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ABSTRACT Music generation using deep learning has received considerable attention in recent
years. Researchers have developed various generative models capable of imitating musical conventions,
comprehending the musical corpora, and generating new samples based on the learning outcome. Although
the samples generated by these models are persuasive, they often lack musical structure and creativity. For
instance, a vanilla end-to-end approach, which deals with all levels of music representation at once, does not
offer human-level control and interaction during the learning process, leading to constrained results. Indeed,
music creation is a recurrent process that follows some principles by a musician, where various musical
features are reused or adapted. On the other hand, a musical piece adheres to a musical style, breaking down
into precise concepts of timbre style, performance style, composition style, and the coherency between these
aspects. Here, we study and analyze the current advances in music generation using deep learning models
through different criteria.We discuss the shortcomings and limitations of thesemodels regarding interactivity
and adaptability. Finally, we draw the potential future research direction addressing multi-agent systems and
reinforcement learning algorithms to alleviate these shortcomings and limitations.

INDEX TERMS Deep learning, multi-agent systems, music composition, music creativity, music generation,
music information retrieval, neural networks, reinforcement learning.

I. INTRODUCTION
Computers have introduced a new way of approaching music
composition to create an elaborate piece of music. There
are several approaches for the algorithmic composition of
music [1], such as mathematical models [2], knowledge-
based systems and grammars [3], evolutionary methods [4],
and Markov models [5]. Although these models have shown
the ability to create melodies in various styles such as [6]
and [7], they lack generalization [8] and, in some cases,
require manual preparation of rule-based definitions for
different types of music. In contrast to handcrafted models,
machine learning models, and particularly deep learning
(DL) models, can learn from large distribution of musical
examples and generate new content. Besides, deep learning
models exhibit strength in processing raw unstructured data
by extracting higher-level features associated with the task.
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Mainly, music generation comprises subtasks like melody
and multi-instrument generation, style transfer, and audio
synthesis. Models such as DeepJ [9], DeepBach [10],
and BachBot [11] can mimic a particular musical style
with plausible results. JukeBox [12] can generate complete
high-quality songs with singing in raw audio in an end-to-end
approach.

Despite this promising progress, there are challenges
in using end-to-end deep generative models for music
generation. These models often suffer from the scarcity of
musical structure, expressiveness, and creativity. Besides,
there is no unified music evaluation method for deep
learning models [13]. Furthermore, these models are pri-
marily limited in interactivity and controllability. It is
demanding for artists to generate creative and genuine
content using end-to-end models [14]. Consequently, it is
essential to have a clear perspective of challenges and
problems to improve the performance and ability of these
models.
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In this study, we provide an overview of the advances
in deep learning methods for music generation in the
symbolic domain. We further outline different evaluation
techniques and the challenges and limitations of these
models in music generation tasks. Additionally, we sum-
marise these models’ characteristics and the challenges
they addressed, including 73 deep-learning models. Accord-
ingly, we describe a potential approach to overcome these
issues. Our study concentrates explicitly on adaptability
and interactivity issues by demonstrating a better approach
using multi-agent systems and reinforcement learning
algorithms.

This paper is organized as follows. Section II briefly
introduces various aspects of the music generation task.
Section III presents different domains of music represen-
tation. Section IV sorts out the common deep learning
architectures of generative models. Section V deals with
the methods for music generation, categorized based on the
architectures in Section IV. Section VI presents different
music evaluation methods from objective and subjective
points of view. Section VII points out some shortcomings of
current methods and challenges in the music generation task.
Section VIII exposes the potential future research direction.
Finally, Section IX concludes this paper.

II. ASPECTS OF MUSIC GENERATION TASK
The objective of the music generation task refers to the
musical content to be generated. Reference [15] determines
the music generation objectives with five aspects: type,
destination, use, mode, and style. The most important factor
among these five aspects is the type, which defines the nature
of themusic generationmodel. In this context, we can classify
the main musical types as single-track monophony, single-
track polyphony,multi-track polyphony, and accompaniment.
The single-trackmonophony represents the sequence of notes
with at most one note at a time for a single instrument or
vocal.

In comparison, single-track polyphony represents more
than one note at a time. Examples of single-track polyphony
instruments are the piano and guitar. While single-track
monophony and polyphony are for a single instrument, multi-
track polyphony is intended for more than one voice or
instrument. Multi-track polyphony can capture a complete
band, such as a Jazz trio with piano, bass, and drums, and
it constitutes the traditional recording format. Additionally,
the accompaniment can be rhythmic or harmonic support
(or both) to a given melody, like chord progression and
counterpoint. Note that this is only one of several ways
to classify musical types, but useful in discussing music
generation tasks in this study.

The mode aspect defines whether humans can intervene
in the music generation process or if it is fully automated.
The interactive ability of a musical system provides some
degree of control over the content generation. Based on
the mode, we can determine the destination and use of
the generated content. For instance, the generated musical

content can be played by an audio system (waveform),
processed by sequencer software (Musical Instrument Digital
Interface (MIDI)), or performed by a human (score).
Moreover, the generated musical content can be influenced
by the style of certain musicians such as for example
Bach. Indeed, the choice of training examples directly
affects the model’s learning outcome regarding the musical
style.

III. REPRESENTATION OF MUSIC
Musicians work with many levels of inference, ranging from
abstract symbolic representation like the lead sheet to the
continuous and concrete representation of audio signals.
We can divide music into symbolic and audio domains [16].
Mainly, the symbolic domain consists of discrete variables,
while the audio domain is continuous. Additionally, the
symbolic domain includes a representation referred to as
performance control. Considering the multi-level and multi-
modal characteristics of music representation:

• The high level is the score representation, including the
structure and symbolic features (like note, pitch, and
chord). It is an abstract representation of music that
enables musicians to develop and communicate musical
ideas seamlessly.

• The middle level is the performance representation
consisting of detailed timing and dynamics for the
musical expression. The performance representation
conveys the changes in emotion and information, which
are not marked in the score but performed by the
musician.

• The bottom level is the audio representation related to
acoustic features, such as timbre, that can be determined
as a sound.

The music generation can be addressed relative to each of
these levels. Deep learning models and computer programs
generally solicit a precise definition of input representation.
In this study, we concentrate on deep learning models for the
symbolic representation of music.

IV. DEEP LEARNING
In recent years, deep learning has seen many advancements
in the architecture of generative models. The most utilized
generative models in the music generation tasks are Recur-
rent Neural Networks (RNNs), Variational AutoEncoders
(VAEs), Generative Adversarial Networks (GANs), and
Transformers. Additionally, researchers have investigated the
potential of reinforcement learning algorithms for music
generation. This section outlined the architecture of these
methods.

