time delay estimators (like cross-correlation or phase-differencing) can
be used directly

e High quality a priori data are available from the previous estimate since the sea-
floor are varying slowly relative to the platform motion

e Fast 1D-interpolation along the range axis is usually sufficient

An effect we have to take into account when compensating for the dilation is a change
of the effective frequency of the signals. We consider this effect in detail in Section 5.1.1.

In Figure 3.6 we demonstrate the potential improvement in SNR by beamforming
onto an a priori bathymetry. The maximum cross-correlation coefficients in the time de-
lay estimation is converted to SNR according to Equation 4.17. The results are from a
Monte Carlo simulation of 5000 realizations, with the correlation performed both di-
rectly in slant-range and after beamforming onto an estimated seafloor depth (with five
meters induced depth-error). Use of this (poor) a priori information provides a signi-
ficant improvement in SNR, as can be seen in Figure 3.6. Another improvement is
achieved by using the first estimate to correct for footprint shift, and thereafter cor-
relate again (a simple beamforming). The correction co-registers the data to the nearest
integer number of pixels, and provides a significant SNR improvement. Note that the
oscillations in the iterated correlations are caused by the discrete grid applied in the co-
registration, and may be reduced by increasing the sampling frequency or by using an
improved sub-pixel co-registration technique (the SNR will then approach the peaks of
the oscillations).

Figure 3.7 illustrates how the data is re-gridded down onto an a priori seafloor depth,
z. This method is a simple co-registration (Jakowatz et al., 1996, pages 288-302) where
features are shifted onto the same positions in the two data-sets. If the seafloor is correct
(i.e. Z = z in Figure 3.7), ¥ = yo and oy = 0. When Z # z,, y differs from 3, and the
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Figure 3.6: Estimated SNRs for correlations in slant-range (thick and dashed) and ground-range
(thick and solid) as a function of range. The thin lines are the corresponding SNRs after co-
registering the data to the nearest integer number of pixels.

spatial lag, 6y, becomes non-zero. For a given Zz, dy is estimated for each y-position. We
define the ground-range positions for the reflector at (y, o) to be

U =vy—0y/2, (3.17a)
B = 5+ 0y/2, (3.17b)

where 7/, is the ground-range position for receiver #1 and 15, is the position for receiver
#2. The iso-range ellipses (with the transmitter and a receiver as foci) describes y; and
> as a function of 2

\/?JSJFZSJF\/(yo—Zh)Z (20 — 1) \/Z/1+Z +\/y1—y1 (Z-=z)°, (318a)

\/ ys + 25 + \/(yo - ?/2)2 (20 — 22 U5+ 22+ \/ (Y2 — ?/2 (z— 2’2)2- (3.18b)

These equations can be solved analytically for y, and z,. The problem can be substan-
tially simplified by applying the PCA approximation (Bellettini and Pinto, 2002). This
approximation replaces each transmitter-receiver pair with a common transmitter and
receiver midway between them, at the expense of a small geometrical error. Note that
the normal criterion for using PCA approximation, »r < D?*/\ (where ) is the wave-
length of the transmitted signal) does not apply since we are considering spatial errors,
not phase coherence. The error in the approximation (equivalent to approximating the
ellipses with circles) is smallest for a sonar with a transmitter centered between the re-
ceivers. The PCA error decreases approximately as 1/r%, and increases with the error of
the a priori depth.
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Figure 3.7: Schematic of the vertical plane of a sidelooking sonar with a transmitter in the origin
and two receivers at positions (y1, z1) and (y2, z2). The signal is transmitted down to a position
(yo, z0) at the seafloor and reflected back to the receivers. The z-axis points down toward the
seafloor. The a priori depth is z, which separates the iso-range lines with 6y at the location 7.
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The PCA position for receiver #1 is defined as (yip, z1p) = (v1/2, 21/2) and (yzp, 22p) =
(y2/2, z9/2) for receiver #2. Equations 3.18 are simplified to

(yo — ylP)2 + (20 — le)2 = (i — y1p)2 +(z— zlp)Z, (3.19a)
(o — yor)? + (20 — 200)” = (T — yop)” + (£ — 200)". (3.19b)

The depth is found by subtracting the two equations and solving for z. This solution
is then inserted in any of the equations above and solved for y,. In general the solution
for the relative depth, z,, and position, y, IS given by

1
=50~ Cy, (3.20a)

| —F£F?_4EG

= (3.20b)

Yo
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Figure 3.8: Error (z.s; —2) of depth estimate as a function of a priori depth, z, for a reflector located
at z = 15 meters using Equation 3.20a. In the figure we show the results for a reflector located at
y = 15 meters (solid line), y = 50 meters (dashed line) and y = 150 meters (dash-dotted line).

where the constants are given by

C = yzp—?/n?’
Zop — Z1P
_ A-B
Zop — Z1P
E=1+C>

F = 221130 —DC — 2y1p,
G = (D/2)" = zipD — A,

where

A= - Z/1P)2 + (Z — ZlP)2 — Yip — Z4p,
B —

(Y2 — ?/213)2 +(Z — ZzP)2 — Yap — Zap.

In Figure 3.8 we show the difference z..;—2z (geometrical error) between the estimated
depth z.; and the true depth z as a function of a priori depth for a reflector located at z =
15 meters. From the figure we see that for a sonar with D = 30cm and ¢, = 22 degrees,
the depth-error due to the PCA approximation is less than 1 cm provided that the a priori
depth is between 0 and 50 meters. This error is for most practical purposes insignificant,
but to further reduce the error, one could either solve Equations 3.18 directly (which
would give an exact solution) or run the depth estimation iteratively.
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Figure 3.9: Illustration of a simple two-step co-registration technique. The data from one of
the receivers are interpolated onto an a priori seafloor (1) and then interpolated back onto the
geometry of the other receiver (2).

3.1.4 Co-registration in slant-range

An alternative co-registration method, extensively used in SAR, is to use image features
to eliminate the relative shift and dilation (Fornaro and Franceschetti, 1995). Instead of
using an a priori depth, common features are identified in the two images and one of
the images (the slave) is interpolated to match the other (the master). Usually, a warping
function describing shift, dilation and rotation is calculated from a set of control points
or distinctive image features (Hong et al. (2006); Jakowatz et al. (1996, Pages 293-298)).
Since the images are in slant-range, the phase-differences are directly proportional to
the time delay in Equation 3.5, and Equation 3.6 can be used to estimate the relative
seafloor depth. The advantage with this method is that a priori depth information is
unnecessary. The drawback is that the warping function can be difficult to obtain if the
SNR in the images is marginal.

By combining the a priori co-registration technique from Section 3.1.3 with slant-
range geometry, it is easy to implement a slant-range co-registration technique based
on a priori depth information. One intuitive approach is to interpolate the data from one
of the receivers onto an a priori seafloor (step 1 in Figure 3.9) and then reverse interpolate
the results back to the other receiver (step 2 in Figure 3.9)
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sr to gr gr to sr
slaveg, ——————— slavey,

Slaveco—reglstered’ (321)
slave geometry master geometry

ST

where sr means slant-range and gr ground-range. The geometrical conversions can be
described by Equations 3.2. To reduce errors the two interpolations can be merged.
However, we have chosen ground-range as our preferred coordinate system for depth
estimation and will not pursue this subject further.

3.2 Geometry in the horizontal plane

So far we have discussed the geometry in the range-depth plane. The description is
only dependent on the spatial locations of the receivers relative to the transmitter, and
the relative depth of the seafloor. In the along-track horizontal plane, depth estimation
may also be effected by aperture length.

A beamforming algorithm delays or migrates the received data onto an grid, which
flattens the polar properties of the data. In the case of a full length synthetic aperture, the
iso-phase curves are independent of along-track position, i.e. the vertical cross-section
we considered in Section 3.1 is valid along the y-axis, independent of . We identify
three cases: An infinitesimal aperture (an omni-directional hydrophone), a small aper-
ture (a physical aperture) and an infinite aperture (a synthetic aperture). Figure 3.10
illustrates the iso-phase curves for these three cases. An infinitesimal receiver has cy-
lindrical symmetry with large z-dependence. An infinite aperture, on the other hand,
has plane iso-phase curves (pick any point on the aperture and it looks the same). This
means that somewhere between these extremities there is a transition. Figure 3.10 shows
that for a slice along line A (x = 0) all the sonars behave identically, but for a slice along
line B (x # 0) the phases are scaled relative to the broadside direction. This scaling may
affect the time delay estimate of a bathymetric multibeam sidescan sonar with parallel
lines.

A non-rigorous consideration of the importance of the scaling factor can be found
from simple geometry. We start by assuming circular geometry and define a scaling
factor G = y.¢/yns, Where y, is the y-coordinate of the iso-phase line at broadside and
Yot IS the y-coordinate of the same iso-phase line offset z,; from broadside. In Figure
3.10 this corresponds to where the lines A and B cross one of the iso-phase lines. From
the left panel of Figure 3.11 we see that

Yor = (2 — 2%) 7%, (3.22a)

2 .2\ 12
G = <yb72xf) , (3.22b)

where G is bounded between zero and one, and is equal to one for z,; = 0. Clearly, the
scaling is important for this geometry. For example, x.¢/yns = 0.1 gives a five percent
scaling of the time delay estimate, which easily translates to tens of cm in depth-error.
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Figure 3.10: Iso-phase lines. Panel (a) illustrates a single omni-directional receiver where the
iso-phase lines follows circular arcs. Panel (b) illustrates a physical aperture. The iso-phase lines
are now ellipses. In panel (c) we illustrate a synthetic aperture with straight iso-phase lines. Line
A shows a broadside cross-section (z = 0) and line B an offset cross-section (z # 0).
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(a) Omni-directional receiver (b) Extended aperture

Figure 3.11: Imaging geometries. In panel (a) we describe a circular geometry. The circle has
a radius of y,s and (zf, yof) is @ random point on the circle. In panel (b) we describe a ellipse
geometry with a semi-major axis, a, and a semi-minor axis, b. The distance between the foci is
D. The y-coordinate at x = 0 is given by s, While (z., yof) is @ random point on the ellipse.

For an extended aperture, we model the iso-phase curves as ellipses with the aper-
ture edges as foci. From the right panel of Figure 3.11 and the properties of ellipses
(Rottmann, 1995) we now that r; + ro = 2a, where « is the semi-major axis. At the same
time we know that distance between the foci equals the the aperture length, D, so at

broadside r; = r, = (y2 + (D/Q)Z)_l/z. By inserting these equations into the descrip-
tion of an ellipse we get a = (y2, + (D/Q)Z)_l/2 and b = y,,,, where b is the semi-minor
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axis. Thus the offset y-position and the scaling are

b _
Yof = a(a2 — ) (3.23a)
) 9 -1/2
= (LD (yis — 3+ (9) )) , (3.23b)
i+ (%) 2
) 2 5 —1/2
G — ybs + (D/2> Z‘xof ] (3230)
Yis + (D/2)

We see that Equation 3.23 reduces to Equation 3.22 for D = 0. The scaling is insignificant
when z,; = 0 or when 32, + (D/2)* > 2. Notice the similarity between the scaling and
the dilation described in Equation 3.15. For real aperture depth estimation the scaling
can be notable at close range, but usually becomes insignificant at long range. For SAS
interferometry it is usually negligible.

3.3 Depth accuracy and baseline limitations

The theoretical accuracy of the depth measurement can be calculated by differentiating
any of Equations 3.8, 3.9 or 3.20 (Franceschetti and Lanari, 1999, pages 167-170). Due to
the simplicity of Equation 3.9, we choose that when we derive the theoretical accuracy.
Performing the partial derivative, the standard deviation of the depth estimate, o, can
be expressed as

r cos (P + D)

D cosd 7

where o, is the standard deviation of the time delay estimate. All other variables are
assumed known. Notice that since an interferometer has a fixed angular resolution,
the accuracy of the depth estimate is inversely proportional to the range. Other effects
like the possibility for phase wraps, may be less challenging at long range. This is
an effect related to the specific estimation method and does not effect the theoretical
performance.

Equation 3.24 shows that the depth accuracy is increased proportionally to the in-
terferometric baseline. A longer baseline results in less coherent signals, which again
reduces the accuracy of the depth estimate. In Section 4.7 we discuss coherence and the
estimation of coherence. In this section we will deduce the baseline dependent cohe-
rence. We start by noticing that the interferometric travel-path difference, c7 is equal
to the %)\, where ¢ is the phase-difference between the two signals and X is the signal
wavelength. The depression angle can be written

d =sin~! (%%9) (3.25)
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The spectral shift, 17/, of the signal is (Bamler and Hartl, 1998)

B c@@_ zD cos @

= == 3.26
27 Or “N7? cos (®+ D) (3:26)

This expression gives the change in phase-difference as a function of range and can be
used to calculate the maximum theoretical coherence between the receiver arrays. The
critical baseline, D.,;; is found by setting the spectral shift equal to the bandwidth, B

B r? o+ P
Doy = )\_T_M' (3.27)

c z cos @

The baseline dependent coherence, kp, can be approximated as (Bamler and Hartl, 1998)

D
kprl— —— for D < Det. (3.28)

crit

Panel (a) of Figure 3.12 shows the critical baseline as a function of y-position for a few
different bandwidths. A higher bandwidth allows a larger baseline, which means better
depth estimation accuracy. In SAR interferometry it is common to filter the spectra of
the interferometric data (or even transmit slightly different frequency bands) to increase
the coherence at expense of range resolution. Panel (b) of Figure 3.12 shows the base-
line dependent coherence as a function of y-position for a few different baselines and a
30 kHz bandwidth. In order to achieve sufficient performance, the coherence should be
above 0.9 for depression angles less than 45 degrees. In Figure 3.12 this corresponds to
y-positions above 15 meters, and as the figure shows coherence filtering is unnecessary
for the considered baselines.
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Figure 3.12: Baseline limitations. Panel (a) shows the critical baseline as a function of y-position
for bandwidths of 15 kHz (solid), 30 kHz (dashed) and 60 kHz (dotted). The sonar is at an al-
titude of 15 meters with A = 0.015cm and &, = 22 degrees. Panel (b) shows the baseline de-
pendent coherence as a function of y-position for baselines of 15cm (solid), 30 cm (dashed) and

60 cm (dotted) for a 30 kHz sonar.
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Chapter 4

Time delay estimation

In the previous chapter we showed that the time delay between the two interferome-
tric signals is required in order to estimate the relative seafloor depth. In single-pass
interferometry (Jakowatz et al. (1996, pages 280-282); Franceschetti and Lanari (1999,
pages 31-37)), the accuracy of the estimated bathymetry is almost always limited by the
accuracy of the time delay estimate. In repeat-pass interferometry (Hanssen, 2001, page
2) additional factors like co-registration and environmental corrections can be more im-
portant (Franceschetti and Lanari, 1999, Pages 173-178).

In synthetic aperture processing, time delay estimation occurs at numerous locations
(Shippey et al., 1998). Micronavigation techniques use some form of time delay estima-
tion. DPCA (Bellettini and Pinto, 2002) is based on time delay estimation on 1D time
series of complex data, and very similar to the methods described in the first part of
this chapter. Map-drift (Carrara et al., 1995, Pages 246-260) is based on image correla-
tion methodes, either on complex or magnitude data. Although the displacement of the
images can be ascribable to several effects, the algorithms are often similar to interfe-
rometry (the difference is often that in map-drift you estimate a single offset between
the images, valid for the whole image, while in interferometry you estimate a delay for
each pixel). After the data are beamformed, techniques like shear averaging (Fienup,
1989) and PGA (Jakowatz et al. (1996, page 251); Callow (2003)) use phase-differences
to autofocus the image. As we will show in this chapter, phase-differencing is a simple
and efficient estimation method for interferometric systems.

In this chapter we discuss three different time delay estimators: the cross-correlation
function (CCF), the cross-uncertainty function (CUF) and phase-differencing. We show
that the cross-correlation function is a special case of the cross-uncertainty function and
that phase-differencing is a special case of the cross-correlation function. We present si-
mulation results showing situations where one has to use cross-uncertainty function
in order to avoid strong decorrelation. However, by co-registrating the data in ad-
vance (see Section 3.1.3) the cross-uncertainty function can be replaced by the (much
faster) cross-correlation function without loss of accuracy. If the co-registration is accu-
rate within a fraction of a resolution cell, a full correlation is unnecessary and phase-
differencing will provide a fast solution.
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4.1 Cross-correlation of signals with relative delay

Assume for now that the time dilation between the interferometric signals is negligible
and can be interpreted as a time delay for small subsets of the data. The received signals
can then be expressed as a function of time (or equivalently, a function of range)

f1(t) = s(t) + ni(t), (4.1a)
fa(t) = s(t — t) + na(t), (4.1b)

where we have ignored the time dilation and advanced f,(¢) instead of delaying f;(t).
The random processes n, (t) and ny(t) model the random noise recorded by the receivers.
The statistical cross-correlation function of two random signals f(t) and f,(t) is given
by (Peebles (2001, pages 188-190); Shiavi (1999, page 355))

Rf1f2<t7t_7-) = E{fl(t)fék(t_T)}v (42)

where E{-} denotes the statistical expectation or ensemble average operator. We further
assume that the signals are jointly wide-sense stationary such that the cross-correlation
function is a function of time difference, or local time 7, but not of absolute or global
time t

Rf1f2 (tv t— 7—) = Rf1f2 (T) (43)

By assuming that the noise processes n;(t) and ns(t) are jointly uncorrelated zero-
mean processes, and that both noise processes are uncorrelated with the signal s(¢), we
find that the cross-correlation function simplifies to

Ry p,(7) = E{s1(t)s3(t — 0t — 7))} (4.4)

If we now invoke the ergodic hypothesis, we may replace expectation operators with
time averages, which yields the following useful formulation for the cross-correlation
function

T
Rf1f2 (T> = :Ill—?;o ﬁ . S(t)s*(t — 0t — 7') dt (4.5)
= Ry (0t + 7).

The auto-correlation function R.(7) has its maximum at the origin, which means
that the cross-correlation between f;(t) and f(¢) has its maximum for = —t, i.e.,

Rf1f2 (T = —5i) = Rss<0) (46)

The delay between the signals in additive zero-mean noise can therefore be found by
locating the peak in the cross-correlation function between the two signals.

The echoes from the seafloor received by the two receivers in the interferometric
sonar are not jointly wide-sense stationary. It is the non-stationarity we exploit when we
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convert the time dependent time delay to a spatially dependent depth. The signals are
slowly varying so we can adopt the idea of local stationarity and define a local estimator
of the cross-correlation function as

Rf1f2 2T / f1 f2 t - 7’) (47)

where 27" is a finite time-interval around time ¢, equivalent to a range patch of a few
meters.

4.1.1 Locating the peak of the cross-correlation function

A standard biased estimate of the normalized cross-correlation function of two discrete
time complex valued zero-mean time series a[i] and b[i] of length NV samples, is given by
Shiavi (1999, chapter 9)

N—j
=K ali+jp*[i], j=01,...,N-1, (4.8)

=1
where j € {—(N —1),...,—1,0,1,..., N — 1} is a discrete time lag index. Symmetry
gives Rulj] = Ry, [—j]forj = —1,—2,...,—(N — 1). Note that time index ¢ (or lag

index j) corresponds to the discrete time ¢t = ¢At (or time lag 7 = jAt), where At is the
temporal sampling interval. The normalization factor, K, is chosen so that it bounds the
magnitude of the correlation coefficient between 0 and 1, and is given by

= (Z Jalk] ) |b[l]l2> : (4.9)

=1

N|=

It is well known that this correlation estimator is biased by a factor 1/(N — |j| — 1) for
lag 7. Although it is mathematically easy to construct an unbiased correlation estima-
tor, see e.g., (Shiavi, 1999, chapter 9), the unbiased estimator has an unacceptably large
variance, and it is not positive semi-definite, which means that it may imply negative
power spectra for y[i] = x[i]. Since negative power spectra are physically impossible, we
conclude that the unbiased correlation estimator is rendered unacceptable for physical
applications.

Following Franceschetti and Lanari (1999, page 50) we define the coherence function
as the magnitude of the normalized complex cross-correlation function |R,[j]|. The
coherence, k is the maximum of the coherence function

k = max |Rylj]| - (4.10)
J
The coherence function and coherence in general are discussed further in Section 4.7.
A coarse estimate of the time delay can be derived from the coherence function as
follows. First, we baseband (Glover and Grant, 1998, chapter 13) and cross-correlate
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complex subset of the recorded data. Thereafter, a simple search gives a coarse time
delay estimate 7. through

7. = jeAt, where j. = argmax{|Ru[j][}. (4.11)
j

Hence, the coarse time delay estimate corresponds to the peak of the discrete time co-
herence function. Notice that k = | R, [j.]|. The estimate can be improved by increasing
the sampling frequency of the data collection system, or by interpolation of the cohe-
rence function (or its logarithm) by means of a parabolic fit (Moddemeijer, 1991; Holm,
1993). Alternatively, the phase in the cross-correlation function can be used to improve
the time delay estimate.

Since a correlation function at carrier frequency has the property that the phase
is zero at the true coherence peak, we exploit this by mixing the phase of the cross-
correlation at the location of the coherence peak up to carrier frequency again (i.e.,
we undo the basebanding by multiplying with a complex exponential). The measu-
red phase at the coarse time lag estimate will in general deviate from zero. Hence, this
measured phase deviation can be used to deduce the time delay deviation of the coarse
time delay by

R,,[j.|ei2mfore
Ar = g { Rulicle }, (4.12)
27 fo

where f, is the center frequency of the signal. We now correct the coarse time delay
estimate by this delay deviation, and based on this discussion, propose the following
estimator for the fine time lag

T =7+ AT (4.13)

The probability of 27 wrap errors in the fine estimate is minimized, but may still oc-
cur since the 3dB resolution of the coherence peak is 1/B while the wrap interval is
1/ fo. B is here the bandwidth of the signal. For systems with B < f;, super-resolution
is in principle required to avoid wrap-errors. This can be achieved by upsampling the
cross-correlation function (Mitra, 2002, pages 47-48), provided the SNR is sufficiently
large. Even though the coarse estimate may be too inaccurate to determine the correct
2m-interval, the phase can still be reliable. A 2x7-correction to the phase can therefore
be applied, provided one has a priori knowledge to substantiate this. It should be noti-
ced that the same performance can be achieved by cross-correlating the real signals at
carrier frequency, but then the 27 problem is replaced by the problem of selecting the
correct coherence peak (since the correlation function of two real signals looks like a
high-frequency modulation of the magnitude of the corresponding complex correlation
function).

To avoid interpolation errors, upsampling should always be performed on baseban-
ded data rather than on data at carrier frequency (Hawkins, 1996, chapter 4). Therefore
one should always correlate basebanded time series and correct the phase of the coarse
correlation peak only, as showed in Equation 4.12, rather than correlating the time series
at carrier frequency and directly read out the correct phase.
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4.1.2 Magnitude-correlation

A change of the phase-differences between the input signals over the correlation win-
dow will cause decorrelation. The phases, which give us the high accuracy of the time
delay estimate, thus reduce the robustness of the estimate. Therefore it can sometimes
be advantageous to cross-correlate the magnitude of two complex signals (magnitude
correlation) rather than cross-correlating the complex signal directly (complex corre-
lation). One of these circumstances is when baseline decorrelation is significant (see
Section 4.6.2). Note that the Nyquist-frequency doubles when taking the magnitude of
the complex values, since the number of samples is halved.
An estimator of the magnitude cross-correlation function is given by

N—j
il =K lali+4]I[b*[{]], j=0,1,....N—1. (4.14)
=1

Since the magnitude operator is nonlinear, the magnitude-correlation and the complex-
correlation differ in general. Figure 4.1 shows the normalized magnitude- and complex-
correlation function of a pulse compressed linear chirp. The figure illustrates how the
complex-correlation function has a narrower peak than the magnitude-correlation func-
tion. This is due to the fact that the magnitude-correlation is a sum of magnitudes and
the complex-correlation is a sum of magnitudes multiplied by exponential phase terms.
Since |A||B| > |AB| holds for complex numbers A and B, the same is valid for the sum.
When two signals are completely coherent, the magnitude- and complex-correlation
are identical, but when the phase starts to decorrelate, the complex-correlation has lo-
wer values. Therefore the pixels in the neighborhood of the peak are more suppressed
in the complex-correlation, increasing the resolution.

On the other hand, the magnitude-correlation function is more robust to noise and
has higher correlation when the SNR is low. Figure 4.2 shows a”’b and |a|” |b|, where
a=[ay,as,...,a,] and b = [by,bs, ..., b,] are complex time series consisting of a signal
in uncorrelated additive white noise. The superscript H denotes the Hermitian operator
defined as the complex conjugate of the transpose of the vector. The sum of the complex
products approximate a random walk, while the sum of the magnitude products always
contribute along one axis. The length of the straight lines in Figure 4.2 represents the
correlation value. However, for positive SNR, we have found that the the more precise
complex correlation always is preferable over the more robust magnitude correlation.

4.1.3 Accuracy of the time delay estimate

The accuracy of the coarse and fine delay estimates can be found from the SNR, p, of the
correlation function. An important relation is therefore the relation between p and the
peak of the normalized coherence function (Zebker and Villasenor, 1992). Again, consi-
der the two time series a[i] and b[i]. If we assume that they consist of a synchronized
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Figure 4.1: Normalized magnitude-correlation function (solid) and complex-correlation func-
tion (dashed) for a pulse compressed chirp. The panels on the right show blow-ups of the peaks.
The upper panels show the zero-noise case and the lower panels the case with uncorrelated ad-
ditive white noise and a SNR of -2.5 dB.

signal part and additive noise, we can write them in vector form as

a=.S5,s+ Nyn,, (4.15a)
b= SbS -+ anb, (4l5b)

where S,, S,, N, and N, are scalars, s a discrete vector with unity energy, and n,
and n; two discrete noise realizations with unity energy. The corresponding SNRs are
pa = S?/NZ?and p, = S?/NZ. The coherence between a and b (at zero-lag) can now be
formulated as

L — }E{Sgsb}}

N 2 21

VE{Is}E{Jss/}
where the superscript H denotes the Hermitian operator and E{-} the expectation ope-
rator. We now assume that the signal is uncorrelated with the noises, E{ana} =

(4.16)
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Figure 4.2: Sum of the products of the magnitude of two time series (solid) and the sum of the
complex conjugate products (dotted). The dashed line shows the length of the complex sum and
the dash-dotted line shows a circle with radius equal to the length of the complex sum.

