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Preface 

The doctoral thesis work was carried out from 2006 to 2010 with three years based at the 

Department of Geology, University of Tromsø and one year based at IFREMER, Brest. The 

work was financially supported by the Norwegian Research Council PETROMAKS projects 

(169514/S30 and 175969/S30), by the European Commission FP6 project HERMES (GOCE-

CT-2005-511234) through collaborative work between IFREMER, Birmingham University, 

NOC Southampton and Tromsø University, and by Statoil.  

Single channel seismic, ocean bottom seismic recorders (OBS), 3D high resolution P-Cable 

seismic and bathymetry data of the study area were acquired during cruises in July 2006 and 

2008 on board R/V Jan Mayen, University of Tromsø. These data were used during stages 1 

and 3 of the thesis together with a 3D seismic data set kindly provided by Statoil for 

academic research. The second stage of the thesis comprised a one-year stay at IFREMER in 

2008 under the Memorandum of Understanding (MOU No. Ref. 05/1215838) between 

IFREMER and the Department of Geology, University of Tromsø. I was employed at 

IFREMER with a CDD (Contrat de durée déterminé). During this period a high resolution 

seismic velocity experiment around a fluid escape feature (chimney) was carried out. The 

data for the experiment were collected during TTR-16 leg-3, on board R/V Professor 

Logachev in June 2006. Ocean bottom seismic recorders (OBSs) were kindly provided by 

UK Ocean Bottom Instrumentation Consortium and by IFREMER. This seismic experiment 

was used as a case study for the development of the tomography software Tomoinv®. I 

benefited from an active, multi-task working environment integrated by colleagues from IFP, 

PGC, IFREMER, Birmingham and NOC Southampton.  

During those four years I participated in workshops within the framework of HERMES and 

PETROMAKS projects as well as in conferences to present and progress (see appendix). I 

benefited from the participation in acquisition, processing and interpretation of most of the 

data used for the research. 

This thesis consists of an introduction and four articles. The articles are dedicated to the 

investigation of fluid distribution and gas hydrate related systems of the mid Norwegian 

continental margin (figure 1). The scientific articles presented are: 
’ 
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Plaza-Faverola, A., S. Bünz, and J. Mienert (2010). Fluid distributions inferred from P-
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field of the mid-Norwegian margin, Marine and Petroleum Geology, 27(1): 46-60. 
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Plaza-Faverola, A., G. K. Westbrook, K. Stephan, R. Exley, A. Gailler, T. Minshull and K. 

Broto, (2010). Evidence from tomographic investigation of Vp variation for 

accumulation of substantial methane hydrate in a fluid-escape chimney in the Nyegga 

pockmark field, offshore Norway. JGR solid earth. v. doi:10.1029/2009JB007078, in press. 

Article 3 

Andreia Plaza-Faverola, Stefan Bünz and Jürgen Mienert.  Repeated fluid expulsion 

through sub-seabed chimneys offshore Norway in response to glacial cycles. Submitted 
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Introduction 

Scope of the thesis 

The comprehension of submarine fluid flow systems is socially and ecologically important for a 

range of reasons. First, natural fluid emissions, particularly methane, have a significant impact on the 

composition of the sea water and possibly the atmosphere, influencing in turn the carbon cycle and 

becoming a potential climate mediator (e.g. Kvenvolden, 1993; MacDonald, 1990). Second, the large 

amount of methane storage as gas hydrates in shallow sediments is considered an unconventional 

future energy resource (e.g., Kvenvolden and Barnard, 1983; Sloan, 2003; Sloan and Koh, 2008). 

Third, sub seabed fluid flow is associated with geohazards like slope instability, gas venting, mud 

volcanoes, and blow outs during offshore exploration (e.g. Judd and Hovland, 2007; Judd et al., 

2002; Nisbet, 2002), including the recent Gulf of Mexico oil spill (e.g., Robertson, 2010).  

In a period of 10 years, marine geological and geophysical investigations revealed approximately 70 

new submarine fluid venting sites worldwide (Mazurenko and Soloviev, 2003). Venting sites are 

recognized mainly by associated seafloor expressions such as pockmarks and mounds appearing in 

bathymetric data. They are also recognized as sub-seabed vertical acoustic blanking zones, known as 

pipes or chimneys, imaged by acoustic methods. Many of the fluid venting sites worldwide are 

inferred to be related to the dynamics of gas hydrate systems (e.g. Ginsburg et al., 1993; Henriet and 

Mienert, 1998; Hovland and Judd, 1988; Paull et al., 1995; Riedel et al., 2002; Suess, 2001; Vogt, 

1997; Westbrook et al., 2008, and references therein). Gas hydrates basically form ice-like features 

with gas trapped inside. Their crystalline arrangement consists of water molecules, which contain 

voids where molecules of gas such as methane, ethane and carbon dioxide, are incorporated (White, 

1979). 