A. RECURRENT NEURAL NETWORKS
Recurrent Neural Networks (RNNs) are neural network
architectures suitable for learning the sequence of data. They
can capture the time dependencies between input sequences
by sampling from the neuron’s output and feeding in the
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sample as input in the next time step. However, due to
the gradient vanishing problem, RNNs struggle to learn
long-term dependencies within the input sequences. The
Long Short Term Memory (LSTM) network [17] is an
advanced type of RNN that comprises layers of neurons with
recurrent connections. LSTM contains a computational unit
called a memory cell or memory block, consisting of weights
and gates connected recurrently. The network can interact
with memory cells through the gates that increase the number
of parameters to be estimated during training. In this manner,
the network can control the flow of information in detail for
each cell, resulting in faster convergence.

B. GENERATIVE ADVERSARIAL NETWORKS
Generative adversarial networks (GANs) [18] are another
family of deep generative models. The main idea is to
train two neural networks at the same time. The GAN’s
architecture includes the generator G and the discriminator
D. The generator learns a distribution of the input data during
the training process to resemble the actual samples. At the
same time, the discriminator takes examples of the real (input
examples) and generated data (output examples by generator)
and attempts to maximize the probability of assigning the
correct label to real and synthetic (generated) data. Indeed,
the training process of GAN forms a two-player MiniMax
game in which the models are trained until the discriminator
is fooled half the time.

C. VARIATIONAL AUTO-ENCODERS
The variational autoencoders (VAEs) [19] are powerful deep
generative models. They have shown an excellent capacity to
produce various high-quality content such as images, texts,
and sounds. VAE is an autoencoder (AE) with constraints
on encoded representation (latent variables), denoted by the
variable z. The applied constraints ensure that the encoder
produces latent variables with a predefined structure and
properties.

To elaborate, AE is a neural network with one hidden
layer in which the output layer (decoder) reflects the input
layer (encoder). In other words, the encoder compresses
each example in the dataset into a vector of numbers (latent
variables) to create the latent space of the dataset. The
decoder reconstructs the same examples using the latent
variables. However, it is difficult to ensure the regularity of
the latent space organized (encoded) by the encoder. The
training regime in AE results in encoding and decoding
with no information loss, which indicates the overfitting
problem. Therefore, the decoder prunes to generate poor
quality content caused by a lack of structure in the latent
space.

The VAEs architecture alleviates the latent space irregular-
ity issue by encoding the examples following a probability
distribution P(z) like the Gaussian distribution. In this
manner, VAEs ensure a better structure of latent space by
forcing the encoder to return a distribution over the latent
space instead of a single point.

D. TRANSFORMERS
Transformers [20] have been used widely in natural language
processing (NLP) [21], and computer vision [22] tasks with
outstanding performance. Transformers architecture relies
on an attention mechanism that computes the represen-
tation of its input and output by concentrating on some
specific elements of the input sequences. Particularly, the
transformers belong to the family of sequence-to-sequence
models. Their architecture includes an encoder and decoder,
yet recognizable to AE models and backpropagation-based
learning. The given inputs are prepared as tokens to train
the transformer model, which is a structured representation.
In this manner, the positional information is preserved, which
enables themodel to determine temporal dependencies within
the input sequences.

E. REINFORCEMENT LEARNING
In Reinforcement Learning (RL), an agent learns to interact
with an environment through trial and error. The agent selects
and performs actions sequentially within the environment.
Each action takes the agent into a new state, where the
agent receives a reward. The given reward relies on the
fitness of the action to the current state (environment). The
agent’s goal is to learn an optimal policy to maximize
its cumulative rewards (gain) through the learning process.
Indeed, the agent maximizes its gain by knowing when
to explore to learn more and when to exploit what it has
learned.

For instance, Q-learning is a model-free reinforcement
learning algorithm in which the agent learns to estimate
the value of an action in a particular state. Q-learning is
model-free as it does not require assessing the dynamics
of the environment as in the case of transition and reward
function. Indeed, Q-learning is a value-based learning algo-
rithm that updates the value function based on an equation
(Bellman equation). The agent maintains the estimated values
in Q-table and updates the table’s values during its interaction
with the environment.

For an overview of approaches and algorithms for
reinforcement learning, we refer to [23] and [24]. In this
study, we mainly concentrate on using deep learning in
reinforcement learning algorithms, known as deep reinforce-
ment learning (DRL). Reinforcement learning emerges to
be a promising approach to the music generation task.
It can enhance the interactivity issue of the deep learning
architecture through control methods like the reward mech-
anism. Furthermore, DRL algorithms an process large input
examples, which is important in the case of music generation
tasks.

V. RELATED WORK
This section studies the current advances and state-of-the-
art approaches to music generation using deep learning tech-
niques in the symbolic domain. We discuss the approaches
based on the architectures mentioned in Section IV. Note
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that some of the mentioned papers are under peer review or
preprint.

For a comprehensive overview of the deep learning
models for music generation, we refer to [15], [16], [25],
and [26]. References [1], [27], [28], [29], [30], [31], and [32]
provide an overview of the music generation systems, and
algorithmic composition of music. Additionally, the authors
in [33] survey the application of robotics in music generation
tasks.

A. RECURRENT NEURAL NETWORKS
Following the success of LSTM architecture [17], Eck
and Schmidhuber [34] used LSTM to address the lack
of global coherence in algorithmic composition since they
are better for learning temporal dependencies than vanilla-
RNN. Their work demonstrated the LSTM network’s ability
to learn the local and global structures and reproduce
long-term conventions. However, the network’s tendency
to bind with the training set conventions stop exploring
and producing new musical forms. To further improve the
performance of the LSTM model in the music generation
task, Eck and Lapalme [35] proposed a music-specific
sequence learner that can capture long-timescale structure in
the musical piece. They introduced a bias toward the metrical
structure to confront the network’s problem to learn repetitive
musical sequences by providing time-delayed copies of
input.

Sturm et al. [36] used a character-based approach that
works with a vocabulary of single characters, with textual
transcriptions of folkmusic, to train a deep LSTMmodel. The
training examples contain 24,000 high-level transcriptions
of folk tunes in ‘‘ABC’’ notation with a vocabulary size of
134. The input representation carries the one-hot encoded
input vectors similar to [35] with the softmax output layer
providing the distribution over the vocabulary adapted to the
input. They developed two models, charRNN trained on a
consecutive text file, and folkRNN trained on single complete
transcriptions. Similarly, Choi et al. [37] used word-based
learning (wordRNN) in addition to character-based learning
(charRNN) for automatic music composition. They utilized
textual data representation to generate Jazz chord progres-
sions and Rock music drum tracks. In the preprocessing step,
the start and end flags indicate the score’s beginning and
end. They transposed all the scores to the key of C. For
drum tracks, they used a binary representation of pitches to
encode drum components where only nine components were
included for training efficiency.

Li et al. [38] proposed a novel technique to improve the
performance of LSTM RNN models to learn long-temporal
dependencies. The proposed model is named Enhanced
Memory Network (EMN), which consists of several recurrent
units known as Enhanced Memory Units (EMU). EMN
incorporates musical beat information and historical hidden
states to improve the learning ability of LSTM RNN.
Medeot et al. [39] proposed StructureNet that learns musical
structure space to generate melody. StructureNet includes

two networks: structure and melody model. The structure
model induces the musical structure within the given training
examples (melodies) and encodes them as a sequence of
binary vectors. They used the trained structure model to
steer the melodies generated by the melody model during
the generation process. The melody model is a probabilistic
model that predicts the probability distribution of musical
events.

