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A B S T R A C T

We suggest a new methodology for designing robust energy systems. For this, we investigate so-called
near-optimal solutions to energy system optimisation models; solutions whose objective values deviate only
marginally from the optimum. Using a refined method for obtaining explicit geometric descriptions of these
near-optimal feasible spaces, we find designs that are as robust as possible to perturbations. This contributes
to the ongoing debate on how to define and work with robustness in energy systems modelling.

We apply our methods in an investigation using multiple decades of weather data. For the first time, we
run a capacity expansion model of the European power system (one node per country) with a three-hourly
temporal resolution and 41 years of weather data. While an optimisation with 41 weather years is at the limits
of computational feasibility, we use the near-optimal feasible spaces of single years to gain an understanding
of the design space over the full time period. Specifically, we intersect all near-optimal feasible spaces for
the individual years in order to get designs that are likely to be feasible over the entire time period. We find
significant potential for investment flexibility, and verify the feasibility of these designs by simulating the
resulting dispatch problem with four decades of weather data. They are characterised by a shift towards more
onshore wind and solar power, while emitting more than 50% less CO2 than a cost-optimal solution over that
period.

Our work builds on recent developments in the field, including techniques such as Modelling to Generate
Alternatives (MGA) and Modelling All Alternatives (MAA), and provides new insights into the geometry of
near-optimal feasible spaces and the importance of multi-decade weather variability for energy systems design.
We also provide an effective way of working with a multi-decade time frame in a highly parallelised manner.
Our implementation is open-sourced, adaptable and is based on PyPSA-Eur.
1. Introduction

The climate crisis and tumbling prices for renewable technologies
in the last decade are leading to an unprecedented shift to variable
renewable and other low-carbon energy sources. The pace and extent at
which this transition is projected to take place often corresponds to a
complete overhaul of currently existing energy systems within a few
decades. This necessitates a renewed understanding of the workings
and planning of energy systems, taking into account future unknowns
including weather, climate, costs, and politics.

In the domain of energy system modelling, grappling with these
unknowns is an open research problem which has prompted many dif-
ferent approaches. In particular, weather variability has been identified
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to have a large impact on model solutions: cost-optimal solutions are
often fragile in the sense that modelling with one weather year can
produce solutions that are infeasible for other weather years. At the
same time, recent work involving the relaxation of cost-optimality has
revealed the opportunities and insights provided by the near-optimal
feasible space of energy system optimisation models. Still, existing
methods only map out near-optimal solutions partially or heuristically,
and a complete understanding of the theoretical and computational
trade-offs has not yet been developed.

In this paper, we introduce a methodology to study robustness of
energy systems against uncertainties in inputs and apply it to inter-
annual weather variability. To start with, we investigate methods for
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approximating projections of near-optimal feasible spaces of energy
system models. We then intersect these spaces for varying input data
to produce solutions which are feasible in all scenarios. Finally, we
propose to consider points well in the interior of this intersection as
candidate robust solutions. This geometric approach lends itself to
building increased resilience against uncertainties and perturbation in
a systematic way and generating greater flexibility for policymakers.

We are interested in the problem of long-term planning of the
European power system with a large share of renewable production
capacity in order to meet emission targets. Capacity expansion models
are often used for this purpose, in which capacities of generation
technologies, storage, and transmission are optimised. The model at the
same time ensures feasibility by simultaneously solving the correspond-
ing optimal dispatch problem over a certain time period, ‘‘simulating’’
the operations of the network. Such models are vital exploratory tools
used to shape high-level European energy policy.

In this study, we use the open-source, bottom-up energy system op-
timisation model (ESOM) called PyPSA-Eur (Hörsch et al., 2018) for our
implementation. PyPSA-Eur consists of a model-building routine based
on the PyPSA (Python for Power System Analysis) framework (Brown
et al., 2018), collecting and processing the required input data from
various sources. It assembles a faithful representation of the Euro-
pean high-voltage transmission grid and existing generation capacities,
and uses Atlite (Hofmann et al., 2021) to compute capacity factor
time series for renewable energy sources (PV, wind, hydro), based on
historical ERA5 reanalysis weather data. We use PyPSA-Eur with a
partial greenfield approach under perfect foresight, including existing
transmission (expandable), hydropower and nuclear capacities (both
non-extendable), but optimising renewables (onshore & offshore wind
power, solar power), gas turbines and storage from zero. For the
purpose of demonstrating and validating our methodology, we use a
spatial resolution of one node per country, and a 3-hourly temporal
resolution (without time aggregation). However, our techniques can be
applied also when using a significantly higher resolution and including
more technologies and energy sectors.

Usually, these types of energy system models are optimised using
one or a few historical weather years (Ringkjøb et al., 2018), or
different weather years are used for sensitivity analyses (Lombardi
et al., 2020). The issue of weather year variability has been addressed in
the literature (Pfenninger and Staffell, 2016; Pfenninger, 2017; Collins
et al., 2018; Staffell and Pfenninger, 2018; Hilbers et al., 2020; Craig
et al., 2022; Ruhnau and Qvist, 2022) and has been identified as
an important factor for ESOM outcomes (Zeyringer et al., 2018). In
particular, using only a single weather year as input data for ESOMs
can produce design solutions which are over-fitted to that year, and
are not feasible in general (Bloomfield et al., 2016; Zeyringer et al.,
2018). However, most previous studies running ESOMs with decades
of weather data have either focused on a single country such as Ger-
many (Ruhnau and Qvist, 2022), the UK (Pfenninger, 2017; Zeyringer
et al., 2018), and the US (Dowling et al., 2020) (a single-node model),
or used only a European dispatch model to solve for operations, not
capacity expansion (Collins et al., 2018). One study on the impact of
different climate scenarios applied a TIMES model for the European
power system with a decades-long modelling horizon (Simoes et al.,
2021) in which the usage of representative time slices limited the
ability to model storage and capture medium- and long-term effects.
Pickering, Lombardi and Pfenninger have recently used the sector-
coupled Euro-Calliope model in a study of the European energy system
at a 96-node two-hourly resolution (Pickering et al., 2022); the main
results were generated over a single weather year but validated using
8 additional weather years.

To the authors’ knowledge, this is the first paper to run a spatially
resolved ESOM for the European power sector with multiple decades
of weather data, without aggregating to time slices. For this analysis,
we use 41 years of ERA5 reanalysis data (Hersbach et al., 2018) for
2

the European continent (from 1980 until 2020 inclusive). While we
aim to find system designs which are feasible for all weather years
under consideration, we base our methods on optimisations with single
weather years in order to reduce the computational burden. However,
we are still able to optimise our model with all 41 weather years in
order to validate our approach.

The robust solutions that we are interested in are near-optimal
feasible solutions, meaning that their costs do not go beyond a pre-
viously defined threshold. These solutions are ‘‘close to cost-optimal’’
and leave room for alternative objectives and desirable qualities; the
additional costs we accept lie below the 9%–23% deviation from cost
optimality (due to political, social, or technical reasons) that have been
observed in recent years in the UK (Trutnevyte, 2016). Following the
works by Neumann and Brown (2021) and Pedersen et al. (2021)
we exploit the geometric shape and properties of the near-optimal
space defined by the ESOM. Instead of studying the full-dimensional
near-optimal feasible space, we study a projection onto 5 relevant
dimensions representing total investments in certain technologies.

By varying the weather years as inputs, we then construct one
(reduced) near-optimal feasible space for each year. When we intersect
these near-optimal feasible spaces, we obtain a space of solutions in
which each point represents a set of total investment decisions which
are feasible for every year under consideration.

As the most robust candidate in the intersection, we choose the
point which lays in the middle, being as far away from being infeasible
as possible. This means that changes in total investment decisions (up to
a certain point) still leave us in the near-optimal feasible space for every
weather year. We then map the total investments back to a full system
design, and verify its feasibility by simulating its operations over the
entire time period. Note that our form of ‘‘robustness’’ is a geometric
concept (laying in the middle of a near-optimal feasible space) and is
only loosely connected to robust optimisation.

Apart from contributing to the discussion on energy system robust-
ness, our methods also have implications for ESOM parallelisation.
The difficulty in parallelising linear program (LP) solvers has been
highlighted as the main barrier preventing ESOMs in taking advantage
of increasing computational power (Kotzur et al., 2021). While there
are efforts to address this problem at the level of LP solvers (Rehfeldt
et al., 2022), we work at the level of model formulation. Finding
solutions which are feasible for many weather years by studying the
intersection of their respective near-optimal spaces can be an alter-
native to solving ESOMs with many weather years outright, which is
computationally prohibitive. Thus, our methods constitute a way of
heuristically replacing one large (difficult to parallelise) optimisation
by many optimisations with single weather years.

Finally, we formalise and significantly deepen the understanding
of the geometry and approximation of near-optimal feasible spaces
of ESOMs. Previously, Pedersen et al. proposed a methodology for
approximating near-optimal feasible spaces of ESOMs (Pedersen et al.,
2021), and used the results to study the density of certain system
design properties under projections of the near-optimal feasible space.
Furthermore, Lombardi et al. mapped out the utilisation of renew-
able capacity, transmission capacity, and storage capacity of chosen
near-optimal solutions, depending on different uncertainties, indicat-
ing overlaps between these (Lombardi et al., 2020). We detail the
dimension reductions involved in working with near-optimal feasible
spaces, and how to map back and forth between the different stages.
We then propose several variations on a general algorithm for ap-
proximating reduced near-optimal feasible spaces, and analyse their
convergence characteristics. The application of geometric descriptions
of near-optimal spaces to studying different weather years is also novel.

In summary, our paper contributes to the literature on ESOMs in
several ways. We formalise a general framework for working with
and intersecting near-optimal feasible spaces, which allows us to study
uncertainties of different kinds. We apply this framework to a first-

of-its-kind study of robustness of highly renewable scenarios for the
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European power system to decades of weather data. Beyond robust-
ness, the methods also contribute to parallelisation of energy system
optimisation models.

In Section 2 we formalise the methodology and introduce the nec-
essary steps to define ‘‘robust’’ energy system designs. Afterwards,
in Section 3, we describe the adapted PyPSA-Eur model we use and
our modelling set-up to obtain power systems resilient to 41 years
of weather data. In Section 4 we present our main findings on using
intersections of near-optimal feasible spaces, features of robust solu-
tions, and performance. We discuss ramifications of our approach in
Section 5, before we conclude with Section 6.