A comprehensive understanding of fluid flow related systems would involve a multidisciplinary 

understanding of processes affecting shallow and deep strata. These processes include fluid 

migration from deep to shallow reservoirs, formation of microbial gas at shallow depths, gas hydrate 

formation and decomposition, fluid venting and pockmarks or carbonate mound formation at the 

seafloor. It is only possible to access sub-seafloor strata over extended regions by way of non-

invasive methods based on wave propagation. Seismic imaging has proved to be a reliable method 

for assessing the distribution of fluid flow related features based on amplitude and frequency 

anomalies. However, the compromise between resolution and depth coverage, which relates to the 

frequency of the used seismic signal, poses a challenge to the integrated investigation of shallow and 
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deep processes associated with these features. In addition, structural elements like fractures and 

small faults, which play a role in fluid migration within shallow sediments, are hardly resolvable in 

low seismic resolution records.  

Applying travel-time inversion techniques for velocity analysis and seismic attributes calculations to 

different resolution seismic data sets, i.e., 3D, 2D single and multi channel and ocean bottom 

seismometer (OBS) data, the work presented here integrates different scales of geophysical 

investigations, in order to offer an overall comprehension of fluid flow systems at a specific hydrate 

province, Nyegga, located north of the giant Storegga slide of the mid-Norwegian continental margin 

(figure 1).  

The thesis work was divided into three stages:  

The aim at the first stage was to assess the distribution of shallow gas reservoirs and vertical 

paths for gas migration from deep sources. This was done by integrating 1D velocity modeling to 

3D seismic imaging and mapping. Two areas with the highest concentration of chimneys with 

seafloor expressions were revealed. Each area was found to be associated with shallow gas 

layers. Velocity models and 3D imaging at this stage covered the upper 2000 m of sediments. 

Multi channel seismic profiles provided information about structural features potentially involved 

in the fluid migration towards shallow strata (article 1).  

 At the second stage, the aim was to increase the resolution of the investigation looking at 

anomalous velocities associated to sediments disturbed by fluid escape. A high-resolution 

tomographic seismic experiment was performed around one vertical fluid escape feature 

(chimney) in Nyegga associated with authigenic carbonate precipitations at the present seafloor. 

The experiment used an array of sixteen OBSs distributed around the chimney. The tomography 

resulted in a 3D velocity model for the upper 500 m of sediments. Possible formation scenarios 

and internal structures of chimneys in Nyegga were suggested based on the tomographic results 

(article 2).  

Finally, at the third stage the aim was to establish a time-scale for fluid escape in Nyegga. This 

was attempted through detailed characterization of sediment deformation as responses to fluid 

flow entering the gas hydrate stability zone. 3D high resolution seismic acquired with the newly 

developed P-Cable system (Petersen et al., 2010; Planke and Berndt, 2003) provided the 

necessary resolution. Two articles resulted from this study. Article 3 reports evidences for 

periodicity in fluid expulsion through chimneys inferred from depositional settings against buried 

methane vent-related features indicating paleo-seepage. Article 4 characterizes the morphology 
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and distribution of dim-amplitude anomalies, possibly associated with sediment remobilization 

and hydrate dissociation within sediments beneath paleo-bases of the gas hydrate stability zone. 

In addition it identifies relationships between deep faults and the distribution of shallow fluid 

flow related features.  

The thesis presents results from 4 articles that together bring us closer to the overall understanding of 

fluid flow related systems in Nyegga. While each article has separate and specific aims, the problems 

and results covered by the four articles are nevertheless guided by a single motive: to access 

geophysical and geological indications of sub-seabed fluid flow processes by the implementation of 

non-invasive methods. 

The following sections of this introduction provide a general overview of focused fluid flow and its 

relation to gas hydrate associated mechanisms. They also offer an overview of indirect seismic 

methods implemented for the assessment of fluid and hydrate distribution in continental margins. 

The sections introduce a series of integrated problems and concepts relevant for understanding the 

content of the included articles. The articles are referred to within the different sections of this 

introduction in order to illustrate how each of them contributes to the overall research context.  



 
Figure 1: Location of the Nyegga region and major hydrocarbon prone sedimentary basins off 

the mid-Norwegian continental margin. Located north of the Storegga slide, Nyegga is 

bounded by the Vøring plateau to the north and the Møre basin to the south.  
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Insights into focused fluid flow in passive continental margins 

It is common to use “fluid” to refer only to liquid. In marine geology and geophysics, however, the 

term fluid encompasses liquids and gases. Pore water (seawater and groundwater) saturating 

sedimentary rocks, brine (water with high salt contents) and hydrocarbons (oil and gas) are fluids 

commonly implicated in focused fluid flow processes in passive continental margins. Particularly 

methane gas, being highly abundant in the earth’s crust, is often found to be related with fluid flow 

features and gas hydrate formation. Methane concentrations in the earth’s crust are primarily formed 

through reactions of organic matter (e.g. Schoell, 1988). According to its origin methane can in turn 

be of two types: microbial, where methane is produced and consumed by microbial processes1; or 

thermogenic, where methane results from the transformation of organic matter under the influence of 

high temperatures (e.g. Galimov, 1988). In opposition to methane of biogenic origin, methane can 

also derive from processes that do not involve organic matter but thermochemical reactions, i.e., 

abiogenic methane (e.g., Schoell, 1988).  