Similarly, Dai et al. [40] introduced MusicFrameworks
for controllable melody generation using hierarchical music
structures. Their system composes a melody by arranging
a musical piece into sections and phrase-level structures.
Then, it generates rhythm and basic melody parts using
two transformer-based models. Finally, the system gener-
ates the final melody by conditioning on various musical
attributes. Keerti et al. [41] utilized Bi-directional LSTM
RNN to compose polyphonic Jazz pieces. Their model
employs the attention mechanism to identify the parts of the
input sequences with salient musical features. For similar
approaches to address the structure in music using LSTM
RNN, we refer to [42], [43], and [44].

Although the above systems can generate musical content,
their generations lack musical expressions. Oore et al [45]
proposed PerformanceRNN to address the expressiveness
in music. They utilized a dataset of recorded human
performances, including notes’ exact timing and dynamics.
Hadjeres and Nielsen [46] proposed AnticipationRNN to
implement positional constraints on model’s generation.
Their architecture and method provide interactivity to the
RNN-based model, enabling the users to perform positional
constraints on notes.

We often desire to generate music based on sentiment
or a specific music style. Ferreira and Whitehead [47]
proposed a method to control the deep learning model and
generate musical pieces using a specific sentiment. Their
generative model includes an LSTM network paired with
a Logistic Regression model. Their model also shows the
potential to perform sentiment analysis of symbolic music.
Furthermore, they provided a labeled dataset of symbolic
music annotated according to sentiment for future research.
Cífka et al [48] presented a style transfer method to generate
polyphonic accompaniment styles for Jazz. They trained
neural networks with encoder-decoder architecture in a
supervised manner on synthetic parallel training data labeled
by the styles of music [49]. The training data includes chord
charts from a chord language model of the Jazz music
standards and rhythmic variations. The sampled chord charts
are prepared as a token of the chord’s root, quality, and
duration. To evaluate the model’s performance, they used
the content preservation technique to estimate how well
the model captured the harmonic structure and the style fit
technique tomeasure howwell the outputmatched the desired
style.

Chen et al. [50] used the chord progression as constraints
to generate melody using the WaveNet. Their work compares
temporal-CNN and LSTM RNN models systematically.
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Furthermore, they propose a technique to encode chords
and melodies in a staggering representation. They used the
Information Dynamics method to analyze and evaluate the
content generated by themodel through pattern identification.
Lu et al. [51] proposed MeloForm, an expert system to
compose music according to a musical form. Their system
consists of two modules: expert systems and a transformer
model.MeloForm can generate different forms ofmusic, such
as verse and chorus, rondo, and sonata forms. The expert
systems module utilizes the handcraft rules (music theory)
for melody generation. The transformer model refines the
generated melody using various strategies, such as refining
phrase by phrase, conditioning on harmony and rhythm, and
others.

Ziegler and Rush [52] utilized the normalizing flow
architectures for generative models to compose the melody
and polyphonic music. In their approach, they considered
character-level language modeling and polyphonic music
generation, where the normalizing flow method models the
continuous representation of the input sequences.

B. VARIATIONAL AUTO-ENCODERS
An example of a VAE-based model for music composition
tasks is MusicVAE [53] for monophonic and polyphonic
music. The architecture of the proposed model includes an
encoder and a decoder with a two-level hierarchical RNN
structure. They utilized a corpus of MIDI files collected from
the web to extract monophonic melodies, drum patterns, and
trio sequences (drum, bass, melody (piano or guitar)). They
trained the model on 2 or 16 measures long for monophonic
melodies and drum patterns, and 16 measures long for
trio sequences. Furthermore, by utilizing the latent space
of the VAE architecture, the model can generate musical
content through different operations like translation and
interpolation.

Later, Simon et al. [54] proposed an extension of Music-
VAE, called multi-track MusicVAE, to generate musical
pieces with an arbitrary number of instruments. In their
model, both the encoder and decoder adopted the hierarchical
architecture. Similarly, by benefiting from VAE latent space,
the model has the capacity to generate samples by chord
conditioning. Dinculescu et al. [55] proposed a new method
to learn the latent space of the MusicVAE model to enhance
conditional sampling. They achieved this by employing the
latent constraints [56] to lower the dimension of the latent
space, concentrating on the portions that are similar to a
particular style or genre. Wang et al. [57] proposed a novel
tree-structure model called PianoTreeVAE by addressing
the hierarchical structure of music. The architecture of the
network resembles the tree structure, where each node repre-
sents the embeddings of musical elements with bidirectional
edges.

Liang et al. [58] proposedMIDI-Sandwich2, a hierarchical
VAE-based model for polyphonic music generation. In con-
trast to other hierarchical VAE-based models, they used RNN
instead of CNN models to build the generative model. Their

model utilizes Binary VAE (BVAE) method to handle various
multi-track music information. Mittal et al. [59] presented
a new approach to utilizing probabilistic diffusion models
for melody generation. Their training regime includes first
training the VAE model on input sequences and then training
the diffusion model to learn the VAE latent space. Indeed, the
diffusion model is trained to learn long-term dependencies
and expand the ability of the VAE model to generate long
sequences, in this case, 64 bars.

Chen et al. [60] introduced Music SketchNet, a novel
guided music generation framework. Their model is intended
to complete the missing parts of musical measures, given
the musical piece and related parameters as input. The
input parameters are pitch contours and rhythm patterns
defined by the user. The model’s architecture consists of
three components: SketchVAE, SketchInpainter, and Sketch-
Connector. SketchVAE is a VAE model that encodes and
decodes the training examples into high-dimensional latent
variables, while SketchInpainitng is a stacked RNN model
that handles the prediction of musical ideas by utilizing the
latent variables. SketchConnector combines the predictions
from SketchInpainitng and musical ideas given by the user
to carry out the final latent variables. The decoder of the
SketchVAE receives these latent variables to generate music
output.

Akbari and Liang [61] proposed a semi-recurrent CNN-
based VAE-GAN model for melody generation. The model
includes the encoder, generator/decoder, and discriminator.
They put the VAE decoder and the GAN generator under one
hood, where they shared the parameters and trained together.
The encoder encodes the input sequences and constructs
the latent representation. The generator/decoder utilizes the
latent variables to carry out the output. Then, the discrimi-
nator module receives the real (original training examples)
and fake (generated output) data. They trained their model
for piano music generation. Similarly, Brunner et al. [62]
proposed MIDI-VAE for polyphonic music generation and
modeling the dynamics of music. Their model includes a
VAE model paired with a style classifier which navigates the
encoder in VAE to construct the latent space based on the
style information. Their model can perform style transfer by
changing the attributes such as pitch, velocity, and instrument
of a musical piece.