2. Methodology and formal definitions

We introduce the methodology used in this paper and describe
how we apply this to obtain energy system designs robust to weather
variability: in Section 2.1 we revisit the concept of near-optimality.
In Section 2.2 we discuss how dimension reduction is necessary to
describe the near-optimal feasible space in a computationally tractable
manner, and we elaborate on how we approximate near-optimal feasi-
ble spaces. Afterwards we introduce robustness as the geometric prop-
erty of lying in the intersection of different near-optimal feasible spaces
(Section 2.3). In Section 2.4 we then justify our choice of the Cheby-
shev centre as our robust solution of choice, as its location implies
maximal stability to perturbations. Finally, in Section 2.5 we suggest
different allocations that can translate a point in the low-dimensional
intersection of the near-optimal feasible spaces to a spatially resolved
(full-dimensional) energy system design.

2.1. Near-optimality

Let a capacity expansion problem be given as the linear program

min 𝑐 ⋅ 𝑥 such that 𝐴𝑥 ≤ 𝑏. (1)

ere, 𝑥 ∈ R𝑁 is a vector of decision variables, 𝑐 ∈ R𝑁 the coefficients
f the objective function, and 𝐴 ∈ R𝑀 ×R𝑁 and 𝑏 ∈ R𝑀 give the set of

linear constraints. Let  be the feasible space of the linear program
q. (1), defined as

∶= {𝑥 ∣ 𝐴𝑥 ≤ 𝑏}. (2)

etting 𝑥∗ ∈  be an optimal solution with objective value 𝑐 ⋅𝑥∗ = 𝑐opt ∈
, and 𝜀 > 0 a chosen slack level, we define the 𝜀-near-optimal feasible
pace as

𝜀 ∶= {𝑥 ∈  ∣ 𝑐 ⋅ 𝑥 ≤ (1 + 𝜀) ⋅ 𝑐opt}. (3)

hen 𝜀 is clear from the context, we simply refer to 𝜀 as the near-
ptimal space. For general linear programs, 𝜀 is a convex polyhedron,
nd when 𝑥 is bounded (as is the case for energy system models), 𝜀
s a convex polytope. To work with 𝜀 geometrically, we can solve the
ptimisation problem min 𝑑 ⋅ 𝑥 s.t. 𝐴𝑥 ≤ 𝑏 and 𝑐 ⋅ 𝑥 ≤ (1 + 𝜀) ⋅ 𝑐opt for
ome objective 𝑑 in order to find a vertex or boundary point of 𝜀. In
he context of ESOMs, this amounts to solving the energy system model
nce with an alternative objective function.

The definition of a near-optimal space is not new in the context
f ESOMs, and previous work has explored the near-optimal space
ither through uniform sampling as Pedersen et al. (2021), maximally
ifferent solutions as DeCarolis (2011) and Price and Keppo (2017), or
xtreme points of the space (Neumann and Brown, 2021).

.2. Dimension reduction

The near-optimal space 𝜀 is high-dimensional and complex; large-
cale ESOMs typically involve millions of variables (dimensions) and
onstraints (hyperplanes defining the polytope). In this section we
educe to a much lower-dimensional space in two steps; see Fig. 1 for
3

n overview of the maps and spaces involved. p
In the case of capacity expansion models, we are most interested
n investment decision variables of the linear program, as opposed to all
ther (operational) decision variables. Specifically, let 𝑥 = (𝑥𝐼 , 𝑥𝑂)𝑇 ∈
𝑁 be split into investment decision variables 𝑥𝐼 ∈ R𝑁inv and opera-

ional decision variables 𝑥𝑂 ∈ R𝑁op , where 𝑁 = 𝑁inv + 𝑁op. Then we
efine the projection map 𝜋 ∶R𝑁 → R𝑁inv by simply forgetting about
he operational decision variables. The image
′
𝜀 = 𝜋(𝜀) = {𝑥𝐼 ∈ R𝑁inv ∣ 𝑥 = (𝑥𝐼 , 𝑥𝑂)𝑇 ∈ 𝜀} (4)

f 𝜀 under 𝜋 is the 𝑁inv-dimensional 𝜀-near-optimal feasible space of
nvestment variables.

The convex polytope  ′
𝜀 consists of all points 𝑥𝐼 such that an energy

ystem with capacity investments given by 𝑥𝐼 is feasible and whose
otal system cost (including operations) is at most (1+ 𝜀) ⋅ 𝑐opt. In short,
t is the space of all near-optimal feasible investment decisions. This
akes an explicit description of  ′

𝜀 interesting for decision-makers in
rder to explore different kinds of near-optimal investments.

However, in a model with a high spatial resolution, the number of
nvestment decision variables 𝑁inv is typically still in the hundreds or
ore (with multiple investment decisions at each node, and transmis-

ion expansion). This makes the polytope  ′
𝜀 ⊆ R𝑁inv difficult to work

ith, visually and mathematically. Specifically, in order to work with
′
𝜀 we would want to find a set of points 𝑃 such that  ′

𝜀 is the convex
ull of 𝑃 . However, the number of vertices of an 𝑁inv-dimensional
olytope defined by 𝑀 hyperplanes is in 𝑂(𝑀⌊𝑁inv∕2⌋) — see Tóth et al.
2017), Chapter 26. This puts a precise description of  ′

𝜀 in terms of
ertices out of reach.

One solution is to map down to a much lower-dimensional space
here we group and aggregate investment decision variables. Let
𝐼 = (𝑥1,… , 𝑥𝑁inv ) be the individual investment decision variables. Let
1,… , 𝑇𝑘 be a collection of sets of indices with 𝑇𝑖 ⊆ {1,… , 𝑁inv} and
𝑖 ∩ 𝑇𝑗 = ∅. For each index 𝑗 in one of these sets, we also choose a
oefficient/weight 𝑐𝑗 . Then we define a linear map 𝜎 ∶ ′

𝜀 → R𝑘 as:

(𝑥) =
(

∑

𝑗∈𝑇𝑖 𝑐𝑗𝑥𝑗
)𝑘

𝑖=1
. (5)

In our case, we take each 𝑇𝑖 to be the set of indices identifying
ecision variables that belong to a specific technology. We weight these
ecision variables 𝑥𝑗 (for 𝑗 ∈ 𝑇𝑖) by their respective capital costs 𝑐𝑗 .
pecifically, throughout this paper we consider 𝑘 = 5, with 𝑇1,… , 𝑇5
orresponding to transmission expansion, PV expansion, onshore wind
xpansion, offshore wind expansion and gas turbine expansion respec-
ively. In effect, 𝜎 maps a vector 𝑥𝐼 of investment decisions to a
ummary of selected total investment costs.

Let

𝜀 = 𝜎( ′
𝜀) = {𝜎(𝑥𝐼 ) ∣ 𝑥𝐼 ∈  ′

𝜀} ⊆ R𝑘 (6)

e the image of  ′
𝜀 under 𝜎. Then 𝜀 is a 𝑘-dimensional convex polytope

since convex polytopes are preserved by linear maps). Note that in
ur specific choice of 𝑇1,… , 𝑇5 we have not included all investment
ecision variables in 𝜎, only those we deemed most important for the
articular model instances we work with. Of course, different dimen-
ion reductions can be achieved by other choices of aggregation (groups
f indices 𝑇𝑖 and coefficients 𝑐𝑗). While we have taken the coefficients 𝑐𝑗
o be capital costs (making investment in different technologies easier
o compare), the coefficients could, for example, also be set to 1 in order
o consider only capacities.

The utility of the reduced near-optimal space 𝜀 is as a proxy for
ystem feasibility. If we can describe 𝜀 well, we can quickly assess
hether any given set of total investments 𝑦 ∈ 𝜀 can result in a

easible system design. However, by aggregating investment decision
ariables, we lose information on the specific feasible system designs
−1(𝑦) ⊆  ′

𝜀 realising the total investments 𝑦. The trade-off is that the
ewer dimensions 𝑘 we aggregate to, the easier 𝜀 is to work with, but
he less information it gives us. Each point 𝑦 ∈ 𝜀 can have a large

reimage under 𝜎 and 𝜋, meaning there may be many near-optimal
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Fig. 1. Illustration of how the spaces 𝜀,  ′
𝜀 and 𝜀 are connected. The map 𝜙 can be seen as a composition of a model optimisation ‘‘min 𝑐 ⋅ 𝑥 s.t. 𝐴𝑥 ≤ 𝑏 and 𝜎◦𝜋(𝑥) = 𝑦’’

composed with the projection 𝜋. It gives an explicit model design based on chosen coordinates 𝑦 in the reduced near-optimal feasible space 𝜀.
feasible solutions 𝑥 ∈ 𝜀 with the given total investments 𝑦 (see Fig. 1).
As we discuss in more detail in Section 2.5, to find a specific solution
𝑥 ∈ (𝜎◦𝜋)−1(𝑦) ⊆ 𝜀, we must solve a version of the original model
Eq. (1) in R𝑁 .

Similarly to Pedersen et al. (2021), we attempt to describe the low-
dimensional space 𝜀 explicitly. Again, in order to find an explicit
description of the polytope 𝜀, we would like to find (a large subset
of) its vertices. We can do this by optimising over 𝜀 with different
objective functions or directions in R𝑘. For each direction 𝑑 ∈ R𝑘, the
solution to the linear program

max 𝑑 ⋅ 𝑦 such that 𝑦 = 𝜎(𝜋(𝑥)) and 𝐴𝑥 ≤ 𝑏 and 𝑥 ∈ 𝜀 (7)

is an extreme point of 𝜀 in the direction 𝑑. The above linear program
can be solved by solving the original problem in Eq. (1) with the
new objective function −𝑑 ⋅ 𝜎(𝜋(𝑥)) (which is linear), and mapping the
solution to 𝜀 by 𝜎◦𝜋. In effect, for each extreme point of 𝜀 that we
want to find, we need to solve the original capacity expansion problem
once with an adapted objective function.

While we cannot expect to find all vertices of 𝜀 (quadratic in
the number of model constraints when 𝑘 = 4, 5 Tóth et al., 2017),
we want to find a set of extreme points 𝑃 such that their convex
hull approximates 𝜀 well. Given a ‘‘budget’’ of 𝑛 optimisations (and
hence 𝑛 extreme points), the natural question is: how do we choose
the directions 𝑑1,… , 𝑑𝑛 to optimise in, in order to get a set of points 𝑃
whose convex hull approximates 𝜀 the best possible?