E{s"n,} = 0, and that the two noise realizations are uncorrelated, E{nfn,} = 0. Equa-
tion (4.16) then simplifies to
5,5, 52 P

_ _ - , 4.17
VT NS TN SN T4 .

where we assumed S = S, = S, and N = N, = N, and where p = S2/N2. This result
yields an easy and important relation between the coherence and the SNR.

If one assumes that the transmitted signal and the noise are white Gaussian ran-
dom processes, analytical expressions of the approximate theoretical Cramér-Rao Lo-
wer Bounds (CRLB) of the coarse and fine estimates can be expressed in terms of the
SNR as (Quazi, 1981)

std{p) >0 =¥3l L T T (4.18)

m B\VBTV p 207

S I 1 I 1
O S VBT T B2 g Vo 20

1 1 1 n 1
2nfo/BTV p = 2p%
where, std {-} denotes the standard deviation, 7. and 7 are the coarse and fine time de-
lay estimates, respectively, and o, and o are the corresponding lower bounds for the

~
~

(4.19)
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Figure 4.3: Ratio between the CRLBs of the fine and of the coarse estimate as a function of
relative bandwidth. The circle shows the ratio and relative bandwidth for a sonar with f,/B =
3.33.

standard deviations of these time delay estimates. Furthermore, 7" is the time interval
of the correlation window, and BT’ is the number of independent samples in the corre-
lation. The final step in Equation 4.19 involves the simplifying assumption B < 12f2.
The ratio between the CRLBs of the fine and of the coarse estimate is a function of the
relative bandwidth, f,/B, only. Figure 4.3 shows this ratio as a function of relative
bandwidth. Note that the ability to resolve the phase ambiguity is inversely proportio-
nal to f,/B. Inserting HISAS parameters (f, = 100 kHz, B = 30 kHz, see Section 6.1) we
obtain
Je _ 2\/§<@) ~11.5, (4.20)
O'f B
which is indicated by a circle in Figure 4.3. Increasing the bandwidth reduces the dif-
ference between the CRLBs of the fine and of the coarse estimate. Since the coarse esti-
mate is used to resolve the 27-ambiguity in the fine estimate, large bandwidth is always
preferable.
The expressions for the Cramér-Rao lower bounds are based on an idealized sce-
nario. The accuracy of the delay estimate can be limited by several additional factors,

e.g.:

e The reflectivity distribution is heavy-tailed (Hanssen et al., 2003; Lyons and Abra-
ham, 1999).

e Geometrical decorrelation (which is caused by footprint shift (Lurton, 2000), dila-
tion (Gatelli et al., 1994) and baseline decorrelation (Lurton, 2000)) can cause the
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signal part of the echo to differ for the two interferometric receiver arrays.

e Reverberation (clutter) is unwanted echo (e.g. echo from living organisms or echo
from a transducer sidelobe). These parasitic echoes can give rise to signals from
unwanted directions (Lurton, 2002, page 122-125).

e Multipath, or coherent replicas reflected from medium boundaries is echo which
do not have a direct path into the sonar. Multipath can smear the signal in time and
frequency, due to the roughness of the boundaries (Brekhovskikh and Lysanov,
1982, chapter 9).

e Ocean variability (Dozier et al., 1991) can cause phase and amplitude fluctuations
(Brekhovskikh and Lysanov, 1982, pages 213-216) of the signal (multiplicative
noise).

e Additive noise, either acoustic background noise, acoustic interference or electri-
cal noise, may be non-Gaussian and correlated (correlated noise may cause an
nonphysically high coherence) (Lurton, 2002, pages 107-118).

For a more thorough discussion of model errors see Section 4.6. Baseline decorrelation
is discussed further in Section 4.7.

4.1.4 Center frequency shift correction

A significant contribution to the bias in the delay estimate is a shift of the effective
center frequency (i.e. fy is incorrect in Equation 4.12). The measured spectrum of an
echo returned from a small part of the seafloor is a random realization of the transmitted
spectrum. The received spectrum is affected by a number of different factors:

e The echo is a contribution from multiple scatterers, which interfere constructively
and destructively.

e Scattering from some parts of the seafloor may be frequency-dependent (disper-
sive scattering) (Jackson and Richardson, 2007, pages 331-376).

e Absorption in the medium may be frequency-dependent (Lurton, 2002, pages 19-
26).

e The antenna directivity is frequency-dependent (Van Trees, 2002, pages 23-37).

The latter can be measured and calibrated in a controlled environment, but our expe-
rience is that the first three factors listed above are dominant. The sum of these effects
cause an uneven weighting of the received frequency components. For narrowband
systems, unevenness in the spectrum is less significant, but for wideband systems this
can change the centroid of the spectrum. In Shippey et al. (1998) it was discussed how
a cross-correlation based time delay estimator strictly applies only when the received
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amplitude spectra are symmetrical around the center frequency. We have found that
a cross-correlation based method can still be a good estimator for the time delay if we
model shift or unevenness of the spectra as changes in the effective center frequency.

A shift of the center frequency does not affect the coherence as it is the same for
both arrays. The result is a linear trend as a function of lag on the basebanded phase
of the correlation function. In Figure 4.4 we show an estimate of a cross-correlation
function from real data collected during the InSAS-2000 trial (Wang et al., 2001), where
the phase in the lower panel should, according to theory, be constant within +1/B. The
linear trend of the phase in the lower panel is caused by a stochastic frequency shift. It
resembles, but is different from the deterministic wavenumber shift, which is a geometric
effect (Gatelli et al., 1994).

As a result of this shift of the center frequency, errors are likely if the observed phase
is used directly in the delay estimation. To compensate for the trend, one can estimate a
corrected center frequency from the centroid of the measured spectrum. Note that even
if the centroids of the two received time series differ, one common frequency should
be used in all conversions between baseband and carrier frequency. If two different
modulation frequencies are applied, significant errors will be induced in the delay esti-
mate. However, the estimated centroid is usually not accurate enough to improve the
accuracy of the delay estimate. We have instead implemented a method which utilizes
the fact that the phase is still correct at the true correlation peak. We first perform a
parabolic fit to the coarse estimate, thereafter we interpolate the phase linearly around
this location, and finally, we use this location and the interpolated phase in Equation
4.13. Monte Carlo simulations have shown that this method gives improved accuracy
for SNR < 60 dB, which is sufficient for most applications. A linear regression estimate
of the frequency has potential to increase the accuracy further, but this remains to be
tested.

4.2 Cross-correlation of signals with relative delay and re-
lative dilation

In Section 3.1.2 we showed that there is a relative time dilation between the received
signals, not a time delay. We also argued that for a small patch, a dilation causes an
apparent time delay, but with the dilation still present. We can therefore model the
received signals as delayed and time dilated relative to each other. We start with the
model we developed in Section 3.1.2 and add a time delay to one of the signals

Si(t) = s(aa(t) - 1) + na(t), (4.21a)
fa(t) = s(aa(t) - (t — 0t)) + na(t). (4.21b)
In general, the dilation itself is time dependent, but as we saw in Section 3.1.2, the time

dependence is weak for a small patch at relative long range, so in the subsequent calcu-
lations we ignore the time dependence. As before we only consider a relative dilation
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Figure 4.4. Cross-correlation function estimated from real data collected in Italy, 2000. The sonar
had a center frequency of 150 kHz and a bandwidth of 64 kHz. The upper panel shows the
magnitude (the absolute value of the envelope) of the estimated correlation function (thick),
the center panel shows the estimated phase at the carrier frequency (thick) and the lower panel
shows the basebanded phase (thick). The magnitude peak, the 27 wrap-interval and the 3 dB
resolution are also shown.

51



f1(t) = s(t) + ni(t), (4.22a)
fa(t) = s(a(t — dt)) + na(t), (4.22b)

where a = a(ty) ~ «(t) is the relative dilation-factor evaluated at the center of the
patch. Again, we assume that the noises are uncorrelated with each other and with the
signal. The cross-correlation function of two signals with relative delay and relative
time dilation is equal to

1 /7
Ry () = jlgrolo 5T /T s(t)s™(a(t — 6t — 7)) dt. (4.23)

which is difficult to interpret unless o = 1.

4.3 Wideband cross-uncertainty function of signals with
relative delay and relative dilation

In the previous section we found that we need a more general mathematical tool than
the cross-correlation function. The wideband cross-uncertainty function, xy, r, (5, 7), isa
function of both time dilation (or time scaling) and delay, and it has the cross-correlation
function as a special case (Altes (1973); Ricker (2003, pages 153-185)),

) = i o [ RO ) (4.24)

The so-called cross-ambiguity function is given by |xy, s, (5, 7)|2, and is simply the mo-
dulus squared of the complex valued uncertainty function. The narrowband cross-
uncertainty function is defined through a simple phase-shift instead of a time scaling.
We will in this thesis refer to the wideband cross-uncertainty function unless otherwise
explicitly stated.

We now consider the cross-uncertainty function of the two received signals modeled
with relative delay and relative dilation, which yields

Xnipp(B,7) = lim % /T s(t)s* (a(B(t — 7) — 6t)) dt.

Again, we assume that the noises are uncorrelated with each other and with the signal.
The cross-uncertainty function therefore reduces to the auto-correlation function for 5 =
1/a since

Xf1f2 (ﬁ = $77—> = Rss(T + (16t) (425)
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Since R.,(0) > ||Rss(7)| for all T # 0, we can find the relative delay and the relative
dilation by searching for the maximum of the cross-uncertainty function

X1 fo (5 = é, T = —a6t> = R.(0). (4.26)

4.3.1 Implementation of a wideband CUF estimator

We have implemented an estimator for the cross-uncertainty function using a non-linear
least-squares data-fitting technique (Kay, 1993, pages 254-260). The objective function
for the search function is

2

| e S A = w2

S S AR, falbnlP

where n denotes discrete time, j denotes discrete time delay, and f,[n] and f;[n| are
the discrete time representations of the signals f;(¢) and f5(¢). In other words, for each
dilation-factor, we scale one of the signals with a spline interpolator, we cross-correlate
the signals with each other, and then we find the peak correlation value. The estimated
dilation-factor is thus the dilation-factor which matches the highest correlation value
(Kjellesvig, 2006). This method has its weaknesses in that there are errors in the inter-
polation, and that a termination tolerance has to be specified by the user.

A more complex method would be to perform a two-dimensional grid search to
maximize both g and j simultaneously, but this is significantly more computationally
intensive. In Chan and Ho (2005), a faster implementation is suggested, which utilizes
an approximated sinc-interpolator in an iterative scheme. However, the definition of
the cross-uncertainty function in Chan and Ho (2005) differs from the definition most
commonly found in the literature and the implications thereof are currently not investi-
gated.

J(B) =

4.4 Numerical study of the time delay accuracy

To evaluate the performance of the cross-correlation function and the cross-uncertainty
function on delayed and dilated signals, we have performed a set of Monte Carlo si-
mulations. The simulated data are generated by a point scatter simulator and then run
through a matched filter (see the introduction of Chapter 7). The transmitted signal is
a 4 ms chirp with 40 kHz bandwidth and 100 kHz center frequency. The sonar has a
vertical baseline of 30 cm.

Figure 4.5 shows the results for 1000 Monte Carlo realizations where the seafloor is
located at the symmetry axes of the two receivers (i.e. zp = —dz/2). Point scatterers with
Gaussian amplitude distribution are uniformly distributed on the seafloor along the y-
axis. For each realization we have inserted different levels of additive white Gaussian
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Figure 4.5: Results from time delay estimation on 1000 Monte Carlo simulations in AWGN. We
have selected a 3 meters patch at 50 meters range with the seafloor located a the symmetry-
axis of the interferometer (i.e. zg = —0.15m). The plots show results from CCF estimates,
co-registered CCF estimates (CCF2), CUF estimates and co-registered CUF estimates (CUF2) as
a function of SNR. The different Panels show the following: (a) STD of the error in time delay
estimates with the CRLB included; (b) RMS-values of the same error with the CRLB included; (c)
estimated SNRs (from the maximum correlation coefficients) for the four different techniques;
(d) estimated dilation-factors for the CUF estimates.

noise (AWGN) into the data, selected a patch of three meters, and estimated the time
delay from the cross-correlation function and the cross-uncertainty function. We have
then co-registered the data based on these estimates and repeated the described method.
The second iteration reduces the effect of scallop loss (Harris, 1978).

Figure 4.5(a) shows the standard deviation (STD) of the error in the time delay es-
timate for the four estimates mentioned above. The Cramér-Rao lower bound (Quazi,
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1981) is also included. The cross-correlation function and the cross-uncertainty function
performs equally well on time delayed signals with no time dilation. They are both
close to the theoretical Cramér-Rao lower bound. At signal-to-noise levels above 20 dB
co-registration is needed in order to achieve theoretical performance. This is due to the
footprint shift effect (Lurton, 2000). At negative SNR levels, the estimates deviates from
the theoretical curve since 27 wrap-errors are introduced as an additional source of er-
ror. This deviation could have been removed by replacing the CRLB with the Ziv-Zakai
lower bound (Ziv and Zakai, 1969; Bell et al., 1997).

Figure 4.5(b) shows the root-mean-square (RMS) value of the four estimates. Clearly
there is no visible bias in the estimates and they both perform equally well in this sce-
nario.

Figure 4.5(c) shows the SNRs estimated from the peak of the CCF and the CUF (see
Section 4.1.3), as a function of the inserted SNR levels. The curves match theory very
well down to zero dB, were the peak correlation value asymptotically approaches a
lower threshold. Also notice that the estimates before co-registration suffers a small
SNR loss at high SNRs.

Figure 4.5(d) shows the estimated relative dilation-factors for the CUF estimates and
the co-registered CUF estimates. Since the signals are not dilated, this factor should be
equal to one. For positive SNRs the estimates are indeed very close to this prediction,
but at negative SNRs there is a mismatch between the theoretical and estimated dila-
tions. This may deteriorate the CUF estimates in this region, but as we have seen from
Figures 4.5(a) and 4.5(b), 27 wrap-errors already render these estimates useless.

In sum, Figure 4.5 shows that the cross-uncertainty function performs equally well
as the cross-correlation function for time delayed signals with no time dilation. They
both suffer from the fact that 27 wrap-errors deteriorate the time delay estimates at
negative SNRs. At SNRs above 20dB both methods need a co-registration in order to
achieve theoretical performance.

Figure 4.6 shows the same results as Figure 4.5, but now the seafloor is located 15
meters below the sonar. The center y-position of the patch is at 50 meters which gives a
dilation-factor of approximately 0.999. Again a random realization of the reflectors and
a random displacement of the scatterers for the second receiver is inserted.

In Figure 4.6(a) we see that the time delay estimates using CCF deviates from the
CRLB for almost all SNR levels. This is expected since the signal model is incorrect.
However, the corresponding results when applying CUF follows the theoretical CRLB
closely. There is a small deviation from theoretical performance, which increases for
high SNRs. There are at least two explanations for this deviation: Firstly, we assume a
constant dilation over each patch. In reality, the dilation is changing non-linearly over
the patch (see Figure 3.5). This error in the model will limit the accuracy when the
SNR is sufficiently high. Secondly, we have tested this method on band-limited linear
frequency-modulated (LFM) signals with realistic sidelobe performance. This means
that a reflector at 50 meters range will have sidelobes spread out over a region around
the reflector. The sidelobes have the same dilation as the reflector, but will be treated as
signals originating from other locations. This effect is inherent when the point-spread
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Figure 4.6: Results from time delay estimation on 1000 Monte Carlo simulations in AWGN. We
have selected a 3 meters patch at 50 meters range with the seafloor located 15 meters below the
sonar (i.e. zop = 15m). The plots show results from CCF estimates, co-registered CCF estimates
(CCF2), CUF estimates and co-registered CUF estimates (CUF2) as a function of SNR. The dif-
ferent Panels show the following: (a) STD of the error in time delay estimates with the CRLB
included; (b) RMS-values of the same error with the CRLB included; (c) estimated SNRs (from
the maximum correlation coefficients) for the four different techniques; (d) estimated dilation-
factors for the CUF estimates.
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function differs from impulse signals and may start to limit the time delay accuracy for
high SNRs.

In Figure 4.6(b) we see a clear bias in the time delay estimate using CCF, but only
a negligible bias when using CUF. However, the CCF has such a low overall perfor-
mance, that an attempt to correct the bias is without interest. Figure 4.6(c) shows that
the estimated SNR also significantly improves when using CUF relative to CCF. The
SNR calculated from the peak correlation value in the CCF deviates from the theory
almost immediately, while the SNR calculated from CUF follows the theory relatively
close. Figure 4.6(c) also shows that the results are improved by reducing the footprint
shift effect. In Figure 4.6(d) we show that the estimate of the relative dilation-factors
again is very stable, but now at a value of around 0.999. This is a moderate, but quite
realistic dilation factor for sidelooking sonars.

Figure 4.6 illustrates that for a sidelooking sonar geometry, the cross-correlation ba-
sed time delay estimate is sub-optimum and will limit the accuracy of the relative depth
estimate. The cross-uncertainty function better matches the signal model and improves
the accuracy of the time delay estimate significantly. The standard deviation for high
SNRs is reduced by an order of magnitude and a small bias present in the CCF esti-
mate is removed. The estimated SNR from the peak correlation value is also increased
significantly, indicating a better match of the signals after CUF.

In synthetic aperture radar it has been suggested to eliminate the change of fre-
guency in the signals received from different angles by trimming the spectra at the
edges (Gatelli et al., 1994). This frequency change is the same as we have described
as a time dilation. The trimming is performed to ensure full overlap of the spectra at the
expense of a reduced bandwidth. This method works well for a theoretical spectrum
with zero amplitude in the stop band and at a flat response inside the passband. Howe-
ver, due to the constructive and destructive interference of the scatterers, the received
spectrum is a random realization of the transmitted spectrum. Figure 4.7 shows an
example of the variations in such a spectrum. From the properties of the Fourier trans-
form we know that dilation or time scaling in time domain also dilates the spectrum
(McClellan et al., 2003, pages 322-323). For a small patch of the spectrum we therefore
see an apparent frequency shift. This shift will not be addressed by cutting the spectra
at the edges. However, the re-gridding performed in the CUF-algorithm will, as we can
see in Figure 4.7, remove most of this effect and increase the correlation between the
signals. An equivalent approach suggested by Gatelli et al. (1994) is to apply a range-
and geometry-dependent frequency filter.

An alternative method of estimating the dilation in the received time signals is to
estimate the shift in the spectra of the data and relate that to a dilation. This can be
performed by a center of mass estimation or by running a cross-correlation function
directly on the spectrum.

Another important question is the performance of the CCF and CUF estimators as a
function of dilation for a given SNR. In our sidelooking sensor geometry we have varied
the range (and thereby the dilation) for a fixed seafloor depth, and then performed a
Monte Carlo simulation similar to the simulations presented above. Figures 4.8 and 4.9
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Figure 4.7: Zoom of an oversampled spectrum from one of the received time signals as a function
of data samples. The signal is selected from one of the realizations of the data presented in Figure
4.6. The solid line is the spectrum for array one and the dot-dashed line the spectrum for array
two. The dashed line is the spectrum for array two after the interpolation performed in the CUF
algorithm (almost on top of the solid line).

show the results from such a study.

The suppression angle in Figures 4.8 and 4.9 is defined as cos™! (zo/r) where z, =
15m and r is the range from receiver #2 to the center of the seafloor patch. Figure
4.9 shows that CUF is superior for all suppression angles larger than five degrees. In
this region and for this SNR, the dilation is the limiting factor when using the CCF
estimator. From Figure 4.9(a) we see that at 35 degrees suppression angle, a CCF based
method gives a correlation coefficient of 0.5, equivalent to 0 dB SNR, while CUF has
a correlation coefficient corresponding to > 20 dB. Note the effect of the co-registration
showed in Figure 4.9(b). Using co-registrated CUF is important even for very high SNRs
if the predicted SNR is to be used as a quality measure.

Figure 4.9(c) shows that CUF reduces the standard deviation of the error in the time
delay estimate between one and two orders of magnitude compared to CCF. From Fi-
gures 4.9(c) and 4.9(d) we also see that the effect of scallop loss is strongly related bet-
ween the dilation-factor estimate and the time delay estimate. The co-registration eli-
minates the scallop loss and increases the estimated SNR significantly.

The results presented in this section indicate that CUF is a better time delay estimator
for scenarios where the effect of dilation overshadows the effect of additive noise. For
a standard sidelooking sonar system this is almost always the case at near range. Only
at far range where the dilation is less important, the CUF has the same performance as
CCEF. It should be noted that the effect of the dilation on CCF performance is a function
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Figure 4.8: Results from 1000 Monte Carlo simulations in AWGN. The SNR in the simulations
is 25 dB. We have selected a 3 meters patch at varying range, with the seafloor located 15 meters
below the sonar (i.e. zyp = 15m). The plots show results from CCF estimates, co-registered
CCF estimates (CCF2), CUF estimates and co-registered CUF estimates (CUF2) as a function
of suppression angle. The different panels show the following: (a) theoretical and estimated
interferometric time delay; (b) theoretical and estimated dilation-factor.

of the patch (or window) size. A larger patch will cause more decorrelation due to
dilation. However, a larger patch does also increase the accuracy in regions limited by
additive noise. As such, CUF provides the possibility to use larger patches, and thereby
better performance, than CCF.

As described in Section 3.1.3, the coherence-loss due to time-shift and time dilation
can be reduced by co-registrating the signals in ground-range. This method does not
assume a linear dilation and hence is a higher order model than the CUF estimator,
but it requires accurate knowledge of the geometry of the environment. A CUF-based
time delay estimation can then be applied on the co-registrated data, in case there are
any residual dilation left. In cases where the residual dilation is insignificant, CCF is
preferable to CUF due to simplicity and time-consumption.

4.5 Phase-differencing

In the SAR literature the interferometric delay is usually found by means of phase-
differencing. The phase-difference is estimated using a maximum likelihood estimator
(Hanssen, 2001, Page 92), which only differs from the complex cross-correlation in that
it is two-dimensional and that it does not shift the data. The phase-difference estimator
is a 2D zero-lag complex cross-correlation.

The phase-difference, 6, between two vertically separated receivers, is directly linked
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Figure 4.9: Results from 1000 Monte Carlo simulations in AWGN. The SNR in the simulations
is 25 dB. We have selected a 3 meters patch at varying range, with the seafloor located 15 meters
below the sonar (i.e. zop = 15m). The plots show results from CCF estimates, co-registered CCF
estimates (CCF2), CUF estimates and co-registered CUF estimates (CUF2) as a function of sup-
pression angle. The different Panels show the following: (a) maximum correlation coefficients;
(b) estimated SNR from the maximum correlation coefficients; (c) standard deviation of the error
in the time delay estimates; (d) standard deviation of the error in the dilation-factor estimates.

to the time delay estimate through the relation

6

T= T (4.28)

which is essentially the same as Equation 4.12. In principle, the time delay can be esti-
mated for each sample-pair in the input data, but to reduce the noise we follow the SAR
literature and introduce a maximum likelihood estimator over a local neighborhood.
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The complex coherence (or zero-lag complex correlation coefficient) is given by

INCT \}E{\fz Py

where f;(t) and f,(t) are the two interferometric signals. Assuming the signals are wide-
sense stationary over the subset, the time dependence disappears. An estimate on dis-
crete signals, a[i] and b[i], is found by a weighted sum of the complex phase-differences

>l
\/zm )b

Rodriguez and Martin (1992) showed that the argument of ~ is the maximum likelihood
estimate of the phase-difference 6 = arg {~}. This estimate is unbiased modulo 2. We
also see that = arg { R.,[7 = 0]}, where R,[j] is defined in Equation 4.8. We define
the interferogram to be a matrix of 6-estimates (some refer to the complex coherence as
the interferogram and 6 as the interferometric phase, other use complex interferogram
instead of complex coherence). The magnitude of the complex coherence is the cohe-
rence, k = |v|. In this thesis we usually do not distinguish between this coherence and
the coherence estimated from the cross-correlation function (see Equation 4.10), but we
emphasize the difference where needed.

Since the interferogram is the zero-lag samples in the cross-correlation functions, the
data are assumed co-registered. If the data are co-registered within one wavelength,
the coherence is usually close to the maximum value given by the SNR, and the phase
estimate is unambiguous. If the time delay is larger than one wavelength, the coherence
starts to drop (in Figure 4.4, this corresponds to moving the peak away from the origin
and using the sample at origin), and the phase will wrap modulus 2. If the time delay
is larger than the peak-to-null distance of the correlation function, the phase will jump 7
and the coherence will have drop close to zero (see Figure 4.4). In this case the estimate
will be rendered useless.

The probability density function of 6, given the true phase-difference, 6,, can be
calculated by assuming that the imaginary and real parts of the data are uncorrelated
random zero mean distributions with equal variance. This means that the magnitude of
the signal is Rayleigh distributed, and the phase uniformly distributed (Hanssen, 2001,
pages 89-91). The PDF for a single sample (single look) is given by Hanssen (2001, pages
94) and Just and Bamler (1994)

1—k? 1 k cos (6 — 0y) cos™ (—k cos (6 — y))
k) = 1 . 431
p(0; k) 21— k2cos? (6 — 6p) ( N \/1 — k% cos? (0 — b)) (4.31)

Figure 4.10 shows the PDF for a few different coherence values. The figure also shows
the estimated SNRs using Equation 4.17. It is evident that a high coherence (i.e. a high
SNR) is crucial for an accurate phase-difference estimate.

(4.30)
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Figure 4.10: PDF of the phase-difference, 6 for k = 0.9 (solid line), k = 0.8 (dashed line), k = 0.66
(dash-dotted line) and k = 0.25 (dotted line). The equivalent SNRs are 9.5dB, 6.0dB, 2.9dB and
-4.8 dB.