Wang et al. [63] introduced hierarchical variational recur-
rent auto-encoders (VRAE) to model polyphonic music.
They used normalized note representation proposed by
BachProp BachProp [44] and multiple embedding layers
to project each melodic feature. For the encoder, they
utilized four GRU layers to construct the latent represen-
tation of the melodic features given by the embedding
layers. The decoder has a similar architecture with 7 GRU
layers for modeling attribute-specific context, combining
multiple attributes, and generating corresponding note
attributes. The architecture of their model represents the
capability to generate dynamic music with various time
signatures.
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Tan and Herremans [64] proposed Music FaderNets,
a framework that utilizes latent variable models to learn
high-level musical features through the low-level represen-
tation of music. They used Gaussian Mixture Variational
Autoencoders (GM-VAEs) as their model architecture to
capture low-level musical attributes latent space. Indeed,
by employing such hierarchical latent space architecture,
they could derive high-level musical attributes from low-level
representations. Music FaderNets provide an interactive and
controllable generation by tweaking the low-level musical
features. This possibility is appeared as sliding knobs and
is inspired by visual controllers in Fader Networks Fader
Networks [65].

Pati et al. [66] proposed music inpainting, a technique to
traverse the latent space of VAE models. Inpainting is a task
in which the purpose is to refine or complete the missing
parts of a media [67]. Their model can generate content
based on past and future musical contexts in an interactive
manner.

C. GENERATIVE ADVERSARIAL NETWORKS
Mogren [68] represented one of the earliest use of
GAN-based music generation models. Their model,
C-RNN-GAN, is an RNN model with adversarial training
using a continuous sequence of data. They used real-valued
continuous quadruplets of frequency, length, intensity, and
timing as musical features to model the musical signals.
Later, Guimaraes et al [69] proposed ORGAN, a new GAN-
based approach to compose polyphonic music. ORGAN
architecture includes an LSTM RNN for the generator and
CNN for the discriminator. It uses a reinforcement learning
(RL) based reward function representing domain-specific
metrics to train the generator model.

Multi-track polyphony music includes multiple voices
independent in terms of time. Each of these voices has its
temporal dynamics, layered on top of each other to shape
the desired sound. Dong et al. [70] proposed MuseGAN
to generate multi-track polyphonic music. MuseGAN is
the integration and extension of generative and temporal
models. The generative models are forward multi-track
music generators based on WGAN-GP [71], including
composer, jamming, and hybrid models. Each generative
model can generate multi-track music bar by bar, following
a specific scenario. Therefore, they proposed temporal
models to generate multiple bars with temporal structure and
coherency. Nevertheless, the music generated by MuseGAN
is inconsistent inmusical segments and harmony and contains
fragmented notes [16]. The instrument set in MuseGAN is
a fixed quintet composed of bass, drum, guitar, piano, and
string.

The instability of GAN-based models for music generation
is mainly due to the use of convolutional layers in their
architecture to extract features [16]. Indeed, the CNNs
are not effective in capturing the temporal dependencies.
Therefore, Guan et al. [72] proposed Dual Multi-branches
GAN (DBM-GAN) to overcome the lack of consistency.

DBM-GAN integrates the self-attention mechanism in its
architecture to learn temporal dependencies and extract
spatial features. Besides, the model’s multi-branch archi-
tecture enables the arrangement of various instruments
across time. Similarly, Valenti et al. [73] proposed the first
music adversarial autoencoder called MusAE. MusAE uses
adversarial regularization instead of the Kullback–Leibler
(KL) divergence in VAEs. It can reconstruct new phrases and
interpolate between latent representations to change specific
musical attributes.

Liu and Yang [74] defined a new music generation task
called lead sheet arrangement for multi-instrument music
generation. The proposed model takes the lead sheet as input
and generates accompaniment for the given melody with
instruments such as guitar, bass, piano, strings, and drum.
The model architecture includes a recurrent convolutional
network with adversarial training composed of three stages:
lead sheet generation to generate lead sheets of eight bars
from scratch, feature extraction to extract harmonic features,
and arrangement generation stage to generate five-track
piano-rolls of one bar, respectively.

Angioloni et al. [75] introduced CONLON to generate
polyphonic and multi-instrument music. Their work pre-
sented a Wasserstein autoencoder (WAE) model trained on
lossless input representation, including the velocity and dura-
tion information from MIDI data in two separate channels.
The proposed generative process includes exploring theWAE
model’s latent space based on interpolation to maintain
consistency between transitions and variations within the
generated musical piece.

One of the exciting tasks within the music generation
field is the ability to transfer a musical piece from one
domain to another. Notably, we like to obtain a mapping
function that learns and underlines the attributes and char-
acteristics of musical structure. Accordingly, Chen et al. [76]
proposed a GAN-based model with a dual learning method
to combine music across multiple domains. They utilized
the Wasserstein-based metric to approximate the distance
between the target and existing domains and represent the
model’s learning progress. Furthermore, Brunner et al. [77]
explored the ability of the CycleGAN-based model [78] for
music genre transfer in the symbolic domain of music. The
CycleGAN architecture includes two GANs arranged in a
cyclic manner and trained together, in which one generator
transfers data from domain A to B and the other from B to
A. One discriminator is tied to each generator’s output to
identify the fake and real outputs. Later, Brunner et al. [79]
further analyzed the influence of spectral normalization and
self-attention on GAN training using the proposed model
in [77].

Tokui [80] proposed an extended GAN model to compose
genre-conditioned music rhythm patterns. To do so, they
added a second discriminator model with genre ambiguity
loss to classify the genre of the generated musical piece.
Particularly, the genre ambiguity loss is a cross-entropy
loss [81]. In this manner, the generator is encouraged to
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generate new content in a new musical genre. Similarly,
Lattner and Grachten [82] proposed a convolutional variant
of the gated autoencoder (GAE) to generate music rhythm
patterns. Their model encodes the rhythmic interactions of
the kick drum against bass and snare patterns and captures
the local relations between them.

D. TRANSFORMERS
The attention mechanism facilitates the extraction of spa-
tial and temporal dependencies but depends on absolute
positions in its inputs. Therefore, it struggles to track the
dependencies in music, such as regularities, event orderings,
and periodicity. To alleviate this issue, Shaw et al. [83]
proposed the relative attention mechanism, which focuses
on relational features by approximating the distance between
two tokens. Huang et al. [84] proposed Music Transformer
that exhibits the relative attention mechanism to generate
polyphonicmusic. Themodel can learn the long-termmusical
structure to develop long melodies or continue a given
motif. Similarly, Payne [85] created MuseNet based on
GPT-2 that can generate a long musical piece with ten
different instruments in various styles. Nevertheless, Music
Transformer and MuseNet lean to generate random notes and
harmonies after a few bars [16].