We use an iterative approach to approximate 𝜀 while filtering
on already used (or similar) directions. At each step we optimise in
a different direction: depending on which property of the near-optimal
feasible space is of interest, there can be many different ways to choose
these directions. In our case we are interested in the largest ball within
the near-optimal feasible space, the Chebyshev ball (see Section 2.4).
Thus, we optimise at each iteration in the normal direction to a facet
tangential to the Chebyshev ball of the current approximated polytope.
If these have been exhausted, we choose the normal direction to the
largest facet by volume. For other approaches to choosing directions,
caveats and performance comparisons, see Appendix A. An illustration
of one step in this process is shown in Fig. 2. A simplified version
of the algorithm (based only on normals to large facets) is given in
pseudo-code in Algorithm 1.

Once in the low-dimensional space R𝑘 (with 𝑘 = 5 in our case), the
complexity of the geometric objects of interest is low enough that we
can do efficient exact computations on them. In particular, recall that
a polytope with 𝑛 vertices can only have 𝑂(𝑛2) facets for 𝑘 = 4, 5, so
computing the convex hull of the vertices, its volume, etc. has a time
complexity of 𝑂(𝑛2). We use the qhull software (Barber et al., 1996)
for computational geometry related to polytopes. Since the number of
vertices 𝑛 which we can compute (by solving Eq. (7) for each vertex)
4

is limited, the complexity of 𝑂(𝑛2) is acceptable for our purposes. In
particular, note that for our application, the complexity of Algorithm
1 is dominated by the model optimisations, not the computational
geometry.

Algorithm 1: Outline of algorithm for approximating 𝜀

𝑃 ∶= ∅;
for 𝑑 ∈ {𝑒1,−𝑒1, 𝑒2,−𝑒2,… , 𝑒𝑘,−𝑒𝑘} do

Let 𝑦 be extreme point on 𝜀 in direction 𝑑 (optimisation);
Add 𝑦 to 𝑃 ;

end
for 𝑖 ∈ {1,… , 𝑛} do

Let 𝐻 be the convex hull of 𝑃 ;
Let 𝐹1, 𝐹2,… be the facets of 𝐻 , sorted by decreasing
volume;

Let 𝑑𝑖 be the normal of facet 𝐹𝑖;
Let 𝑑 be the first of 𝑑1, 𝑑2,… which is not within a small
angle 𝜃 of any previously used direction;

Let 𝑦 be extreme point on 𝜀 in direction 𝑑 (optimisation);
Add 𝑦 to 𝑃 ;

end
Return convex hull of 𝑃 ;

2.3. Intersections and robust solutions

One of the new ideas we propose is to investigate the intersections
of the near-optimal spaces of related capacity expansion problems, or
different instances of the same abstract model. Of course, if  (𝑎), (𝑏) ⊆
R𝑁 are the feasible spaces of two linear programs 𝐴 and 𝐵, then
 (𝑎) ∩  (𝑏) is simply the space of all solutions 𝑥 which are feasible
for both problems. More interestingly for capacity expansion problems,
consider  ′

𝜀
(𝑎) ∩  ′

𝜀
(𝑏): the space of all investment allocations which are

both feasible and near-optimal for both 𝐴 and 𝐵.
In our case, we consider the near-optimal spaces for optimisation

problems defined with different weather years. Specifically, we use
41 years of reanalysis weather data (1980–2020) in order to compute
capacity factors and load time series as input for our model (Section 3.2
and Appendix B). This gives 41 model instances, each defined with
the input data from a different weather year. For brevity, let  ∶=
{1980,… , 2020} denote the set of weather years. Then for 𝑖 ∈  write

min 𝑐(𝑖) ⋅ 𝑥(𝑖) such that 𝐴(𝑖)𝑥(𝑖) ≤ 𝑏(𝑖) (8)

for the LP in Eq. (1) defined with weather year 𝑖. Let  (𝑖) be the feasible
space of the above LP. From these feasible spaces, we want to recover
investment allocations which are feasible for each of the weather years.
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Fig. 2. Illustration of a single step of Algorithm 1. Additionally, the Chebyshev ball (see Section 2.4) is shown at each stage.
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Since total system costs vary considerably between cost optimisa-
ions with different weather years, we define a uniform system cost
ound across all weather years. Specifically, letting 𝑐(𝑖)opt be the optimal
bjective value (total system cost) for weather year 𝑖, we take
∗ = max

𝑖∈
𝑐(𝑖)opt (9)

o be the highest optimal system cost across all weather years under in-
estigation. In defining near-optimal spaces with the different weather
ears, we then set the slack relative to 𝑐∗ instead of relative to each 𝑐(𝑖)opt
or each weather year individually:

𝜀
(𝑖) = {𝑥 ∈  (𝑖) ∣ 𝑐 ⋅ 𝑥 ≤ (1 + 𝜀) ⋅ 𝑐∗}. (10)

e define  ′
𝜀
(𝑖) and (𝑖)

𝜀 similarly to  ′
𝜀 and 𝜀 (Eqs. (4) and (6)).

Now, the intersection ⋂

𝑖∈  ′
𝜀
(𝑖) is the space of investment decisions

hich are feasible for all weather years under consideration and near-
ptimal (relative to the most expensive year).2 We are interested in the
ntersection of the reduced near-optimal space (𝑖)

𝜀 . Repurposing our
otation slightly, we write 𝜀 ∶=

⋂

𝑖 
(𝑖)
𝜀 . Note that 𝜀 =

⋂

𝑖 𝜎( ′
𝜀
(𝑖)) =

(

⋂

𝑖  ′
𝜀
(𝑖)
)

. However, while we cannot easily find explicit descrip-
ions of the spaces  ′

𝜀
(𝑖), we can approximate each (low-dimensional)

(𝑖)
𝜀 as explained above. This, in turn, enables us to find an explicit

approximate) description of 𝜀 =
⋂

𝑖 
(𝑖)
𝜀 .

We call a set of total investments 𝑦 ∈ R𝑘 robust when 𝑦 ∈ 𝜀.
his means that for each weather year 𝑖, there exists some near-optimal
easible model solution 𝑥(𝑖) ∈  (𝑖)

𝜀 (including investment and operation
ecisions) such that 𝜎◦𝜋(𝑥(𝑖)) = 𝑦. Note that the same total investment
or each technology, 𝑦 ∈ 𝜀, may be spread differently onto the
ifferent nodes of the model for each 𝑥(𝑖), 𝑖 ∈  . Formally speaking, it is
lausible that ⋂𝑖  ′

𝜀
(𝑖) = ∅ even if we find some robust point 𝑦 ∈ 𝜀. In

ection 2.5, however, we propose different methods for finding robust
llocations 𝑥𝐼 ∈

⋂

𝑖  ′
𝜀
(𝑖) such that 𝜎(𝑥𝐼 ) = 𝑦 if they exist, and in

ection 4.1 we show that this works well in practice.

.4. Chebyshev centre

Among the total investment decisions in the intersection 𝜀 =
𝑖 

(𝑖)
𝜀 , we want to find choices that are not only feasible for all years

onsidered. We want to find the most resilient choice among all the
lternatives. We therefore select the point 𝑦ch ∈ 𝜀 maximally removed
n all directions from the boundary of 𝜀, meaning 𝑦ch is as far away
rom being infeasible as possible. This is realised if we pick 𝑦ch to be the
hebyshev centre (see Boyd and Vandenberghe (2004), Section 8.5.1),

.e.

ch = argmax
𝑦∈𝜀

(𝑟) s.t. 𝐵𝑟(𝑦) ⊆ 𝜀, (11)

2 In fact, this resembles the near-optimal feasible space of a robust optimi-
ation program defined over the weather years  . Strictly speaking, however,

the different operational variables for different weather years make this a loose
generalisation of classical robust optimisation.
5

p

where 𝐵𝑟(𝑦) is the ball of radius 𝑟 around 𝑦. Figs. 2 and 3(b) show
examples of Chebyshev balls. The point 𝑦ch can be found efficiently
using a linear program. Specifically, let 𝑎𝑗 be the normal vectors of the
hyperplanes supporting 𝜀 and 𝑏𝑗 the associated offsets, so that each
𝑦 ∈ 𝜀 satisfies 𝑎𝑗 ⋅ 𝑦 ≤ 𝑏𝑗 for all 𝑗. Then 𝑦ch is given by

max 𝑟 such that 𝑎𝑗 ⋅ 𝑦 + 𝑟‖𝑎𝑗‖ ≤ 𝑏𝑗 ∀𝑗 and 𝑟 ≥ 0. (12)

2.5. Disaggregating robust solutions

The previous steps leading to the Chebyshev centre, one chosen
robust point, have all been performed in the reduced 𝜀-near-optimal
feasible spaces and their intersection, 𝜀. The designs that are of
ultimate interest to us, however, are elements in  ′

𝜀, including all
nvestment decision variables. Thus, we would like to define a function
∶ 𝜀 →  ′

𝜀 mapping robust total investments to complete system
esigns realising those total investments. Being more precise, we need
o specify over which weather years the space we map back to is
efined — we want a map

∶ 𝜀 →  ′
𝜀
 , (13)

ecalling the notation  = {1980,… , 2020}. From this map, we want to
btain a robust near-optimal energy system design 𝑥rob = 𝜙(𝑦ch) at the
hebyshev centre of 𝜀.

We can write our ESOM as in Eq. (8) but instead define it with all
1 weather years as min 𝑐 ⋅𝑥 such that 𝐴𝑥 ≤ 𝑏 ; its 𝜀-near-optimal
easible space of investment variables is  ′

𝜀
 . Then we define the map

(which we call 𝜙 for clarity) by adding constraints to the above LP
o ensure that the solution has total investments given by 𝑦 ∈ 𝜀:

 (𝑦) = 𝜋(argmin 𝑐 ⋅ 𝑥 ) such that 𝐴𝑥 ≤ 𝑏 and 𝜎◦𝜋(𝑥 ) = 𝑦.

(14)

iven that 𝜋 and 𝜎 are linear, the above is still a linear program. Note
hat 𝜙 may not be well-defined for all 𝑦 if the corresponding linear
rogram has no solutions; this can happen if some total investments 𝑦
re realisable for each individual weather year, but not realisable by
ny one complete system design over all 41 years.

Solving Eq. (14) amounts to solving an ESOM defined with 41
eather years, which is computationally challenging. Indeed, one of

he motivations for working with the intersection 𝜀 is that it can
e computed on the basis of model optimisations with single weather
ears.