In porous media fluid flow rates are primarily controlled by Darcy’s law, which basically states that 

the amount of fluids passing through a rock is dependent on the permeability of the rock and on the 

pore pressure difference between the two ends of the flow system. In systems where permeability is 

initially low, but faults and fractures are induced by excess pore pressure generation, fluid flow rates 

become more dependent on the permeability of the generated conduits for fluid migration (e.g. 

Clennell et al., 1999; Fisher et al., 2003; Jain and Juanes, 2009). Common mechanisms allowing 

lateral and vertical fluid migration within sediments are diffusion (e.g., when water is not in motion 

but gas spreads through water) and advection (e.g., when gas is carried upward in solution). The 

transport of methane through both aqueous diffusion and advection are key mechanism that explain 

the transport of methane into the gas hydrate stability zone when gas hydrates have already formed 

and start sealing the porous space (Liu and Flemings, 2007). Methane can also be transported 

through the sediment column as free gas when its maximum saturation in water is exceed (Liu and 

Flemings, 2007).    

Major driving forces triggering fluid migration in continental margins are overpressure and material 

buoyancy. Excess pore pressure can be induced by external processes such as sediment compaction 

 
1 Generally the term biogenic is used to refer to gases produced and consumed by microbial processes. However, it is 

possible to find in the literature the term “biogenic” used to refer to both microbial and thermogenic gas as opposed to 

abiogenic.   



after rapid burial, emplacement of an efficient seal trapping fluids and/or biogenic gas production 

being faster than dissipation (e.g. Berndt et al., 2005; Kjeldstad et al., 2003; Rise et al., 2006). 

Buoyancy of sediments occurs in cases of bulk-density inversion (Anketell et al., 1970; Hovland and 

Judd, 1988, pp 124-128; Løseth et al., 2003). This happens when a layer composed of low density 

minerals (e.g. salts) or in which buoyant fluids are accumulating (e.g. gassy mud), is overlain by 

consolidated sediments with higher bulk density (figure 2). In this context, articles 1 and 4 describe 

seismic responses (at different resolutions) of sediments affected by remobilization and migration of 

fluids from deep to shallow strata in the investigated region. 

 

 

 

Figure 2: Representation of a system where buoyant material rises through overlying material 

due to bulk density inversion. Layer A has a lower density compared to layer B (from Anketell 

et al., 1970). 

 

When pore pressure locally exceeds the lithostatic pressure, and the seal hindering the upward 

migration of fluids is bypassed (e.g. Cartwright et al., 2007), or when buoyant material starts rising, 

mud diapirs, mud volcanoes, pockmarks and mounds (figure 2, 3) among other focused fluid flow 

related features are formed (e.g. Dugan and Flemings, 2000; Hustoft et al., 2009). Cartwright et al. 

(2007) refer to these as “seal bypass systems” and classify them as fault related, intrusion (sediment 

remobilization) related and pipe (chimney) related. In addition Hovland and Judd, (1988) and Judd 
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and Hovland, (2007, pp. 45-132) provide a compilation of processes and distribution of seabed fluid 

flow features worldwide.  

The release and vertical transport of fluids due to excess pore pressure is believed to be episodically. 

Fluids progress towards shallower strata, bypassing seals, as the sedimentary column is built 

upwards (e.g. Roberts and Carney, 1997). Episodic release of fluids has been inferred by the analysis 

of mineral deposits (e.g. Cathles and Smith, 1983) and by observational data on present-day 

seafloors (Roberts and Carney, 1997, and related articles). Nevertheless, estimating the time of 

activity of relict fluid flow associated features remains challenging due to the limited access to 

buried evidence of paleo-activity. Article 3 explores the possibility of inferring time scales for 

venting periodicity using high resolution 3D seismic to find evidence for truncation of sediments 

against strata deformed by fluid expulsion in the past.  

Vertical conduits (chimneys) connecting fluid reservoirs in depth with seafloor fluid flow 

expressions (e.g., pockmarks and mounds) have been widely described in many sites on continental 

margins using seismic data (e.g. Cartwright et al., 2007; Haacke et al., 2009; Løseth et al., 2009; 

Riedel, 2007). However, the exact internal structure of these chimneys, i.e. whether they are 

dominantly filled with free gas and/or gas hydrates or carbonate concretions, is still among the most 

challenging questions to be answered. Not least because reflectivity at the chimney’s interior is 

frequency dependent (Wood et al., 2008). Furthermore, both free gas and gas hydrate bearing 

sediments have been related to both high amplitude events and attenuation in the seismic profiles, 

depending on the stratigraphic settings and magnitude of fluid venting (Hornbach et al., 2008; 

Haacke et al., 2009; Riedel et al., 2009; Wood et al., 2008). Articles 2 and 3 approach the problem of 

chimney internal structures through detailed tomographic modeling and 3D-high resolution seismic 

characterization. They also discuss possible scenarios of internal composition of chimneys.  