Many attempts have been made to overcome the issue of
randomness and generate pieces with a high musical struc-
ture. Zhang [86] proposed a novel adversarial transformer,
which combines generative adversarial learning with the
attention mechanism. The adversarial objectives facilitate the
transformer to concentrate on temporal dependencies within
the musical structure. Compared to Music Transformer and
MuseNet, their model depicts advancement inmusical quality
for a monophonic and polyphonic generation. Similarly,
Jiang et al. [87] proposed TransformerVAE, a combination
of VAEs and transformers. Their approach benefits from
MusicVAE hierarchical structure and attention mechanism in
transformer models for representation learning. Huang and
Yang [88] expands the learning ability of the generative mod-
els by introducing a new approach for discrete representation
of music. They proposed revamped MIDI-derived events
(REMI), an explicit metrical grid that extracts the hierarchical
structure of music using events such as Chord, Bar, and
Position. Their study experimented with transformer-based
models, where they examined various musical features to
capture higher-level characteristics of music.

Peracha [89] concentrated on the sequential modeling of
polyphonic music instead of the network architecture. Their
study experimented with a multi-layer transformer encoder
and a GRU-based model named TonicNet using the JSB
chorales dataset.1 Their results depict improvement in both
models’ performance by introducing new salient musical
features in the form of chords and intra-voice token repetition.
Dai et al. [40] presented Music Frameworks to generate cus-
tomizable full-length melodies. Music Frameworks inherits

1http://www-ens.iro.umontreal.ca/ boulanni/icml2012

a hierarchical architecture to represent high-level musical
features such as repeated sections and phrases, and low-level
features such as rhythm structure and melodic contour.
Music Frameworks can generate long-term music structures
conditioned on the basic melody and rhythm structures.
Wu and Yang [90] proposed MuseMorphose to generate
full song and perform style transfer. Their model represents
an ability to generate long sequences with fine-grained
controllability and conditioning over musical attributes such
as rhythmic intensity and polyphony.

Zhang et al. [91] proposed a transformer-based model
that learns and captures the harmonic attributes of the
musical structure, such as form and texture. Rütte et al. [92]
proposed FIGARO, a novel self-supervised task called
description-to-sequence, that can generate music based on
the defined descriptions with global and fine-grained control.
Their model includes two distinct description functions:
learned and expertmodules. The learnedmodule extracts the
salient musical features using the constructed low-fidelity,
human-interpretable sequences by the expert module. For
music generation, they utilized a transformer-based model
that receives the extracted features by learned and expert
modules. For similar approaches to address the structure and
control in music using Transformer, we refer to [93], [94],
[95], [96], [97], [98], and [99].

Zou et al. [100] introduced MELONS, a full-song melody
generation framework using a graph representation of
music and transformers model. MELONS generation process
includes structure and conditional melody generation. Their
work concentrates on the generation of pop music by
constructing eight types of bar-level relations to represent the
musical structure. Furthermore, they used a directed graph to
describe the melody structure of a song using bar-level rela-
tions. MELONS architecture includes two transformer-based
generation models: structure and melody generation. The
structure generation models and generates the structure graph
as a sequence of relations. The melody generation uses
event-based music representation to compose conditional
or unconditional structured melodies. The unconditional
generator is trained on the original training data, while
the training data for the conditional generator is organized
according to the specified condition.

Liu et al. [101] introduced a novel approach to composing
symphony music. Their study presented Multi-track Multi-
instrument Repeatable (MMR) and Music Byte Pair Encod-
ing (BPE) methods to model and represent symphony music.
MMR models symphony music by separating and capturing
repeated instruments within a single track. On the other
hand, Music BPE is a BPE-based algorithm to tokenize and
preprocess the musical examples by considering the concur-
rence of the notes. Their model inherits transformer-based
model architecture with 3-D positional embedding that
compresses the spatial and structural details of the input
sequences. Furthermore, they gathered and processed a
large-scale corpus of symphonic music, which is made
publicly available.
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Furthermore, Shih et al. [102] introduced a theme-based
method to condition the generative model. Their model uses
contrastive learning [103] and density-based [104] methods
to cluster similar fragments of a musical piece to form a latent
space. In this manner, they formed an augmentation strategy
to generate various variations of musical examples for each
cluster to train the transformer-based model. Besides, they
utilized the same clustering approach to generate new test
examples and evaluate the model. Hawthorne et al. [105]
proposed TransformerNADE, a transformer-based model
for expressive piano performances. To generate meaningful
piano performances, they proposed a new representation
using NADE [106]. Their model architecture is inspired by
RNN-NADE [107].

Training deep learning models often requires a large
amount of data. Researchers have usedmethods such as trans-
fer learning to solve problems in case of data scarcity [108],
[109]. For music generation, Donahue et al. [110] presented
the benefit of transfer learning to improve transformer-based
model performance. They also employed data augmentation
methods in their study. Similarly, Hung et al. [111] examined
the outcome of two transfer learning methods for the Jazz
music generation. Their work studied model fine-tuning
and multitask learning methods for unconditioned melody
generation.

E. REINFORCEMENT LEARNING
Although the automatic music generation can inspire human
creation, it is limited to certain musical examples such as
Bach. Interactive music generation can help enhance the
sample generations by incorporating human objectives and
preferences in the music creation process. Jaques et al. [112]
proposed RL-Tuner, a reinforcement learning model to
generate music using user-defined constraints. The RL-Tuner
architecture includes two deep Q networks and two RNN
models. One RNN model, called NoteRNN, is trained on
the dataset of melodies. The second RNN model is a copy
of NoteRNN, called RewardRNN. The Q network goal is
to learn to select the following note (action) based on the
generated melody so far (state). The second Q network is
called the Target Q network in parallel to the Q network.
The Target Q network is trained to estimate the accumulated
rewards (gain) achieved by NoteRNN. The Q network’s
reward combines RewardRNNoutput and adherence tomusic
theory constraints. Kumar and Ravindran [113] used LSTM
RNN with RL to compose melody and basic chords. They
processed the polyphonic pieces by dividing them into a
stream of monophonic examples. They trained the LSTM
model on these examples and created an RL agent to find a
suitable combination of songs.

Later, Jiang et al. [114] proposed RL-Duet for online
accompaniment using reinforcement learning. It can generate
melodic and harmonic music responses to the human part.
RL-Duet uses actor-critic with a generalized advantage
estimator (GAE) for the reinforcement learning architec-
ture. They introduce a reward function that considers the

fittingness of the inter-part and intra-part of the generated
notes in horizontal and vertical perspectives. The reward
model is learned frommonophonic and polyphonic examples
instead of hand-crafted composition rules and criteria utilized
in RL-Tuner.

Subsequently, Liu et al. [115] proposed RE-RLTuner,
an extension to RL-Tuner that uses the Latent Dirichlet Allo-
cation (LDA) as a musical feature extractor. The LDA
extractor represents the musical structure characteristics by
clustering music at different scales (musical segments) and
extracting the musical features into three aspects called
topics. The topic models maintain different music structure
information. The architecture of the model is similar to
RL-Tuner. The network’s reward combines the reward model
(RewardRNN) and topic models extracted by the LDA
extractor.