Thus, we propose two alternatives to the ‘‘exact’’ map 𝜙 . We call
he exact map and its alternatives allocations since they map total
nvestments 𝑦 ∈ 𝜀 to a spatially resolved allocation of investments
(𝑦) ∈  ′

𝜀
 . The alternative allocations are heuristics in the sense

hat they map to designs that are not strictly speaking guaranteed
o be feasible. Formally, they map 𝜀 → R𝑁inv but may map some
oints of  outside of  ′ (whereas 𝜙 ( ) ⊆  ′ ). For the first
𝜀 𝜀 𝜀 𝜀
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Table 1
Overview over three different allocations to obtain ‘‘robust’’ solutions.

Map Short name Description Computation

𝜙 exact Fix the investment costs in
𝑦ch as additional
constraints. Then solve
Eq. (1) jointly over all
years.

Optimisation over 41 years
(134 GB RAM, 35 h)

𝜙(𝑖∗ ) conservative Fix the investment costs in
𝑦ch as additional
constraints. Then solve
Eq. (1) for the year with
the highest optimal cost,
𝑐∗.

1 single-year optimisations
(ca. 3 GB RAM, 0.25 h)

𝜙mean mean Fix the investment costs in
𝑦ch as additional
constraints. Then solve
Eq. (1) for all single years
and take the mean over all
capacities.

41 single-year
optimisations
(parallelisable, each ca.
3 GB RAM, 0.25 h)

alternative, which we call the ‘‘conservative’’ allocation, let 𝑖∗ be the
ost expensive year, for which 𝑐(𝑖

∗)
opt = 𝑐∗. Then we simply take 𝜙(𝑖∗) as

n alternative to 𝜙 . That is, for the conservative allocation we take
he solution of the ESOM defined with weather year 𝑖∗, with the added
onstraints that 𝜎◦𝜋(𝑥(𝑖∗)) = 𝑦ch. Computing 𝜙(𝑖∗) involves only one
odel optimisation with a single weather year.

For the second alternative, which we call the ‘‘mean’’ allocation, we
ollow the idea of the conservative allocation 𝜙(𝑖∗), but involve the other
eather years more. Indeed, we define 𝜙mean as

mean = 1
||

∑

𝑖∈
𝜙(𝑖). (15)

Computing 𝜙mean involves || model optimisations with single weather
years. In our case, || = 41. The exact and alternative allocations are
summarised in Table 1.

For comparison, we also define a ‘‘baseline’’ point in R𝑁inv which is
obtained by scaling up investments uniformly in the optimal solution
for the most expensive weather year. This is explained in more detail
in Section 4.3.

3. Implementation

3.1. Modelling set-up

We base our implementation on the PyPSA-Eur 0.4 model (Hörsch
6

et al., 2018), which is itself based on the general PyPSA framework (
(version 0.18) (Brown et al., 2018). While we have modified PyPSA-
Eur for our purposes (as described in Appendix B), especially in order
to support multiple weather years, we have kept the model set-up
relatively close to the defaults as described in Hörsch et al. (2018).
We use the model in a partial greenfield configuration, where existing
transmission, nuclear3 and hydro capacities at current (2020) capacities
are included in the model from the start, but all other technologies start
at zero capacity.4 The extendable technologies included in the model
are transmission (both AC and relevant DC connections), battery and
hydrogen storage, onshore and offshore wind power, solar power and
open-cycle gas turbines. The model is run with a single investment
period and perfect foresight. We limit annual CO2 emissions to 95%
of 1990 levels.5 A one-node-per-country6 spatial resolution and a 3-
hourly temporal resolution is chosen. Note, however, that the spatial
and temporal resolution can be increased easily (as in PyPSA-Eur); the
resolution is limited in this paper in order to allow extensive validation
of our methods. We model the year 2030 with 41 distinct historical
weather years (1980–2020) driving renewable capacity factors and
electricity demand based on the default PyPSA-Eur cost assumptions7

(given in 2013 EUR) for the year 2030. Thus all weather years are
viewed as different potential realisations of 2030, and we can com-
pare investment and operational costs of multi-year optimisations to
single-year optimisations by taking annual averages.

Using enough weather data to accurately represent long- and short-
term dynamics and extreme events is difficult in ESOMs, considering
the resulting model size and increased solving complexity. However
limited the lessons of historical weather data are on future weather (van
der Wiel et al., 2019), further driven more and more by climate
change, the extreme events and variability represented here will still
likely offer insights for future designs. We capture historical climate
change implicitly here, whereas incoming trends and changes through
climate change are hard to predict and an active field of research in
itself (Wohland et al., 2017; Schlott et al., 2018; Kozarcanin et al.,
2019; Bloomfield et al., 2021).

3 Nuclear power in Germany is removed from the model.
4 PyPSA-Eur can also include existing biomass capacities in the model. Due

o their limited capacities, they do not lead to significant deviations in results
ompared to the scenario we considered, so we choose to omit biomass for
implicity of the setup.

5 We present additional results with a 100% emission reduction in
ppendix C.
6 Except for countries in multiple synchronous zones (Denmark, Spain, Italy,

K), which are represented through two nodes.
7 https://github.com/PyPSA/pypsa-eur/blob/v0.4.0/data/costs.csv

accessed 06/10/2022).

https://github.com/PyPSA/pypsa-eur/blob/v0.4.0/data/costs.csv
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3.2. Data

The data we use as input for our model lean heavily on the data and
sources used in PyPSA-Eur. For instance, we use cost data based on the
default costs considered in PyPSA-Eur, which are estimates for 20307

in 2013 EUR). However, time series input data have been extended to
1 weather years.

We use reanalysis data to generate capacity factors for the renew-
ble energy sources; our source is the hourly ERA5 dataset (Hersbach
t al., 2018) for the time period from 1980 up to and including 2020.
he open-source tool Atlite (Hofmann et al., 2021) translates weather
ata to hourly capacity factors for solar PV, on- and offshore wind. The
nflow profiles for hydropower are generated similarly, however they
re corrected to fit production data given by Administration (2022).
e describe in detail how we process the data in Appendix B.
The load input data are generated using a regression model on

980–2020 ERA5 temperature data. The regression is based on hourly
ountry-level ENTSO-E load data from 2010 to 2014 (ENTSO-E, 2022),
s well as the temperature data. We conduct a two-staged regression
ith a similar approach to that used in Bloomfield et al. (2020). This
llows us to generate 41 years of country-level temperature-dependent
oad data matching the weather data we use. Finally, we scale the
emand by a factor of 1.13 according to load projections for 2030 by
he European Commission.8 More details on the generated load data
an be found in Appendix B.

.3. Modeller’s decisions

In this section, we discuss various details and choices regarding the
mplementation of the methods described in Section 2. For the exact
ode, including configuration options and installation and running
nstructions, we refer to the GitHub repository.9

One of the first decisions we have to make is choosing a suitable
lack level 𝜀. For small 𝜀 the intersection 𝜀 may be empty; a priori
t is not clear how large 𝜀 has to be for 𝜀 to be nonempty. In our

case, we choose 𝜀 = 5% on top of the most expensive weather year,
but found that 𝜀 is even nonempty with 𝜀 = 2.5%; this may change

ith a different modelling set-up. For comparison, Trutnevyte found
n Trutnevyte (2016) that the transition in the UK energy system from
990 to 2014 deviated between 9 and 23% from the cost optimum.

Given that the dimension reduction map 𝜎 is our main tool in
orking with near-optimal spaces (see Section 2.2), we need to define

t carefully. Both the number of dimensions 𝑘 that 𝜎 maps to and which
nvestment decision variables are mapped to each dimension must be
onsidered. We have investigated the convergence of Algorithm 1 with
= 2, 3,… , 7 (Appendix A) and we find that it is tractable to work
ith this number of dimensions. The decision variables that are mapped

o each dimension (the sets 𝑇1,… , 𝑇𝑘 in the notation of Section 2.2,
ere abbreviated to ‘‘dimensions’’) should be chosen meaningfully. On
ne hand, including as a dimension a technology which is not utilised
n cost-optimal solutions may be detrimental, as much computational
ffort will be expended on potentially irrelevant solutions including this
echnology. Moreover, the Chebyshev centre of the resulting space must
nclude at least a Chebyshev radius worth of that technology, which
ay be sub-optimal. On the other hand, not including as a dimension
technology which plays a significant role in any near-optimal solution

an limit the usefulness of the results. In our case, we choose to
ap investment decision variables for transmission expansion, solar,

nshore wind, offshore wind and gas to 5 respective dimensions.
Lastly, we choose the coefficients 𝑐𝑗 in the definition of 𝜎 to be

he investment cost associated with the investment decision variable

8 https://ec.europa.eu/clima/document/download/ec1acac9-10fe-4eeb-
15f-cad388990e0f_en, Fig. 44 (accessed 23/06/2022).

9 https://github.com/aleks-g/intersecting-near-opt-spaces/tree/v1.0.1.
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𝑥𝑗 ; this has the advantage of mapping to the single unit of EUR in
every dimension, making different dimensions easily comparable. In
contrast, for example, comparing renewable capacity expansion in MW
and storage capacity expansion in MWh directly is more difficult and
not as useful for the purpose of working with a Chebyshev ball. For
some applications one might consider scaling the weights 𝑐𝑗 for certain
dimensions, for example, when robustness to changes in investment in
one technology are more important than for other technologies.

A key driver of the computational demands of our approach is the
desired quality of approximation of near-optimal spaces. How many
iterations of Algorithm 1 are needed, depends on the number of dimen-
sions 𝑘, the mode of finding new directions to explore (see Fig. A.1) and
the intended use-case. A fixed number of iterations can be chosen, or
the algorithm can be ended once some convergence criteria is satisfied.
Either way, we refer to Appendix A for a discussion of the various
trade-offs involved.

The other factor influencing the computational effort is how much
time and computing power every single optimisation takes. This is
typically driven by the number of technologies, inter-temporal relations
between different variables (e.g. through storage), temporal resolu-
tion (Hoffmann et al., 2020) and spatial resolution (Tröndle et al.,
2020; Frysztacki et al., 2021). Deciding on the model complexity must
be done in light of the research question at hand. For our application
with weather years, we do assume that each individual model is defined
over a time period of one calendar year.

4. Results

We first present the main results pertaining to system design with
41 weather years, and the use of near-optimal spaces in this context
(Section 4.1). This is followed by a more detailed description of the
characteristics of our proposed robust solutions (Section 4.2). The
subsequent subsection focuses on validation results and a comparison of
the different robust design allocations (Section 4.3). Finally, we touch
on computational results and parallelisability (Section 4.4).