~

The standard-deviation of the single-look phase-difference estimate, 6 is

std {5} > gy(k) = \/ / (0 — 00)%p(6: k) 0. (4.32)

The solution to this equation was found by Bamler and Hartl (1998)

2 : 2
o5(k) = % — marcsin (k) + arcsin? (k) — LlZék ), (4.33)
where Li, is the Euler‘s dilogarithm defined as
' o an
Liy (k?2) = Z T (4.34)
n=1

Figure 4.11 shows the standard-deviation as a function of coherence. Clearly, the cohe-
rence needed to achieve oy(k) < 10 degrees is difficult to obtain. The standard deviation
is, however, reduced by averaging over N independent samples. Often, it is assumed
that the standard deviation is proportional to N~'/2. Oliver and Quegan (2004, page 344)
and Llort-Pujol et al. (2006) present the marginal PDF for the phase-difference when es-
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timated using a filter window of N independent samples
_ (1- k2 (2N — 2 2N — 1)K _ 1
POk, N) = 21 ( ])V scos T (-K)+ ————
I\ (1 - K2 (1- K?)
5) F(N—l—r)1+(2r+1)K2>

VT T
(4.35)

where K = cos (6 — 6y) and T is the Gamma function (Rottmann, 1995). The standard-
deviation becomes a function of coherence and number of independent samples.

std {5} > G(k, N) = \/ / (0 — 00)2p(6; k, N) 6. (4.36)

Figure 4.12 shows the standard deviation as a function of coherence for a few filter-sizes.
Clearly, 54(k, N) does not scale as N~'/2. We define a scaling factor, S as

log (09(k)) — log (a9(k, N))

§ =S5k N) = - log (10) ’

(4.37)

in such a way that 6,(k, N) = N~%0,(k). Notice that 54(k,1) = oy(k). For a Gaussian
PDF, S is equal to 0.5. Figure 4.13 shows S as a function of £ and N. In the useful
region (k£ > 0.66) the reduction in standard-deviation as N is increased is larger than for
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Gaussian distributions. For £ = 0.9 and N = 81, S = 0.66 and the standard-deviation
is reduced by a factor 81%% = 18.2. The corresponding factor is v/81 = 9 for a Gaussian
distribution.

By converting phase-differences to time delays and noticing that N = BT, we can
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compare the three expressions for the standard deviation of the time delay estimate
directly

ou(p, N, B) = ?%\/Lﬁ % + %, (4.38)
1 1 1 1

or(p, N, fo) = 2 o /N ;+2—p2’ (4.39)
11 )

oi(p, N, fo) = HW\// (0 — 00)"p(0; k(p)) db, (4.40)

where o; is the standard deviation of the time delay estimate based on the interfero-
gram. Figure 4.14 compares the three quantities as a function of p using B = 30kHz
and f, = 100kHz. For N = 5, o, differs from o; even though the same data and almost
the same method is considered. The difference lies in the underlying assumption. In
Section 4.1.3, 0. and o where based on constant deterministic signals in additive white
Gaussian random noise. In this section o; were based on a signals with Rayleigh dis-
tributed magnitude and uniformly distributed phase (Hanssen (2001, pages 89-91); Just
and Bamler (1994)). According to Hanssen (2001, page 95) the CRLB is a better model in
the presence of point scatterers while the marginal probability density function is best
suited in the presence of speckle — the case for a general seafloor. As Figure 4.14 shows,
oy is too optimistic in speckle statistics, while o; is too pessimistic on point scatterers.
As we see in the right panel of Figure 4.14, the difference between o, and oy becomes
negligible for large estimation windows.
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4.6 Model errors

In the previous sections we have considered signals in uncorrelated additive white
noise. In general there are several other types of noise which limit the accuracy of time
delay estimation. Lurton (2002, page 103) groups the noise contribution into four

e Ambient noise — noise which originates from outside the system. It can be natural
(e.g. waves or animals) or man-made (e.g. shipping).

¢ Self-noise — nose with originates inside the system. It can be caused by the suppor-
ting platform (e.g. electrical interference) or by its own electronics (thermal noise).

e Reverberation — unwanted echoes generated by the sonars own signals.

e Acoustic interference — noise generated by other acoustic platforms in the vicinity.

Instead of grouping noise sources as Lurton (2002, page 103) does, we will try to give a
brief mathematical description of different signal models. We start by reviewing signals
in uncorrelated additive white noise and then expand to more complicated scenarios.

4.6.1 Uncorrelated additive white noise

We assume that we receive two time series of a signal in uncorrelated additive white
noise

f1(t) = s(t) + n(t), (4.41a)
fo(t) = s(t — t) + na(t), (4.41b)

The signals are time-shifted with 6t and the SNR is the same in both time series. Uncor-
related additive white noise is always present in measurement, but the SNR can vary
significantly. The simplest case is additive white Gaussian noise, which is assumed when
establishing the CRLB of the time delay estimate (see Equation 4.18).

4.6.2 Baseline decorrelation

In general the signal-part of the received time series is not identical in the two time
series. Increasing the interferometric baseline increases this difference

fl (t) = Sl(t) +nq (t), (4423.)

True baseline decorrelation is mismatched spectra (Lurton (2000); Hanssen (2001, page
102)). This effect is irreversible and will lower the coherence and add noise to the es-
timate unless the spectra are filtered (which will reduce the bandwidth). Geometrical
decorrelation (Gatelli et al., 1994) is simply a dilation of the signals inside the correla-
tion window. As we showed in Section 4.3, the cross-uncertainty function is a better
estimator than the cross-correlation function in the presence of baseline decorrelation.
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4.6.3 Multipath

In a reverberant environment the received signal is not a pure replica of the transmitted
signal. Reflections from medium boundaries and the roughness of the boundaries will
spread the signal in time (Brekhovskikh and Lysanov, 1982, chapter 9). If the boundary
is moving (like the sea surface), a Doppler shift will be added to the scattered field
and the signal spread in frequency (Brekhovskikh and Lysanov, 1982, chapter 9). These
effects can be incorporated in a transfer function, h(¢t)

f1(t) = h(dt) © s(t) + na(t), (4.43a)
fa(t) = h(St) © s(t — ot) 4 no(t), (4.43b)

where © is the convolution operator. To resolve these ambiguities one can for example
beamform the data in a given direction, use a parametric method to locate the echo or
use a generalized cross-correlation function with a filter in frequency domain (Knapp
and Carter, 1976). Time spread and frequency spread is treated in detail in wireless
communications (Benedetto and Biglieri, 1999, chapter 13).

4.6.4 Correlated noise

Uncorrelated noise and reverberant noise are both environment induced. Another noise-
source is system self noise that may be correlated over the receiver array (Lurton, 2002,
pages 116-117). This noise can be coherent and synchronized in the time series, es-
pecially if the receivers have a common electrical system. The estimated time-shift is
usually dominated by either the time-shifted signal, or the synchronized noise. The re-
ceived time series are

fi(t) = s(t) + c(t) + ni(t), (4.44a)
fo(t) = s(t — t) + c(t) + na(t), (4.44b)

where ¢(t) is the correlated noise. This noise (if it in fact is caused by the electrical
system) can be estimated by running the system without transmitting a signal. It can
then be removed from the time series, although this can be challenging in practice.

4.6.5 Multiplicative noise

The medium (seawater) can also induce multiplicative noise from random fluctuations
(Brekhovskikh and Lysanov (1982, chapter 10); Flatte et al. (1979, chapter 8)). One way
to model this is to introduce a random multiplicative component
fi(t) = an(t)s(t) + na(t), (4.452)
fo(t) = ao(t)s(t — dt) + no(t). (4.45b)

In general o4 (t) and «as(t) can be complicated and highly different, decorrelating the
received time series. If the two time series have passed through the same medium, oy (t)
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and as(t) will be similar, but they can bias the time delay estimation. A common way
to model propagation in weak fluctuating media is to divide into phase and amplitude
perturbations. This can be obtained by using our model with complex valued «; and
Q9.

4.6.6 Dispersive scattering

Scattering from the seafloor may be frequency-dependent in several ways. Scattering
from a rough seafloor is dependent of the roughness scale relative to the acoustic wa-
velength (Ogilvy (1991); Jackson and Richardson (2007, chapter 13)). Reflection from
an absorbing seafloor is frequency-dependent (Lurton (2002, page 65); Jackson and Ri-
chardson (2007, pages 331-376)). If the frequency response is dependent on the incident
angle on the object, the spectra of the two received signals may differ

fl (ta f) = Sl(tv f) + (t)v (446&)
fa(t, f) = s2(t = 6t, f) + na(2). (4.46b)

For seafloor depth estimation, the incident angles are usually very similar. This means
that sy (t — dt, f) =~ s1(t — dt, f). The dominant effect of the dispersive scattering is a
change of the effective center frequency of the signals (see Section 4.1.4).

4.6.7 Frequency-dependent noise

Acoustic or electrical noise can be frequency-dependent. Ambient noise is frequency-
dependent (Urick, 1983, chapter 7). Self noise or acoustic interference may be very
frequency-dependent (Lurton, 2002, page 115-117).

f1 (t, f) = S(t) “+ Uy (t, f) + nq (t), (447&)
fo(t, f) = s(t — t) + ua(t, ) + na(t), (4.47b)

where wy(t, f) and us(t, f) are frequency-dependent noises. They may or may not, be
similar depending on the location of the source relative to the sonar receivers. Narrow-
band noise can be removed by filtering in the frequency domain (Mitra, 2002, chapter
7) at the expense of a reduces SNR.

4.6.8 Phase ambiguities

In the previous sections we have discussed different signal models. We saw that in the
general case the interferometric signals may differ in both time and frequency, and the
noises may be correlated and complicated. Now we return to a problem which occurs
even for time delayed signals in noise free environment: Phase ambiguities. When we
consider two complex signals, it is the phase-difference which provides accurate infor-
mation of the time delay between them. Think of a continuous sine-wave: A shift can
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easily be detected by matching the oscillations. However, there are an infinite number
of periods which match. The same apply to broadband sonar signals. The true phase-
difference, 0, is

0y = 0 + 27n, (4.48)

where 6 is the estimated phase-difference and n is an integer. Phase unwrapping is a
large and complicated research topic (Ghiglia and Pritt, 1998) and outside the scope of
this thesis, so we have tried to keep the effort on the subject to a minimum. However,
some work has been invested into simple and standard approaches.

Phase-ambiguities using the cross-correlation function

Phase-ambiguities may occur in a complex cross-correlation based time delay estimate
in Equation 4.12. In Section 4.1.1 we described how the probability for a phase wrap is
minimized by using bandwidth to estimate a coarse time delay. But since the 3dB width
of the coarse estimate is 1/ B, while the wrap interval is 1/ f;, a very high SNR is needed
to eliminate all wrap-errors. To resolve any residual 27-errors we have developed the
following ad-hoc approach

e \We use the coarse estimate to minimize the probability of phase ambiguities (as
described in Section 4.1.1).

e We discard all estimates with a coherence below 0.66. Since the probability of a
phase-wrap is highest at low SNR (corresponding to low coherence) this further
reduces the probability of a phase ambiguity.

e \We assume that there are more wrap-free than wrapped estimates and that the
probability of a large number of consecutive wrapped estimates is low. We have
used these assumptions to develop a new, but simple algorithm which unwraps
the estimates in a small neighborhood around the sample of interest. This algo-
rithm is described in Section 5.1.3.

The advantage with this method is that it can not corrupt large amount of data in the
same manner as a standard 2D method. Any remaining 27-errors can simply be consi-
dered wild-points in the estimation algorithm.

2D phase unwrappers

Since the interferometric phase-difference for a typical sidelooking sonar geometry is
multiple wavelengths (see Figure 3.3) Equation 4.29 provides an estimate which can be
in almost any 27-interval. The problem is largely reduced by the a priori ground-range
mapping of the SAS images. The images are rendered in ground-range such that the
phase-difference is zero if the a priori depth is correct. If we assume that the a priori depth
estimate is unbiased with Gaussian probability, the probability of wrap-errors is also
Gaussian, centered at the correct wrap-interval. In practice, this is not the case. Most
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of the samples are, in fact, wrap-free, but due to a slowly varying a priori depth, sharp
elevated features will have wrap-errors. This means that samples with wrap-errors are
grouped together, but they should still be in minority. A standard 2D unwrapper works
very well in such cases.

To solve the residual phase-wraps we have implemented a standard Goldstein‘s
Branch cut algorithm as described in Ghiglia and Pritt (1998). We have not tested this
method against other established methods, nor have we performed any thorough study
of the performance. However, the method works well in most cases. The exception
is in the most challenging scenarios, which typically is large, complicated man-made
objects with vertically features. In such cases we have performed a preliminary study
into using bandwidth to resolve the phase ambiguities (see Section 8.3). We believe that
ultra wideband signals reduce the need for advanced 2D unwrappers. Notice the simi-
larity between such a method and the cross-correlation based method described in the
previous section.

4.7 Coherence estimation

In this chapter, as well as in most literature on interferometry, the focus has been on the
time delay estimate. The coherence estimate can be almost equally important (Synnes
et al., 2009; Midtgaard et al., 2009). In this section we give a short review of the statistics
of the coherence estimate.

The coherence can be defined as the magnitude of the complex coherence (see Equa-
tion 4.29). ldeally, the estimate should be obtained using a very large number of ob-
servations for each pixel-pair in the SAS images. In practical situations, each pixel-pair
is observed only once and we assume ergodicity to exchange ensemble averages with
spatial averages. This assumption leads to a maximum likelihood estimator over N
samples

ali]b* (4]

\/ ol 01

This estimator is clearly not unbiased. Two signals of uncorrelated noise should have
k = 0, but Equation 4.49 will in this case result in a sum over vectors with random direc-
tions, which clearly have an expectancy > 0 unless N — oo. However, for completely
coherent signals in zero noise, Equation 4.49 will give out the expected answer of one. It
therefore appears that the estimator is biased towards higher values for low coherence
and small estimation windows (Joughin and Winebrenner, 1994; Touzi et al., 1999).
Touzi and Lopes (1996) found that for N > 2, the probability density function of
the coherence estimator can be expressed as a function of the true coherence, %, and the

(4.49)

N
1
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number of independent samples, N
p(k; ko, N) = 2(N = 1)(1 = k) ko (1 = k)" 5 (N, N, 1, K2k2), (4.50)
where the hypergeometric function is defined as (Hanssen, 2001, page 94)

- <k2k2>

2F1 (N, N, 1,k%k3) = Z : (4.51)
=0 i '
and the Pochhammer symbol is defined as
(N, =NN+1)(N+2)---(N+i—-1), (N),=1. (4.52)

The expectation of & is derived as (Hanssen, 2001, page 96)

E{k; N} = %31@ (3/2, N, N, N +1/2,1,k*) (1 — k)", (4.53)

where 3F5(3/2, N, N, N + 1/2,1, k?) is the generalized hypergeometric function.

Figure 4.15 shows the bias in the coherence estimate as a function of true coherence,
for different number of independent samples. We discard all time delay estimates with
coherence less than 0.66. For N = 81 and an estimated coherence of 0.66, the true
coherence is 0.63. This is only an error of 1 dB. For higher coherences, the bias gets
smaller. However, we also try to estimate the coherence for samples where the time
delay estimate is useless. In Synnes et al. (2009) and Midtgaard et al. (2009) we present
two applications for sonar coherence mapping. Clearly, the bias can be important for
such topics. It has been suggested to correct the biases coherence estimate, since the
bias is analytically known (Touzi et al., 1999). Hanssen (2001, pages 96-98) shows that
at low coherence, the standard deviation of the coherence estimate is high. This means
that a correction of the coherence can lead to unphysical values (e.g. the coherence can
be greater than unity).
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different samples in the estimator, V. The solid line shows the bias free estimate.
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Chapter 5

Algorithms for depth estimation

In this chapter we describe how the methods from previous chapters are implemen-
ted in an interferometric SAS processing chain. Estimation and use of relative seafloor
depth can be found at several levels in SAS processing, each step being crucial for the
steps which follow. Thus, in order to make a high quality SAS bathymetry, all of the
preceding calculations have to be implemented as accurately as possible.

As mentioned in Chapter 1, a large portion of this thesis has consisted of contribu-
ting to the development of the FOCUS toolbox (Hansen et al., 2005). FOCUS is a SAS
processing toolbox which takes raw sonar (or radar) data as input and generates a wide
variety of outputs. Except for a few 1D simulations, all results presented in this thesis
are generated using the FOCUS toolbox. Figure 5.1 shows a flowchart of the main pro-
cessing chain in FOCUS. Processing steps involving relative depth estimation or use of
relative depth estimates, are colored red in Figure 5.1. These can be grouped into three
categories:

e Ping-by-ping sidescan seafloor depth estimation (sidescan bathymetry)
e Use of estimated sidescan bathymetry in SAS processing

e SAS interferometry

5.1 Sidescan seafloor depth estimation

In this section we describe the implementation of relative depth estimation using single
beam sidescan images. The sonar geometry can be found in Figure 3.1. Each of the
receivers in Figure 3.1 may represent a receiver array perpendicular to the page, but
when the distinction is not important, we refer to them as receivers. Figure 5.2 shows
an overview of the relative seafloor depth estimation algorithm.

The first step of sidescan bathymetry is to generate sidescan images. For both in-
terferometric receiver arrays, each ping is dynamically focused (Soumekh, 1994, pages
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Figure 5.1: Flowchart of the main processing chain in the FOCUS SAS processing toolbox.
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Figure 5.2: Flowchart of the processing steps used in relative depth estimation on sidescan
images.
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196-209) in slant-range, forming a beam perpendicular to the transmitter-receiver ba-
seline. The beams from the two receivers are not in general parallel, this only occurs
when the transmitter is positioned on a line between the two receivers. The origin of
the beams can be the receivers, the PCA locations or the transmitter. The choice of ori-
gin is not important, as long as the preferred choice is carried properly through the
processing. We have chosen PCA locations as origin.

The beamforming results in two sidescan images, I;*[p, n] and I5"[p, n], where p is the
ping counter and n the sample counter along range. The subscript indicates receiver
# and the superscript, sr indicates that the images are in slant-range. These images,
together with the the sonar geometry and the sample distance, dr, are the main inputs
to the depth estimation routine.

5.1.1 Re-gridding to ground-range

As we described in Section 3.1.3, we co-registrate the sidescan images by re-gridding
them onto an a priori seafloor. The seafloor is calculated using the relative depth esti-
mates from the previous ping. For the first ping we kick-start the processing using a flat
seafloor at the altimeter depth, and then re-estimate the ping using the estimated depth
as a priori information. The same kick-starting is performed when the estimates from
the previous ping are rendered invalid due to low coherence.

Let the two-way range from the transmitter to each sample in the sidescan images

and back into the receiver be
2
¥ [n| = 2\/7‘2[n] + (%) , (5.1)

where r[n] = n - dr and D is the interferometric baseline between the transmitter and
receiver. This equation describes the dynamic focusing onto the PCA positions.

The range axes from the transmitter to the a priori seafloor and back to the receivers,
are given by

1 lm] = /Pl + 2]+ ] — 1)” + (elm] — 217, (5.2)

P lm) = oIl + 2] + 4 (] — 1) + (2lm] — 2)°. (5.2b)

Here y[m| = m - dy is a vector defined by a input parameter, dy, and z[m| is the a priori
depth corresponding to the positions y|m/|. Figure 3.1 defines the receiver positions, v,
Yo, 21, 2. The sidescan images are critically sampled in slant-range so we have to be
careful to avoid undersampling in the new coordinate frame. For a flat a priori seafloor,
dy = dr is sufficient, since the sampling frequency is dilated by cos# in ground-range
relative to slant-range (see Equation 3.12). For a general z[m|, dy = dr may be insuffi-
cient. By assuming a slowly varying a priori seafloor and decreasing dy by a small factor,
undersampling is avoided for most practical geometries.
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The re-gridding from slant-range to ground-range is implemented using a spline
interpolation (Kincaid and Cheney, 1991, pages 374-392). The sidescan images in slant-
range are at aliased center frequency f,. We mix the slant-range data to baseband, inter-
polate and mix the data up using the new ground-range sampling

92

IF'p,m] = I{]fr[p, n| exp (#ﬂfor“[no ¥ [n] = r%r[m]} exp < for%r[m]), (5.3a)

C

I [p,m] = I{];r[p, n| exp <%7Tforsr[n]> ¥ [n] = r%r[m]} exp <j2:f0r§r[m]), (5.3b)

where Z{ A[z] : x = y} is an interpolation operator which interpolates A[x] from z onto
y, and 7 is the imaginary unit. The ground-range sidescan images are now at aliased
center frequency, f,, with non-linear range-axes (see Section 3.1.2).

We want to minimize interpolation errors in the subsequent processing, so we ba-
seband the ground-range images (Hawkins, 1996, chapter 4). We have to decide on a
common range-axis for the basebanding and the natural choice is the average of ;' [m]
and r§'[m].

1] = (¥ o] + 78] 54

The basebanded ground-range sidescan images are given by
17 o] = 1Flp o exp (270 ), (550

15l = 1 mlesp (250 (550)

5.1.2 Cross-correlation of patches

For each ping of the ground-range sidescan images, a set of patches along range is se-
lected. The locations of the patches and the number of samples in each patch is in-
dependent parameters, and can be varied throughout the ping. Our default setting is
one meter between each patch in ground-range, and a fixed patch-length of 3.2 meters.
This gives us a regular griding of the estimates in an earth-fixed coordinate system and
128 cos @ individual samples in each correlation (for HISAS with 2.5cm range resolu-
tion), where @ is the depression angle. The number of individual samples is largest at
far range, due to the scaling between ground-range and slant-range. It can be beneficial
to increase the patch length at far range since baseline decorrelation is less of a problem
and the SNR may be low.

For each of the selected patches we cross-correlate N complex samples from sample
m, to sample m, (see Section 4.1)

m27m1+17j

Rippjl=K Y llgr’b[p,m+j]<[2gr’b[p,m])*, j=01,....,N—1, (56)

m=m1
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where K is the normalization factor defined in Equation 4.9. The peak correlation value
is used to find the coarse pixel lag, j.

jc = argmaX{|R1112 []”}a (57)
J

where the superscripts and the ping dependence are omitted for simplicity. The fine
delay is given by Equations 4.11, 4.12 and 4.13, but since the input data are sampled
regularly in spatial ground-range coordinates instead of in time, the equations look dif-
ferent.

5.1.3 Unwrapping the sidescan bathymetry estimates

From the properties of the cross-correlation function of two time delayed signals, the
phase should be zero at the true correlation peak. We have experienced from sidescan
bathymetry estimates that the phase of the peak of the sampled cross-correlation func-
tion does not strictly behave in accordance with this property. There are a number of
reasons why theory does not match experience

e The signals are sampled so the phase at the sampled peak differs from phase at
the true peak, unless the sampling frequency is infinite.

e The signals have noise on both the magnitude and the phase, so the selected peak
may be incorrect or the phase may be noisy.

e The signals are not only time delayed relative to each other, they are also dilated.

Figure 5.3 shows the phase distribution of the valid estimates for a simulated sea-
floor with a non-linear trajectory and a varying topography. It shows that the distribu-
tions are zero-mean, and that the spread of the phase distribution decreases when the
cross-correlation function is upsampled (see Section 4.1.1). Note that if the data is ade-
guately sampled one can upsample the cross-correlation function rather than the input
sidescan images.

Figure 5.4 illustrates how the distribution is widened when the bathymetry of the
seafloor becomes more challenging. This is due to an increased dilation and a less ac-
curate a priori seafloor depth estimate. Comparison of the simulated data in Figure 5.3
with the experimental data in Figure 5.4 also reveals the widening of the phase distri-
bution due to noise.

From Figures 5.3 and 5.4, and as mentioned in Section 4.1.1, 2w-wrap errors will
occur even for cross-correlation based methods. These wrap-errors occurs rarely, but are
randomly distributed throughout the sidescan image. A simple 1D unwrapper (Ghiglia
and Pritt, 1998, pages 16-26) will successfully unwrap most of these samples, but in a
few cases it can contribute to a large error: If the unwrapper is run across a shadow
region or across pixels with low coherence, all subsequent samples for that ping may
be wrapped out of the correct 27-interval. Figure 5.5 shows an example where this has
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Figure 5.3: Distribution of the phases of the peak of the cross-correlation functions in sidescan
bathymetry, for 1000 simulated pings with 150 patches each. Pixels with a correlation value
below 0.66 have been discarded. The bathymetry is slowly varying over the scene. The left
panel shows the results when the sidescan data are critically sampled, while the right panel
shows the results when the sidescan data are oversampled with a factor of ten in the re-gridding
to ground-range. The solid lines indicate 90% of the data and the dashed line 99%.

Occurrence
Occurrence

0
-100 0 100 -100 0 100
Phase [deg] Phase [deg]
(a) Flat seafloor (b) Heavy topography

Figure 5.4; Distribution of the phases of the peak of the cross-correlation functions in sidescan
bathymetry, for 1000 pings with 200 patches each. Pixels with a correlation value below 0.66
have been discarded. The data are real data collected using HISAS. The left panel shows the
results for an approximate flat seafloor, while the right panel shows the results for a seafloor
with heavy topography. The solid lines indicate 90% of the data and the dashed line 99%.
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Figure 5.5: Normalized lag, dy/c/2f§" for a ping of real data collected with HISAS. The patch
numbers are increasing with range and are spaced with one meter separation in ground-range
(e.g. patch 100 is at 100 meters ground-range). The raw estimates are showed with dots. The
estimates unwrapped with a standard 1D unwrapper are shown with squares and the estimates
unwrapped with our local 1D unwrapper are shown with circles. Notice that patch 148 and 149
originally seem to be in the wrong 27-interval.

happened on real data using HISAS. All the estimates from patch 112 and upward are
wrapped up to a normalized lag of approximately one. In this case, the correct wrap
interval is closer to zero. The error is caused by the region of invalid samples from
patch 102 to patch 111. This is a region with shadow in the sidescan images where the
correlation values are below 0.66. The geometry changes through the shadow and it is
not possible to know where to continue the unwrapping.

If we use phase differencing on the ground-range sidescan images instead of cross-
correlations, the phases would vary smoothly with large spatial correlation between the
samples. However, when we cross-correlate and select the peak of the correlation func-
tion, the phases will be zero-mean with no spatial correlation. In other words: a single
sample will with high probability be in the correct 27-interval and it will be uncorrela-
ted to the neighboring samples. The wrapped samples will be few, and they will occur
randomly in the data. We therefore define a new local unwrapper which unwraps each
sample to a local median of valid pixels

5~y[m] = U{oy[m], M {oy[m —u :m + u]}}, (5.8)

where v is a small number of samples, U{z,y} unwraps the estimate = onto the same
wrap-interval as y and M, {dy[m — u : m + u]} is the median value of the  valid samples
closest to the sample m in the interval [m — u, m + u] (exluding m itself). This means for
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example if all samples in [m — u, m + u] is valid, median is performed on the interval
[m —u/2,m+wu/2]. If only the samples up to and including m is valid, median is per-
formed on the interval [m —u,m — 1]. If there are fewer than « valid samples, fewer
than « samples will be used in the median. This ad-hoc method has proven to be robust
on large amounts of experimental data.