F. OTHERS
This study mainly focuses on deep learning methods for
music generation. However, researchers investigated and
examined other approaches along the deep learning methods
to tackle music generation tasks. For instance, Moulieras and
Pachet [116] introduced a new approach for melody gen-
eration using the maximum entropy statistical model [117].
In this approach, the melodies are considered a network of
interacting notes. Themodel assigns a probability distribution
to this network and learns the statistical dependencies of the
pitch sequences. Later, Hadjeres et al. [118] and Moulieras
and Pachet [116] extended the model to handle polyphonic
music with multiple voices and generate expressive music,
respectively.

Zhao and Xia [119] proposed a hybrid model that can
generate piano accompaniment based on a lead sheet. Their
model includes phrase selection and neural transfer models to
generate content. Phrase selection is a rule-based model that
carries out the phrase montages from the database. The neural
transfer model receives the phrase montages and manipulates
them to match the corresponding style of the given lead
sheet. Furthermore, the model’s output can be conditioned on
rhythm density and voice number.

VI. EVALUATION
Researchers use diverse methods to evaluate deep learning
models for music generation. These methods mainly depend
on the model’s output, which can be subjective or objective.
Often it is viable to perform the subjective evaluation in
music generation tasks as they involve creativity. However,
a thorough subjective evaluation requires an appropriate
experimental design and resources to produce reliable, valid,
and replicable results [120]. Consequently, the objective
evaluation methods facilitate the evaluation of the generative
models by providing comparable and relevant results. Indeed,
by utilizing objective methods, it is easier to control the
variables entangled in the test and reduce bias. The final
evaluation results are obtained from both subjective and
objective approaches for a better model assessment and a
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reliable scientific benchmark. This section covers the current
evaluation methods for music generation tasks. We refer
to [16] and [121] for complete review of music evaluation
methods.

A. SUBJECTIVE EVALUATION
The subjective methods evaluate the model’s generated
content in terms of creativity and novelty. It is essential to
evaluate themusic from a subjective stance, as amusical piece
consists of perceptual qualities that numerical metrics can not
measure. Among the available listening tests [16], the Turing
test is a standard method for subjective evaluation [122].
This model was introduced by Alan Turing [123] to answer
the question: ‘‘Can a machine think?’’. In the case of music
generation tasks, the questions often include whether the
generated content is aesthetically pleasing and whether it is
composed by a human. During the Turing test, the human
listener tries to differentiate the machine-generated from the
human-created piece. Two examples of models of the Turing
test for music generation systems are themusical directive toy
test (MDtT), and the musical output toy test (MOtT) [124].
TheMDtT depends onmusical directives such as genre, style,
or melodic or rhythmic fragments, while MotT is free from
musical directives. Both of these models are only dependent
on the human listener’s judgments.

Overall, to obtain a valid listening test, [13] specifies some
requirements:

• A sufficient number of listening subjects with diverse
musical knowledge to obtain meaningful statistical
results;

• The subjects are evenly distributed based on their
musical knowledge, including the amateurs with no or
basic music knowledge and experts in the field;

• Experiments are performed in a controlled environment
under specific acoustic characteristics and equipment;

• Each subject receives the exact instructions and
stimuli.

Note that each of these requirements confines a study’s
degree of accuracy and repeatability. Furthermore, it is
possible to utilize online platforms to conduct listening tests.
For example, crowdMOS [13] is a platform for subjective
listening tests using Amazon Mechanical Turk. CrowdMOS
contains a set of freely distributable and open-source tools
that delivers quality results by detecting and discarding
inaccurate or malicious submissions. Défossez et al. [125]
used crowdMOS in their study to obtain Mean Opinion Score
for the ground truth samples.

Another method of subjective assessment of music is
the visual analysis that is conducted by a human expert.
The methods in visual analysis utilize visual representa-
tions like score, waveform, and spectrogram instead of
the auditory form of music. For instance, the authors in
MuseGAN Engel et al. [70] performed score analysis on
different aspects of generated melodies, such as stability
and smoothness analysis of the chord and rhythm patterns.

Engel et al. [126] performed spectrogram analysis by
employing the Rainbowgram to compare the reconstructed
notes of different instruments with the original audio.

B. OBJECTIVE EVALUATION
The objective evaluation methods measure the model’s
performance and generated content. We can measure the
model’s performance using numerical metrics such as loss
and accuracy. While for evaluation of the generated content,
we use statistical descriptors derived from musical concepts.
In the following, we explain each of these measurement
methods.

Numerical metrics do not contain music domain knowl-
edge and only represent the model’s ability to process
the data. It is common to use numerical metrics like loss
and perplexity during the training process. They mainly
consider the statistical distribution of the generated samples
or classification accuracy. For instance, loss indicates the
difference between inputs and outputs from a mathematical
perspective, while perplexity evaluates the model’s general-
ization capability [127]. Additionally, Jeong et al. [128] used
mean squared error (MSE) and correlation metrics to assess
the model’s performance ability using the generated per-
formance and human performance characteristics. Similarly,
Gillick et al. [129] proposed metrics such as Timing mean
absolute error (MAE), Timing MSE, Velocity and Timing
Kullback–Leibler (KL) divergence to measure the model’s
performance.

Besides the numerical metrics, we can evaluate the
generated music by utilizing methods such as log-likelihood
and density estimation [130], [70], [131], [132]. For instance,
Huang et al. [131] proposed a frame-wise evaluation of the
generated content by calculating the negative log-likelihood
between the model’s output and the ground truth. However,
based on the observations of the Theis et al. [133], the
probabilistic measure is not always consistent, as generative
models can produce irrelevant samples and represent a perfect
probabilistic measurement. Other techniques such as chord
classification [134], style classification [77], style likeli-
hood [77], and reconstruction accuracy [53] are examples of
metrics for specific tasks.

To improve the interpretability of the generative system’s
outcome, researchers proposed musical metrics by integrat-
ing the musical domain knowledge. These metrics provide a
detailed evaluation concerning specific music characteristics.
Ji et al. [16] categorizes these metrics into pitch-related,
rhythm-related, chord/harmony-related, and style transfer
and provides a comprehensive overview of these methods.
As an example, Sabathé et al. [135] proposed a novel
evaluation method using the Mahalanobis distance [136] by
using high-level symbolic music descriptors to describe the
musical samples. Yang and Lerch [121] introduced a musical
metric using absolute and relative metrics. They represent
a practical and reproducible approach to evaluating the
model’s performance and generated content. Their evaluation
framework has been used by [111], [137], [138], and [114].
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Furthermore, there are evaluation methods to assess
specific musical aspects using other theories or algorithms.
VariableMarkov Oracle (VMO) [139] is a method to evaluate
the repetitive patterns in a musical piece. [10] introduced a
technique to assess the originality and creativity of a piece and
avoid plagiarism.MinimumDistance Classifier (MDC) [140]
is a method to determine the style similarity of the generated
content with the expectation style. Lattner et al. [141]
utilized Humdrum toolkit [142] to evaluate the tonality of the
generated musical piece. Wu and Yang [93] used the Scape
plot [143] to capture, visualize, and compare the repetitive
structure of the generated piece with the original examples.