4.1. Weather years and intersection

First of all, optimising our model with each of the 41 considered
weather years individually shows large discrepancies in the respective
optimal solutions, re-affirming the importance of considering a large
set of different weather years. Optimal total system costs range from
121 billion EUR for 2020 to 152 billion EUR in 1985.10 The compo-
ition of investment by technology also differs significantly between
eather years, with especially the onshore- and offshore wind invest-
ent varying by up to around 20 and 25 billion EUR between years

corresponding to variations up to 243 GW for onshore wind and 82 GW
or offshore wind), respectively. The inter-year variability in optimal
nvestments is illustrated in Fig. 5, where the investments are compared
o the robust solution 𝑥rob.

Meanwhile, for this study we also conduct the first capacity expan-
sion optimisations of a spatially resolved model for the European power
system with 41 weather years directly (one node per country, 3-hourly
resolution). These optimisations took in the order of 1–2 days (using
two threads) and up to 134 GB of memory. The optimal annualised
total system cost for the 41-year model is 137 billion EUR; only slightly
higher than the average of the total system costs of optimisations with
single weather years at 134 billion EUR. See also Fig. 7 for a break-
down into investment (for extendable technologies)- and variable costs
and comparison with the optimisations with single weather years. Apart

10 These and all the following total system costs are annualised and include
investment in new capacities as well as variable costs (in 2013 EUR), but not
existing capacities. See Section 3.1 for details on which existing technologies
are included in the model.

https://ec.europa.eu/clima/document/download/ec1acac9-10fe-4eeb-915f-cad388990e0f_en
https://ec.europa.eu/clima/document/download/ec1acac9-10fe-4eeb-915f-cad388990e0f_en
https://github.com/aleks-g/intersecting-near-opt-spaces/tree/v1.0.1
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Fig. 4. Projections of the near-optimal spaces for different weather years and their intersection. All values are annualised total investment costs per technology. For illustrative
purposes, we only plot the near-optimal spaces for 6 out of 41 weather years (in different hues of blue). The intersection of all 41 near-optimal spaces is filled in yellow and the
Chebyshev centre is marked with a cross.
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from providing a basis of comparison, optimising the model with 41
weather years also allows us to compute the exact robust map 𝜙

in order to validate the alternative mean and conservative allocations
(Section 4.3).

We implement (as in Section 3) the methodology of intersecting
near-optimal spaces (laid out in Section 2) using PyPSA-Eur. With a
slack level of 𝜀 = 0.05 as in Eq. (9), we obtain a nonempty intersection
𝜀 and a robust allocation 𝑥rob that is fully feasible using all the
weather data of 41 years. Thus we show that there are robust solutions
with less than 5% additional costs (on top of the most expensive year).
We even find robust solutions which are less than 5% more expensive
than a system optimised with the entire period of 41 years (see Fig. 7).
Furthermore, the space 𝜀 offers significant flexibility for policymakers
beyond our point of reference 𝑥rob, and beyond what flexibility is
shown by previous MGA approaches.

Fig. 4 shows projections of a selection of near-optimal spaces (𝑖)
𝜀 for

weather years 𝑖 ∈ {1985, 1989, 1996, 2006, 2014, 2020} in addition to the
intersection 𝜀 =

⋂

𝑖∈ (𝑖)
𝜀 over all weather years. While the spaces are

5-dimensional (with the dimensions being investment in onshore wind,
offshore wind, solar, gas and transmission expansion), they have been
8

i

projected down to all possible pairs of technologies considered. The
Chebyshev centre, marked by a cross, is located within the intersection
which consists of the robust solutions. The figure reveals that there
is significant flexibility in these dimensions; while a certain amount
of investment in renewables is needed, the investment can be shifted
between different technologies while staying feasible and near-optimal.
Note also that the near-optimal spaces for different years resemble each
other in shape and location in space, but mainly differ in size. This
indicates that the effect of ‘‘difficult’’ weather years on modelling is
mainly that they restrict the size of the feasible design space.

We find that the Chebyshev radius of 𝜀 is 3.43 billion EUR, coming
near to the theoretical maximum possible radius of 3.80 billion EUR
given by the chosen slack level. Indeed, note that the distance between
cost-optimal solutions and the near-optimal cost constraint is 𝑐∗opt ⋅ 𝜀,

eaning that any near-optimal space can have a Chebyshev radius of
t most 𝑐∗opt ⋅ 𝜀∕2 ≈ 3.80 billion EUR. The result means that the total
nvestments in technologies that make up the dimensions of 𝜀 can
hange by up to 3.43 billion EUR (corresponding to 2.35% of the total
ost of the robust system) in any direction, starting at the robust point
ch. The resulting (potentially reduced) total investments can still result
n a feasible design for every weather year.
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Fig. 5. Comparison of total investments for selected technologies in the optimal solutions for each weather year and the optimal solution with all weather years (‘‘41y’’) to the
robust point 𝑦ch. Positive values mean greater investment in the given technology by the robust solution.
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Given that we work with an absolute objective bound (1.05 times
the cost of the most expensive year) for all near-optimal spaces, we find
that the smallest and largest near-optimal spaces differ in volume by a
factor of about 79. This means that some weather years by themselves
allow for many more different near-optimal feasible solutions than
others. Put differently, some weather years restrict the system design
much more than others. The smallest and largest near-optimal spaces
come from the weather years 1985 and 2020 respectively, and the
difference in volume corresponds to an average scaling factor of 791∕5 ≈
2.4 in every dimension. Meanwhile, the intersection of the near-optimal
spaces has a volume that is 79% and 36% of the volumes of the near-
optimal space for years 1985 and 1987, respectively, and is between
9

m

1% and 10% of the volume of all other near-optimal spaces. This means
that except for 1985 and 1987, 10% or less of near-optimal solutions
for any particular weather year are feasible for all other weather years
under consideration.

In fact, we find that the optimal solutions with the years 1985 and
1987 actually have total investments that lie within the intersection
𝜀. When operated over the entire weather year dataset, these designs
re practically feasible, with negligible load shedding. These results can
nform the choice of weather year to model with — if only a single (or
ew) years can be chosen.

We note, however, that while there are weather years to which our
odel does not ‘‘over-fit’’ in a single-year optimisation (1985 being
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Fig. 6. Annual average generation mixes for the optimal solutions for each single weather year, the optimal solution with all weather years (‘‘41y’’) and the robust allocations as
well as the baseline design. The baseline design is used for comparison in validation (Section 4.3).
such a year resulting in a generally applicable design), this result could
be particular to our modelling set-up.

4.2. Robust design characteristics

The robust solutions we compute, coming from the Chebyshev
centre of the intersection 𝜀, have several interesting properties. First,
we compare the investment composition of the robust point 𝑦ch to
that of optimisations using just a single year of weather data. We
then analyse total investment and operational costs. Finally, we present
results related to the CO2 limit.

Fig. 5 shows the differences in investment per technology between
the robust point and each of the optimal designs for individual years.
The robust point is characterised by more investment in onshore wind,
solar, transmission, and gas (sorted by decreasing additional invest-
ments). Meanwhile, most optima from single weather years over-invest
significantly in offshore wind power compared to the robust allocation
due to higher relative costs. In this particular set-up where gas can
smooth the electricity production, the cost benefits of additional on-
shore wind capacities outweigh the potential of offshore wind power
in the most favourable years. We conclude that here onshore wind
power contributes more than other technologies to robustness, followed
by solar power and transmission capacity.11 This holds as well when
one compares the investments in the robust (‘‘exact’’) allocation to the
optimal solution using all weather years (see the ‘‘41y’’ row in Fig. 5).

Fig. 6 shows the annual (for the optimisations with more weather
years, average) total electricity generation per technology. This shows
the increased importance of onshore wind and solar for the robust
system. Meanwhile, the figure also shows that although solutions for
individual years typically under-invest in gas turbines relative to the
robust ones, the robust solutions actually generate less power with
gas (and nuclear) in total. This reflects the fact that while additional
gas capacity is needed for robustness, the additional investment in
renewables leads to a reduced dependence on gas for ‘‘day-to-day’’
operations.

11 The conclusions can change with different assumptions — see Appendix C.
10
On that topic, Fig. 7 shows the variable and total system costs of
systems optimised with single weather years, as well as the robust
system and a system optimised with the full dataset of 41 weather
years. It illustrates that the robust design has a higher total investment
cost than designs for individual years, while the (average) operating
costs are lower due to the reduced use of gas and nuclear as mentioned
above. Recall that while we set the slack 𝜀 to 5%, we see that the
investment costs in fact lie only 0.4% above what would have to
be invested based on the most expensive year. With the (average)
variable costs of the robust system being lower due to a strengthening
of renewables, the total (annualised) system cost of the robust solution
is about 146 billion EUR and actually lower than the system costs for
some optimal solutions with single weather years. This is because the
total system cost for the robust solution is averaged over all 41 weather
years, with some being more expensive than others.

We also see that robust system designs emit less CO2 in our tests
compared to the single-year optimisations, and use 48% of the given
CO2 limit.12 This is again because robust designs direct more of the
total system cost into capital investment of renewables and less into
variable costs including gas, the only source of emissions in our model.
However, we should note that when we operate the design obtained
from e.g. a system optimisation with the single weather year 1985
over the entire time period (over which it is practically feasible), it
also does not use up the whole CO2 limit. Although capacity expansion
optimisations with single weather years always use up the CO2 limit,
the designs which are adapted to difficult years such as 1985 have
enough renewable capacities that they do not use up the CO2 limit in
a typical year.

Finally, Fig. 8 shows the geographical differences in investment
between the exact robust allocation and the cost-optimal solution with
41 weather years. We see that the majority of additional onshore wind
power in the robust system is allocated to the UK, followed by Poland,
France, Estonia and Sweden. The transmission capacity to the UK also
receives more investment in the robust allocation. Meanwhile, although

12 The optimal solution with all 41 weather years uses the whole CO2 limit
as well.
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Fig. 7. Comparison of cost-minimal designs based on optimisations over individual years to the annualised costs of robust designs (exact, mean and conservative, respectively),
an optimisation with all 41 years (‘‘41y’’) and the baseline design.
Fig. 8. Difference in investment between the exact robust allocation and the optimum solution with 41 weather years. Bars above the baselines mean that there is more investment
for that technology in the robust solution. For transmission there are only positive differences (negative differences are too small to appear on this scale), and AC and DC transmission
have been combined. For both bars and transmission lines, the same area means the same investment difference in EUR. All costs are annualised.
f
‘
t

the system invests less in offshore wind in total, more offshore wind
investment is shifted to Denmark.