The unwrapping algorithm described above defines a small neighborhood in where
the median wrap-interval is found, and then the estimate is wrapped into that interval.
This reduces the probability of propagating large errors through the ping as it only
unwraps small groups of samples. The circles in Figure 5.5 show the results after our
local unwrapper; the region from patch 112 and upward is correctly unwrapped (in
this case the samples are left as they were) and the two samples (148 and 149) which
were wrapped are now unwrapped correctly. As mentioned before there should be no
spatial correlation between samples, so the probability of two neighboring samples are
wrapped as in Figure 5.5 is very low. However, this applies to independent samples.
Since we use a 3.2 meter patch size and one meter patch separation, there is a spatial
correlation up to four samples. That is why we chosen u to cover a larger neighborhood
than the patch size.

5.1.4 Converting to relative depth

Using the geometry of the sonar, the phase unwrapped lags, dy, are converted to a
relative body depth using Equations 3.17 and 3.20. This depth is in the body-frame of the
platform, i.e. the receiver positions, yi, 2, z1 and z, (see Figure 3.1) are the positions for
zero roll (¢), pitch (5) and yaw (v)).

The next step is to convert relative body depth estimates to relative depth estimates.
We have chosen to only apply roll and pitch compensation. Since the yaw-rotation is
the last rotation, it can be ignored at this stage. The relative depth estimates are stored
in a coordinate system which changes from ping to ping and is defined as

e The z-axis points down toward the seafloor
e The y-axis is perpendicular to the heading of the platform at transmit time

e The z-axis is defined as orthogonal to the z- and y-axes such that the xyz-axes
define a right-hand coordinate system.

Each estimate is represented by a zyz-vector from the transmitter position at transmit
time, to the seafloor. In the relative body depth coordinate system this vector is v, 4.
The z-component of this vector is by definition equal to zero. The relative depth after
the pitch- and roll-compensation, v.q, is

Vid = RibdrdVibd (5.92)
Rrbd—)rd = Rrbd—)rd(gba 67 w = 0)7 (59b)
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where ¢ and j are the roll and pitch of the platform at transmit time and R.pq_,q(¢, 5, %)
is the rotation matrix from body to the roll- and pitch-compensated coordinate system.
These broadside depth estimates are a suitable intermediate data format since they can
be used for ping based processing and easily converted into earth-fixed coordinate sys-
tems. Figure 5.6 shows an example of the ping-based relative depth estimates and a
mosaic into a local earth-fixed coordinate system. Notice that the platform depths are
added to the relative depths in the mosaic. Also notice that estimator at long range suc-
cessfully estimates the seafloor depth even when it is above the sonar (the areas with
negative depth in Figure 5.6).

In Figure 5.6(a) there are blank areas where data seem to be missing. These are areas
where the correlation coefficients are less than the threshold. All sidescan bathymetry
estimates in this thesis are presented with a threshold of 0.66 (approximately equal to a
SNR of 3dB). Invalid samples typically appears in the following regions:

In close-range regions the baseline decorrelation effect can reduce the correlation
coefficients

In far-range regions the SNR may drop due to lack of signal energy

In shadow regions caused by topography, there is no signal energy

In areas with interference and multipath the correlation may drop (although so-
metimes the interference can be coherent between the interferometric receivers)

5.1.5 Sound speed correction

One of the effects which makes sidelooking depth estimation more challenging than
downlooking depth estimation (e.g. single beam echo sounding and multibeam echo
sounding (Lurton, 2002, chapter 8)) is the effect of a vertically varying sound speed
profile. A signal traveling through a medium with a varying sound speed will not
follow a straight path (Brekhovskikh and Lysanov, 1982, Pages 33-35). Only directly
vertical rays will be straight. The degree of ray bending increases with how close you
get to horizontal, so a sonar which looks 200 meters to the side in 20 meters water depth
will be much more susceptible to this effect than a sonar which only sees 45 degrees and
steeper. Sound velocity correction is common to do for high precision mapping sonars
(Lurton, 2002, pages 278-281)

The effect of ray-bending is that the position and depth of the estimate both can be
incorrect. What we really measure with the interferometer is the incident angle of the
reflection into the sonar, along with the travel time. These two values can be found from
the estimated depths and are sufficient to correct for ray-bending. We have chosen to
use a standard constant gradient raytracer (Brekhovskikh and Lysanov (1982, Pages 37-
38); Synnes (2008)) as a correction algorithm. The principle is to divide the sound speed
profile into a number of segments. Within each segment a constant gradient is assumed.
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Figure 5.6: In the upper panel we show the relative depth estimates for around 2000 sidescan
pings, where we have used 200 patches with one meter separation. The recorded range of the
sonar varies between 150 and 200 meters. Areas with no coverage or with a correlation value
below 0.66 is colored white. In the lower panel we show the same data in a earth-fixed coordinate
system where the data are mosaicked into a half-meter grid. The track of the AUV is showed as
a black line.
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The ray within such a segment will then follow a circular arc (Ziomek, 1985, Pages 220-
240). The algorithm consists of estimating an incident angle from the uncompensated
depth estimates

d(r) = tan ™" {z(r), r? — 22(7’)}, (5.10)

where z is the uncompensated depth estimate and r the range. A ray is then sent out
from the sonar in the @(r) direction and traced through the different segments until it
has traveled a length r. This results in a new position and depth on the seafloor.

Figure 5.7(a) shows an example dataset where we have compared depth estimates
before and after sound speed correction. Before correction there is a pronounced trend
in the data as a function of range. The seafloor depth seems to bend downward on both
sides of the sonar. This is a typical result of uncompensated sound speed variations. In
the middle panel we have removed the artificial trend by sound speed correcting the
estimates. There is a difference of up to five meters, which is significantly larger than
the precision of the depth estimates. Figure 5.7(b) shows that the sound speed profile
for this dataset has a relatively strong variation.

5.1.6 Exporting sidescan bathymetry digital terrain maps

The sidescan bathymetry estimates are a vital component in the SAS processing and
have to be easily accessible. In addition, the estimates are an excellent product for fast,
low resolution assessment of the seafloor depth. We have therefore implemented three
export formats

e MATLAB .mat format (Mat, 2010) for internal use in the processing
e Kongsberg .all format (Tri, 2008) for viewing with Kongsberg products

e Triton .xtf format (EMD, 2010) for viewing with Triton software

The exporting to .all and .xtf is performed in a stand-alone routine which reads the
internal format and converts it to appropriate form. This makes it easy to extend to
other formats if needed.

The details of the exporting is fairly straightforward, but there are a few remarks:
Navigation information has to be provided along with the lever-arm from the naviga-
tion reference location to the transmitter. Since there is one sonar on each side there are
two separate lever-arms and it is convenient to store the estimates from each side in its
own file. The xyz-estimates, the reflectivity and the coherence should all be stored in
the file to provide a quality estimate with the measurement.

In order to produce a proper digital terrain map (DTM) one should correct for en-
vironmental effects like tide and surface waves (Ambrose and Geneva (1995); de Jong
et al. (2002, pages 12-39)). This should be done in an external software. The same goes
for the geo-referencing of the data. A multitude of post-processing softwares designed
for these purposes exist already, but it is outside the scope of this thesis to evaluate
them.
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Figure 5.7: In the upper panel we show the mosaicked depth estimates (in a half-meter grid) for
around 3300 sidescan pings, where we have used 200 patches with one meter separation. The
recorded range of the sonar varies between 150 and 200 meters. Areas with no coverage or with
a correlation value below 0.66 is colored white. In the upper plot we show the estimates before
sound speed correction, in the center plot after correction and in the lower plot we show the
differences. The track of the AUV is shown as a black line in all three plots. The bottom panel
show the sound speed profile for the same data set.
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5.2 Use of depth estimates in SAS processing

In the previous section we discussed how we have implemented relative depth estima-
tion using sidescan images. The method provided us with fast and robust knowledge of
the bathymetry, with a resolution of a few meters. Although this is a valuable product
for rapid environmental assessment (REA), it is even more important as a priori infor-
mation in the SAS processing. The depth estimates provides the correct geometry for
integration of micronavigation estimates and for imaging. The coherence of the sides-
can bathymetry estimates is an estimate of the sonar SNR, which is very important for
quality assessment.

5.2.1 Integration of micronavigation estimates

The HUGIN AUV has a high-grade inertial measurement unit (IMU) with a number
of aiding sensors integrated in an error-state Kalman filter (Jalving et al., 2003). The
attitudes estimates from the integrated navigation system (INS) are accurately enough
for SAS imaging. However, the INS position-estimates are limited by a poor along-
track velocity (surge) estimate. Synthetic aperture sonar processing, on the other hand,
requires extremely accurate cross-track motion (sway) estimates. Depending on the
type of error, the demand may be as high as better than A\/16 position-error over the
synthetic aperture (Cutrona, 1975). By combining measurements using DPCA with the
navigation solution from the integrated navigation system, the accuracy of both surge
and sway may be improved to a level where defocus is avoided (Bellettini and Pinto,
2002).

In order to combine DPCA surge and sway measurements with the INS navigation-
solution the depression angle ® (or equivalently: the relative depth), has to be known
for each ping and each DPCA patch. In principle, a depth estimate should be an average
over all depths within the sonars beamwidth and within the patch interval, weighted
by the reflectivity. In order to achieve this all depth estimates have to be considered
for each ping. We have implemented and tested this approach, but found that it was
unpractical due to the time consumption.

A fast approximation is to consider each ping separately by interpolating the relative
body depth estimates, v,,,q4, into the appropriate range values. The depression angle, ¢
is then defined as

arcsin (gf—‘;j‘ -7 :  starboard
b = ' Vr R (5.11)
marcsin | —d- .z : port
[Vibal ’

where z is the unit-vector [0,0,1] and @ is the angle between the vector to the seafloor
and the xy body plane of the AUV. A depression angle, & = x/2 means a direction
directly down in the body coordinate system of the AUV.

In addition to the depression angle, the along-track slope of the seafloor relative to
the body coordinate system of the AUV is used in the DPCA integration. The slope is
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estimated for each patch and each ping by a simple weighted linear fit over the neigh-
boring pings which are within the element beamwidth. Either reflectivity or coherence
or a combination of both can be used as weights.

5.2.2 Focus plane for imaging

It is well known that synthetic aperture images defocus if the focus plane is incorrect
and the sensor path is non-linear (Jakowatz et al. (1996, pages 176-186); Hansen et al.
(2009)). For a linear path, cylindrical symmetry ensures that the two-way travel path
is independent of depression angle, . For a non-linear path, the travel path becomes
a function of ®, which means that the coherent summation of pings can decorrelate if
® is incorrect. It has been claimed (Pinto, 2003) that the integration of micronavigation
estimates into the navigation solution will compensate for errors in the focus plane, but
we believe that this only applies in special cases: In general, both the navigation and
the focus plane have to be known.

In the FOCUS processing suite there are two different beamformers: A time-domain
interpolation beamformer (Johnson and Dudgeon, 1993, pages 112-119) which works on
any form of trajectory and generates SAS images in ground-range, and a wavenumber
algorithm (Soumekh, 1999, pages 198-206) which is much faster, but demands close to
linear trajectories and generates slant-range images. The sidescan bathymetry depth
estimates are used as a priori input to both algorithms, but the actual implementations
differ strongly.

Depth plane for time-domain imaging

The time-domain interpolation beamformer migrates data from the sensor position gi-
ven by the navigation system, down onto an earth-fixed focus plane. The plane is made
from sidescan bathymetry estimates by mosaicking the estimate into the same coordi-
nate system as defined by the navigation solution. Mathematically, we transform each
roll- and pitch-compensated sidescan bathymetry estimate, v.4, into the earth-fixed na-
vigation coordinate system as following

Vgp = Vpq €08 (V) + vy sin (1) + wg, (5.12a)
v = Vi €os (1Y) — vy sin (¥) + wy, (5.12b)
Vep = Vg + Wep, (5.12¢)

TYZ

where v, ]~ are the xyz-components of v,4, ws the 3D position-vector of the transmitter
and v are the depth estimates in the earth-fixed coordinate system. These estimates are
scatter points (i.e. they are unevenly distributed in x and y) and cannot be used directly
in the imaging.

The time-domain beamformer migrates the sonar data to a regular grid in z and .
The focus plane is therefore divided into rectangular cells with size given by the zy grid-
spacing, and the depth for each cell is estimated as a weighted average of a number of
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samples in v.;. We have chosen to use a truncated Gaussian spatial weighting combined
with coherence weighting. The size of the truncated Gaussian disk is a processing para-
meter. If it exceeds the cell-size in any dimension, a single sidescan bathymetry depth
estimate will contribute to multiple z-estimates. This is a simple way of smoothing the
data.

Slant-range directions for wavenumber imaging

The wavenumber algorithm beamforms sonar data in slant-range rather than ground-
range, and does not use seafloor depth information. However, the beamforming as-
sumes a linear sensor-trajectory, so we have to motion-compensate the data in advance
(Callow et al., 2009). The motion-compensation transforms data collected on a non-
linear track to data corresponding to data collected on a linear track. This is in fact a
low-resolution time-domain beamforming, which needs seafloor depth information as
input.

There are a number of different approaches to the motion-compensation. In wide-
beam motion-compensation seafloor depth, not only as a function of range, but also as
a function of horizontal angle are taken into account. In narrow-beam motion-compen-
sation it is assumed that the broadside beam is representative for the full horizontal
beamwidth. We have chosen a narrow-beam motion-compensation since it is much
faster than the wide-beam. With 32 elements in each HISAS receiver array, this means
that the depth is only estimated inside 1/32-part of the actual footprint of the element
data.

Ideally we should use multiple sidescan bathymetry estimates as depth information
for a single ping. This means making an earth-fixed depth map (as described in the
previous section) and ray-tracing the beams of each element down onto the depth map.
This method uses all available information, but it is very time-consuming. We have im-
plemented this method as an option, but use a simpler approach as default. Sidescan
bathymetry estimates from a single ping is used to predict the depths for a single ping in
the motion-compensation. Missing estimates (due to too low coherence) are interpola-
ted from neighboring ranges. Only in the case where the sidescan bathymetry estimates
for an entire ping are missing, we copy information from neighboring pings.

5.3 SAS interferometry

Even though SAS interferometry is the end-product in the interferometric processing, it
is also one of the easier steps to describe. Most of the processing is based on the same
principles as the sidescan bathymetry algorithm. In particular, the conversion from
delay to relative depth, the sound speed correction and the exporters are all more or less
identical to the methods described in Section 5.1. However, other parts are significantly
different. In this section we will discuss the details of the co-registration of the SAS
images, the estimation of the interferogram, and the unwrapping of the interferogram.
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We will also show how we can iteratively estimate the SAS bathymetry by using the first
estimate as input to a new co-registration step. This potentially increases the coherence
and the accuracy of the estimated bathymetry.

5.3.1 Co-registration

Co-registration of synthetic aperture images is in general a complicated problem. As
we mentioned in Section 3.1.4, a method commonly used in SAR is to identify com-
mon features in the SAR images and interpolate one of the images to match the other
(Fornaro and Franceschetti, 1995). Usually, a warping function describing shift, dilation
and rotation is calculated from a set of control points or distinctive image features (Hong
et al. (2006)); Jakowatz et al. (1996, Pages 293-298)). This is necessary in repeat-pass in-
terferometry (Hanssen, 2001, page 2). For a single-pass interferometer like HISAS, the
interferometric images are not rotated relative to each other, so instead of a warping
function we use 1D interpolations along range.

Time-domain beamformed images are generated directly in ground-range and do
not need to be co-registered. Slant-range SAS images are defined in the same coordinate
system as sidescan images, so we can use the same mathematics as in Section 5.1.1.
The main difference is that the data is motion-compensated to a straight-line and PCA-
corrected to appear as collected from the PCA positions of the interferometric receivers.
This means that »*"[n] = n - dr, and Equation 5.2 should be replaced by

m] = 24/ (ylm] — yPOA) + (2[m] — £, (5.13)
m] = 24/ (ylm] — 5N + (2lm] — ), (5.13b)
with yP4 = 3, /2, yPCA = /2, 2PCA = 2 /2 and 2L = 2,/2. Figure 3.1 defines

the receiver posmons Y1, Y2, 21, 22. The actual mterpolatlon is the same as in Equation
5.3 and the basebanding is given by Equation 5.5. The a priori seafloor estimates z[m]
for each y[m] is found by defining an earth fixed coordinate system and applying the
methods described in Section 5.2.2.

5.3.2 Estimating the interferogram

Once we have co-registered the images in ground-range, the estimation of the inter-
ferogram is straightforward. We implement the maximum likelihood estimator of the
complex coherence described in Equation 4.29 (see Section 8.1). The argument of the
complex coherence is the interferogram, while the magnitude is the coherence. Note
that the frequency used when converting the interferogram to relative depth is the sca-
led ground-range frequency (see Section 5.1.2).
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5.3.3 Unwrapping the interferogram

Since the interferogram is wrapped modulo 27, we have to unwrap the phases before
we can estimate the relative depth. The actual implementation follows the description
in Section 4.6.8. As we discussed, the phase wraps are minimized by the ground-range
co-registration, and the residual unwrapping is performed using a standard Goldstein‘s
Branch cut algorithm as described in Ghiglia and Pritt (1998).

5.3.4 Generating SAS images using SAS bathymetry

In this section we have described how FOCUS relies on relative seafloor depth esti-
mates, made using the sidescan bathymetry algorithm. The performance of preceding
methods rely on the accuracy of these estimates. SAS bathymetry is an estimate of
the relative seafloor depth with much higher horizontal resolution than sidescan ba-
thymetry. An iterative scheme can therefore be made by using SAS bathymetry as an
improved a priori input to the SAS processing. This can be implemented throughout the
processing chain, but we have chosen to focus on an improved estimation of a focus
plane. An improved a priori input will provide a better co-registration and less occur-
rence of 27 phase wraps. This again will give us depth estimates with better precision
and accuracy. Figure 5.8 shows the interferograms using flat seafloor, sidescan bathy-
metry and SAS bathymetry as a priori focus plane. The results are generated using a
point scatter simulation of a bumpy seafloor (see the upper left panel of Figure 5.8).
The interferograms get closer to zero, the better the a priori depth information is. Since
the simulated seafloor is very bumpy, there is still a residual phase-difference left in the
interferogram after iterative SAS processing (see the lower right panel of Figure 5.8).

Figure 5.9 shows the SNR calculated from the estimated coherence (using Equation
4.17). The figure illustrates the increase in SNR due to improved co-registration. The
average improvement by using iterative SAS with SAS bathymetry as focus plane ins-
tead of a flat seafloor (which has maximum 1 meter error), is in this case 4dB. In most
realistic cases, the seafloor depths are sufficiently smooth so sidescan bathymetry will
be accurate enough as depth information. However, on rock-formations or large man-
made objects iterative SAS may significantly improve the results.
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Figure 5.8: The figure shows results using different prediction methods for the focus plane. The
results are generated using a point scatter simulation of a bumpy seafloor. The simulated depth
is shown in the upper left panel. The upper right panel shows the interferogram assuming a flat
seafloor at 20 meters as a priori depth. The lower left panel shows the same interferogram using
sidescan bathymetry estimates as a priori depth, and the lower right panel show the interfero-
gram using iterative SAS with the focus depth predicted from SAS bathymetry estimates.
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Figure 5.9: The figure shows interferometric SNR using different prediction methods for the
focus plane. The results corresponds to the results showed in Figure 5.8. The left panel shows
the estimated SNR assuming a flat seafloor in the imaging and the right panel shows the SNR
using iterative SAS with the focus depth predicted from SAS bathymetry estimates. The average
increase in SNR is 4 dB.
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Chapter 6

System description

The methods we have described in this thesis are applicable to any SAS- or SAR-system.
However, in addition to the raw sonar (radar) data, there are some on-site measure-
ments we assume are available:

e A navigation solution with positions and attitudes. Preferably, the navigation
sampling frequency should be at least ten times higher than then the ping fre-
guency.

e Altitude measurements. Height above the seafloor is used as initialization in si-
descan bathymetry. This initialization provides a more accurate estimate of the
depth for the first pings.

e An estimate of the local sound speed and the sound speed profile. An incorrect
local sound speed will cause a bias in the estimated bathymetry. As we have seen
in Section 5.1.5 large systematic errors can occur in the bathymetric estimates if
the sound speed profile is unknown. The bathymetry can be corrected in post
processing provided the applied sound speed is known.

The system parameters of the sonar and the platform have to be known with high
accuracy. This includes lever-arms, frequencies, bandwidth etc. Almost all the expe-
rimental data in this thesis is from the HISAS 1030 interferometric synthetic aperture
sonar on the HUGIN 1000-MR autonomous underwater vehicle. Data from other sys-
tems is included for the purpose of illustration.

6.1 The HISAS 1030 interferometric SAS

The HISAS 1030 is a two-sided synthetic aperture sonar (Fossum et al., 2008; Hagen
et al., 2006). It has two full-length receiver arrays on each side, which is a necessity
for interferometric processing with image resolution. Each receiver array consists of 32
individual elements of size 3.75 cm along-track (see Figure 6.1). The transmitter is a ver-
tical phased array of 16 A/2 elements (at 100 kHz), which means that the transmitted
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Figure 6.1: Schematic of one of the HISAS 1030 sonars. Each receiver array consists of 32 ele-
ments of size 3.75 cm along-track. The vertical baseline between the receivers is 30 cm or 20\ at
100 kHz. The transmitter is located approximately 20 cm in front of the midpoint between the
receiver arrays. The transmitter consists of 16 elements in a vertical array, each of size \/2 at
100 kHz.

Figure 6.2: Picture of a receiver array and a transmitter from the HISAS 1030.

pulse can be vertically steered to a preferable direction. Since the transmitter also re-
cords during reception, it can be used as a short interferometric array with \/2 element
spacing.

HISAS can operate between 50 and 120 kHz, typically using 30 kHz bandwidth at
100 kHz. With 30 kHz bandwidth the data rate is approximately 85 Gb/h (included re-

94



Figure 6.3: Picture of a HISAS 1030 mounted on a HUGIN 1000-MR AUV.

cording at the transmitter). The waveforms are LFM pulses. The theoretical image
resolution in standard mode is 1.9 cm along-track and 2.5 cm cross-track, The maximum
range of the system is around 400 meters due to attenuation and self noise (Lurton, 2002,
pages 19-23). The recorded data are matched filtered and dynamically focused in real
time, and both the individual receiver data and the sidescan data are stored. The system
is sold to multiple Navies with a specification of better than 5 by 5cm up to 200 meters
range, providing possibility for windowing and filtering of the data.

With a center frequency of 100 kHz, the horizontal beamwidth is approximately 23.6
degrees. This provides multi-aspect capability, which for example can be used in sha-
dow detection (Midtgaard et al., 2007). The reduction of synthetic aperture length in
multi-aspect processing can also reduce the effect of shadow blurring inherent in SAS
(Groen et al., 2009). Alternatively, fixed focusing proposed by Groen et al. (2009) can be
used to restore the shadows.

Attenuation causes SNR to become marginal at ranges above 200 meters range, but
the incident angle at the seafloor may also limit the backscattered energy. Therefore, it
has been suggested by Hagen and Hansen (2007) that the maximum practical range for
a SAS system is 10 times the altitude. A conservative estimate of the blind zone is from
nadir and 45 degrees out. The resulting area coverage rate is around 2.3 km?3/h (Hagen
and Hansen, 2007). Table 6.1 summarizes all key features of the HISAS.
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Table 6.1: Key features for the HISAS 1030 interferometric synthetic aperture sonar

Quantity Value
Receiver length 120cm
Number of receive elements on each side 2x32
Vertical baseline 30cm
Transmitter size 7.5x15¢cm
Number of transmitter elements 8x16
Typical mounting roll angle 20 degrees
Frequencies 50-120 kHz
Typical operational bandwidth 30kHz
Typical pulse type LFM
Typical pulse length 6 ms
Typical operational range 200m
Theoretical resolution 1.9x2.5cm
Practical resolution 5x5¢cm
Theoretical area coverage rate 3.25km?/h
Practical area coverage rate 2.3km?/h

6.2 The HUGIN 1000-MR AUV

The HUGIN autonomous underwater vehicles have been developed by the Norwe-
gian Defence Research Establishment (FFI) and Kongsberg Maritime (Hagen et al., 1999,
2004, 2005). The development started in 1991 with a technology demonstrator, and the
first sea trial took place in 1996. Originally, the HUGIN was designed for surveying in
deep waters. With the HUGIN 1000-MR, the aim has been to develop an AUV especially
suited for military purposes.

The HUGIN 1000-MR is modular in size (see Figure 6.4). The vehicle frame is made
of carbon fiber laminate and high performance syntactic foam. During operation, the
vehicle is filled with water so the electronics is sheltered inside two spherical containers.
Heavy equipment such as batteries and transducers can be used due to the buoyant
frame. Typical dry weight of the vehicle is 600-800 kg.

The energy is delivered from two rechargeable Lithium polymer battery modules
and a high efficiency, high torque synchronous motor allows direct drive of a long bla-
ded propeller. Four individually controlled rudder blades are used for heading, pitch
and roll control. The vehicle is controlled by a distributed software system featuring
three or more main computers. The navigation processor runs the real-time integrated
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Figure 6.4. Schematic of the different parts of the HUGIN 1000-MR AUYV. Notice the modular
design with three separate sections.

inertial navigation system. After recovery, the navigation is improved by using non-
causal smoothing (Gade, 2004).

HISAS is the primary sensor on the HUGIN 1000-MR (see Figure 6.3). However, it
is also the most energy consuming sensor. With HISAS the endurance of the HUGIN
1000-MR is approximately 18 hours.

6.3 HISAS compared to selected INSAR systems

In this section, we consider four different interferometric synthetic aperture radar sys-
tems and compare them with the HISAS interferometric SAS. The basic idea is to shed
light on the main differences in INSAS compared to INSAR. The goal of this section is to
highlight possible areas where InSAS can be improved based on state-of-the-art in In-
SAR. The results and presentation in this section is based on Szebg and Hansen (2010).

6.3.1 System descriptions

There are noticeable differences between SAR and SAS:
e Almost all SAS systems (including HISAS) have a single along-track element trans-
mitter and a multiple along-track receiver array, and use stripmap mode. The
multi-channel receiver is primarily used to obtain large swaths.
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Table 6.2: Sensor parameters for the airborne STAR-4 and PAMIR, the satellite based SRTM-X
and TanDEM-X and HISAS.