VII. CHALLENGES
Compared to traditional approaches, deep learning methods
have shown great capabilities in the music generation task.
However, there are still many difficulties and challenges
in using deep learning to generate music. Indeed, the
multi-modal nature of music makes the field of music
generation with deep learning even more challenging. On the
other hand, the black-box nature of deep learning models
makes it hard to diagnose their learning process. Here,
we address some challenges deep learning models face in
music generation tasks.

A. STRUCTURE
A musical piece evolves over time through the development
of musical ideas. The musical structure refers to the
arrangement of these musical ideas as a whole. Particularly,
the musical structure consists of local and global structures.
Global structure relates to the long patterns, extended
multiple bars like AABA. On the other hand, local structure
relates to each musical idea repeated or developed to create
themes and variations. Although much work has been done to
model and generate music, making a complete musical piece
is still challenging. In most cases, the generated content by
deep learning models gradually becomes tedious as there is
no clear sense of direction, and it may end unexpectedly.

Researchers have investigated various methods for
better structure representation. Models such as [100]
used graph representation of melody with eight types of
bar-level relations such as repetition, transposition, rhythmic
sequence, and harmonious cadence. Other models, such
as [53], [54], and [58], utilized hierarchical architectures
to address this issue. The template-based method proposed
by Zhou et al. [42] has shown the ability to generate a
specific overall structure. The harmony-Aware Hierchical
model proposed by Zhang et al. [91] improved the issue
further, possessing the ability to imitate the outline structure
of real music. Nonetheless, the generated content by these
models still lacks musical details and requires refinement to
present an actual musical piece.

B. REPRESENTATION
The representation in nearly all of the current deep learning
models involves the pitch and duration of notes, and primarily

triads for chords [16]. This simplification restricts themusical
understanding of the deep learning models to generate
quality musical content. Furthermore, the current methods
use relatively simple mechanisms to model instrument
characteristics. For instance, it is challenging to model the
piano’s sustain pedal, which influences the duration of all
notes until the pedal is released [105]. Indeed, it is necessary
to utilize a better form of representation that can convey
musical intricacies, such as the performance of instruments,
harmonic content, and ornaments.

Some efforts have been made to ameliorate this issue.
Revamped MIDI-derived events (REMI) [88] is an enhanced
representation of music that denotes an explicit metrical grid
to model music. Specifically, REMI has been shown effective
for pop piano music. Wu and Yang [93] and Chen et al. [94]
expand REMI further for other scenarios such as guitar
tabulator and Jazz music. Compound Words [98] is another
technique that utilizes REMI to generate musical tokens and
group them into super tokens. Nevertheless, these methods
are primarily tailored and applied to a specific genre like
pop music. Therefore, further investigation is required to
determine their effectiveness for other scenarios.

C. CREATIVITY
Another issue that comes to the scene with the deep learning
music generation is the shortcoming of creative musical
ideas. The deep learning models are data-driven, and the
learning outcome of the models relies heavily on the given
training examples. Even with a good learning outcome,
the generations can be marked as inaccurate, inconsistent,
or monotonous when studied by human listeners.

We can define creativity as an innovative combination
of two or more variations in a meaningful manner. There-
fore, a generative model requires first understanding the
underlying dynamics of musical compositions and second
learning how to compile that knowledge into a new
meaningful composition. Models like MusicVAE [53] can
generate variations by interpolating motifs and sampling
from latent space. However, we can encounter a lack of
quality in harmonic content and understanding of rhythmic
patterns by analyzing the generated content. In other
words, the current models can mainly exploit the learning
outcome rather than explore and extrapolate to create new
variations.

Models such as [77] and [79] attempted to create new
musical styles by compelling the model to diverge from the
existing styles. Other models, such as [90] and [40], utilized
conditioning techniques as a strategy to address creativity.
However, the lack of evaluation methods to measure the
creativity aspect of a musical piece makes creativity an
arduous and open challenge.

D. STYLE
Currently, there are some deep learning models which can
generate music with specific styles, like DeepJ [9] and
DeepBach [10]. However, these models are limited to the
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style of classical music extracted from the training examples.
Indeed, the main challenge lies in the ability of the model
to extract the musical features according to the musical style.
Other models such as [77] and [79] can perform style transfer
from Jazz to classic music genres. However, the generated
content lacks musical details, although it sounds plausible.
In fact, different musical styles require distinct definitions,
making it challenging to obtain an adaptable framework for
diverse musical styles. To achieve this, we need a better
representation of music. As we have discussed previously,
there are challenges tied to music representation, limiting the
generative models’ ability.

E. INTERACTIVITY
The algorithmic composition systems are desired to achieve
the ability to create musical pieces inspired by human
compositions rather than pure imitation. However, the
black-box nature of neural networks makes it demanding
to interact with and control the output of the deep learning
models for human users.

It is necessary to differentiate control from interactivity
in generative models. To elaborate, control refers to the
possibility of defining a set of parameters to achieve an
objective and generate a specific context. While models such
as Markov Chains allow the definition of constraints during
the generation process [6], [7], deep learning models do
not possess such possibilities. Therefore, some techniques
are introduced to alleviate this issue, such as the unary
constraints [146], positional constraints [46], and condi-
tioning [54]. Although these methods provide some degree
of control, they are still insufficient to control the model
generation in an arbitrary direction.

On the other hand, interactivity refers to the model’s
ability to be utilized in a fine-grained manner. Music
creation is a concurrent iterative process. Artists adapt
various strategies to develop a musical idea and create a
musical piece. An example of musical strategies in music
generation is incremental variable instantiation that has been
used by [11] and [10]. Comparably, models such as [64]
provide interactive and controllable generation through the
captured latent space. Indeed, interactivity allows artists to
perform local modifications and regenerate specific musical
parts incrementally. This functionality is essential for the
music generation systems to be practical and assist artists in
composing music.

F. EVALUATION
Often, it is the case that a musical piece performs well
in the objective evaluation and poorly in the subjective
evaluation. On the other hand, the subjective assessment is
only conducted on the generated content, not during the
training process. Moreover, the current deep learning models
lack automatic content evaluation, and there is no direct
objective method to evaluate attributes such as creativity.
Furthermore, a good subjective evaluation lacks a clear
explanation of quantitative metrics. Auditory fatigue must

also be considered in the case of subjective evaluation, which
can cause bias in the listeners if they listen to similar samples
for an extended period. Consequently, it is demanding to
define an evaluation metric for performance generations
similar to human experts to obtain a meaningful assessment
based on musical attributes. Indeed, the challenge of music
evaluation portrays a complex task that is hard to automate
using computational models. Therefore, the development
of a universal evaluation system facilitates maintaining an
accurate benchmark of the model’s performance subjectively
and objectively.