In petroliferous systems significant accumulations of hydrocarbons may still occur under the 

presence of seal bypass systems if the amount of hydrocarbon feeding the reservoir exceeds the 

speed of depletion through the bypassed seal (Cartwright et al., 2007). Faults can act as conduits for 

fluids migrating from deep reservoirs to shallow porous strata given that the faults have higher 

permeability compared to the surrounding sediments and that significant amounts of fluids are to be 

transported (Fisher et al., 2003). In other cases, such as faulting in porous sandstones, faults can act 

as barriers to fluid flow due to post-faulting extensive quartz cementation (Fisher et al., 2003). A 

close relation between faults and fluid escape feature distribution has reiteratively been evoked (e.g. 

Bünz et al., 2003; Gay and Berndt, 2007; Gay et al., 2006; Hansen et al., 2005; Hustoft et al., 2007; 



Pilcher and Argent, 2007; Roberts and Carney, 1997). However, in many cases this relationship has 

been difficult to prove, in spite of strong intuition, due to the irresolvable character of faults and 

fractures in seismic resolution. By integrating different resolution seismic data sets (shallow and 

deep coverage) article 4 offers evidence of the relationship between faults and sediment-gas contact 

anomalies at shallow gas pockets and an indirect relationship with seafloor fluid escape features 

distribution.  

 

 

Figure 3: Schematic representation of focused fluid flow systems showing the distribution of 

fluids and relation between deep and shallow systems in passive continental margins (from 

Berndt, 2005).  
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Fluid flow through sediments under gas hydrate stability conditions  

In marine environments with water depths generally greater than 300 m, with appropriate 

configurations of physical conditions such as low temperatures, and sufficient gas and water supply, 

sediments may enter the gas hydrate stability zone (GHSZ) (e.g. Xu and Ruppel, 1999). Gas hydrate 

occurrence in continental margins has been confirmed by the deep ocean drilling programs (DSDP, 

ODP and IODP) (e.g., Riedel et al., 2006a; Trehu et al., 2006; Westbrook et al., 1994).  

Gas hydrate kinematics role as future energy in society and their distribution worldwide are not in 

the scope of this introduction. Some relevant references covering these topics are, among many 

others, Kvenvolden and Barnard, (1983); Kvenvolden, (1993); Sloan, (1998); Xu and Ruppel, 

(1999); Buffett, (2000); Sloan and Koh, (2008). Instead, this introduction offers a brief insight into 

processes that relate fluid flow and gas hydrate emplacement within the GHSZ.  

The vertical extension of the GHSZ is limited (figure 4). It is determined by a combination of bottom 

water temperatures, geothermal gradient, lithostatic and hydrostatic pressure, pore water salinity, 

amount and composition of available gases, as well as physical properties of the host sediments (e.g. 

Clennell et al., 1999; Henry et al., 1999). In turn these physical conditions determine whether free 

gas and water, expelled from reservoirs, will migrate all the way up to the seafloor or whether they 

will form gas hydrates. Several mechanisms have been proposed to explain the formation of fluid 

escape chimneys throughout the GHSZ. Although these mechanisms are still in debate, scientists 

seem to agree in that methane gas hydrates buffer or enable the pass of fluids within the GHSZ 

towards the seafloor. The fluid migration depends to a large degree on stratigraphic settings, i.e. 

coarse or fine grained consolidated sediments, and gas/water flow rates, i.e. high or low flux (e.g. 

Flemings, 2003; Haacke et al., 2007; Liu and Flemings, 2007). Article 2 suggests a model where gas 

hydrates, emplaced mainly in veins and fractures at the interior of chimneys hinder the escape of free 

gas towards the present day seafloor. Chimneys are inferred to form by vigorous fluid escapes at 

early stages of fluid flow activity.  

An important component of a gas hydrate system is the free gas zone (FGZ) formed directly beneath 

the base of the GHSZ. Free gas beneath the GHSZ can be sourced from deeper reservoirs, biogenic 

break down of organic material, or can be derived from gas hydrate dissociation processes such as 

hydrate recycling (e.g. Haacke et al., 2007; Pecher, 1996). Often a distinctive bottom simulating 

reflector (BSR) forms close to the base of the hydrate stability zone. The BSR is associated with the 

acoustic interface between gas hydrate bearing sediments (characterized by increased seismic 

velocities) and underlying gas bearing sediments (characterized by low seismic velocities). It can be 



related to very small amounts of gas hydrates above it and small concentrations of gas beneath it 

(MacKay et al., 1995). Localizing BSRs is a highly implemented non-invasive method for defining 

gas hydrate distribution (e.g. Berndt et al., 2004; Bünz et al., 2003; Shipley et al., 1979). 

Unfortunately, a proper BSR cannot always be observed. Instead, the presence of high amplitude 

zones (HAZ) beneath the estimated depth of the BGHSZ, are indicators of the gas hydrate/free gas 

transition zone. Articles 1 and 2 show that P-wave velocity modeling, based on inversion of travel-

times form  multi-offset seismic data, is a robust method for the identification of gas or gas hydrate 

bearing sediments when lacking proper BSR reflectors. Amounts of free gas in shallow reservoirs 

and gas hydrates concentration at the interior of one chimney at Nyegga have been quantified 

implementing velocity modeling. 