STAR | PAMIR | SRTM | TanDEM | HISAS
Frequency [MHZz] 9580 9450 9600 9650 0.1
Bandwidth [MHZ] 270 1820 9.5 150 0.03
Wavelength [cm] 3.1 3.2 3.1 3.1 1.5
Element size [m] 1.25 0.20 12 4.8 0.038
Array size [m] 1.25 0,60 12 4.8 1.2
Baseline [m] 0.96 1 60 500 0.28
Roll angle [deq] 81 0 45 0 14
Beamwidth [deg] 1.4 9.1 0.15 0.37 23
Range resolution [m] || 0.55 0.08 15 1 0.02
Along resolution [m] 0.6 0.10 6 2.4 0.02

e Advanced SAR systems have 2D phased arrays and use electronic steering of the
transmitter and receiver arrays for different SAR modes. ScanSAR (Franceschetti
and Lanari, 1999, chapter 5) and Terrain Observation by Progressive Scans (TOPS)
(Gebert et al., 2010) are used to increase the area coverage rate while lowering the
resolution. Spotlight mode (Jakowatz et al., 1996) is used to increase the resolution
while lowering the area coverage rate.

Table 6.2 summarizes the key parameters for the different sensors. The parameters are
shown for stripmap mode for all systems (except PAMIR). In the following, we describe
the four difference SAR sensors we have chosen for our study.

STAR-4

Intermap Technologies from Canada has developed several airborne interferometric
SAR systems used commercially for topographic mapping. The radar is a X-band strip-
map SAR with two horizontally displaced antennas (Lange and Gill, 2009; Wei and
Coyne, 2008). Their TopoSAR system has two transmitters and two receivers and the
transmitter can be alternated giving an effective doubling of the baseline (referred to
as ping-pong) (Rosen et al., 2000). We have chosen the STAR-4 which provides a good
compromise between high resolution and large area coverage rate. We consider this
system a good representative of commercial airborne SAR.
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PAMIR

The Phased Array Multifunctional Imaging Radar (PAMIR) is a high resolution phased ar-
ray airborne SAR system with possibilities for cross-track interferometric mapping and
along-track interferometry moving target indication (MTI) (Ender and Brenner, 2003;
Brenner and Roessing, 2008). The interferometric array includes three vertically spaced
antennas with baselines of 0.67 meters and 0.335 meters, giving a total baseline of one
meter (Brenner and Roessing, 2008). This is a state-of-the-art airborne SAR, and with
a recent upgrade to 3 GHz bandwidth the system has demonstrated SAR imagery with
a resolution of 2 x 5cm (Brenner, 2010). In repeat pass interferometry using a baseline
of 17 m, PAMIR also demonstrated extreme resolution and accuracy in interferometry
(Brenner et al., 2010). This radar is fully programmable and configurable. It is difficult
to retrieve the actual performance from literature and we have therefore chosen para-
meters from a sliding spotlight interferometry test (Brenner and Roessing, 2008). Thus,
the actual parameters for stripmap interferometry might be incorrect. The system is still
interesting to consider, representing state-of-the-art in airborne SAR.

SRTM-X

In 2000, the Shuttle Radar Topography Mission (SRTM) successfully recorded single pass
SAR interferometry data from the entire land mass of the earth between 60° N and 57°
S, both in C-band and X-band (Rabus et al., 2003; Suchandt et al., 2006). This was the
first single pass SAR interferometer in space. The maximum swath width of the C-band
system was 225 km in scansar mode using 4 beams, and 45 km in X-band stripmap mode
(Rabus et al., 2003). The main antenna in the shuttle was 12 x 0.5 meters large, and the
outboard antenna was 6 x 0.4 meters for the X-band frequency. The secondary antenna
was mounted on a 60 meters long boom to obtain a long baseline.

TanDEM-X

TerraSAR-X is a high resolution spaceborne SAR system for earth observations (Stangl
et al., 2006). The radar antenna is a phased array with 384 elements, with the possibi-
lity of multiple modes of operation: Stripmap mode with 3 meter resolution and 30 km
swath width; scansar mode with 16 meters resolution and 100 km swath width; and
high resolution spotlight mode with one meter resolution and 10 km image size. In
June 2010 the TanDEM-X was launched (Krieger et al., 2007). This is an ad-on satellite
to TerraSAR-X for digital elevation mapping (DEM). Both satellites are considered one
bistatic system with synchronous formation flying (Krieger et al., 2010) providing single
pass high resolution interferometry with large baselines. Both satellites will fly in helix
tracks, forming both horizontal and vertical baselines up to several kilometers (Krieger
et al., 2010). The interferometric data collection with the two satellites can be perfor-
med in different ways since both platforms have the possibility to transmit and receive.
TanDEM-X represents state-of-the-art in horizontal resolution and vertical accuracy in
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Table 6.3: Imaging geometry for the airborne STAR-4 and PAMIR, the satellite-borne SRTM-
X and TanDEM-X, and HISAS. The parameters are shown for stripmap mode for all systems
(except PAMIR).

STAR | PAMIR | SRTM | TanDEM | HISAS
Altitude [km] 8.5 3 233 515 0.02
Rinax [km] 17 7 410 728 0.2
Ry or [kmM] 11 2 45 30 0.17
Ry o [kmM] 7.7 1.7 36 21 0.17
Speed [m/s] 111 100 7500 7600 2
PRF i, [HZ] 178 333 1250 3167 3.33
PRFax [HZ] 19430 | 86207 4167 7143 4.37
PRF [Hz] 1875 1000 1674 4500 3.75
SA length [m] 425 1111 1068 4740 80
SA time [s] 3.8 11 0.14 0.62 40
Ny in SA 13600 | 35000 | 34167 | 151667 5333
N, in SA 7180 | 11000 238 2800 150
Rate [Mpixels/s] 2.2 25 3.75 95 0.85

spaceborne single pass interferometry.

6.3.2 Synthetic aperture data collection

There are fundamental differences between INSAR and InSAS in environmental condi-
tions, phase velocity, geometry, data collection, platform motion and navigation (see
Section 2.5). In this section, we list some of the differences that affect synthetic aper-
ture imaging and interferometry. Table 6.3 shows the key numbers for geometry and
data collection for the different sensors. The last row shows the data-rate defined as
the area coverage rate in square meters per second divided by the theoretical resolution
in square meters. This gives a indication of the hardware complexity and the required
processing power.

The imaging geometry of existing SAS systems are very similar, with a swath rea-
ching from nadir to roughly ten times the altitude. This geometry is very different from
spaceborne SAR systems, which have a much more vertical geometry. This reduces
the effect of shadowing, but increases the effect of foreshortening and layover (Frances-
chetti and Lanari, 1999, page 37-41). An airborne SAR system usually has an imaging
geometry somewhere between a SAS and an spaceborne SAR. Figure 6.5 shows the
measurement geometry for the different sensors.
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Figure 6.5: Comparison of the imaging geometries for the different sensors. The red area shows
the actual swath. Note that all geometries have correct aspect except for HISAS, which has even
more horizontal geometry than indicated.

Table 6.4: Interferometric parameters for the airborne STAR-4 and PAMIR, the satellite-borne
SRTM-X and TanDEM-X and the HISAS. The parameters are shown for stripmap mode for all
systems (except PAMIR).

STAR-4 | PAMIR | SRTM-X | TanDEM-X | HISAS

0. [m] (10dB) 1.47-8.94 | 1.96-2.61 | 1.84-2.10 | 0.52-0.54 | 0.01-0.13
% [deg/m] 2.88-0.47 | 2.16-1.62 | 2.3-2.0 8.1-7.9 309-32
2o [M] 125-760 | 167-222 | 157-178 44-45.5 1.2-11

fo [millicycles/res] || 4.1-0.37 | 0.28-0.16 | 62.8-50.3 16.5-15.5 15-0.23
Deit [M] 118-1312 | 1776-3146 | 478-596 | 15200-16100 | 9-622

kg [no shift] 0.9919- 0.9994- 0.8745- 0.9670- 0.9696-
0.9993 0.9997 0.8993 0.9689 0.9995

6.3.3 Interferometric processing

In the design of an interferometric system there are a number of important quantities to
consider. In this section, we list parameters that indicate the sensitivity / accuracy that
can be obtained, and the complexity / difficulty of the processing. We show the results
in Table 6.4 and in Fig. 6.6.

Design parameters

As we remember from Section 3.3, the interferometric phase-difference, 6, can be conver-
ted to a depression angle relative to the interferometer,

Al
dasin! | ——0 6.1
sin <27r D ), (6.1)
where D is the interferometric baseline (i.e. the distance between the receiver arrays).
We assume that the incoming waves are parallel. The depth relative to the sensor was

presented in Equation 3.9
z =rsin (P + Dy) (6.2)
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where r is the slant-range and &, the roll of the interferometric array.
A simple differentiation of Egs. 6.1 and 6.2 gives the standard deviation of the depth
estimate as a function of the standard deviation of the phase-difference estimates oy

. _ A rcos(P+ D)
2D cosd

where r, B and &, are assumed known. Clearly, a large interferometric baseline with
short wavelengths gives the best performance (lowest standard deviation in depth).
However, as we will see later, an increase in the interferometric baseline also causes a
reduction in coherence and robustness.

An important quantity is the height sensitivity (Bamler and Hartl, 1998)

09, (6.3)

o0 B 2w D cos @

0z X\ 1 cos(®+ D)’ 64)

which gives the phase-difference for a given geometry. Equivalently, this can be repre-
sented by the height ambiguity, or the height which causes one phase wrap at a given

range
90\ ~" r cos (P + )
Z2onr = 2T <£> = )\EW (65)

The local fringe frequency in range is a key parameter of the interferometer

189_ z D cos @

J0 = o T T A cos (@ 1 By’

(6.6)
This expression gives the change in phase-difference as a function of range and is identi-
cal to the spectral shift of the signal. It can be used to calculate the maximum theoretical
coherence between the receiver arrays. The critical baseline, D, is the baseline which
gives a spectral shift equal to the bandwidth, B

2
Dcrit = )\ET_COS ((I) ki (I)O) . (67)
c z cos ¢

The baseline dependent coherence, k3, can be approximated as (Bamler and Hartl, 1998)

D
]{ZDxl—

for D < Dy, (6.8)

crit
with the total coherence written as
k = ksnrkpkr. (6.9)

Here kgsnr IS the coherence due to a finite SNR and k7 is the temporal coherence.

In Table 6.4 and Fig. 6.6 we summarize the most important interferometric features
for our example systems. There are rather large differences between the systems. Some
of these are:
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e HISAS has a large relative variation in range causing large variations in all the
sensitivity parameters.

e TanDEM-X has large swath, high horizontal resolution and good vertical accuracy
due to the large baseline.

e SRTM-X has relatively large spectral shift compared to the bandwidth.
¢ PAMIR has very low fringe frequency indicating that unwrapping is less difficult.

e STAR-4 has very large height ambiguity which indicates that unwrapping is not
needed.

¢ PAMIR, HISAS and STAR-4 have large critical baselines compared to the actual
baseline. This reduces the need to perform spectral shift filtering.

e TanDEM-X has a very large critical baseline, allowing for a high interferometric
range resolution.

e HISAS has a very low height ambiguity at short range. This indicates the need for
good unwrapping algorithms.

e STAR-4, PAMIR and SRTM-X have similar standard deviations of the height es-
timate for fixed number of pixels and SNR. This means that PAMIR has much
higher vertical accuracy for fixed horizontal patch in square meters, due to the
much higher resolution.

6.3.4 Summary

In this section, we have compared state-of-the-art interferometric SAR systems with
the HISAS sonar. We have chosen the systems somewhat subjectively in order to shed
light on what can be learned from InSAR. There are rather large differences between the
different SAR systems. The differences can be grouped in different ways. Spaceborne
sensors are different from airborne sensors. SAS is closer to airborne SAR. Complex
and new sensors have better overall performance than simpler older sensors. This is in
particular apparent when comparing SRTM-X with TanDEM-X.

Interferometric SAS and HISAS in particular, has very large variations in the inter-
ferometric performance over the entire swath due to the large range variation. At short
range, the accuracy is extremely high, but the height ambiguity very low. At far range,
the fringe frequency is very low and the critical baseline very high. At short range,
phase unwrapping is probably the largest challenge, while at far range, lack of SNR is
probably the largest challenge. In sum, these findings suggests that optimal interfero-
metric processing should be range dependent.
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Figure 6.6: Interferometric performance of the airborne STAR-4 and PAMIR, the spaceborne
SRTM-X and TanDEM-X and HISAS as a function of normalized slant-range. Upper left: theore-
tical height accuracy; Upper right: height ambiguity; Lower left: fringe frequency; Lower right:
critical baseline.

HISAS has large relative bandwidth and large beamwidth compared to SAR sys-
tems. This indicates that the split-bandwidth interferometry technique (see Section 8.3)
can be considered to simplify or avoid unwrapping problems.

A trend in interferometric SAR is the use of repeat pass interferometry for deforma-
tion mapping, temporal change detection and multi-baseline tomography. We believe
that the future of InSAS brings these advanced techniques to the underwater environ-
ment too (Synnes et al., 2010).
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Chapter 7

Resolution and precision assessment

In this section we discuss the theoretical, the practical and the achievable resolution
and precision of the depth estimates. We focus on two quantities: Horizontal resolu-
tion, i.e. the resolution in x, y or in along-track and cross-track projected down onto the
seafloor (ground-range), and the precision in the depth estimate (precision along the
z-coordinate). We will also separate between sidescan and SAS bathymetry, although
many of the arguments and equations will appear in both topics.

The horizontal resolutions of bathymetric estimates are complicated. We need to de-
fine a sensible and applicable definition of resolution in a bathymetric map. We choose
two different approaches: When calculating the resolutions mathematically, we start by
the underlying image resolution and investigate how the bathymetric processing may
affect these measures. When we want to measure the achieved resolution in a bathyme-
tric dataset we consider the flank of a distinct change in the bathymetry. We measure
the horizontal distance between where the bathymetry is at one level to where it has
reached the other level (assuming that the change in bathymetry is instantaneous and
that the change is significantly larger than the precision of the estimates, so that the two
levels can be easily separated). This estimate of resolution is ad-hoc and we do not claim
that it can be deduced from the theoretical measures, but it is strongly influenced by our
perception of resolution.

In this section and throughout the thesis, simulated data are generated using a point
scatter simulator (with a few exceptions in Chapter 4). The simulator uses independent,
non-directive scatterers which are randomly distributed in the horizontal plane and are
located on a virtual surface in the vertical plane. The strength of each scatterer is calcula-
ted using a standard normal distribution. The simulator is implemented in time-domain
and generates raw sonar data using LFM pulses. Sonar beampattern, transmission-loss
and continuous motion through pings are simulated accurately. So is the sonar trajec-
tory. However, the simulator does not simulate a realistic scene. The scattering mecha-
nism is simplified and effects like shadow, multipath and specular reflections are omit-
ted. A realistic speckle statistic is still achievable by choosing a large enough number of
scatterers in each resolution cell. In this thesis we use approximately ten reflectors (or
more) in each resolution cell. This means that a simulation for SAS interferometry has
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to have a much higher density of scatterers than a simulation for sidescan bathymetry.

7.1 Sidescan bathymetry

As mentioned in Chapter 2, a sidescan image has a theoretical along-track resolution of
(Van Trees, 2002, pages 46-51)
A

N.d

where X is the wavelength, L = N.,d is the length of a receiver array consisting of N,
elements of size d, and r is the range. Note that the along-track resolution is range-
dependent and that this is the 3dB resolution (i.e. a measure of the distance needed to
separate two targets of equal strength by 3dB) (Van Trees, 2002, pages 46-51). Other
types of resolution can be defined (Van Trees, 2002, pages 46-51). In Section 2 we also
defined the theoretical 3dB range resolution of a sidescan image as (Franceschetti and
Lanari, 1999, page 23)

&ﬁz%r: (7.1)

T

ssi ¢
5r_2B, (7.2)
where c is the sound velocity and B the bandwidth of the system.

In sidescan bathymetry we use a patch of data along a range-profile (i.e. a small seg-
ment of a time series) to estimate the depth (see Section 5.1.2). Therefore the theoretical
sidescan bathymetry resolution should equal the sidescan image resolution along-track,
and the number of independent samples in the patch times the sidescan image resolu-
tion cross-track. Along the array we do not apply any weighting, nor do we perform
any other kind of processing which will deteriorate the resolution so the practical (and
theoretical) along-track resolution in sidescan bathymetry equals the theoretical resolu-
tion of the sidescan images

: A
5ssb =gt = ]
T T Nrdr

Cross track the story is more complicated. Firstly, we have to consider the length
of the patch of data. Secondly, we apply a weighting after the matched filtering which
reduces the resolution. Thirdly, we render the sidescan image down onto a (non-flat)
seafloor (which yields a resolution in y instead of in 7). Fourthly, we apply weighting on
the patch data before we correlate the interferometric arrays (which effectively reduces
the size of the patch). The bathymetric y-resolution thus becomes

(7.3)

C

yﬁv (7-4)

5;519 = wlngsTry(SZSi = wlngsTr
where N, is the number of independent samples in the patch, w; a factor due to the
window applied in the matched filter, w, a factor due to the window applied on the

patch-data and 7, a factor due to the resampling from range to y. While N, can be
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large, the three other terms are all close to one and can be written on an approximate

form 43
5~ SN 75
VR s Ik (7:9)
where r is the range and h the depth of the seafloor at the patch location relative to the
sonar depth. Here we have used w; ~ 4/3 and wy ~ 3/4 (Van Trees, 2002, chapter 3) and
assumed a local flat seafloor (at the patch). In practice, we sample the data uniformly at

theoretical range resolution along y, and select N’ samples from the ground-range data

4 r
N ~ —Ny—0——. 7.6
S 3 /7’2 — h2 ( )
Consequently, the sidescan bathymetry resolution along y can be written
3 c 3
(SSSb%—N/—I—P 77
v T4 soB 47 (7.7)

where N! is the number of samples in a ground-range profile sampled at theoretical
range resolution and P the length of the ground-range patch in meters.

Figures 7.1 and 7.2 show results from sidescan bathymetry on a simulated dataset
of a single ping in a noise-free environment. The simulated seafloor consists of a set
of half meters delta-changes as can be seen in Panel 7.1(a). The depths are estimated
on a large number of lines beamformed at different z-positions. Panel 7.1(b) shows the
depth estimates. Notice the loss of correlation when a step change is inside the patch
(see Panel 7.1(c)).

In Figure 7.2 we show how the method achieves close to the theoretical resolutions
described in Equations 7.3 and 7.7. Panel 7.2(a) shows the range profile for two dif-
ferent lines. Notice that the half meter change in bathymetry is significantly larger than
the precision of the estimates and that the transition between the different regions are
almost linear. In Panel 7.2(b) we show the estimated length of the slope averaged over
range for each line. In this simulation 5;Sb ~ 3.2 meters and the estimated slope lengths
match quite well with the theoretical resolution. Averaging over all lines gives an esti-
mated y-resolution of 3.16 meters.

In Panel 7.2(c) we show the along-track results. The length of the slope now varies
with range. The theoretical angular resolution is 0.72 degrees and is shown in solid
black. The dashed lines show the estimated slope length which corresponds to an an-
gular resolution of 0.61 degrees. This reduction of 15 percent is due to the fact that
the slope-length not necessarily corresponds to the 3dB resolution, but it should cor-
respond to some image resolution. The important result is that the along-track sidescan
bathymetry resolution also seems to be proportional to range, and have the same trend
as the theoretical sidescan resolution.

Another important parameter is the posting separation, which is often confused with
the resolutions mentioned above (when the posting separation equals the resolution, the
data is critically sampled in such a way that each sample is independent of the others
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Figure 7.1: The figure shows results from sidescan bathymetry on a single simulated noise-free
ping. The bathymetry is estimated on a number of offset beams. Panel (a) shows the simulated
seafloor, while the estimated seafloor is presented in panel (b). Panel (c) shows the peak correla-
tions as a function of ground-range averaged over offset beams. The beams close to zero offset
are omitted, since they are affected by the along-track bathymetric change.
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Figure 7.2: The figure shows results from sidescan bathymetry on a single simulated noise-
free ping. The bathymetry is estimated on a number of offset beams. Panel (a) shows two
of the estimated range profiles, offset 5 meters from broadside. Panel (b) shows the estima-
ted ground-range resolution for each offset line. Panel (c) shows cross-sections along-track at
different ranges. The colored lines represent different ranges. The theoretical and estimated re-
solutions are drawn on top. Notice that the apparent asymmetrical beam pattern is caused by
the fact that the range changes with the bathymetry when the ground-range is kept constant.
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Figure 7.3: STD of the sidescan bathymetry depth estimate errors as a function of ground-range
for a set of different SNRs. The results are calculated from Equation 7.8 with D=0.28 meters,
fo=100 kHz, ¢<=1500m/s and N = 128cos (®), with ® = tan~' (h/r,) where g, is the ground-
range and h = 20 is the depth of the seafloor relative to the sonar.

and no information is lost due to undersampling). In sidescan bathymetry, the posting
separation along x is given by the motion of the sensor between pings. Since the sensor
can change its pointing direction from one ping to another, the posting separation may
change as a function of ping and range (it may even become zero). For a SAS-system
it usually equals slightly less than half the array-length. For HISAS it is typically 0.5
meter. Along ground-range y, the posting separation can be chosen arbitrarily, only
affecting processing time. We use one meter as default. This gives an oversampling
which ensures that the estimated surface is sufficiently continuous and smooth.

Next we consider the accuracy and precision of sidescan bathymetry. We define
precision as a measure of the error relative to the true answer. In the case where there
are no ambiguities and no bias, the precision equals the accuracy, which is a measure
of noise in the estimates. In this thesis we mostly assume bias- and ambiguity-free
estimates in the mathematical calculations, which means that we only calculates the
accuracy. The precision is discussed by comparing results with the ground truth, where
available, or by observing obvious flaws in the estimates.

As mentioned in Section 4.5 there are two different expressions which describe the
accuracy of interferometric time delay estimation. Either one uses Equation 4.39 and
assumes that the recorded data are deterministic, time delayed time series (which they
are not, since the signal is scattered from a 3D geometry), or one uses Equation 4.40 and
assumes that the recorded data are co-registered datasets with speckle statistics (which
breaks down when there are objects on the seafloor). Since the two expressions are
close to but not equal, we have chosen to consider sidescan bathymetry as time delay
estimation and SAS interferometry as interferometric processing.

Combining Equations 3.24 and 4.39 gives an expression for the standard deviation
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of the sidescan bathymetry estimates

cry 1 1 1 1
203 NV o | 2
where ¢ is the sound speed, r, the range from receiver #2 to the seafloor, D the vertical
baseline, N the number of independent samples and f, the center frequency. Remember
from Equation 4.17 that the SNR, p, can be estimated from the coherence.

Figure 7.3 shows results from Equation 7.8 using HISAS settings, i.e. D=0.28 meters
and f,=100 kHz. The sound speed, ¢, is set to 1500 m/s and we have used a fixed patch
length of 3.2 meters in ground-range. This is equivalentto N = 128 cos (®) independent
samples, where & is the depression angle. The increase at short range in Figure 7.3 is
caused by the increasing depression angle, which reduces the number of independent
samples in the patch. From the figure we see that a 10dB SNR is sufficient to achieve a
STD of the depth-error always less than 5cm. This is around the desired performance,
the problem is to achieve >10dB at 200 meters range.

To evaluate if the theoretical accuracy is met, we have simulated a flat seafloor with
120000 reflectors scattered randomly out to 200 meters range. AWGN is added to the
received time series and the estimated depths averaged over 1000 pings. The results can
be found in Figure 7.4. The two upper panels show the coherence and corresponding
SNR from the estimates. They also show the results from measuring the SNR directly on
the simulated raw-data. A comparison reveals three distinct features: At short range the
SNR from the peak correlation coefficient meets a threshold and falls of. This is caused
by a combination of interpolation inaccuracies and baseline decorrelation. At medium
range the two SNR estimates correspond quite well. At far range the SNR from the peak
correlation coefficient falls of again. This discrepancy is yet to be explained.

The third panel in Figure 7.4 shows the STD and RMS error of the sidescan bathyme-
try depth estimates. These two quantities are almost identical, indicating that there is
no significant bias in the estimates. In the same panel the predicted performance from
the SNR estimates are included. They show a good correspondence with the estimated
error. However, one can notice that the fall in peak correlation at far range increases the
predicted STD, but it does not affect the actual performance of the depth estimates. This
suggests that the peak correlation coefficient is unreliable when it falls below around 0.7
(which fits well with our correlation threshold value of 0.66).

The lower panel of Figure 7.4 summaries the sidescan bathymetry performance. It
shows that the ratio between the achieved STD of the depth-error and the predicted
STD from the peak correlation coefficient is close to one. This means that Equation 7.8
can give a good estimate of the performance of sidescan bathymetry, when the SNR is
calculated from the peak correlation coefficient. It also show that there is a significant
loss in performance at short range mostly caused by geometrical effects. But since the
performance is proportional to range, this effect is less significant for the overall perfor-
mance.

The results from a large scale simulation of the sidescan bathymetry performance
can be found in Figure 7.5. Part of a real AUV trajectory is used in the simulation, which

std{ zest } = (7.8)
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Figure 7.4: Results from averaging 1000 pings of sidescan bathymetry depth estimates on a flat
simulated seafloor with AWGN. A HISAS sonar is used in the simulation. The upper panel
shows coherence as a function of ground-range. The solid line shows the peak correlation coef-
ficient from sidescan bathymetry while the dashed line show the coherence calculated from the
inserted SNR. The second panel shows the corresponding SNR as a function of ground-range.
The third panel shows the STD (solid line) and RMS error (dotted line) of the sidescan bathy-
metry depth estimates as a function of ground-range. We also show the predicted STD from the
peak correlation coefficient (dashed line) and from the inserted SNR (dashed-dotted line). The
lower panel shows the ratio between the estimated STD and the predicted STD (from the peak
correlation coefficient) (solid line) as a function of ground-range. The dashed line shows the
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means that there are variations on all 6 degrees of freedom. The figure shows good
performance through the full processing chain, including compensation for attitude and
motion and mosaicking each ping into a common coordinate system.