VIII. FUTURE DIRECTION
Table 1 summarises the characteristics of the models
overviewed in this work. Music production is an iterative
process where a musician or composer as an artist creates
and develops musical ideas. Indeed, it is a complex task
that involves multiple levels of processing. Although these
models can generate novel, innovative and pleasant music,
they cannot handle various musical objectives. Therefore,
they fail to model the process of music composition.

Mainly, music production is a complex and hierarchi-
cal process divided into five main stages: composition,
arrangement, sound design, mixing, and mastering. The
composition stage includes creating and developing new
melodic, harmonic, and rhythmic ideas. The arrangement is
a stage of organizing the created musical ideas in the form
of a timeline to make a complete piece. The sound design
stage consists of sampling, synthesizing, and manipulating
sounds. The mixing stage involves instrument arrangement,
combining, and balancing the audio layers. Finally, the
mastering stage includes the post-production process to
balance all the audio elements and ensure the final mix
is ready. Note that a musician may step into these stages
concurrently by following a particular strategy or approach to
create a complete song. Indeed, the creative process in music
production involves a complex relationship between each of
the music production stages [147].

A cooperative system like Multi-agent systems (MAS)
[148] can be a suitable approach for music generation. MAS
are distributed artificial intelligence systems consisting of
multiple autonomous agents that work together and make
independent decisions. The MAS architecture allows the
utilization of various computational intelligence methods like
deep learning, which is advantageous for modeling music
production and musical creativity. The action abilities and
perception of MAS agents enable them to cooperate and
coordinate with each other to satisfy the objectives of the
task [148].

The main challenge of using deep generative models
is performing the creative and technological processes
while conserving the balance between these two processes.
These models involve a series of processing decisions
that can significantly influence how artists think about
music when they collaborate with these models. Indeed,
the shortage of interpretability makes it hard to understand
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TABLE 1. Summary of deep learning models for music generation tasks.

the decision-making process behind the generated content.
The interpretability of the system allows us to locate and
correct causes of undesired results. However, the lack of
interpretability influences the extensibility of AI systems.
Extensibility is important to interact and extend the behaviors
and features of a system. Notably, for the algorithmic
composition of music, artists often like to create music in
a specific style to comply with their desires and musical

ideas. Indeed, the extensibility allows human users to be
creative and experiment with the system differently. Models
such as PianoTreeVAE [57], and MeloForm [51] alleviate
the interpretability issue and can provide a better framework.
Nevertheless, this is still an open issue for deep learning
models.

We can formulate the strategic part of the model explo-
ration, exploitation, and selection processes by emerging
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effective model combinations. Through MAS, we can
combine the flexibility of smaller models with the benefit of
global structure awareness of end-to-endmodels in a modular
manner. Indeed, this approach represents a more dynamic
behavior as it divides the main task into sub-tasks and
distributes them among the multiple agents. Consequently,
MAS can further improve the extensibility and interpretabil-
ity of the system. Hutchings and McCormack [149] is an
example of MAS using deep learning models. It consists
of harmonic and melodic agents working cooperatively.
The harmonic agent is an RNN-based model, while the
melodic agent is a rule-based system. Additionally, Tatar
and Pasquier [150] surveys the typology and state-of-the-art
agent-based learning in music generation tasks.

Moreover, some of the deep learning models provide some
degree of control and interactivity. However, they still lack
human participation during content generation. As presented
in Table 1, these models are primarily standalone systems.
Based on a study conducted by Huang et al. [14], artists
mainly achieve their musical goals by leveraging and
incorporating a wide range of generative models in a modular
way. Indeed, it is challenging to control end-to-end deep
learning models to produce high-quality songs in one shot.
Artists would like to retain a certain amount of control
and freedom to navigate deep learning models to generate
samples creatively.

Furthermore, artists may desire to generate musical content
strictly coherent with their style. Herein, the system requires
to be adaptable and flexible. In Section V we studied the
reinforcement learning models for music generation. These
models show the ability to learn and adapt to changes by
observing the modifications in the environment. Based on
the observations, the agent takes action and receives a reward
for the action’s suitability. The reward function can combine
objective and subjective evaluation methods to preserve a
balance in performance and creativeness. Therefore, the
combination of RL and MAS could provide a more flexible
workflow and building blocks through a dynamic learning
process. For instance, the agents can cooperate and share
their progress using the Blackboard [151] communication
approach to fulfill the task (music generation).

Besides, users can work on new ideas efficiently by
benefiting from past experiences, utilizing the system to
get inspired, and broadening the creative process to various
extents. Additionally, the flexibility of the RL framework
regarding the models’ learnability lets the artists adapt the
system to their needs. Therefore, we can enhance the human
and AI interaction in the context of music generation.

IX. CONCLUSION
In this paper, we have investigated and studied the generative
models in symbolic music generation using deep learning
techniques. We have underlined the current state-of-the-art
methods and provided an overview of their architectures and
strategies to generate musical content. We have outlined the
main criteria to model, generate and evaluate musical content.

We have discussed the current challenges in music generation
and emphasized the essential aspects of these challenges
in deep generative models. Notably, we have concentrated
on the interactivity and adaptability of these models and
proposed a potential research direction to alleviate these
challenges and strengthen AI and human interaction.

Almost all of the studies of deep learning models are
concentrated on developing the algorithms and specific
methods in an end-to-end manner. Indeed, these models are
mainly autonomous music-making systems. This type of
system is more intended for purposes such as commercial
use or entertainment. Notably, artists are more interested
in assisted composition systems, where the system is
intended, for instance, to provide a glimpse into possible
musical variations and inspire the artists to develop new
musical ideas. Besides, it is essential to note that music
creation is a concurrent process involving many stages of
pre-processing and post-processing of musical ideas and
materials.

Multi-agent systems have shown great potential in music
generation tasks, particularly modeling the music creation
process. They can provide a framework in which a com-
bination of multiple approaches can be used to fulfill the
desired goal and present a system capable of processing
various tasks and inputs. Indeed, its modular and hybrid
characteristics can help to alleviate the shortcomings and
challenges of the music generation tasks. For example, each
instrument consists of specific nuances and characteristics
that distinguish their representation of music and musical
style. By utilizing MAS architecture, we can simplify the
representation of music by concentrating on one instrument
at a time, where different agents can be assigned to a specific
instrument. This is analogous to how musicians work in a
band.

In RL algorithms, the reward function plays an important
role, where it assesses the agent’s action suitability to the
current state of the environment. Therefore, we can formulate
the model’s evaluation using the RL reward function by
combining objective and subjective techniques. The objective
evaluation can involve one or multiple agents assessing the
sample consistency according to the musical goal using the
combination of methods provided in Section VI. On the other
hand, the subjective evaluation can be performed by the
human listener (agent) who interacts with the musical system.
For instance, we can formulate this with a thumbs-up or
thumbs-down approach, where the agent receives a reward
accordingly. Consequently, the agents within the system
incorporate the provided feedback to adapt and adjust their
behavior, strategy, or musical goals.
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