  

 

 

Figure 4: Schematic diagram of the gas hydrate stability zone (GHSZ) extension in marine 

sediments. The base of the GHSZ is where the geothermal gradient curve intersects the 

hydrate stability curve. The top of the GHSZ lies in the water column where the hydrothermal 

gradient curve intersects the hydrate stability curve.  
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Background of the study area: fluid flow offshore mid-Norway 

Pockmarks, mounds, mud volcanoes and other features indicating vertical fluid flow have been 

found at several locations offshore Norway (i.e. Vøring basin, Vema Dome, Gjallar ridge, northern 

flank of the Storegga slide) at water depths up to 1000 m and deeper (e.g. Bouriak et al., 2000; Bünz 

et al., 2003; Hansen et al., 2005; Hovland et al., 1998; Vogt, 1999). The occurrence of gas hydrate in 

the region was first inferred in the 80s by the observation of a BSR at the northern flank of the 

Storegga slide (Bugge et al., 1988), one of the world’s biggest submarine slides discovered so far. 

Since then the inference of gas hydrate occurrence has been extended to adjacent areas north, west 

and south of the Storegga slide, through the implementation of non-invasive methods, i.e. wide-angle 

seismic data velocity analysis and BSR mapping (Bouriak et al., 2000; Bünz et al., 2003; Bünz et al., 

2005; Mienert et al., 2005; Mienert et al., 1998; Posewang and Mienert, 1999; Westbrook et al., 

2008).  

At the Gjallar Ridge, north of the Vøring basin, buried fluid flow related mounded-features 

seemingly formed during the Paleogene, and reactivated during late Pliocene (Hansen et al., 2005). 

They are confined to Kai, Brygge and deeper formations (Hansen et al., 2005) and thus are 

considerably older than the fluid escape related features in Nyegga. In Nyegga most of the chimneys 

connecting shallow gas reservoirs with pockmarks and mounds are confined to the shallowest 

Pleistocene formation, called Naust (Hjelstuen et al., 2010; Hustoft et al., 2010; Hustoft et al., 2007). 

Sampling at different sites at the Nyegga pockmark field have confirmed the occurrence of shallow 

gas hydrate (Akhmetzhanov et al., 2008; Ivanov et al., 2007; Vaular et al., 2010), micro seepage of 

methane gas (e.g. Nouzé and Fabri, 2007) and authigenic carbonate precipitation at the interior of 

mounds and pockmarks at the present day seafloor (Hovland and Svensen, 2006; Hovland et al., 

2005; Mazzini et al., 2006; Paull et al., 2008). These observations together with the lack of evidence 

for vigorous venting at present suggest that the fluid escape features in Nyegga formed as vigorous 

vents in the past but are at present of very low activity or inactive.  

Concerning the timing of fluid escape, a Weichselian major period of overpressure and chimney 

formation has been suggested (Hustoft et al., 2009). Differential loading and compaction induced by 

rapid deposition of the Plio-Pleistocene sedimentary succession on the mid-Norwegian margin is 

believed to play a major role in the generation of overpressure and fluid flow escape in the margin 

(Hustoft et al., 2009; Kjeldstad et al., 2003). It has been a debate whether the chimneys are the result 

of a single fluid escape period or if more than one period of overpressure and chimney formation has 

occurred associated to glacial cycles. With repeated ice sheets advances to the shelf edge during the 
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last 0.5 Ma (Hjelstuen et al., 2005; Hohbein and Cartwright, 2006; Rise et al., 2005) in mind, this 

thesis tackles the problem of fluid escape-timing. Article 3 shows fluid escape periods are seemingly 

associated to last stages of Elsterian, Saalian and Weichselian glaciations. Particularly the end of the 

Saalian seems to be an important period in the history of chimney formation in Nyegga. 

To which extent can iceberg-scouring be considered a process that reduce the overburden and induce 

fluid escape by depressurization or whether the infill of relic iceberg ploughmarks with fine grained 

sediments have acted as seal for escaping fluids in the investigated Nyegga site are aspects that 

remain poorly investigated. Article 3 shows smaller scale relic ploughmarks that have an age of 

approximately 400 ka. Ploughmarks density and estimated water depths of 430-450 m suggest that 

Elsterian glaciations had a moderate influence on the Nyegga region.  Interestingly, this paleo-

seafloor with abundant iceberg ploughmarks in Nyegga correlate in depth and character with an 

iceberg-carved paleo-seafloor towards the Haltenbanken region found to be an efficient seal to 

underlying gas-charged sands (Gallagher et al., 1989; Heggland et al., 1996)2. An extended 

investigation based on this similarity may provide us with new insights to better understand the 

nature of the seal of shallow reservoirs at Nyegga.  

The base of the gas hydrate stability zone as indicated by a BSR was mapped in an extended region 

at the northern escarpment of the Storegga slide comprising Nyegga (Bünz et al., 2003).  Polygonal 

faults has been mapped within the fine-grained, hemi-pelagic sediments of the Kai (Berndt et al., 

2003), and lower Naust Formations (Gay and Berndt, 2007) as well as the upper Brygge formation 

(Hansen et al., 2005) towards the Vøring Plateau. Polygonal faults seem to provide pathways for 

fluids towards shallow strata and influence the distribution of mounds and pockmarks in the area 

(Berndt et al., 2003; Bünz et al., 2003; Gay and Berndt, 2007; Hustoft et al., 2007). If polygonal 

faults are important controllers of fluid flow distributions and overloading has been an important 

trigger of excess pore pressure build up in the margin, the question arises why are pockmarks and 

mounds not observed everywhere between Vøring and Nyegga or south of Storegga where highly 

polygonal faulted sediments and glacial sediment loads exists along the mid-Norwegian margin 

(Berit Hjelstuen, personal communication)? An answer may be given by considering a third factor in 

addition to overloading and polygonal faulting, which is the existence of deep hydrocarbon 

reservoirs at specific locations as a source of fluids towards shallow reservoirs (article 4).  