7.2 SAS bathymetry

We start by revising the theoretical resolutions of SAS images. The range-resolution is
the same as for sidescan images
. . C
gsast _ gsst .~ 7.9
== o (7.9)
The along-track resolution is given by the receiver-element size, d

.d
o = —. 7.10
== (7.10)
In contrast to sidescan bathymetry, SAS interferometry uses a 2D patch of image pixels
for each depth estimate. Since the along-track resolution of the SAS images are range-

independent, the bathymetric along-track resolution resolution becomes
sasb d
5:p = wlewi = wlpm, (711)

where w; is a window-factor <1 and N,, is the number of samples along = in the 2D
patch. P, is the patch size along x in meters. The ground-range resolution is found by
the same procedure as in the previous chapter

where w, is a window factor, N;, the number of samples along y in a ground-range
image sampled at theoretical range resolution, and P, the patch size along y in meters.
Although N, and Ny, are independent, we use N,, = Ny, = /N,. We also use flat
weighting, which means that w; = w, = 1. All the SAS bathymetries have a posting
separation equal to the input image resolution, which means that the images are over-
sampled by a factor of /N, in each direction. This is done for visualization purposes.
If data compression is important, the bathymetries can simply be downsampled by the
same amount.

Figures 7.6 and 7.7 show the results from SAS interferometry on a simulated 20 by 20
meters seafloor. Figure 7.6 shows the estimated bathymetry along with the estimation
error, while Figure 7.7 show the estimated resolutions. The conclusions are the same as
in the previous section. The measured resolutions (using the flank length) is close to,
but less than the theoretical resolutions.

In the upper panel of Figure 7.7, notice that the loss of correlation is less along y than
along z. This is caused by the seafloor depth stepping down along positive y-direction,
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Figure 7.5: The upper panel shows a simulated bathymetry for a point scatter simulation with
120000 reflectors. The simulated trajectory showed in solid black consists of 1000 pings from a
true AUV trajectory. The center panel shows the estimated bathymetry using sidescan bathyme-
try with 200 patches one meter separated. The results are mosaicked into a half-meter grid and
areas with no coverage or with a correlation value below 0.66 is colored white. The lower panel
shows error in the estimates. Notice that the error increases with range.
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Figure 7.6: The figure shows results from SAS interferometry on a 20 by 20 meters simulated
seafloor using 13 million point reflectors. On average there are 9 reflectors for each resolution
cell, which means that the SAS images have fully developed speckle. The simulated bathymetry
consists of four quadrants with half a meter step changes. The upper panel shows the estimated
SAS bathymetry. The lower panel shows the error in the estimated bathymetry.
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Figure 7.7: The figure shows detailed results from the estimated bathymetry in Figure 7.6. The
upper panel shows the peak correlation coefficients averaged over each direction. The solid line
shows the correlation as a function of z-position averaged along y-positions, while the dashed
line show the correlation as a function of y-position averaged along z-positions. The drop in
correlation is caused by the step change in the bathymetry. The center panel shows the estimated
z-resolutions using flank length. The lower panel shows the corresponding y-resolutions. The
theoretical and average resolutions are drawn on top.
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which causes an effect similar to layover; a small part of the slant-range data is without
echo. Since the simulation is noise-free, the effect of blending two different depths into
a single correlation window is reduced. This also causes a underestimation of the y-
resolutions, which we see in the lower panel of Figure 7.7. If the seafloor had stepped
up instead of down, a layover would have caused mixing of echo from different depths
into single samples. The correlation loss would then have been increased instead of
decreased, and the y-resolutions would have been overestimated instead of underesti-
mated.

The accuracy of SAS depth estimation is in principle equal to the accuracy of the
sidescan depth estimation. However, we use a slightly different expression in this case.
Combining Equations 3.24 and 4.40 with S ~ 0.5 in Equation 4.40 we get

std{zest}NﬁQWf \// 0 — 00)’p(0: k(p), N.) do, (7.13)

where p(0; k(p), Ny) is given by Equation 4.36.

Figure 7.8 shows results from a simulation of a flat seafloor with ground-range out
to 130 meters. (The range is limited due to time consumption of the simulation. A SAS
simulation requires a much larger number of point scatterers than a sidescan simula-
tion.) The figure illustrates much the same as Figure 7.4. The coherence in the upper
panel falls of at short range due to baseline decorrelation. One can also see straddle loss
due to the sampling, from the oscillating shape of the estimated coherence. At longer
ranges, the measured and estimated SNRs agree well. The STD and the RMS values for
the depth estimation error are virtually identical so we only show the STD in panel three
of Figure 7.8. From the bottom panel we observe a small discrepancy between the mea-
sured STD and the one predicted by the coherence. Still, the fraction between them is
always between 1 and 2 so the accuracy predicted from the measured coherence is also
in this case a good indicator of the actual performance. The discrepancy is probably due
to high sensitivity of coherence when the SNR is very high.

To verify the performance on a more realistic scenario we simulated a 20 by 20 me-
ters seafloor with 13 million point reflectors and a bumpy seafloor. The trajectory is
a section of a real AUV trajectory. The simulated seafloor, the estimated seafloor and
the estimation error can be seen in Figure 7.9. The estimation error is largest where the
gradient in the bathymetry is largest. This is partly due to the fact that the geometry
changes within the estimation window, and to gridding inaccuracies in the simulator
and in the calculation of the depth-error.

7.3 Summary
The horizontal resolutions of the estimated bathymetries can be easily deduced from the

input image resolutions and the filter sizes. For sidescan bathymetry the along-track re-
solution is equal to the along-track sidescan image resolution (see Equation 7.3), and the
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Figure 7.8: Results from averaging SAS interferometry depth estimates on a flat simulated sea-
floor with AWGN. A HISAS sonar is used in the simulation. The upper panel shows coherence
as a function of ground-range. The solid line shows the peak correlation coefficient from SAS
bathymetry averaged over all z-positions, while the dashed line show the coherence calcula-
ted from the inserted SNR. The second panel shows the corresponding SNRs as a function of
ground-range. The third panel shows the STD (solid line) of the depth estimation error as a
function of ground-range. We also show the predicted STD from the peak correlation coefficient
(dashed line) and from the inserted SNR (dashed-dotted line). The lower panel shows the ratio
between the estimated STD and the predicted STD (from the coherence) (solid line) as a function
of ground-range. The dashed line shows the ratio between the estimated STD and the predicted
STD (from the inserted SNR).
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Figure 7.9: The figure shows results from SAS depth estimation on a simulated 20 by 20 meters
seafloor consisting of 13 million point reflectors on a bumpy seafloor. On average there are
9 reflectors for each resolution cell, which means that the SAS images have fully developed
speckle. A HISAS sonar and part of a real AUV trajectory is used to simulate the data. The
upper panel shows the simulated bathymetry, the center panel the estimated bathymetry and
the lower panel the error in the estimates.
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cross-track resolution is equal to the effective ground-range patch-length (see Equation
7.7). For SAS bathymetry, the resolutions are equal to the size of the estimation window
in both dimensions (see Equations 7.11 and 7.12). These findings are in agreement with
simulation results using flank length as a resolution measure.

The accuracies can be found either from time delay theory or from speckle statistics.
For sidescan depth estimation we use time delay theory (see Equation 7.8) and find that
the accuracy predicted from the measured peak correlation value corresponds well with
the measured accuracy on a simulated dataset. For SAS depth estimation we use speckle
statistics and found that the predicted accuracy (see Equation 7.13) is in agreement with
the measured accuracy within a factor two, when the measured coherence is used in the
predictions (i.e. the measured accuracy is between the theoretical accuracy and twice
the theoretical accuracy).
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Chapter 8

Results and studies

In this chapter we present analysis and results from selected studies. Some of the ma-
terial is presented for the first time while other parts are reproductions from previously
published material.

8.1 The phase-difference filter size and shape

The vertical accuracy and the horizontal resolutions of SAS bathymetry are dependent
on the number of independent image-pixels used to estimate each depth (see Chapter
7). In this section we consider the effect of changing filter sizes in the phase-difference
estimator (see Equation 4.29). We also examine the effect of different weights applied in
the filter and of down-sampling the resulting depth maps. The results and presentation
in this section is based on Sabg et al. (2007c).

As we discussed in Chapter 7, both the vertical accuracy and the horizontal reso-
lutions of SAS bathymetry are dependent on the number of independent image-pixels
used to estimate each depth. Our implementation of the phase-difference estimator is
such that the input gridding is not changed. For some applications, the most elevated
feature in each resolution cell is more important than the average depth so any down-
sampling must retain peaks if they exist in the bathymetry. A technique which keeps the
shallowest depth values can then be applied to reduce the sample density to a suitable
guantity for charting of large areas.

Depending on the application, different resolutions and different grid samplings
may be desired. Resampling can be implemented in different ways at different levels in
the processing

e Pre-processing: For a critically sampled SAS image one can reduce the resolu-
tion by either reducing the wavenumber coverage, or by incoherent averaging in-
dependent wavenumber regions or by simply selecting only some of the pixels.
The third option is clearly suboptimal since it will produce an undersampled
image. The second option can be used to reduce the amount of speckle (Jako-
watz et al., 1996, pages 112-121), but incoherent averaging will destroy the phase
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in the images. The first option is the best solution, but it should be noted that
when considering bathymetric accuracy, it is always better to have as high as pos-
sible resolution in the input SAS images and rather perform down-sampling at a
later stage. However, reducing wavenumber coverage reduces the computation
time of both SAS image formation and of interferometric processing and that may
outweigh the disadvantages in some cases.

e Filtering: The maximum likelihood phase filter reduces the resolution to the size
of the applied filtering window, but retains the input grid sampling (see Chapter
7).

e Post-processing: At this step, the interferogram is oversampled with the size of
the applied filter. Resampling the interferogram or the bathymetry is almost iden-
tical, since the geometrical conversions from phase-differences to depths are close
to linear in small regions. Oversampled depth estimates give a smoother visuali-
zation of the bathymetry and is often the best choice for smaller regions. For larger
regions, we want to reduce the data-amount and down-sample the grid sampling
to the actual resolution. In some cases, even further down-sampling may be desi-
red. Again there are several options. For optimum visualization, a simple average
filter can be applied. For bathymetric mapping, picking the highest point in each
cell may be a more robust solution. More advanced methods may use the SAS
reflectivity in the down-sampling.

Theoretically, SAS bathymetry can provide depth maps with image resolution. The
phase-difference can simply be estimated for each image pixel-pair without any filte-
ring. Due to the speckly nature of the SAS images this works poorly in practice; the
echo strength is random and, assuming a fixed noise level, will cause variations in the
SNR. The precision of the depth estimates will therefore vary strongly, causing unaccep-
table low robustness. To illustrate the effect of different filtering techniques on real data,
we have selected data from a simulated bumpy seafloor with random distributed point
scatterers. Figure 8.1 shows the estimated bathymetry with and without the phase-
filtering. Clearly, the depth maps agree to a large extent, but random pixels seem to fail
for the full-resolution case. The simulation is noise-free and therefore also a best case
scenario; introducing noise will only increase the problems for the full-resolution case.
A noisy seafloor like the one in the lower panel of Figure 8.1 is not for post-processing
or 3D-visualization.

To investigate the effect of different filtering techniques we selected an area outside
Horten, Norway at around 200 meters water depth. The scene consists of a relatively
flat seafloor with a 3 by 10 meters barge located in the middle. The imagery is generated
using INS integrated DPCA motion estimates and wavenumber beamforming, and has
a final resolution of 2.94cm by 1.37 cm (along-track by range). Figure 8.2 shows the SAS
image, the estimated bathymetry and the coherence using a standard filtering size of
9 x 9 pixels. Note the lack of coherence in the shadow regions.
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Figure 8.1: The figure shows results for a noise-free point scatter simulation of a bumpy seafloor.
The upper panel shows the simulated bathymetry as a function of ground-range (y) and along-
track (x). The center panel shows the estimated bathymetry using SAS interferometry and a 9 x 9
pixels maximum likelihood phase filter. The bottom panel shows the same results without the
phase filter (i.e. a 1 x 1 window).



(a) SAS image (c) Estimated coherence

(d) 3D-rendering of relative depth

Figure 8.2: SAS image, bathymetry and coherence of a 15 x 20 meters area at around 200 meters
water depth outside Horten, Norway. The SAS image is shown with 60 dB dynamic range, the
colorcoded bathymetry ranges from 18.2 (red) to 19.6 (blue) meters depth and the coherence
ranges from 0 (blue) to 1 (red). The interferogram was estimated using a 9 x 9 pixels maximum
likelihood phase filter. The lower panel shows a 3D rendering of the object with colorcoded

depth.
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A9 x 9 pixels maximum likelihood phase filter gives a reasonable trade-off between
resolution, robustness and smoothing. The resulting bathymetry is shown in the upper
left panel of Figure 8.3. The full resolution relative depth estimate (pixel-by-pixel phase-
difference) is shown in the upper center panel. This map contains too much noise to be
useful. Although noise can be filtered well by the human eye, it causes severe problems
in the phase unwrapping and large errors in the depth maps. The relative depth based
on filtering with a 5 x 5 pixel window is shown in the upper right panel of Figure
8.3. This allows better resolution than normal filtering, but also noisier estimates. For
high SNR, this may prove to be a better solution than the default 9 x 9 window. An
interesting point is that the two shallowest features are both 5 cm higher than for normal
filtering. This could either be caused by larger variance in the estimate or it could be
actual features which are excessively smoothed using the 9 x 9 window.

To cover the range of applicable filters we have also applied a 25 x 25 window. The
detail-level seen in center left panel of Figure 8.3 is strongly reduced and small, but
strong, scatterers are seen as square shapes with the size of the window. However, the
smoothness of the bathymetry is increased due to noise suppression. This makes the
bathymetry better suited for 3D-rendering. Note that the shallowest points are both
8 cm deeper than with default filtering, due to reduced noise and more smoothing.

The previous filters were all box-car or rectangular filters. The shape of the filter
also affect the performance. We implemented filtering using a 9 x 9 filter with Gaussian
shape truncated at 0.5. The result showed in center panel of Figure 8.3 is almost identical
to the default filtering of the upper left panel, but has slightly lower SNR and better
resolution. The edges in the bathymetry are also smoother, since the filtering window
has a smoother cutoff. This is a good alternative to the default filtering. The depth of
the shallowest points are unchanged from the default 9 x 9 filtering.

We also considered post-estimation smoothing; results of which are shown in the
center right panel of Figure 8.3. The post-processed smoothing results were generated
using default filtering and 19 x 19 pixels neighboring filtering on top (Gonzales and
Woods, 1992, page 191). By comparing this result to the results using a 25 x 25 window,
we see they have comparable resolution in the bathymetry, but the heavy filtered ver-
sion has more square features caused by the window size. The smoothing reduces the
effect of the window, since all points are weighted equally. Another important aspect
Is that the maximum likelihood filter assumes homogeneity inside the filter window. If
the seafloor has sharp features a too large filter will cause decorrelation. If a smooth,
oversampled bathymetry is desired, it could the be better to apply smoothing instead
of increasing the estimation window. The highest points of the bathymetry in the center
right panel of Figure 8.3 are 7.5cm lower than for the default filtering, which is compa-
rable to the heavy filtered version.

Down-sampling the grid spacing of the bathymetry was performed using a 19 x 19
pixels neighboring filter and is shown in the lower left panel of Figure 8.3. This is the
same as the previous case, but without an oversampled result. The visual represen-
tation is clearly poorer, but the approach is useful if data reduction is important. The
highest points are about 12 cm lower than in the default filtering. An alternative down-
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Figure 8.3: Relative depth of the barge using different filtering steps. The colorcoded bathymetry
ranges from 18.2 (red) to 19.6 (blue) in all panels. Upper row, from left to right: Phase-filter with
9x9,1x1and5 x 5window. Center row, from left to right: Phase-filter with 25 x 25 window,
Gaussian phase filter with 9 x 9 window and post-smoothed bathymetry. Lower row, from left
to right: Downsampled bathymetry, downsampled bathymetry by picking the most elevated
target in each cell instead of averaging, and phase-filter with 9 x 9 on input images with 10
times poorer resolution in both dimensions.
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sampling was tried by choosing the highest point in each cell instead of the average and
is shown in the lower center panel of Figure 8.3. Naturally, this has the same highest
points as in the default filtering, since the highest points are selected within each down-
sampling cell. It can sometimes be important to ensure that none of the elevated targets
are removed in the down-sampling.

The pre down-sampling method is shown in the lower right panel of Figure 8.3.
This was performed by down-sampling the original imagery with a factor of 10 before
processing with a 9 x 9 window. This means that there is less information and poorer
SNR in the images. This effect is visible in the bathymetry, which has additional areas
where the correlation is below the correlation threshold of 0.66. Using low-resolution
images could be a quick-look option. The highest points are approximately 14 cm lower
than for default filtering and can be caused by the fact that small elevated targets are
not resolved in the images.

8.1.1 Summary

There is always a trade-off between accuracy and resolution: Larger filters results in
more accurate estimates. We have also found that:

Due to speckle, the size of the phase-difference filter should never be reduced to
only asingle pixels, even for extremely high SNR cases

It is better to down-sample the depth-maps than the input images

Oversampling the depth maps improves visualization

The size of the phase-difference filter should be large enough to minimize va-
riance, but small enough to ensure constant geometry within the filter

8.2 Performance of CUF in sidescan bathymetry

When using cross-correlation techniques in large baseline direction of arrival estima-
tion, dilation (or scaling) of the signals can reduce the performance. This is a limiting
factor in sidescan bathymetry. We introduced the cross-uncertainty function as a pos-
sible solution in Section 4.3, and studied its performance on idealized 1D-simulations
in Section 4.4. In this section, we compare the performance of CCF and CUF on a simu-
lated scenario and on real data.

The simulated data is a full-scale sonar simulation of 1000 pings with a range of
120 meter. The trajectory is taken from a real AUV navigation solution and the sea-
floor is a random realization of a bumpy bathymetry with Gaussian distributed point-
reflectors. The simulated sonar is similar to HISAS with 30 kHz LFM pulses centered
around 100 kHz. Figures 8.4 and 8.5 show the results from the relative depth estimation
using CCF and CUF. We see the following
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Figure 8.4: Results from a full-scale sonar simulation. The trajectory consists of 1000 pings of a
real AUV trajectory. The seafloor is a random seafloor with Gaussian distributed point reflectors.
All panels show the result as a function of pings (abscissa) and range (mantissa). The range is
120 meters. The different panels show the following: (a) simulated relative bathymetry; (b)
estimated dilation-factor using co-registered CUF.

e The dilation is in general insignificant at long range but increases strongly at near
range.

e The dilation is bathymetry-dependent and reduces the error of a bumpy topogra-
phy for all ranges.

e The correlation coefficients are higher for CUF than CCF. This holds for all ranges
but are most dominant at close range.

e The bias and the standard deviation of the error of the depth estimate is less when
using CUF relative to using CCF.

Our CUF estimation algorithm uses the estimated dilation-factor to regrid one of
the signals in order to eliminate the relative dilation between them. This increases the
correlation and thus the accuracy of the estimator. Figure 8.4(b) shows that the estima-
ted dilation-factors also contains valuable information about the seafloor bathymetry.
In Equation 3.14 we calculated the relationship between a relative seafloor depth and
a relative dilation-factor. Assuming a flat seafloor, the dilation-factor gives us a direct
estimate of the relative seafloor depth, independent of the time delay. But the dilation
is also dependent of the slope on the seafloor. An extension to our method would the-
refore be to first run CUF and use the time delay to get a good estimate of the seafloor
depth. Then a prediction of the dilation can be calculated from Equation 3.14 and sub-
tracted from the actual dilation calculated from CUF. The remaining dilation can then
be linked to the local slope of the seafloor.
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Figure 8.5: Results from a full-scale sonar simulation. The trajectory consists of 1000 pings of a
real AUV trajectory. The seafloor is a random seafloor with Gaussian distributed point reflectors.
All panels show the result as a function of pings (abscissa) and range (mantissa). The range is 120
meters. The different Panels show the following: (a) and (c) estimated correlation coefficients
using CCF and CUF, respectively; (c) and (d) estimated depth-errors for the two methods.

In Figure 8.6 we compare CUF- and CCF-based relative depth estimation on real data
collected by the HUGIN autonomous underwater vehicle carrying a HISAS prototype
(Hansen et al., 2006). The data was collected in June, 2005 outside Horten, Norway, at
around 200 meters water depth. During the collection of these data, the vehicle altitude
was 16 meters. The center frequency of the transmitted LFM signal was 100 kHz and
the bandwidth 30kHz. The vertical baseline between the receiver arrays was 28 cm,
equivalent to 18.7 wavelengths. We processed the sonar data as dynamic focused si-
descan data in slant-range without roll and pitch compensation using a backprojection
(or delay-and-sum) algorithm (see Chapter 2). Figure 8.6 shows a clear improvement
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Figure 8.6: Experimental results from 688 pings using the HISAS prototype. The data were col-
lected outside Horten, Norway, at approximately 200 meters water depth. All panels show the
result as a function of pings (abscissa) and range (mantissa). The range is 90 meters. The dif-
ferent panels show the following (left to right): Upper panels: Estimated bathymetry using CCF
and CUF, respectively. Lower panels: Corresponding correlation coefficients. Center panels:
Difference in correlation coefficients and dilation-factors estimated using CUF.
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in correlation for ranges less than 45 meters. All estimates with correlation value be-
low 0.66 (equivalent to 3dB SNR) have been discarded. The results indicate an effective
range improvement of about 15 meters when using CUF relative to using CCF.

The rock-formation in the center of the scene is better represented by CUF estimates
than by CCF estimates (when compared to other benchmark sensors). This is in agree-
ment with our prediction that CUF is better suited for large topographical variations.
The dilation factor contains information about the topography. The dilation-factor in-
creases relative to the flat seafloor at the front of the rock-formation and decreases at the
back indicating an estimate of local seafloor slope relative to the interferometer.

8.2.1 Summary

In this section we have compared the performance of CCF and CUF in seafloor depth
estimation by means of a sidelooking interferometric sonar

Based on Monte Carlo simulations and field-collected data we conclude that using
the wideband cross-uncertainty function for slant-range relative depth estimation gives
asignificant improvement in bathymetric accuracy. Notably, this improvement amounts
to as much as an equivalent 20 dB SNR increase for typical sidelooking sonar geome-
tries.

We also demonstrated that the dilation estimation that CUF employs, is justified
by developing an improved mathematical model for slant-range interferometry. The
simple delay-only model has large approximation errors at short-range and should be
avoided. Note that the technique we have proposed in this section is an alternative
to seafloor depth estimation using ground-range images (Seebg et al., 2007b), where a-
priori knowledge about the seafloor depth is required.

Although we have limited our work to sidescan sonar, it is equally applicable for
synthetic aperture sonar and for synthetic aperture radar. For SAR the geometry is dif-
ferent so the effects of the dilation has to be investigated, but SAS has the same geometry
as a sidescan sonar. The conclusions drawn in this section should therefore be directly
transferable to SAS interferometry:.

8.3 Split-bandwidth interferometry

Phase ambiguities are one of the major problems in interferometric processing and a
common solution is to use a 2D phase unwrapper. We have chosen to run a standard
Goldstein’s Branch cut algorithm in our processing chain (see Section 4.6.8). Howe-
ver, there are still some cases where the unwrapper fails. In this section we present an
alternative method for resolving phase ambiguities by dividing the signal bandwidth
into sub-bands (Madsen et al., 1993; Bamler and Eineder, 2005). A good approach is
to develop an estimator based on the probability density functions for each sub-band
having the correct wrap interval. Budillon et al. (2005) suggest to either use a maximum
likelihood method by exploiting deterministic contextual information consisting in the
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approximation of the depth surface through local planes, or a Bayesian maximum a pos-
teriori estimation technique. Another approach consists of fusing the interferograms
from each sub-band with a coherence weighted Kalman filter (Lanari et al., 1996). These
methods are outside the scope of this thesis. We describe a deterministic approach to
the split-bandwidth phase estimation principle.

A sound implementation of a 2D phase unwrapper works well in cases where the
a priori ground-range (from for example sidescan bathymetry) is sufficiently accurate,
and when the seafloor can be represented by a continuous surface. In cases where there
are disconnected regions in the bathymetry (or more accurate; in the interferogram) the
unwrapper has problems connecting the regions. Figure 8.7 shows an example where
the Goldstein’s Branch cut algorithm fails. The figure shows the SAS image, the interfe-
rogram and the reconstructed bathymetry of a German WWII submarine at 200 meters
water depth. It is clear from Figure 8.7(b) that the interferogram should be unwrapped
from the sail and towards the tip of the submarine. But since the interferogram has the
same value at the tip of the submarine as on the surround seafloor, the unwrapper also
unwrap from the tip towards the sail. Clearly, these two paths will meet at a discon-
tinuity. In 8.7(c) we show the estimated bathymetry after 2D unwrapping. The tip is
apparently broken off the rest of the submarine and lies at the seafloor. From the sha-
dow of the submarine in SAS imagery we know that this is incorrect — the submarine
should slant upwards all the way to the tip. This is a classical example of the phase
unwrapping problem.