4.3. Validation of robust allocations

Recall from Section 2 that we can use a (large) number of optimisa-
tions with single weather years to find a robust point of total capacity
allocations 𝑦ch ∈ 𝜀 — the Chebyshev centre in the intersection of
near-optimal spaces of model instances using different weather years.
11

b

However, in order to find specific (per-node) investment allocations
fitting the given robust totals and being feasible for every weather
year, we have to map 𝑦ch back to  ′

𝜀
 . The exact allocation 𝜙 does

this by solving the original ESOM (with the additional constraint that
𝜎◦𝜋(𝑥) = 𝑦ch) with 41 weather years. Section 2.5 gives two alternatives
or allocating the robust capacities to individual nodes: the ‘‘mean’’ and
‘conservative’’ allocations, both based only on a number of optimisa-
ions with one single weather year at a time (see Table 1). Recall that
oth the mean and conservative allocations have the same coordinates
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Table 2
Performance of the different allocation methods and the baseline for comparison. Note
that total load shedding (over 41 years) here includes technical infeasibility and over-
budget operations as explained earlier. The relative load shedding is with respect to
the total load of all 41 weather years.

Allocation method Total load shedding [TWh] Relative load shedding [%]

Exact 0.0 0.000
Conservative 46.7 0.032
Mean 119.0 0.081
Baseline 132.3 0.090

in 𝜀 as the exact allocation, namely 𝑦ch, but are not guaranteed to be
easible for all 41 weather years.

In this section, we investigate the quality of these heuristic alloca-
ions. The basis for comparison is two-fold: the exact robust allocation
n the one hand, and a ‘‘naïve’’ baseline allocation based solely on the
ost expensive weather year on the other hand. Specifically, in order to
ake the designs more comparable, the baseline allocation is obtained

y taking the allocation from the single most expensive weather year
1985 in our case) and uniformly scaling all expandable capacities up
y such a factor that the total capital cost of the whole network equals
hat of the exact robust design. This way, the only difference between
he exact, mean, conservative, and baseline designs is how investment
s allocated (by technology and spatially), not the total investment
olume.

The validation of the robust allocations consists of a ‘‘stress test’’
here we operate the systems over the entire dataset of weather
ears (i.e. only optimise the dispatch and not the investments). This
ispatch optimisation includes the 95% CO2 reduction constraint as in
he capacity optimisation. Similarly to how we ensure that the total
nvestment cost is equal between the four different allocations, we also
nsure that all designs keep to the same operational budget; namely the
otal operational costs of the exact robust design. By allowing costly
oad shedding (with variable costs of 7 300 EUR/MWh, as in Price
nd Zeyringer (2022)), we make sure that the models are solvable.
he quality of the allocations is then measured in the amount of load
hedding; 0 load shedding means complete feasibility. In the presence
f a hard operational budget constraint, it should be understood that
otal unmet demand combines actual unmet demand due to technical
nfeasibility and over-budget operations. Without the operations budget
onstraint, a number of designs – including all robust allocations and
lso some optimal solutions for single years – are practically feasible
ith all weather years (see Section 4.1), but simply have higher oper-
tional costs. In general, however, optimal solutions from single years
ail to serve the entire time period reliably.

Table 2 shows that the exact allocation has 0 load shedding as
xpected, and is followed by the conservative allocation in quality. The
ean and baseline designs perform slightly worse, but still only up to

bout 0.1% of the total load is shed or produced over budget. This
hows that the conservative and mean heuristics produce results that
re practically feasible.

.4. Performance and computational effort

Our work demonstrates methods for working with decades of
eather and demand data in a parallelised setting. Namely, the mean
nd conservative allocations produce robust system designs with
ecades of weather data while only requiring model optimisations with
ingle weather years which can be parallelised effectively. This is done
y using the centre point of the intersection of near-optimal spaces for
ifferent weather years to obtain a robust set of total capacities per
echnology. From these we then compute specific per-node capacity
llocations adhering to the robust totals for each individual weather
ear, and average the resulting capacities.

This is particularly relevant because solving ESOMs is usually
12

emory-constrained: a single large model may take more memory to m
solve than is available on common systems. While effort is being spent
on splitting up and parallelising the solving process (Rehfeldt et al.,
2022), this is not yet practical. With our methods we avoid solving
models defined over a period of decades, and instead obtain results
based on many smaller runs — a process which is easily parallelised.
The workflow is now constrained by the number of available proces-
sors, which is better suited to current computational developments
which are in the direction of more, not faster processing cores.

While computational time often varies significantly based on a mul-
titude of factors (exact modelling set-up, model size, nature of objective
and constraints, numerical issues among others) and is difficult to
predict, the memory requirements are easier to derive directly from
model size (number of technologies, temporal and spatial resolution).
With our modelling set-up (see Section 3.1), a capacity expansion
optimisation with a single weather year takes 3.5–4 GB of memory
using the commercial optimisation software Gurobi (Gurobi Optimiza-
tion, 2022). Thus, our methods put optimal energy system design with
decades of weather data within reach of typical desktop computers for
the first time. For comparison, optimising with 41 years of weather data
in one model takes approximately 41 times as much memory, around
134 GB. For models with a higher spatial and temporal resolution,
our methods may currently be the only viable method of designing
a system with decades of weather data; we estimate that optimising
a typical PyPSA-Eur model with an hourly resolution and 181 nodes
(as suggested in Frysztacki et al. (2021)) with 41 weather years could
take around 1.7TB of memory, while this can be split into single-year
optimisations taking around 45 GB of memory each using our methods.

With our modelling set-up, a model optimisation with one weather
year takes 23 min of CPU time13 on average using Gurobi with 2
threads. Spending 10 initial optimisations along unit vectors in positive
and negative direction, 150 for the algorithm to approximate the near-
optimal space for each year and finally 1 optimisation per year to
compute per-node allocation of robust allocations, the mean allocation
takes approximately 41 ⋅ (10 + 150 + 1) ⋅ 23 = 151 823 min ≈ 2530 h of

PU time to compute. On a cloud computing platform with 64 CPU
ores (and around 4 ⋅ 64 = 256 GB of memory), this equates to around
0 h of wall time.13 This is actually comparable to the wall time it
ypically takes to solve a single capacity expansion optimisation with
1 weather years of the same model on the same platform, which is in
he range of 1–2 days.

We also investigate different methods for approximating near-
ptimal spaces of ESOMs, focusing on how optimisation directions are
hosen, and how many optimisations are needed for a good approxima-
ion (for a different number of dimensions or projection variables). The
esults presented in Appendix A support the configurations we choose
s default options.

. Discussion

The urgent transition to energy systems based on intermittent re-
ewable generation comes at a time with increasing computational
ower and availability of extensive climate data. However, while using
ver larger models is helping us to understand the detailed functioning
f future energy systems, it does not necessarily improve the under-
tanding of uncertainties and resilience. In this paper, we propose a
ramework for producing energy system designs that are robust to
ncertainty, taking advantage of the geometry of near-optimal spaces.
e apply the framework to a study involving 41 weather years; the

mportance of using as much weather data as possible has been shown
n the literature and is confirmed by our findings. Our framework can

13 We make a distinction between the CPU time of a process, which is the
sum of time spent on the process by all CPUs, and the wall time of a process,

hich is the elapsed real time between process start and finish. Thus CPU time
ay be larger than wall time for a parallelised process.
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help policymakers to investigate different alternatives (similarly to the
predecessors of this methodology, MGA and MAA) and overcome the
fallacy of single solutions that can become infeasible through marginal
perturbations.

Our choice of using the Chebyshev centre as a robust point is
motivated by it being maximally tolerant to changes in investment in
any direction. This is one of the distinctions to robust optimisation,
where the optimum solution (with respect to the worst-case scenario)
lies at the boundary of the intersection of feasible spaces, thus be-
coming infeasible with just marginal perturbations. At the same time,
we see that even a naïve over-investment starting at the cost-optimal
solution with a difficult weather year results in a system design which
is practically feasible for all considered weather years. The choice of
the Chebyshev centre can be seen as an attempt to find the most
advantageous over-investment for robustness. In other words, while
all additional investment contributes to robustness to some extent, our
methods are aimed at finding the most efficient additional investments
for robustness.

The first runs of a spatially resolved European power system opti-
misation model with four decades of weather data build on advances in
open data accessibility and computational resources. Our results show
that robust solutions stand out from standard cost-optimal solutions
by a relatively higher investment in onshore wind and solar power.
Furthermore, the increased investment in renewables reduces the usage
of gas and nuclear, which lowers the CO2 emissions of the system
by more than 50% (in comparison to optimising the system with 41
weather years). By adjusting the slack level 𝜀, our methods allow for a
trade-off between robustness and additional costs.

Beyond looking at how weather years influence total system cost or
investment composition, we see the effects of the choice of the weather
year on the entire near-optimal space. Whereas the shapes and locations
are fairly uniform, we see that near-optimal spaces for different weather
years vary significantly in size. We still find a significant amount of
flexibility within their intersection, mainly limited by a small number
of most difficult weather years.

In previous studies utilising MGA techniques, dimension reduction
has been used somewhat implicitly in order to make a systematic
exploration of reduced near-optimal spaces feasible. Mapping down to
a lower-dimensional space was seen as a way of summarising a few key
properties of model solutions. However, the geometry of reduced near-
optimal spaces has been largely unexploited, a gap we aimed to fill with
this paper. Moreover, we investigate and propose practical methods
for going back to spatially explicit investment decisions from points in
the reduced near-optimal space. Mapping the Chebyshev centre of an
intersection of near-optimal spaces back to a robust system design is
just one application of this idea.

At the same time, approximating and intersecting near-optimal
spaces as a way of designing systems which are feasible for many
weather years is a reasonable alternative to optimising with many
weather years directly from a computational perspective. Having split
the problem into many smaller optimisations with single weather years,
our methods are easily parallelised. This represents a new approach
to optimisation problems which previously have been considered in-
tractable or at least very impractical. In particular, an application of our
methods to larger models (including sectoral coupling, higher spatial or
temporal resolution) would be interesting and computationally feasible.
While we expect the heuristic allocations to work at higher spatial
resolutions (see also Frysztacki et al., 2022 for related work), their
quality should be investigated under such conditions.