 
2 The iceberg-carved paleo seefloor at Haltenbanken and its sealing property was found during one of the Statoil projects 

dedicated to find explanations for the West-Vanguard blowout in 1985 (Judd and Hovland, 2007, p 178). The 

Haltenbanken region extends only a few km east from Nyegga (figure 1). 
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Non-invasive seismic methods for assessing fluid and hydrate distribution 

So far, widespread and relatively low cost detection of hydrate and gas distribution has relied on 

indirect, non-invasive methods (e.g. Riedel et al., 2006b). Detection of BSRs in seismic profiles and 

high-resolution seismic velocity analysis are methods commonly implemented (e.g. Bünz et al., 

2005; Westbrook et al., 2008). In this framework the doctoral thesis combine seismic velocity 

modeling techniques, geophysical signal attribute analysis and seismic mapping applied on different 

seismic data resolution (i.e. multi-offset ocean bottom seismometer recordings, 2D single channel, 

multi-channel and 3-D seismic data) (figure 5) to improve the comprehension of fluid flow and gas 

hydrate formation processes. 

Complex geological formations characterized by lateral and vertical velocity changes and intrusions 

of sediment bodies of anomalous low or high compressional wave velocities (e.g. gas chimneys, gas 

hydrate or carbonate concretions) can be inferred through forward or inverse velocity modeling (Zelt, 

1999, and references therein). In forward modeling travel times are calculated for inferred interval 

velocities and depths of interfaces (figure 6). Velocity and depth values are manually and iteratively 

optimized so that residual times (calculated minus observed travel times) are minimized. Inverse 

modeling searches simultaneously, through an iterative resolution of least-squared functions, for all 

variables (i.e. depth and velocity) that best satisfy the observed traveltimes. That is, depths and 

velocities that minimize residual times.  

This study implemented, in a first approach, 1D inverse P-wave velocity modeling (Zelt, 1999) 

integrated into a 3D seismic interpretation to infer the gas distribution within shallow reservoirs in 

the Nyegga region (article 1). In a second approach the resolution of the P-wave velocity 

investigation was increased by building a detailed 3D velocity model around a particular gas 

chimney (article 2) through the implementation of a reflection tomography algorithm (Jurado et al., 

1996). The implemented reflection tomography technique computed the velocity model (composed 

of P-wave velocity function and interface geometry of sub-seafloor layers) that better explains travel-

times recorded by ocean bottom seismometers (figure 5) deployed around the chimney (figure 6). 

The mathematical expression of the tomography (figure 6) is composed of three terms: (1) 

comparison of calculated minus observed travel-times; (2) control of the roughness of the interfaces 

during inversion; (3) control of the roughness of the velocity functions during inversion. Geological 

constraints based on a priori information (borehole data, available velocity estimations, geometry of 

reflectors on stacked data, etc) are often included in the inversion. 
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Homogenous and patchy distribution of gas produces anomalous decreases in compressional waves 

(P-waves) passing through gas bearing sediments. Low velocity anomalies are in general good 

indicators of free gas in sediments. In contrast, both pure gas hydrate, having P-wave velocities 

around 3.5 km/s (Sloan Jr, 1998) and carbonate concretions, with P-wave velocities of 3.4-6.5 km/s 

(Anselmetti and Eberli, 1993) would induce anomalous increases of compressional wave velocities. 

In addition, thick sequences of glacigenic debris flows (GDF) deposited along the mid-Norwegian 

margin (e.g. Berg et al., 2005; Hjelstuen et al., 2005), characterized by high density material, show 

P-wave velocities comparable to gas hydrate bearing sediments (Bünz et al., 2005). Article 2 

suggests a model for the internal structure of chimneys in Nyegga in which high velocities are 

explained by the occurrence of mainly gas hydrates. However, a formation scenario that includes 

authigenic carbonate build ups formed at a paleo-seafloor cannot be ruled out. Article 3 explores this 

formation scenario by looking at stratigraphic indicators of paleo-vent-related authigenic carbonate 

dome-like and pockmark-like features at different depths within the GHSZ.  

The resolution of seismic investigations is dependent on the dominant frequency of the acoustic 

signal generated and recorded (Yilmaz and Doherty, 2001, pp 1801-1807). High frequency signals 

have short vertical coverage but high resolution. Inversely, low frequency signals penetrate deeper 

but have a lower resolution. For a better understanding of processes involved in fluid vents and 

hydrate formation, the relationship between fluid escape features, i.e. chimneys and shallow gas 

pockets, generally affecting the upper hundreds of meters of the sedimentary column, and underlying 

deeper formations one needs to integrate seismic data from low to high resolution (article 4). The 

present study benefited from the access to different resolution seismic data sets from both, industry 

and academia, to explore the role of deeper sources and faults that connect to and sustain shallow gas 

accumulations and hydrate formations in the Nyegga region (article 4). This thesis exploits the 

benefits of different resolution seismic data sets to improve the overall understanding of fluid flow 

systems in continental margins.  