The interferometric time delay is defined as (see Section 4.5)

0

T = ng, (8.1)

where ¢ is the measured phase-difference and f, the center frequency of the signal. Si-
gnals with different frequencies should provide the same seafloor depth estimate (igno-
ring any penetration into the seafloor), and given the same geometry, the same time
delay, 7 (Xu et al., 1994). This means that the interferometric phase-difference is a func-
tion of frequency only, 0(f,) = 2= for. Given two different frequencies, f; and f,, the
following applies

91 = 27Tf17', (82&)
Oy = 27 foT. (8.2b)

This means that ¢,/f, = 6,/f>. The problem is that both ¢, and 60, are known only
modulo 27, so the equation we have to solve is
(01 + m2m) _ (0 + nQW)7 (8.3)
fi f2
where m and n are unknown integers. We are then left with two unknowns and one
equation. Assuming k frequencies would have provided k& — 1 equations and %k unk-
nowns, so the problem is always under-determined.
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(a) SAS image (b) Interferogram

(c) Estimated bathymetry

Figure 8.7: The figure illustrates the problem of robust 2D phase unwrapping. The left panel
shows a SAS image of the sail and forward part of the German WWII submarine U-735. The
length of the visible part of the submarine is around 40 meters. The data were collected using
HISAS on the HUGIN 1000-MR, at around 200 meters water depth. The upper right panel shows
the corresponding interferogram (notice that the cut-out is slightly different). The lower panel
shows a 3D representation of the estimated seafloor depth after unwrapping the interferogram
with the Goldstein’s Branch cut algorithm. Notice that the front part of the submarine seems to
be broken off the rest.
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(c) Ambiguous depths from lower band

Figure 8.8: The figure shows the results from a numerical study on the effect of phase ambigui-
ties. The upper left panel shows the theoretical phase-differences for a HISAS sonar observing
a flat seafloor 15 meters below the sonar. The center frequency is 100 kHz and the sound speed
1500 m/s. The unambiguous phase-differences are shown in solid black. The ambiguous (or
wrapped) phase-differences for the full frequency band are shown in blue. The ambiguous
phase-differences for the lower and upper half of the frequency band are shown in red and
green, respectively. The upper right panel shows the corresponding reconstructed depths. The
lower left panel shows the reconstructed depths for the lower half of the frequency band af-
ter adding different 27 cycles. The lower right panel shows the same for the upper half of the

frequency band.
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The solution is to observe that a 27 wrap will give a different contribution on each
side of the equation. In other words, if Equation 8.3 apply for m and n, then it does
not have a solution for m = m + 1, unless n = n + f»/f;. For m = m + 2, n must be
equal ton+2f>/ f1, and so on. By observing that the first incorrect solution occurs when
lf2/ f1 is integer, where [ is a an integer different from zero, it should be sufficient to
only allow a few 27 to be added to each interferogram. Clearly, without this restriction
there is an infinite number of solutions. For HISAS, f; = 92.5 kHz and f; = 107.5 kHz,
which means that [ f,/ f; is close to integer for [ = 6. In our implementation, n and m are
restricted to be within +£3. An unambiguous phase can then be reconstructed as long as
the interferograms are no more than 3 times 27 cycles wrong to start with. In practice m
and n are found by minimizing the function

e(nmy = G20 (72T g <3 (8.4)
fl f2
In Figure 8.8 we show the results from a simple numerical study. The upper left
panel shows how the wrapped phase-differences differ for the two frequency bands.
The upper right panel shows that this also causes a difference in the depth estimates.
In the lower panels of Figure 8.8 we show all depth estimates when adding 2x cycles.
The correct depth (and the correct value for n and m) is found for each y-position by
finding the minimum difference between all depth estimates in the bottom left panel
and bottom right panel of Figure 8.8(d).
Our method of split-bandwidth phase estimation is very simple, but have some
drawbacks in practice:

e The sub-band images have reduced resolution compared to the original images.
This also reduces the final bathymetric resolution. A solution is to use the split-
bandwidth method to find the correct 27 interval for the full bandwidth interfero-
gram. Problems can appear in the up-sampling of the split-bandwidth estimates
when m or n differ between neighboring pixels.

e The frequencies of each sub-band have to be accurately known. In our experience,
the band-pass filtering caused unsymmetrical sub-bands, due to a taper on the
original frequency band. The effective frequencies of the sub-bands therefore had
to be estimated by a center-of-mass method, a method which itself has limited
accuracy.

e Phase-difference estimates with low SNR and high variance may be corrected with
a random number of 27, independent of the neighboring pixels.

In Figure 8.9 we have tested the split-bandwidth method on a simulated bumpy sea-
floor. Figure 8.9(a) shows the simulated seafloor. In order to provoke a failure in the
phase unwrapping algorithm we used a poor a priori ground-range (which means that
the SAS images were poorly co-registered). Figure 8.9(b) shows the estimated seafloor
depth after phase unwrapping the interferogram. The depth estimates are consistent,
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but the whole area has been unwrapped into the wrong 27 interval. Figure 8.9(c) shows
the corresponding result after split-bandwidth phase estimation. The original band-
width of the SAS images was 30 kHz around 100 kHz. After bandstop filtering, two
sub-bands of 15 kHz were used in the absolute phase estimation. Similar results where
achieved by filtering the raw-data instead of the images. Figure 8.9(c) shows a clear
improvement over the standard phase unwrapper (notice that the offset of the estima-
ted bathymetry is caused by the poor a priori ground-range). However, as predicted,
random estimates seems to fail severely. In this case, these random errors could be
removed by running the Goldstein’s Branch cut algorithm on top of split-bandwidth
phase estimation (see Figure 8.9(d)).

A typical scenario where standard unwrappers fails, are on large man-made objects
like a wreck. Figure 8.10 shows a SAS image of a 40 meters long wreck. Figure 8.11(a)
shows the depth estimates of the same area. Notice the probable failure in the depth
estimate in the upper right part of the image. Figure 8.11(b) shows the corresponding
result using the split-bandwidth method. The wrap problem is eliminated, but instead
random errors can be seen cross the scene. These failures are due to the pixel-based im-
plementation of split-bandwidth phase estimation. Treating each pixel as deterministic
and independent variables is an invalid assumption and will as showed, fail randomly.

8.3.1 Summary

Although standard phase unwrappers perform very well in most scenarios, they still
have problems with disconnected regions, like large man-made objects. One approach
is to use bandwidth to resolve the phase ambiguities. In this section we have descri-
bed and tested a very simple approach which filters the SAS images into sub-bands
and compares the sub-band interferograms pixel for pixel in order to find the correct
27. Although the method and the implementation are simple and assume determinis-
tic and independent estimates, it still showed promising results on regions where the
Goldstein’s Branch cut algorithm failed. However, the estimated depth maps suffered
from random errors. A more thorough study should try to expand to for example one
of the methods described in Budillon et al. (2005).

8.4 Filtering of the depth maps

Interferometric synthetic aperture methods benefit from the coherent properties of spe-
ckle. However, low intensity pixels inherent in speckle suffer from low signal-to-noise
ratio, rendering full-resolution phase-differencing unpractical. A common solution is
to use a maximum likelihood phase-difference (MLP) estimator on a few neighboring
pixels (Hanssen, 2001, page 96), compromising between phase accuracy and horizontal
resolution (see Section 8.1). In this section we discuss filtering of depth maps after ap-
plying the MLP estimator. The results and presentation in this section is based on Seebg
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Figure 8.9: The figure shows the results from a point scatter simulation of a bumpy seafloor.
The depth of the simulated seafloor is shown in the upper left panel. The reconstructed sea-
floor depth using phase unwrapping (and a poor a priori ground-range) is shown in the upper
right panel. In the lower left panel we show the reconstructed seafloor depth using the split-
bandwidth method. In the lower right panel we show the results using split-bandwidth follo-
wed by phase unwrapping.

et al. (2009).

Within the MLP-filter, the phase-differences are assumed to be homogeneous, which
sets an upper limit to the size of the filter. Exceeding this size causes a drop in coherence,
which again decreases the accuracy of the phase-difference estimates. This means that
the MLP-filter is unable to decrease the variance of the depth estimates to a desired
level.

In this section we describe and demonstrate how the interferometric depth estimates
can be filtered in order to decrease the variances. Instead of applying a filter on the
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Figure 8.10: The figure shows a 60 dB SAS image of a 40 meters long wreck. The data were
collected using HISAS on the HUGIN 1000-MR. The wreck is elevated 2-3 meters above the
seafloor at around 30 meters water depth.

complex interferometric images we filter the depth estimates in post-processing. This
removes the need for homogeneous phase-differences within the filter window.

We have compared a weighted smoothing (WS) filter (Brownrigg, 1984), a weighted
median (WM) filter (Brownrigg, 1984) and a weighted version of the bilateral (WB) filter
(Tomasi and Manduchi, 1998), and found that the WB-filter performs best. The WS-filter
degrades the sharp transitions to an unacceptable degree while the WM-filter fails to
smooth flat areas sufficiently.

A very useful quantity of the interferometric processing is the coherence of the esti-
mated bathymetry (Hanssen, 2001, pages 96-98) (see Section 4.7). The coherence can be
converted to an equivalent signal-to-noise ratio (see Section 4.1.3). Both the coherence
and the SNR can be employed as input weights to the filters we present. We have found
that SNR is best suited since it better separates weights at high SNRs. In addition, we
remove low SNR estimates completely by thresholding the correlation coefficient at 2/3.
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Figure 8.11: The figure shows depth estimation results for the same area as in Figure 8.10. The
upper panel shows the estimated seafloor depth using standard phase unwrapping and the

lower panel shows the corresponding result using split-bandwidth. In the upper panel a phase
unwrapping failure is highlighted by a black circle.
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We define a set of filtering weights, w

fp  k>2/3
w_{o . k<2/3 (85)

In addition we have tested the square root of SNR and the logarithm of SNR, but they
both performed poorer than SNR itself.

8.4.1 Maximum likelihood phase-difference filter

The variances in the phase-difference estimates can be reduced by increasing the size of
the Maximum likelihood phase-difference filter. The phase-differences are estimated by
(see Section 4.5)

i alilb*[i)

0=/ , (8.6)

ol

where a[7] is the i‘th pixel of the master image and b[i] is the corresponding pixel in the
slave image. The relative depths, z; are found by converting the phase-difference to a
ground-range translation and applying Equations 3.20. This filter is always used in the
interferometric processing, independent of subsequent filtering. The advantage with
this filter is that it is a maximum likelihood filter, but it assumes homogeneity within
the filter size.

8.4.2 Weighted smoothing filter

The weighted smoothing filter is a weighted neighboring filter applied on the relative
depth estimates,

L] ©7)
> Wi
where w are the weights defined in Equation 8.5 and z is the original depth estimates.

The weighted smoothing filter performs well on slowly varying seafloors but it de-
grades edges and small objects.

22

8.4.3 Weighted median filter

The weighted median filter is a standard edge-preserving filter (Gonzales and Woods,
1992, pages 191-195). Contrary to traditional weighted median filters, our version is
implemented with adaptive, non-integer weights. First the window depth values are
sorted in ascending order. Using this sample order, the smallest index is found whose
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cumulative weight is equal or greater than half the total weight sum. The corresponding
depth is the weighted median value.

. k n
min 1
- h E > E 8.8
Z3 = 2, where k‘ {i_l 25 i_l}, (8.8)

where n is the number of window pixels, z are the original depths and w are weights sor-
ted in ascending depth. The advantage of the weighted median-filter is that it removes
wild points while preserving edges. The disadvantage is that it has an unpredictable
statistical behavior and it does not smooth slowly varying regions sufficiently.

8.4.4 Weighted bilateral filter

The weighted bilateral filter is the most complex filter. It consists of a Gaussian smoo-
thing in both horizontal and vertical direction. Thus each sample is weighted according
to three criteria: The horizontal distance from the center sample, the difference in value
(vertical distance) from the center sample, and the weight

L L.G)Gwiz
! ZiG<di)G<Ui)wi ’

where d are the horizontal distances, v the differences in value and G the Gauss-function
with standard deviation o

(8.9)

Glz) = —— exp (—I—z) (8.10)

2702 202

The weighted bilateral filter smooths slowly varying regions while preserving edges
and therefore provides high resolution on sharp objects and less resolution on a flat
seafloor. These properties are both desirable for visualization of 3D surfaces.

8.4.5 Experimental results

We have tested the different filters on a selection of experimental data collected with HI-
SAS. The original bathymetry often shows an unnatural large variability on flat regions
of the seafloor, caused by a marginal SNR in the interferometric processing. On rocks or
man-made objects, the reflectivity and thus the SNR are usually higher. Therefore the
accuracy of the estimated shape of objects can be much higher.

An ideal bathymetric filter should smooth slowly varying parts of the seafloor and
preserve edges, while using the coherence (or SNR) as weights to limit noise contri-
butions. One approach is to change the size of the MLP filter adaptively (see Section
8.1).

Figure 8.12 shows an example of the estimated bathymetry on a small part of a 30
meters long wreck. Notice two different sections: The flat seafloor at the left and the
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small bridge at the upper right. In the original bathymetry the bridge is quite sharp,
but the seafloor is contaminated by noise. After applying the SM-filter, the flat seafloor
is smoother, but the bridge is rounded at the edges. The WM-filter does a better job of
preserving the edges of the bridge, but it does not smooth the flat seafloor sufficiently.
By applying the WB-filter, we clearly see that the seafloor is smoothed while the edges
of the bridge are as distinct as in the original bathymetry.

In Figure 8.13 we show a patch of seafloor with small rocks. The WS-filter (center
panel) actually removes some of the small objects. These objects are quite easy to detect
in the bathymetry after WB-filtering. WM-filtering on this scene does not contribute to a
smoother surface and is omitted from the figure. On all other scenes we have tested we
have found similar results: The WB-filter gives the best trade-off between smoothness
and edge preservation.

8.4.6 Summary

Due to the speckle in the SAS images, interferometric SAS estimates will have large va-
riability. Increasing the size of the maximum likelihood filter used in the interferometric
phase-difference estimates will reduce the variability at the cost of reduced horizontal
resolution. This assumes that the interferometric data are homogeneous inside the filter
size. We have presented three different filters which can be applied in post-processing
directly on the bathymetry. The filters do not require homogeneity within the filter win-
dow. We have applied the different filters on experimental data collected by HUGIN
carrying HISAS. We found that the weighted bilateral filter achieves the best perfor-
mance in smoothing slowly varying areas while preserving edges of distinct objects.

8.5 Comparison of HISAS and EM 3000

High resolution seabed mapping is traditionally performed using multibeam echo soun-
ders (Lurton, 2002, pages 268-282). Since individual beams are formed and steered in
different directions, layover effects are rare. Also, the relatively steep observation geo-
metry, makes the MBEs less susceptible to shadow, surface multipaths and errors in the
sound speed profile. However, the area coverage rate is limited since the swath is only
around four times the altitude. The coverage rate can be increased by running at larger
altitude, but the horizontal resolutions of the estimated depth maps are also proportio-
nal to range.

Sidescan bathymetry or seafloor depth estimation using interferometric side looking
sonar is an alternative technique to MBEs. Lurton (2000) showed that the acoustical
measurement precision of sidescan bathymetry is sufficient for seafloor depth estima-
tion, as long as the system is reasonably designed and the footprint shift is accounted
for. Other problems, like the phase ambiguities, can be solved by unwrapping tech-
niques (Ghiglia and Pritt, 1998) or by using more than two vertical receivers (Bird and
Mullins, 2005). Sidescan bathymetry on AUVs can provide high area coverage rate,
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Figure 8.12: Upper left: SAS image of a 30 meters long wreck at 340 meters water depth. Upper
right: Corresponding coherence. The four lower panels show a cut-out of the estimated bathy-
metry. Upper left: No filter; Upper right: Smoothing filter; Lower left: Median filter; Lower
right: Bilateral filter.
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Figure 8.13: Estimated bathymetry of a 20 by 20 meters rocky seafloor at approximately 30
meters water depth. The depth varies from 25 meters (red) to 35 meters (blue). Upper panel:
Unfiltered bathymetry. Center panel: Smoothed bathymetry. Lower panel: WB filtered bathy-
metry. Note that the original bathymetry has an unnatural large variability caused by marginal
SNR. A WS filter reduces this effect, but also smooths real objects like the two rocks in the lower
part of the scene. The bilateral filter gives a favorable trade-off between a smooth seafloor and
distinct objects.
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Figure 8.14: Picture of a HUGIN 1000-MR with a starboard HISAS (left part of picture) and an
EM 3000.

with a resolution comparable to MBEs (Hegrenas et al., 2010). The area coverage rate
is, however, diminished due to the blind zone at nadir (Hagen and Hansen, 2007).

The HUGIN 1000-MR is equipped with an EM 3000 multibeam echo sounder (EM3,
2003) (see Figure 8.14). In this section we compare the seafloor mapping ability of the
EM 3000 with HISAS. The results and presentation in this section is based on Seebg and
Langli (2010).

The HISAS and EM 3000 sensors are operated simultaneously. The accuracies and
resolutions of the estimated depth maps are dependent on the sensor designs and the
signal-to-noise ratio of the received signals, but there are some external factors which
limit the absolute depth measurements for both sensors

e An error in the AUV position translates to a bias in the depth measurement.

e Errors in the AUV attitudes cause a rotation of the depth measurement which
gives a linear range-dependent error.

e A timing-error between the navigation and the sonar causes an error which is
dependent on the high-frequency AUV motion. The HUGIN AUV has for example
a high-frequency roll variation which induces artificial ripples in the bathymetric
maps for incorrect timings.

e An error in the average sound speed scales the range and effects both position
and depth of the measurement. This causes a linear range-dependent error, which is
separable from attitude errors by comparing the different sides.

e Anincorrect sound speed profile causes a non-linear range-dependent error.
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Seafloor Seafloor

Seafloor

Figure 8.15: Sketch of the sensor geometry on board the HUGIN AUV. The orange circle illus-
trates a cross-section of the AUV, the gray area the HISAS swath and the green and red areas
the EM 3000 swath. While HISAS uses time-difference of arrival (TDOA) to locate the seafloor
depth, the EM switches between time of arrival (TOA) (red area) and TDOA (green area).

e An error in the internal lever-arms (e.g. the distance from the navigation unit to
the sensor) will cause an attitude dependent bias.

It is fairly easy to calibrate range-dependent errors by inspecting the estimated bathy-
metries of overlapping regions in a lawn-mower pattern. A timing error can be detected
by correlating along-track seafloor variations with short-time AUV attitudes. The most
challenging errors are errors in the AUV position and internal lever-arm errors.

8.5.1 The EM 3000

The EM 3000 (EM3, 2003) is a 300 kHz high-resolution multibeam echo sounder for sea-
bed mapping and inspection (Lurton, 2002, pages 268-282). Its depth rating and phy-
sical dimensions makes it well suited for use on HUGIN AUVs. The swath-width of
130 degrees provides ground-range coverage up to four times the sensor altitude. The
angular resolution is obtained using the Mills cross principle (Urick, 1983, page 62), and
the beamwidths of the 127 beams ranges from 1.5 degrees at the vertical to 3.5 degrees
at +65 degrees. For beams having close to normal incidence, the range is typically de-
termined by a center of gravity amplitude detection principle (or time of arrival, see
Figure 8.15). For more horizontal geometries, the echoes from the seafloor are less well-
defined and amplitude detection can only provide coarse range estimates. Range at
the beam pointing angles are then found using the split-beam technique (Burdic, 1984,
pages 327-331): the receiver array is divided into two subarrays, for each subarray a
beam is computed, and range is found comparing the phase of the two half-beams and
identifying the instant of zero phase-difference. The last step is almost identical to the
interferometric processing on HISAS. With good external sensors, the system delivers
bathymetry with precision of 5¢cm RMS in shallow water.

When HISAS is operated in SAS mode the sampling criterion limits the speed of the
AUV. A typical velocity is around 2 m/s, which at 20 meters altitude gives a theoretical
area coverage rate of 0.6 km2/h for the EM. However, when SAS processing is not en-
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abled, the speed of the vehicle can be increased. For the HUGIN 1000-MR the maximum
operating speed is around 3 m/s, which at 20 meters altitude results in a mapping rate
of 0.9km?/h. Additional increase in the rate can be made by increasing the altitude.
However, at some point the resolution becomes too poor, the range too large or the ping
spacing too separated. A reasonable altitude is 40 meters which gives the EM an area
coverage rate of 1.7 km?/h. In comparison, a typical area coverage rate for HISAS is
1.8km?/h (Hagen and Hansen, 2007).

8.5.2 Large scale comparison between EM 3000 and HISAS

In Figure 8.16 we present results from a shallow water survey in January 2009. The data
are collected outside Horten of Norway, where the water depth varies between 10 and
20 meters. The AUV has run in a lawn-mower pattern seven meters above the seafloor.
In the figure we show the aligned bathymetry for the EM 3000 and for HISAS. We also
show the differences between the two depth maps.

The difference in area coverage rate is clearly seen by comparing the upper panels
of Figure 8.16. In addition to the increase in the surveyed area, HISAS has been run
with heavy overlap and each area of the seafloor is observed four times. This is done to
ensure full coverage with the EM.

The bathymetric maps in Figure 8.16 seem to agree very well, but the lower panel of
the figure shows that there are differences. There is both a small bias of 15.7cm and a
small systematic discrepancy. We have seen similar bias at deep waters with flat seafloor
and a constant sound speed profile and believe that the bias is caused by an erroneous
lever-arm on one of the systems. This theory is strengthened from observations where
the apparent bias changes when the vehicle pitches.

The systematic error (seen as an cross-track pattern in the lower panel of Figure 8.16)
is less dominant than the bias and can either be caused by a lever-arm error or by an
incorrect sound speed profile. The estimated sound speed profile varies with approxi-
mately 0.1 percent from the position of the AUV down to the seafloor. A linear error
in the profile of 0.01 percent will cause a depth-error of 5cm at 85 meters range. The
standard deviation of the differences between the bathymetric maps is only 1.7cm, so
ignoring the bias, the two sensors produce almost identical depth maps. The difference
in frequency gives a different penetration level, so for some types of seafloor the sen-
sors should disagree. Also, the resolution difference will contribute to a small standard
deviation in the differences.

In Figure 8.17 we investigate the two bathymetries in Figure 8.16 in more detail.
The upper right panel shows a horizontal slice through the two depth maps and the
lower panel shows a vertical slice. The location of the slices are shown in the upper
left panel. Both slices illustrate that the agreement between EM 3000 bathymetry and
HISAS bathymetry is excellent, after accounting for the bias of approximately 15cm.
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Figure 8.16: Comparison of EM 3000 depth estimates and HISAS depth estimates for a shallow
water survey outside Horten in January 2009. The upper left panel shows the geo-referenced
depth measurements using the EM 3000. The black line shows the AUV trajectory. Notice that
there are small gaps in the depth map due to the limited swath-width of the EM 3000. The upper
right panel shows the estimates using HISAS, collected simultaneously. Notice that the coverage
is significantly increased. The lower panel shows the difference between the two depth maps.
The average difference is 15.7 cm while the standard deviation of the difference is 1.7 cm. Notice
that there is a small but systematic cross-track discrepancy.
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Figure 8.17: Details of the comparison presented in Figure 8.16. In the upper right panel we
show the estimated geo-referenced depths at the positions illustrated by the horizontal black
line in the upper left panel. In the lower panel we show the same comparison at the positions
of the vertical black line in the upper left panel. There is a small, but clear bias between the EM
and HISAS, which gives the difference between the blue and red curves.

8.5.3 Small scale comparison between EM 3000 and HISAS

In this section we focus on mapping of small objects. We have chosen a deep water
dataset collected in August 2008 outside the western coast of Norway. Geo-referenced
depth maps of a 30 by 30 meters area have been calculated using EM 3000, HISAS si-
descan bathymetry and HISAS SAS bathymetry. The area contains three torpedo nets
from World War 11, which are around 5 by 5 meters in extension and elevated a meter
over the seafloor. Figure 8.18 shows an overview of the bathymetry, made using HISAS
in sidescan mode. At around position (175, 250), a white square indicates the 30 by 30
meters area we focus on. While the EM 3000 only covers the area once, HISAS observes
the same area from the four nearest survey lines. Therefore, HISAS can provide four
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individual depth maps of the same area.

EM and HISAS sidescan bathymetry The upper panels of Figure 8.19 shows the
depth maps from the EM and from sidescan bathymetry, for the region of interest. There
is only a small bias of 3.6 cm between the maps and the standard deviation of the diffe-
rence is only 1.0cm. There are some noticeable differences:

e The resolution of the EM bathymetry is slightly better than HISAS sidescan bathy-
metry. This difference is partly due to the fact that sidescan bathymetry is based
on all passings and combines short-range and long-range data. If the geo-coding
algorithm for HISAS had been set to select the measurement with shortest range
instead of using all available measurements, the resolution would have been more
similar. Any navigation error between the lines will also degrade the resolution of
the depth map. Finally, a reduction of the length of the correlation window wiill
increase the resolution in HISAS bathymetry.

e HISAS bathymetry is less noisy and less detailed. This is related to the above
effect; the more averaging, the less noise and the smoother the surface.

Figure 8.18: Sidescan bathymetry measurements using HISAS in deep waters outside the wes-
tern coast of Norway in August 2008. The black lines show the AUV path, while the horizontal
and vertical white line illustrate positions analyzed further in Figure 8.21. In this section we
focus on the 30 by 30 meters area enclosed by the white square (at the intersection between the
two white lines).
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Figure 8.19: Details of the area highlighted in Figure 8.18. The upper left panel shows a depth
map using EM 3000 measurements and the upper right panel the same using HISAS in sidescan
mode. The depths are shown in a common grid. The mean difference between the depth maps
is 3.6 cm while the standard deviation of the difference is 1.0 cm. The center left panel shows the
SAS image for pass #1 and the lower left panel the SAS image for pass #4. The corresponding
right panels show the depth maps estimated using SAS interferometry. The bias between the
EM depth and the depth from pass #1 is -32 cm, while the bias between EM and pass #4 is 52 cm.
All the biases are subtracted in the figure.
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HISAS SAS bathymetry The lower left panels in Figure 8.19 show SAS images from
two sides of the area, both with a range of above 100 meters. The lower right panels
show the corresponding SAS bathymetries. From the SAS images it is clear that the
acoustic echo looks quite different from each side. This is due to the small depression
angle, which causes shadowing and layover effects. This is also reflected in the SAS
bathymetries. Different parts of the objects are mapped for each side and to avoid holes
in the bathymetry we have to combine the bathymetries from the two sides.

The SAS bathymetries in Figure 8.19 have a bias relative to the EM bathymetry of
-32cm and 52 cm, respectively. To investigate if these biases are related to the SAS inter-
ferometry method, we have made depth maps from the same passings using sidescan
bathymetry. In Figure 8.20 we show the individual depth maps from the four passings.
In the figure, all biases are subtracted, but relative to the EM the biases are -34cm, -4cm,
7cm and 47 cm for passings #1-4. These observations are presented more clearly in Fi-
gure 8.21 where two cross-sections of each depth map are shown. Apparently, there is a
drift in the estimated depths using HISAS, relative to the depth map from EM. We have
considered some of the possible causes for this drift:

e A roll error is unlikely since this would have been visible as linear errors in the
right panel of Figure 8.21.

e An error in the average sound speed speed is unlikely since this also would have
been visible in the right panel of Figure 8.21.

e An incorrect sound speed profile in unlikely since the sound speed is more or less
constant at 330 meters water depth.

e Itisnotatiming-error or an internal lever-arm error since these errors do not cause
a drifting depth-error.

There is one plausible explanation for the biases: An erroneous drift in the estimated
AUV-position. In the region of interest at the time of the data-collection the tide can
explain some of the drift, but not all. An error in the depth of the AUV of the relevant
scale is, however, within the reported accuracy of the navigation system. A thorough
investigation of the depth accuracy of the AUV and other causes for the drift in the
depth are outside the scope of this thesis.