We highlight that we study just one out of many definitions of
robustness (Moret et al., 2016; Maggioni et al., 2017); note also that
our techniques do not directly follow the concept of robust optimisation.
In all generality, robustness is a relative concept and is directed towards
some uncertainty. Although these uncertainties can be well understood,
some of them may be hard to quantify (e.g. political, societal changes),
13

other could be epistemic (e.g. extreme weather events, changes in S
costs, or misspecifications of the model), or even aleatoric (as the
actual future weather conditions). For instance, Stirling (2010) locates
robustness in the overlap of problematic levels of knowledge about
possibilities and probabilities. All in all, our approach contributes to
a wide academic debate about how to deal with uncertainty and
robustness in energy systems modelling.

6. Conclusion

In this article we find that studying the near-optimal feasible space
is a helpful tool to achieve more robust solutions against uncertainties
for energy systems. When investigating weather variability, this enables
us to quantify the variations and to find alternative designs that allow
some flexibility for policymakers.

Since we utilised historical climate reanalysis data, we have not
incorporated the consequences of climate change that an energy system
in transition will face, nor the possibility of unseen extreme events.
It would be interesting to understand which developments will limit
flexibility and what events are defining for the design of a future
(climate-)robust energy system. Moreover, we see that a small number
of weather years including 1985 and 1987 constrain our system design
the most, having relatively small near-optimal feasible spaces. These
results call for a deeper understanding of which meteorological prop-
erties of these weather years, including extreme and compound events,
are determining for energy system design.

While we have applied a notion of robustness in the reduced near-
optimal space 𝜀, we have not considered robustness at lower levels
of the network. So although the point 𝑦ch ∈ 𝜀 is robust to a shift
in investments of 3.4 billion EUR, the system 𝑥rob ∈  ′

𝜀 is not robust
o such a shift at any one particular node in the network. There may
lso be many system designs with very different per-node capacities
apping to the same point 𝑦ch. Another interplay with the spatial
imension is whether different regions contribute differently to the
obustness of the whole system, as hinted at by Fig. 8. Thus, spatial
spects of robustness form an interesting avenue for future research.

More generally speaking, our methods leave a lot of room for
ifferent choices of dimension reduction: choosing which variables
o aggregate and how. The choice leading to the most suitable re-
uced near-optimal space should be considered application-specific,
epending on the technologies of interest, their relative importance
nd use-case for the reduced near-optimal space. Mapping to a space of
nvestment costs as we did is a neutral choice, but which reduction is
he most efficient for more specific purposes is still an open question.

The results we present here may depend on our particular modelling
et-up. To which extent specific technologies contribute to robust-
ess and flexibility may change if other technologies are included
e.g. through sector coupling), additional restrictions are introduced
e.g. on transmission) or the spatial and temporal resolutions of the
odel are improved. And whereas our model has a single investment
eriod, it would be interesting to apply our methods with a model
onsidering transition pathways through multiple investment periods.
s our implementation is open-source and customisable, it should be
daptable to this setting.

Last but not least, our methodology can also be used to investigate
ther uncertainties besides weather variability. As near-optimal spaces
trongly depend on cost assumptions, future applications of the present
ramework can contribute to an improved understanding of robustness
n the face of uncertain costs.
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Code & data availability

The code for our approach and its documentation can be found
at https://github.com/aleks-g/intersecting-near-opt-spaces/tree/v1.0.
1, and is made available under the GPL 3.0 license. Some of the
data included in the above repository (load and hydropower capacity
factors) were generated using the workflow available at https://github.
com/aleks-g/multidecade-data/tree/v1.0 (code licensed GPL 3.0, data
licensed CC-BY-4.0).

The reanalysis data we used for this study (for renewable capacity
factors and temperature-dependent load data) were downloaded from
the Copernicus Climate Change Service (C3S) Climate Data Store (Hers-
bach et al., 2018) using the Atlite software (Hofmann et al., 2021)
as documented in the main repository. We have additionally made
these weather data more easily available at https://doi.org/10.11582/
2022.0003414; they are shared under the ‘‘License to use Copernicus
Products’’,15 which is comparable to the CC-BY license. Neither the
European Commission nor the European Centre for Medium-Range
Weather Forecasts is responsible for any use that may be made of the
Copernicus information or data it contains.

Given the substantial size of the weather data needed for this study,
we generated a number of PyPSA networks which can be used to re-
produce our results without having to download and process the ERA5
data. They are available at https://doi.org/10.5281/zenodo.6683829
under the CC-BY-4.0 license.

All other data used in our model is directly inherited from PyPSA-
Eur and also openly available as described in Hörsch et al. (2018).

Appendix A. Direction generation

We give a more detailed overview on how to explore the near-
optimal space 𝜀 (here in the original sense as a reduced near-optimal
space and not the intersection), using the notation from Section 2.
Recall that we can compute an approximation of 𝜀 by finding a
number of its vertices (or rather, extreme points), and each such point
is obtained by solving the linear program in Eq. (7) with some different
objective (direction) 𝑑. As described in Algorithm 1, we first optimise
over 𝜀 ⊆ R𝑘 in each of the cardinal directions (positive and negative)
in order to obtain a first full 𝑘-dimensional approximation. Each of
these optimisations can be performed in parallel. Thereafter, in which
direction 𝑑 we choose to optimise over 𝜀 has a significant effect on
how well 𝜀 can be approximated in a limited number of optimisations.

We investigate and compare three methods that generate directions
in which to optimise over 𝜀. The first method is the simplest and

14 See instructions at https://github.com/aleks-g/intersecting-near-opt-
paces/tree/v1.0.1.
15 https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-
opernicus-products.pdf (accessed 23/06/2022).
14
consists of choosing directions uniformly at random. For the remaining
two methods, the idea is to compute the convex hull of the points
obtained so far after every optimisation, say 𝐻𝑖, and use the geometric
properties of 𝐻𝑖 in some way to generate the ‘‘next’’ direction 𝑑𝑖+1. The
onvex hull is computed using the program qhull (Barber et al., 1996).
he three methods are as follows:

1. ‘‘random-uniform’’: Choose a random vector from the uniform
distribution on the sphere in R𝑘.

2. ‘‘facets’’: Choose the normal vector to the facet of 𝐻𝑖 with the
largest volume.

3. ‘‘maximal-centre-then-facets’’: Compute the Chebyshev centre
𝑦ch of 𝐻𝑖 and the ball of maximal radius around it by solving
Eq. (12). Of all facets of 𝐻𝑖 tangential to this ball, choose the
one with the largest associated dual variable in Eq. (12) and take
its normal vector. If already used, take the normal vector to the
facet of 𝐻𝑖 with the largest volume.

With all these methods, we also use a filtering procedure: we
iscard vectors that have already been used. For each method, it is
lear how to generate another direction if the first was discarded: for
xample for the ‘‘facets’’ method we choose the normal of the facet
ith the second-largest volume if the first direction was discarded. For

he ‘‘maximal-centre-then-facets’’ methods we fall back on the ‘‘facets’’
ethod when all normals to facets tangential to the Chebyshev ball
ave already been used.

In the filtering procedure, we employ an angle threshold 𝜃 such
hat a potential direction 𝑑 is discarded if it is within 𝜃 degrees of any
reviously used direction. If the filter discards all possible directions,
e reduce the angle threshold 𝜃 by 20%. This is repeated every time
method ‘‘runs out of directions’’, until 𝜃 falls below a pre-defined

minimum angle 𝜃𝑚𝑖𝑛, at which point the whole algorithm is terminated.
Note that the approximation of 𝜀 can be parallelised effectively

or any of the three direction generation methods, in the sense that
ultiple optimisations in different directions can be run in parallel. For

he latter two methods, this means that the convex hull 𝐻𝑖−𝑃 must be
used in the calculation of the 𝑖th direction when there are 𝑃 parallel
optimisations. When 𝑃 is large, this means some of the generated
direction could be slightly inferior (being generated with an older hull
𝐻𝑖−𝑃 ).

We compare the performance of different methods in Fig. A.1. The
plots show that the three different direction generation methods have
different characteristics, but also that their performance varies sub-
stantially between different spaces (different weather years). Generally
speaking, we see that the ‘‘random-uniform’’ method attains the largest
volume in the long term, while the ‘‘facets’’ and ‘‘maximal-centre-then-
facets’’ methods attain similar volumes and have a stronger perfor-
mance initially. In terms of radius, the ‘‘random-uniform’’ method per-
forms worse, while the ‘‘maximal-centre-then-facets’ method converges
the quickest initially.

We see that a large number of iterations is needed to converge
in terms of volume, with the ‘‘random-uniform’’ attaining the highest
volume, but still not converging after 2000 iterations. Meanwhile, the
other two methods based on facet normals make large strides initially,
but display a false convergence below the actual volume after about
1000 iterations. Convergence in terms of the radius is better (especially
for the ‘‘maximal-centre-then-facets’’ method), but can be more erratic
than the convergence of volume. 150 iterations with the ‘‘maximal-
centre-then-facest’’ method were chosen as a compromise between
accuracy and computational demand for this paper.

In Fig. A.2 we compare convergence of volume between different
numbers of dimensions 𝑘 of the spaces 𝜀 ⊆ R𝑘. For this plot, we
use the ‘‘maximal-centre-then-facets’’ direction generation method and
approximated the near-optimal spaces for the weather year 2020, but
use different dimension reduction maps 𝜎. The final approximated
volumes are all normalised to 1. We see that 3- and especially 2-

dimensional spaces are quickly approximated, while the convergence
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Fig. A.1. Performance of the different direction generation methods in terms of volume and Chebyshev radius convergence. We selected three years (among those, the years with
he highest and lowest optimal costs) and approximated their near-optimal spaces with 2000 iterations. For each of the years the plotted volumes and radii have been normalised
y the largest volume and radius obtained by any method for that year. The dotted lines mark 150 iterations.
Fig. A.2. The convergence of volume in approximating the near-optimal space for the weather year 2020, reduced to different numbers of dimensions. The direction generation
method is ‘‘maximal-centre-then-facets’’. The vertical dotted lines marks 150 iterations. The volume is normalised for each of the dimensions individually.
is slower for higher dimensional spaces. However, we do not find a
significant difference in convergence between 4, 5, 6 or 7 dimensions.