 



 

Figure 5: Representation of a marine deployment of ocean bottom seismic recorders (OBS) 

manufactured by SEND Off-Shore Electronics (www.send.de) 

Image from: http://www.send.de/pics/obsinwater.jpg 

 

Figure 6: Tomography principle. The tomography consists in solving the direct (ray tracing) 

and indirect (inverting to search for the best interface and velocity coupling satisfying observed 

travel times) problems. Input data consists of travel time picked on multi offset (OBS) and 

single channel seismic (SCS) data (term 1 of the equation). Regularization factors and 

geological constraints from a priori information are included to control the roughness of the 

search interface and velocity functions (terms 2 and 3 of the equation respectively).  
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Summary of the articles 

Article 1: Fluid distributions inferred from P-wave velocity and reflection seismic amplitude 

anomalies beneath the Nyegga pockmark field of the mid-Norwegian margin. 

Andreia Plaza-Faverola, Stefan Bünz, Jürgen Mienert 

The distribution of fluids in the subsurface at Nyegga was investigated through the assessment of 

anomalous low P-wave velocity zones and anomalous high amplitude zones in 2D and 3D seismic 

data. Two levels for fluid accumulation were characterized and mapped within the shallowest 500 m 

of sediment in the whole studied area. The shallower level is at approximately 250 mbsf and it is 

laterally discontinuous. Towards the east fluids accumulate in a contourite body sealed by glacigenic 

debris flow. Towards the west fluids accumulate beneath the BSR seemingly trapped by gas hydrate 

bearing sediments. The deeper level for fluid accumulation extends laterally at approximately 450 

mbsf. Gas saturations were estimated based on effective medium theory. Fluids are inferred to spread 

laterally from major paths for deep sourced fluid vertical migration and vertically towards the 

seafloor through fluid flow escape features, so called chimneys. The distribution of chimneys was 

proved to be related to the lateral distribution of fluids within the shallower level for fluid 

accumulation. A conceptual model was presented to suggest major controlling factors for fluid 

migration at specific locations within Nyegga.  

Article 2: Evidence from 3D seismic tomography for a substantial accumulation of gas hydrate 

in a fluid-escape chimney in the Nyegga pockmark field, offshore Norway. 

Andreia Plaza-Faverola, Graham K. Westbrook, Stephan Ker, Russell J.K. Exley, Audrey Gailler, 

Tim A. Minshull and Karine Broto. 

A high resolution P-wave velocity investigation around one of the chimneys in Nyegga, associated to 

a dome like structure at the seafloor, was carried out through tomographic modeling. The seismic 

experiment consisted of an array of sixteen 4-component ocean-bottom seismic recorders deployed at 

approximately 100-m separation and a dense network of shots to define the 3D variation of the 

chimney’s structure and seismic properties. A reflection tomography of the upper 350 m of 

sediments revealed an anomalous high velocity zone at the interior of the chimney within the gas 

hydrate stability zone and confirmed the presence of the previously inferred two layers for gas 

accumulation beneath the base of the gas hydrate stability zone and deeper. A model of the internal 

structure of the chimney based on the emplacement of gas hydrate in fractures and veins explains the 

observed velocity anomalies and positive relief of interfaces at the chimney flanks and interior. 

Assuming a fracture-filling model as likely, maximum hydrate concentrations were estimated to 11-
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27 % of the total volume applying time average relationships depending on how host-sediment 

properties are affected by hydrate formation.  

Article 3: Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response 

to glacial cycles. 

Andreia Plaza-Faverola, Stefan Bünz and Jürgen Mienert 

One of the less understood mechanisms of fluid flow through chimneys in sedimentary basins is the 

timing of fluid flow. This paper uses high-resolution 3D seismic data to search for stratigraphical 

settings possibly evidencing burial of paleo-fluid escape related features. Seismic attribute maps 

show lateral amplitude anomalies that characterize the location of truncated strata at certain depths 

against chimneys flanks. The depositional pattern and activity of chimneys is inferred from these 

seismic geomorphologic data and an established seismic stratigraphy. The results suggests at least 

three major periods of fluid flow activity in the Nyegga region with major fluid expulsions that are 

possibly driven by excess overpressure build up within the late stages of the Elsterian, Saalian and 

Weichselian glaciations. By analogy with observations at the present day seafloor a model is 

presented to explain the truncation of seismic reflectors by deposition of sediments against buried 

and preserved carbonate domes or by strata truncation due to sediment wash-out during pockmark 

formation.    

Article 4: The free gas zone beneath gas hydrate bearing sediments and its link to fluid flow: 3-

D seismic imaging offshore mid-Norway. 