Ignoring the discussed biases, Figure 8.20 shows an excellent agreement between
the individual depth maps. There are visible differences, but this should be expected
considering that the views are from two different sides and two different ranges. The
positions of the objects seem to be quite similar, indicating that there is no apparent
horizontal drift in the AUV navigation.

8.5.4 Summary

This section is a summary of preliminary studies into the performance of seafloor map-
ping using HISAS SAS. As a benchmark sensor, we have chosen an EM 3000, which
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Figure 8.20: Details of the area highlighted in Figure 8.18. The panels show depth maps using
HISAS sidescan bathymetry. The upper left panel shows the map from pass #1, the upper right
from pass #2, the lower left from pass #3 and the lower right from pass #4. In the upper panels
the area is observed from below (high y-position), in the lower panels, the area is observed from
above. Pass #1 and #4 are observed from long range (around 100 m) while pass #2 and #3 are
observed from shorter range. The blank areas in pass #2 and #3 are to close to nadir (less than
45 degrees). Notice a phase wrap error at close range in pass #3. The biases between each pass
are subtracted in the figure. The altitude of the AUV was 25 meters in all four passings.

through experience has proven to be a reliable and accurate mapping sensor. A study
of the theoretical performance show that the depth accuracy of the two systems is simi-
lar. When it comes to horizontal resolution, the EM has slightly better, but comparable
performance to sidescan bathymetry processed HISAS data. On the other hand, HISAS
has a considerable larger area coverage rate. Since the swaths of the two sensors are
almost non-overlapping, combining these two sensors together make a very efficient
mapping system.

153



g

: 3395 : : :
Average : : — Average

35 Pass #1 || ——Pass #1
15 ——Pass #2 || 340F ' :

Pass #3
Pass #4 p

3405¢

L7e}
=]

() [TCT T T T R
=

E E
:—'-% 39r -.zi gy
Q 340t o]
15

21} 341

342+ 342

343r

"34 ' 1 L 1 1 ' 2 ? 1 | A 'S

zé(‘lti 250 300 aso 400 450 500 550 Lo ?20 140 160 180 200 220
MNorthings [m] Morthings [m]

Figure 8.21: Details of the positions highlighted in Figure 8.18. The left panel shows the estima-
ted geo-referenced depths using sidescan bathymetry at the positions illustrated by the vertical
white line in Figure 8.18. The right panel shows the same comparison at the positions of the
horizontal white line. The average depths are shown in black, while the colored curves show
the depth for each individual pass. Clearly, there is a bias on pass #1 and #4.

The SAS bathymetry processed HISAS data has approximately the same area cove-
rage, and a much higher horizontal resolution. The computational burden in full-swath
SAS bathymetry is large, but SAS bathymetry on selected regions is an excellent classi-
fication aid.

We have investigated the actual performance on two different sets of data. The first
survey took place at shallow water where we compared geo-referenced depth maps of
a one km? area using HISAS sidescan bathymetry and EM bathymetry. The depth maps
showed very good agreement, but we found a small bias and a small cross-track error.
These are most likely caused by an external lever-arm error on one of the systems.

The second survey was a deep water survey where we looked in more detail at the
differences between HISAS and EM bathymetry. In this case we found no significant
bias, but we noticed that the depth of the selected region were drifting as a function
of time for HISAS. After eliminating a number of different error-sources, we found it
likely that this drift is caused by an error in the AUV-position. Disregarding the drift,
the performance of the two sensors was as expected from the specifications. Also on
smaller objects, the EM and HISAS can be used as one combined system.

We also compared the EM and HISAS sidescan bathymetry depth maps to HISAS
SAS bathymetry depth maps and found that the resolutions of the SAS bathymetry
depth maps are superior. Due to the combination of high resolution and small depres-
sion angle, SAS bathymetry is more susceptible to shadowing and layover. Combining
SAS bathymetry from two sides will efficiently combat this effect at the expense of re-
duced area coverage rate.
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8.6 Using HISAS for pipeline surveying

In this section, we investigate how to use interferometric SAS in pipeline inspection.
The results and presentation in this section is based on Sabg et al. (2010) and Hansen
et al. (2010b). Pipeline inspection is usually performed by using a short-range sensor
close to the pipeline, which gives limited information about the surroundings. By using
an interferometric SAS, a large area including the pipeline can be mapped and imaged
in one swath. In June 2009 the Royal Norwegian Navy performed a survey outside the
western coast of Norway using HISAS on an HUGIN 1000-MR. The main purpose of
the mission was to survey an area with a pipeline, exposed, partly exposed and buried.
The particular pipeline has an inner diameter of 12” =~ 30 cm, and known position prior
to the mission.

A pipeline inspection survey with imaging sonar may contain the following tasks
(Gauer et al., 1999)

e Detection of burial for exposed pipelines

e Detection of exposure for buried pipelines

e Detection of pipeline free span and estimation of span
e Detection of damages of pipelines

e Detection of buckling of pipelines

e Detection of debris near the pipeline

For long automated AUV surveys and short range sensors, tracking of the pipeline (Pe-
tillot et al., 2002) might be mandatory. With the swath width of HISAS and the naviga-
tion accuracy of the HUGIN AUV, tracking actually only becomes important for multi-
hour missions (given that the pipeline position is known). In this section, we focus on
the sensor, interferometric SAS, and the particular benefits and challenges in inspection
of the pipeline and the area around.

Figure 8.22 shows an overview of the HUGIN mission. The color-coded bathymetry
is estimated using HISAS sidescan bathymetry. The water depth varies from 200 to 400
meters in the test area. The tracks are shown in black and the pipeline in brown. We
focus on two different areas from this mission: Area A and Area B as indicated by the
two squares. Figure 8.23 shows a sidescan sonar image from one mission line from one
of the sides. Note that the pipeline is covered by gravel in several locations.

In Area B the AUV runs parallel to the pipeline at around 60 meters range to both
sides. We have co-registered (Jakowatz et al., 1996, 288-302) data from the two sides and
merged SAS images and SAS bathymetries. The results are presented in Section 8.6.1.
In Area A the AUV has run perpendicular to the pipeline and passed directly above it.
Processed data from Area A are presented in Section 8.6.2. In Section 8.6.3 we present
results from shape estimation of the pipeline from both datasets.
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Figure 8.22: Overview of the pipeline mission. The data are collected by the Royal Norwegian
Navy, outside the western coast of Norway
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Figure 8.23: Sidescan sonar image of the pipeline as a function of pings and range. The range is
0 meters (bottom) to 180 meters (top). The approximate distance traveled is 2000 m.

Figure 8.24(a) shows an example SAS image from the pipeline mission. The image
shows a 50 by 100 meters scene, and the zoomed panel shows 10 by 10 meters cutout.
Note the very high resolution. The pipeline is exposed, partly buried, and buried. The
pipeline’s surroundings are particularly important — external factors are responsible for
many incidents of pipeline damage. Simple examples may be misplaced fishing trawls
or anchors which have been entangled with the pipeline or it can be a change in the
landmass or underwater avalanches, which causes the pipeline to slide down a slope.
Figure 8.24(b) shows an example where an anchor has been released nearby a pipeline
and where there may be cause for a closer inspection.

Figure 8.25 shows some of the mechanisms involved in scattering of acoustic waves
from an exposed cylinder (a pipeline) on the seafloor. A few simplified assumptions can
be made:

e The specular reflection is the first arrival (closest range in the sonar image)

o If the pipeline is sufficiently smooth, the specular reflection will dominate the
backscattered signal

e If the pipeline material is non-smooth (seen with the sonar), diffuse scattering
(non-specular) will occur

e The top of the pipeline may not be observed since it requires diffuse scattering

e The acoustic signal may travel via the pipeline and then the seafloor, then into the
receiver (multipath). In this case, the direction of arrival will be incorrect (i.e. in-
correct bathymetry). The backscattered echo will also have a small error in range.

e The acoustic signal may travel via the seafloor and then the pipeline, then into the
receiver (multipath). In this case, the direction of arrival from the pipeline will be
correct (i.e. correct bathymetric depth).
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(a) Barrel (b) Anchor

Figure 8.24: The left panel shows an example SAS image of a 50 by 100 meters area from the
pipeline mission. The cutout shows a small object, possibly a barrel. The right panel shows an
example SAS image of a 130 by 100 meters area. The large cutout has range from 40 meters (left)
to 140 meters (right). The pipeline is located in the left part of the image. The zoom shows an
anchor on the seafloor around 50 meters away from the pipeline.

e Behind the pipeline, there is a shadow zone. The length of this zone is dependent
on the exposure of the pipeline and the topography in the zone.

A more thorough treatment of the problem requires a study of scattering of acoustic
waves from geometrical shapes with varying smoothness (Brekhovskikh and Lysanov,
1982; Ogilvy, 1991). In this section, we concentrate on a more phenomenological des-
cription from a sensor observation point of view.

A fundamental question to be answered is whether this particular pipeline produces
non-specular reflection when observed with a HISAS type sonar. To answer this, we
consider a single ping. Figure 8.26 shows a sectorscan image (or a 2D phased array
image of one ping). The pipeline is at approximately 163 meters range. Note that sonar
broadside is not perpendicular to the pipeline. The image is constructed using standard
delay-and-sum (Johnson and Dudgeon, 1993, pages 112-119) with a Kaiser tapering to
suppress sidelobes (Harris, 1978). This to ensure that sidelobes from the specular re-
flection is not confused with the scattering from other directions. Figure 8.27 shows the
relative backscattering strength from the pipeline, based on the same data as in Figure
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Figure 8.25: Scattering geometry operating HISAS parallel to a pipeline

8.26. The small oscillations in the backscattering strength is due to the sidelobes in the
radiation pattern. The theoretical angular resolution of the phased array is

A1 .

T 30" 0.7°. (8.11)
We see that the backscattering strength from the pipeline is maximum at around 3.5
degrees off broadside, at the direction for specular reflection. The directivity pattern for
the transmitter and the receiver is not compensated for. This effect is, however, weak,
compared with the observed results. The backscattering strength falls off in both direc-
tions as expected, but not very dramatically. This indicates that there is a substantial
amount of backscatter in the non-specular horizontal direction. This can be caused by
two different effects:

e The pipeline has small scale roughness causing diffuse scattering

e The signal is specularly reflected via the pipeline through a bottom bounce.

8.6.1 Tracks parallel to the pipeline

In this section we consider two mission lines (or tracks) in Area B in Figure 8.22: One
track west of the pipeline with an approximate range of 59 meters to the pipeline and
one track east of the pipeline at a range of approximately 61 meters. Both tracks are
close to parallel to the pipeline with an altitude of approximately 25 meters. Figure 8.23
shows one of the sidescan images from a parallel track to the pipeline.

For tracks parallel with the pipeline specular reflection, shadowing and multipath be-
comes important. Specular reflection gives a strong reflection exactly perpendicular to
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Figure 8.26: Sectorscan image (phased array 2D image of one ping). The pipeline is at approxi-
mately 163 meters range.
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Figure 8.27: Relative backscatter from the pipeline as function of angle.

the surface of the pipe. This reflection is the first echo from the pipeline in the image and
gives a very distinct indication of the position of the pipeline. Note that if the pipeline is
non-parallel with the vehicle track, as is the case in Figure 8.26, then specular reflection
is not normal to the SAS-track.

Figure 8.28 shows example SAS images from a section of the pipeline. In the upper
left panel, the pipeline is observed from east and in the upper right panel the pipeline is
observed from west. Note the changed location of the shadow behind the pipeline. The
lower (large) panel shows the fusion of the images from each side (see section 8.6.1).

Co-registration details

The specular reflections from the pipeline occur in different locations when observed
from the two different sides (see Figure 8.28). Thus, co-registering the two images (Jako-
watz et al., 1996, 288-302) has to be based on other features. We have used five locations
on the rope seen below the pipeline to manually co-register the images. In addition to an
alignment, we had to apply a 0.4 degrees rotation of one of the images. In our study, we
did not apply scaling, since the effect in this case is insignificant. The lower panel of Fi-
gure 8.28 shows the intensity-averaged combined image of the pipeline. By examining
the rope we see that the images seem successfully co-registered, almost everywhere.
There are two visible errors in the fusion, circled out in Figure 8.29(c). These errors are
probably due to a projection error due to an uncompensated error in the elevation of
the rope.

Characterization of the pipeline

By measuring the range to the pipe, R, the height of the sensor relative to the seafloor
(at the pipeline location), H, and the length of the shadow, r, we can estimate the height
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(a) SAS image from the east track (b) SAS image from the west track

(c) SAS image merged from east and west track

Figure 8.28: All panels shows SAS images from the same 60 by 40 meters on the seafloor. The
AUV has run along the z-axis and range is along the y-axis. The two upper panels show the
image from the east and west tracks respectively. The lower panel shows the result of merging
the east and west tracks on an intensity basis.
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Figure 8.29: SAS image cutout containing the pipeline and the rope. Note the incorrect fusion of
the rope on two places indicated in the right panel. This is due to an uncompensated elevation
of the rope.

of the pipeline relative to the seafloor, h

Hr
h = .
R+r

This is a common method of estimating height of small objects with sidescan sonar
(Reed et al., 2004).

We have estimated the height of the pipeline relative to the seafloor in a number
of representative locations and found that it is typically elevated 29 cm. The actual pi-
peline has a diameter of 30cm. The method is, however, not entirely conclusive. The
bathymetry in the shadow causes uncertainty, and the burial of the pipeline is unknown.

In the combined SAS image in Figure 8.28(c), we see that the the pipeline has a
certain width. By assuming that the first arrival is from the specular reflection in the
vertical plane in both sides, the diameter d can be approximated from the width w of
the pipeline

(8.12)

2w
d=~ 8.13
cos @1 + cos Dy’ (8.13)

where 6, and 6, are the incident angles to the pipeline relative to the sonar (see Figure
8.30). By averaging the estimate over 30 meters we find that d ~ 46cm. The actual
pipeline diameter was 30cm. The reason for this discrepancy may be related to the
error in the combined interferometry (see the next subsection).

Combined Interferometry

We have applied the same co-registering technique on the interferometric estimates. Fi-
gure 8.31 shows the estimated bathymetry of the same region of the pipeline combined
from two sides. The two sides are combined by selecting the region of maximum co-
herence (Hanssen, 2001, pages 96-98) in the two single-look bathymetries, i.e. there is

163



30.3m

214 m
o,

50.6 m

46 cm 575m

Figure 8.30: Geometry of a two-sided pipeline survey. The orange circle at the upper left section
is the AUV traveling out of the paper and the one at the upper right illustrates the AUV traveling
into the paper. The measured width between the specular reflections, w, is equal to 46 cm.

Figure 8.31: Interferometric bathymetry from the same region as imaged in Figure 8.28. The
bathymetry is combined from two tracks by selecting the side with the highest coherence for
each pixel. Note the small elevated feature on the left side of the pipeline. This is part of the
rope.

no averaging of the estimates. We removed a 27 cm vertical bias between the two ba-
thymetries to get a smooth surface. This is most likely caused by inaccurate navigation
or tidal changes causing an apparent depth change. Note that the combined SAS inter-
ferometry of the pipeline does not have the form of a cylinder — it appears flat at the
center. This indicates that there is little backscatter from the top of the pipeline, or in the
non-specular direction.
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Figure 8.32: A 100 meter section of the pipeline seen from a track perpendicular to the pipeline.
The upper panel shows the interferometric bathymetry and the lower panel shows the SAS
image rendered onto the bathymetry.

8.6.2 Track perpendicular to the pipeline

In this section, we study data from Area A in Figure 8.22, where the AUV track is per-
pendicular to the pipeline. The sonar look-direction is then parallel to the pipeline.
Specular reflection, shadowing and multipath is not dominant (as it was in the previous
section, where the vehicle track was parallel to the pipeline). In this case, diffuse scatte-
ring (or backscattering in the non-specular direction) becomes important.

Figure 8.32 shows the estimated bathymetry from the starboard sonar (upper panel)
along with the SAS image rendered onto the bathymetry (lower panel). The pipeline can
be clearly seen in both panels. Note that the pipeline shape is more cylindrical compared
to what we got from the parallel tracks. In the SAS image we see the pipeline joints as
dark regions every 12.5 meters. These rather substantial differences in interferometric
response are discussed further in the following sections.
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Figure 8.33: A 8 by 100 meter zoom of a 100 meter section of the pipeline bathymetry in Figure
8.33. Note that the aspect ratio is not equal in the horizontal plane. The relative height of the
pipeline is approximately 30 cm.

8.6.3 Estimating the shape of the pipeline

In the two previous sections we showed that the data collected from parallel and per-
pendicular tracks to the pipeline have very different characteristics. In this section we
investigate these differences further.

Figure 8.33 shows a 8 by 100 meter cut-out from the data in Figure 8.32. By selecting
the local maximum we can detect and track the peak of the pipeline, which gives the 3D
position of the pipeline. This can be used to measure the local curvature of the pipeline.

The peak location can also be used to shift the bathymetry data in such a way that
the pipeline is aligned along one axis. After linear detrending the local slope of the
seafloor we can average the bathymetry over the 100 meters, to get an estimate over the
pipeline profile. The left panel of Figure 8.34 shows the estimated pipeline profile after
shifting, detrending and averaging. The observed shape can intuitively seem to be a
slight mismatch to a cylindrical pipeline, but this is actually as theory would predict:

e The interferometric estimate is not true 3D, but rather 2.5D - there is only one
depth at each horizontal position. This is due to the sensor geometry — the vertical
receiver antenna is a sparse array containing only two elements, thereby only one
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measurement can be done.

e We apply a window of 9 by 9 image-samples to produce one interferometric esti-
mate (see Section 8.1). This is done to reduce variance in the depth estimate. In
effect, the bathymetry is lowpass filtered with an 18 cm window.

The measured height of the pipeline relative to the surrounding in the left panel of
Figure 8.34 is around 30 cm, which fits with the diameter of the pipeline. The burial of
the pipeline is unknown. We also tried to estimate the diameter based on the curvature
of the profile, but due to the lowpass filtering, the profile is not cylindrical and the
estimate varied from 33 to 40 cm depending on where we measured.

We have also performed similar analysis on the SAS image and averaged the inten-
sity data to get a profile of the pipeline. The estimated width (and thereby diameter)
varied from 30 to 57 cm depending on whether we measured -3dB or -10 dB from the
peak. This result is somewhat expected as the main lobe width of the imaging system is
specified as 2.5cm at -3 dB but wider at -10 dB.

In the right panel of Figure 8.34 we see an estimate of the pipeline profile from the
merged bathymetry data using the parallel tracks. We have applied the same shifting
and averaging method as described above to produce the profile. The profile show
several important features: Firstly, it is clear that the profile is dominated by the two
specular reflections. Since the AUV height is different for the two tracks (see Figure
8.30) the specular reflections are at different depths. They are also smeared in range
due to the interferometric window. Secondly, it seems that there is little echo from the
top of the pipeline. There are some energy at the center of the pipeline profile, but the
height is not above the specular reflections. Thirdly, there are energy below the seafloor
surface, which indicates that we receive a multipath bounced onto the seafloor before it
is echoed back into the sonar.

8.6.4 Summary

In this section we have shown preliminary results from a pipeline survey using HISAS
as primary sensor. We have focused on two different sections of the pipeline, one where
the AUV tracks were parallel to the pipeline on each side and one where the track was
perpendicular to the pipeline.

In the parallel tracks the pipeline is easily identifiable. The backscattered field is af-
fected by specular reflection, shadowing and multipath. These features are also present
in the interferometric data, but the estimated bathymetry is still usable to separate the
pipeline from the rest of the seafloor. The shadowing can be eliminated by merging the
data from two sides. The bathymetric pipeline profile does not fit a cylindrical shape,
as expected, since the interferometric bathymetry estimate is dominated by the specular
reflection.

In the track perpendicular to the pipeline, the pipeline is easily distinguished from
the rest of the seafloor, both in the SAS images and in the interferometric data. The
bathymetric profile of the pipeline looked more like a lowpass filtered cylindrical object.
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(a) Estimated pipeline profile from the perpendicu- (b) Estimated pipeline profile from the parallel
lar track tracks

Figure 8.34: Pipeline profile estimated by tracking the pipeline peak in the bathymetry, shifting
and aligning the pipeline, detrending the local slope of the seafloor and averaging the bathyme-
try. The left panel show the results from the perpendicular track. The data is from a 100 meter
section of the bathymetry showed in Figures 8.32 and 8.33. The right panel shows the result
from the merged bathymetry of the parallel tracks. The data is from a 60 meter section of the
bathymetry showed in Figure 8.31. The black line is the mean profile, while the colors indicates
the distribution of points at each location. Red means a large number of samples at that location
and blue means a low number of samples.

From the results we have presented it is clear that HISAS can be used to get useful
information from a pipeline and its surroundings. The high resolution imagery and
bathymetry of the seafloor is ideal for locating small objects in the proximity of the
pipeline. At the pipeline the data are less intuitive — due to several acoustic effects
which complicate the interpretation.

We have found that it may be beneficial to observe the pipeline not only from parallel
tracks, which is most efficient, but also from perpendicular tracks. This can produce
valuable information not easily retrievable otherwise. Whether this is worth the cost of
increased survey time is left to further investigation.
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Chapter 9

Summary and conclusions

In this thesis we have developed methods for robust and accurate interferometric SAS.
We have emphasized that a priori depth information is an important prerequisite for
SAS imaging and developed a solution through sidescan depth estimation. We have
described the integration of depth information into the navigation and the image for-
mation. Finally, we have developed a method for interferometric SAS, and performed
detailed studies into possible advances and applications.

One of two main topics in this thesis is a thorough description of the geometry in
interferometric sidelooking sonar. An important conclusion is that the interferometric
time series are not only time delayed relative to each other, but also dilated. We have
developed a new mathematical description of the geometry in sidelooking sonar and
shown how an approximation-free solution for the depth can be obtained.

The other main topic is time delay estimation. We have argued that a standard
time delay estimator like the cross-correlation function is sub-optimum on interfero-
metric time series due to the relative dilation. We presented two solutions: The cross-
uncertainty function and a nonlinear co-registration by interpolating the data onto an
a priori ground-range. We showed that the cross-uncertainty function has better per-
formance than the cross-correlation function on time delayed time series and approxi-
mately equal performance on non-dilated time series. We also introduced an improved
cross-correlation based estimator on data with asymmetrical spectra.

We have developed two depth estimation routines: Sidescan bathymetry and SAS
interferometry. We introduced a well performing unwrapper for cross-correlation based
sidescan bathymetry estimates, and briefly discussed the concept of iterative SAS inter-
ferometry. A short summary on the difference between SAS interferometry and SAR
interferometry tried to shed light on where typical SAS-systems are similar to SAR-
systems.

There is a lack of a standard on how to measure resolution in bathymetric maps.
We suggested flank length as a measure of the horizontal resolution in depth maps. We
estimated the flank length on simulated datasets to verify the theoretical values. The
conclusion was the implemented sidescan bathymetry and SAS interferometry perfor-
med very close to the theoretical limits when it comes to horizontal resolution. When
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it comes to the vertical precision of the depth estimation, it followed the theoretical
performance within a factor of two. An important observation is that it is the SNR esti-
mated from the coherence which limits the vertical precision, not the actual SNR. This
is because the estimated SNR also includes model errors like baseline decorrelation.

We presented results from a number of studies using experimental HISAS data. The
topics are to a large extent unrelated. The conclusions are as follow:

It seems unrealistic to achieve depth estimates with full SAS image resolution.
Due to the speckly nature of SAS images, some kind of filtering has to be applied.
The phase-difference filter is a maximum likelihood estimate of the interferometric
phase-difference. The size of the filter is a trade-off between vertical precision
and horizontal resolution. At some level the precision will not be improved by
increasing the size of the filter, since it assumes homogeneity. A better solution is
then to post-smooth the depth estimates.

In slant-range sidescan bathymetry (or other cases where the time delay estimate
is limited by dilation of the time series) the cross-uncertainty function outperforms
a standard cross-correlation based technique with as much as an equivalent 20 dB
SNR increase. A cross-uncertainty based technique is therefore a good alterna-
tive to the non-linear co-registration in ground-range (which we have used in the
rest of this thesis). The dilation-factor may also provide useful information which
cannot be obtained from the time delay estimate itself.

A split-bandwidth technique which divides the bandwidth into sub-bands, can
be used to resolve the 27 ambiguities in SAS interferometry. We implemented a
simple technique, which outperformed a standard 2D unwrapping technique (the
Goldstein Branch cut algorithm) on large scale. However, due to the simplicity of
the method it failed on a small number of random pixels.

The weighted bilateral filter outperforms a large phase-difference filter, a weighted
smoothing filter and a weighted median filter when it comes to smoothing depth
maps, while retaining sharp edges.

Sidescan bathymetry using HISAS has very similar performance to depth estima-
tion using an EM 3000 multibeam echo sounder. For simultaneously operation
using an HUGIN 1000-MR AUV in typical geometry, the EM 3000 has slightly bet-
ter resolution while HISAS has larger area coverage rate. HISAS SAS bathymetry
has large area coverage rate and superior resolution. We also found that there is a
small discrepancy remaining between the two sensors.

A HISAS interferometric SAS can be used to get useful information from a pipeline
and its surroundings. We have found that due to acoustic effects which compli-
cates the interpretation, it can be beneficial to observe the pipeline not only from
parallel tracks, but also from perpendicular tracks.

170



9.1 Suggested future work

Some of the topics we investigated in this thesis have not been addressed to their full
extent, due to a limited time span. A few of them which deserves further attention, are
listed below:

e An expanded cross-uncertainty estimator which estimates the dilation both from
the geometry and from the data itself. A goal should be to find a continuous
model-based estimate of the delay and the dilation instead of the patch-based me-
thod presented in this thesis.

e A better and more robust split-bandwidth implementation based on the probabi-
lity density functions for each sub-band having the correct wrap interval. Either
by using a maximum likelihood method by exploiting deterministic contextual
information consisting in the approximation of the depth surface through local
planes (Budillon et al., 2005) or by fusing the interferograms from each sub-band
with a coherence weighted Kalman filter (Lanari et al., 1996).

e A study of the discrepancy between HISAS and the EM 3000 when operated si-
multaneously on the HUGIN 1000-MR AUW.

e Aneven more thorough study of the acoustic effects when using sidelooking sonar
to survey elevated man-made objects like a pipeline.
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