The results in this section can be used to inform a termination crite-
rion for Algorithm 1. The simplest option is to terminate the algorithm
after a fixed number of iterations. Alternatively, the algorithm may
be terminated after the volume or Chebyshev radius of 𝐻𝑖 have not
changed more than 𝛿 percent between successive iterations for the last
𝑁conv iterations. In this case, we advise that 𝑁conv be chosen as large
as possible, since we can see from Fig. A.1 that the convergence on
volume and especially radius is often somewhat erratic.

Appendix B. Data

B.1. Load data

In this article we use load data based on two regressions that were
trained on hourly country-level ENTSO-E data from 2010 to 2014
15
from ENTSO-E (2022).16 The aim is to infer country-level synthetic load
data for each weather year between 1980 and 2020, whose profiles re-
late to weather patterns but are otherwise directly comparable. In other
words, we disregard long-term changes in demand due to demographic
and technological developments.

First we infer weekly load profiles (at an hourly resolution) for
each country; for the purpose of this regression we treat holidays
for each country as Sundays (using the Python package python-
holidays Montel, 2022). Specifically, for each country 𝑐, we first
divide the hourly demand values by the daily average value. On these
normalised values, we conduct a regression based on the following
model formulation:

𝐷norm
𝑐 (𝑡) = 𝛼𝑐 ⋅ 𝑡 + 𝛼𝑐, 𝑡 mod 168, (B.1)

16 Due to inconsistencies for Swiss ENTSO-E data, we additionally used data
from the Swiss transmission operator (Swissgrid, 2022).
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Fig. B.1. Weekly load profile for Norway, based on the regression described in Eq. (B.1).
Fig. B.2. Load data (here for Norway in February 2010) split into base load and temperature-driven load. The underlying temperature data are daily, country-wide averages from
ERA5 reanalysis. Base load and temperature-driven load are derived from the regression described in Appendix B.
Fig. B.3. Variability of annual hydropower generation (1980–2020) based on EIA data (Administration, 2022), normalised by the reported hydropower capacities from 2020.
h
h

𝐷

F
i

where 𝛼𝑐 is an annual linear trend component, and the parameters
𝛼𝑐,𝑡 mod 168 describe the weekly profile (see an example of this in
Fig. B.1).

Afterwards we use the concept of heating and cooling degree days
(HDD and CDD resp.) as in Benth et al. (2008) to find temperature-
independent daily demand and demand driven by heating or cooling
demand. For simplicity we only use one threshold for both HDD and
CDD, which we set to be 15.5 ◦C as (Spinoni et al., 2015) use for HDD:

CDD𝑐 (𝑑) = max{𝑇𝑐 (𝑑) − 15.5, 0},

HDD𝑐 (𝑑) = max{15.5 − 𝑇𝑐 (𝑑), 0},

where 𝑇𝑐 (𝑑) is daily average temperature in country 𝑐 during day 𝑑.
Note that by using the daily averages we represent smoothing effects
16

p

of thermal inertia on heating and cooling demand (compare Fig. B.2).
The country-wide temperatures are computed from ERA5 reanalysis
data (Hersbach et al., 2018) via the open-source tool Atlite (Hofmann
et al., 2021). We now conduct a regression on the daily average
load, 𝐷𝑐 (𝑑), with dummy variables for each weekday (where national
olidays are classified as Sundays), and exogenous variables given by
eating degrees and cooling degrees:

𝑐 (𝑑) = 𝛽𝑐,weekday(𝑑) + 𝛽cooling
𝑐 ⋅ CDD𝑐 (𝑑) + 𝛽heating

𝑐 ⋅ HDD𝑐 (𝑑). (B.2)

or both regressions, we test the parameters for statistical significance;
n some cases we thus set the trend parameter 𝛼𝑐 and the cooling
arameter 𝛽cooling to 0.
𝑐
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𝛽

Fig. C.1. Comparison of cost-minimal designs under a 100% emission reduction based on optimisations over individual years compared to the annualised costs of robust designs
(exact, mean, conservative and baseline, respectively) and an optimisation with all 41 years (‘‘41y’’).
Fig. C.2. For 100% emission reduction, annual average generation mixes for the optimal solutions for each single weather year, the optimal solution with all weather years (‘‘41y’’)
and the robust allocations.
d
With these regressions and the temperatures for 1980–2020 from
ERA5, we can compute the artificial load for each hour as follows:

𝐷̃𝑐 (𝑡) = 𝛼𝑐,𝑡 mod 168 ⋅
[

𝛼𝑐 ⋅ (𝑡 mod 8760) + 𝛽𝑐,weekday(𝑡) + 𝛽cooling
𝑐 ⋅ CDD𝑐 (𝑡)

+𝛽heating
𝑐 ⋅ HDD𝑐 (𝑡)

]

, (B.3)

where the index 𝑐 is over countries, 𝑡 is the time in hours, 𝛼𝑐,𝑖 the
regression parameter for the 𝑖th hour of the week, 𝛼𝑐 is the annual trend
component, 𝛽𝑐,𝑗 the regression parameter for weekday 𝑗, and 𝛽cooling

𝑐 ,
heating
17

𝑐 are the regression parameters for one degree of cooling/heating
emand for country 𝑐. We abuse notation slightly by writing CDD𝑐 (𝑡) to
mean CDD𝑐 (𝑑) where 𝑑 is the day containing 𝑡 (and likewise for HDD).
For an example, see Fig. B.2.

We validate the regression on hourly ENTSO-E load data on the
country level for 2015, and show it to be a good fit — more information
about this can be found in the GitHub repository.17

17 https://github.com/aleks-g/multidecade-data/tree/v1.0.

https://github.com/aleks-g/multidecade-data/tree/v1.0
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Fig. C.3. Projections of the near-optimal spaces for different weather years and their intersection under 100% emission reduction. All values are annualised total investment costs
er technology. For illustrative purposes, we only plot the near-optimal spaces for 6 out of 41 weather years (in different hues of blue). The intersection of all 41 near-optimal
paces is filled in yellow and the Chebyshev centre is marked with a cross.
In accordance with load projections for 2030 by the European
ommission18 we increased the demand in each country by 13%.

B.2. Hydropower data

For hydropower data we follow the approach in PyPSA-Eur which
uses ERA5 reanalysis data to generate inflow profiles (using Atlite)
that are then scaled by historical country-level hydro generation data
from the US Energy Information Administration (EIA) (Administration,
2022). We have extended the default dataset in PyPSA-Eur to cover
the entire period of 1980 to 2020, and we have also normalised EIA’s
production data to EIA’s capacity levels of 202017:

gen𝑐 (𝑦) = nom_gen(𝑦) ⋅
cap𝑐 (2020)

cap𝑐 (𝑦)
,

18 https://ec.europa.eu/clima/document/download/ec1acac9-10fe-4eeb-
15f-cad388990e0f_en, Fig. 44 (accessed 23/06/2022).
18
where gen𝑐 (𝑦) and nom_gen𝑐 (𝑦) are the normalised and reported hy-
dropower generation for country 𝑐 in year 𝑦 respectively, and cap𝑐 (𝑦)
is the reported hydropower capacity for country 𝑐 in year 𝑦.

This allows a comparison throughout different years without any
trends in infrastructure development. To avoid anachronisms, we have
distributed generation and capacities of former countries onto the
current states (based on the first year of current borders, e.g. 1993 for
Czechia and Slovakia, or the sum of West and East Germany)17.

The historical generation data ensure that the inflow profiles are
scaled to reasonable values (see the general approach in Schlachtberger
et al. (2017) and in particular Fig. 4 in Liu et al. (2019)); we are inter-
ested in variability and not trends, therefore we want fixed capacities
to have comparable weather years (see Fig. B.3).

Appendix C. Additional results of a 100% emission reduction

We showcase the impact of a 100% emission reduction (as opposed
to the 95% reduction studied in the main text) on the results we
present in this paper. As the other assumptions remain unchanged and
gas turbines are the only sources of CO emissions in our model, this
2

https://ec.europa.eu/clima/document/download/ec1acac9-10fe-4eeb-915f-cad388990e0f_en
https://ec.europa.eu/clima/document/download/ec1acac9-10fe-4eeb-915f-cad388990e0f_en
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Fig. C.4. For 100% emission reduction, a comparison of total investments for selected technologies in the optimal solutions for each weather year and the optimal solution with
all weather years (‘‘41y’’) to the robust point 𝑦ch. Positive values mean greater investment in the given technology by the robust solution.
corresponds to replacing gas as a generation technology with carbon-
neutral alternatives. The results sharpen the uncertainty that weather
variability introduces to renewable power systems. We investigate a
different reduced near-optimal feasible space than before (replacing
the gas investment dimension by two new dimensions, investment in
battery and hydrogen storage). This means that the Chebyshev centre
under this new reduction is additionally robust to changes in invest-
ment in battery and hydrogen storage, which is not the case for the
results in the main text.

Without gas as a dispatchable generation technology, the costs of
the now carbon-neutral power systems increase by 15 to 40 billion
EUR/a, depending on the weather year. The last percentage points of
emission reductions are thus overproportionally costly (as also shown
in Neumann and Brown (2021)), in particular in ‘‘more difficult’’ years.
19

Wind power in combination with storage technologies see an increase
in investment (see Fig. C.1), most pronounced in the 1985, the year
with the highest optimal costs.

Fig. C.2 shows that the different optimal power systems are also
mostly driven by (onshore) wind power, as in the 95% reduction case.
Additionally, it depicts a strengthening of battery and hydrogen stor-
age, which previously did not appear in the optimal solutions, although
their shares of generation vary throughout the years. Similarly, the op-
timal share of nuclear generation becomes more volatile and decreases
not only in the robust allocations (which are characterised by higher
renewable investment by design), but also in the 41-year optimisation.
As nuclear power has higher variable costs than renewable generators,
the existing capacities are not fully used, indicating the competitiveness
of newly installed renewable capacities.

As with the 95% emission reduction, significant investment in both

onshore wind power and solar power is necessary for a power system
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that can withstand weather variability. Figs. C.1 and C.3 show addi-
tionally the need for investment in hydrogen storage and additional
transmission capacities. In comparison to optimal solutions for different
weather years, additional investment in wind power and hydrogen
strengthens robustness against weather variability (see Fig. C.4). The
full decarbonisation increases the value of offshore wind power which
did not feature prominently in the robust solution under 95% emission
reduction (see Fig. 5). Finally, it should be noted that there is a
significant amount of investment flexibility for onshore wind, offshore
wind and solar among the robust solutions for all 41 weather years.
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