Andreia Plaza-Faverola, Stefan Bünz and Jürgen Mienert 

The free gas zone (FGZ) beneath the present day base gas hydrate stability zone (BGHSZ), assessed 

in articles 1 and 2 by seismic velocity modelling, was investigated using high-resolution 3D P-Cable 

seismic data. The characterization of the FGZ focuses on determining the morphology and 

distribution of dim-amplitude anomalies confined to sediments within the 80 m thick FGZ 

immediately beneath the BGHSZ. The identified dim-amplitude anomalies are interpreted as 

evidence of sediment remobilization possibly aided by hydrate dissociation at focused fluid flow 

zones beneath bases of the GHSZ. Estimations of paleo-depth locations of bases of the GHSZ for the 

last 160 ka suggests that the shape and vertical extension of the anomalies has been controlled by 

less permeable interfaces, likely related to gas hydrate bearing sediments, at gas-gas hydrate phase 

boundaries. Deeper structures indicate that faulting controls the distribution of gas feeding the free 

gas zone beneath the BGHSZ forming zones of focused fluid flow prone to excess pore pressure 
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generation. The distribution of mounds and pockmarks seems, to some extent, to be associated with 

these areas of localized excess pore pressure. 

Future research  

Sampling deep within at least one chimney structure in Nyegga, i.e. drilling through it, would be the 

most straight forward method to test models about the internal geological structure and possible gas 

hydrate and/or authigenic carbonate build ups within chimneys. Why this hasn’t been done so far 

probably has economical and ecological reasons. It has been through the implementation of non-

invasive seismic techniques that characterization of gas hydrate provinces at the Norwegian margin 

has been achieved. The integration of different seismic data sets available for this study can still be 

exploited to get relevant information for the understanding of fluid flow systems in gas hydrate 

provinces. There are four main topics of interest that can be approached as a continuation of the work 

done during this doctoral thesis. 

1- Depth or time migration of the 3D P-Cable data using available interval velocities from articles 1 and 

2. Having the required disk memory capacity and running interfaces would allow testing different 3D 

migration algorithms and study the effect of migration at chimney flanks. If the quality of the 

migrated data allows detailed imaging it may be even possible to find evidence for brecciation, 

indicating fracturing of hard material at the interior of chimneys.  

2- 3D mapping and inversion of the amplitude field of diffractions associated to the chimneys is of 

interest to determine chimney wall structures. Diffractions at the flanks and front of the chimneys are 

indicators of strong acoustic impedance contrast at the chimney interior respect to the hosting 

sediments or indicators of structural relief at the flanks. Automatic picking of diffractions shows two 

different patterns of distribution of diffraction hyperboles (figure 7). The one pattern is concentric to 

the chimneys centers, being likely related to structural relief, and the other one is chaotic at the 

interior of chimneys likely related to the presence of diffracting bodies such as brecciated carbonate 

built ups or gas hydrate bearing sediments. Inversion of diffraction amplitude fields can help to infer 

geometries of diffracting bodies inside the chimneys. An experiment based on the work by 

Mahapatra and Mahapatra (2009) was started as part of this thesis. Diffractions at the flanks of 

diverse chimneys form the 3D P-cable data set are used as input for inversion. Some results of the 

inversion are already available but analysis of the results suggests that the parameters of inversion 

and the scale of the inverted amplitudes need to be revised.   
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3- The resolution and coverage of the 3D P-Cable data sets are ideal for characterizing with a unique 

degree of detail structures and seismic morphology within Quaternary/Pliocene sedimentary 

sequences. Iceberg-scour features have been found at different depths within Nyegga. Some of these 

features are included in the present thesis as part of discussions about the relationship between fluid 

flow activity and glacial cycles. However, some observations remain to be investigated in detail. 

Some depression-like features, bigger than traditionally observed pockmarks, have been mapped at 

the base of the high amplitude zone underneath the GHSZ (figure 8). The depressions may provide 

evidence of fluid venting from deep reservoirs during the past or may be relevant for the 

reconstruction of grounded ice blocks and the local glacial history.  

4- Comparison of geophysical attributes from an active vent site at present (e.g. Vestnesa Ridge) with a 

non active vent site (e.g. Nyegga) using similarly processed 3D P-cable data sets may provide 

valuable guidelines for seismic interpretation and characterization of active and inactive venting 

systems.  



 

 

Figure 7: 3D distribution of asymptote planes to diffraction hyperboles associated to different 

chimneys in Nyegga. Diffractions appear at the flanks and at the interior of the chimneys. 

Calculation of azimuth of asymptotes to diffraction hyperboles reveals patterns of closed 

(diffractions all around) and open (diffractions interrupted along a fault) chimneys.   
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Figure 8: Seismic properties of depressions (1, 2, 3) at the base of the high amplitude zone 

beneath the gas hydrate stability zone (GHSZ) in the investigated Nyegga site. The black small 

arrows (A) are indicating onlap fill of the depressions in the cross-sectional view. The RMS 

map (B) allows comparing the size of the depressions with the size of iceberg ploughmarks 

mapped a few meters above, i.e. at the depth of the base of the GHSZ. The thickness map (C) is 

calculated respect the base of the GHSZ. The depressions are 11-20 m deep.  
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