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Abstract: Mitochondria play a crucial role in cellular metabolism. This paper presents a novel
method to visualize mitochondria in living cells without the use of fluorescent markers. We
propose a physics-guided deep learning approach for obtaining virtually labeled micrographs of
mitochondria from bright-field images. We integrate a microscope’s point spread function in
the learning of an adversarial neural network for improving virtual labeling. We show results
(average Pearson correlation 0.86) significantly better than what was achieved by state-of-the-art
(0.71) for virtual labeling of mitochondria. We also provide new insights into the virtual labeling
problem and suggest additional metrics for quality assessment. The results show that our virtual
labeling approach is a powerful way of segmenting and tracking individual mitochondria in
bright-field images, results previously achievable only for fluorescently labeled mitochondria.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Tracking movements and analyzing the activity of sub-cellular organelles like mitochondria create
new opportunities for biological studies [1]. On one hand, to support such studies, computer
vision based object tracking approaches [2,3] need to be adapted to relevant bio-image data. On
the other hand, the bio-image data must fulfil certain requirements to be appropriate for the
particular computer vision task at hand: (a) ability to exclusively capture the structures of interest
with sufficient space and time resolution, (b) ability to record videos over a longer time duration,
and (c) accomplishing a and b without significantly perturbing the sub-cellular system.

Label-free linear optical microscopy solutions, such as differential interference contrast,
bright-field, and phase contrast microscopy, use the inherent optical contrast of the sub-cellular
organelles relative to the cytosol present in cells to perform imaging [4]. Therefore, no dyes are
needed to label the organelles, and both photo-bleaching and perturbation problems associated
with labeling are avoided.

As we describe next, there is only one problem with label-free imaging that restricts its
widespread use for organelle-specific sub-cellular studies. In label-free microscopy, everything
with an optical contrast gets imaged simultaneously through light scattering, absorption, and
interference phenomena. Therefore, it is difficult to either visually or computationally distinguish
and isolate organelles of a specific type from the rest of the cell. This problem is illustrated in
Fig. 1, where label-free (bright-field) with their corresponding fluorescence microscopy images

#464177 https://doi.org/10.1364/BOE.464177
Journal © 2022 Received 17 May 2022; revised 24 Aug 2022; accepted 7 Sep 2022; published 28 Sep 2022

https://orcid.org/0000-0002-8614-6611
https://orcid.org/0000-0003-4462-4600
https://orcid.org/0000-0001-7841-6952
https://orcid.org/0000-0002-3693-6973
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.464177&amp;domain=pdf&amp;date_stamp=2022-09-28


Research Article Vol. 13, No. 10 / 1 Oct 2022 / Biomedical Optics Express 5496

are provided. The composite images show that most structures visible in bright-field are not
mitochondria, and that it is hard to identify which ones are.

Fig. 1. Example of a bright-field image with the corresponding fluorescence image. The
bright-field and fluorescence images are shown overlayed in the third panel (scale bar 2.5
µm). Note that the majority of structures visible in bright-field marked by the orange arrows
are not mitochondria. Features indicated by the white arrows are mitochondria, but hardly
visible in the bright-field image.

Here, we propose a method for tracking mitochondria in living cells imaged using (label-free)
bright-field microscopy. We are unaware of previous works where mitochondria-specific tracking
has been accomplished using solely label-free imaging data. Our approach consists of performing
virtual fluorescent labeling of mitochondria, segmenting the virtually labeled mitochondria, and
tracking the resulting segmentations. While we have used established techniques for segmentation
[5] and tracking [3], our novel technical contribution lies in the task of performing virtual labeling.
We consider this task as an image-to-image (I2I) translation problem that is exceptionally difficult
due to the noise present in fluorescence image data. Therefore, we propose a physics-guided
deep learning approach that incorporates the physics of the microscope into a custom-designed
novel loss function such that the deep learning network automatically learns to deprioritize the
background noise. This elegant and simple solution helps us improve the quality of virtual
labeling beyond the state-of-the-art (SOTA) performance. Below, we present background work
and our contributions is some detail.

Virtual labeling of label-free microscopy images using artificial intelligence (AI) is a recent
and rising research endeavor. A correlative microscopy dataset comprising registered pairs of
label-free and fluorescence microscopy images is used as a training dataset for a deep learning
model. Labels can be histopathological dyes, fluorescence labels, or other cellular markers. Once
trained, the model converts a previously unseen label-free image to a corresponding labeled
image.

Bayramoglu et al. [6] used GAN for the labeling of lung histology images. Christiansen
et al. [7] used a convolutional neural network (CNN) based transfer learning approach and
applied it for images of human motor neurons, primary rat cortical cultures, and human breast
cancer cell-line. Rivenson et al. [8] used upsampling and downsampling based CNN for
virtual labeling of kidney, liver, and gland tissue. PhaseStain [4] uses CNN to transform the
quantitative phase images of label-free tissue sections (kidney, liver, and skin tissue) into virtual
pseudo-color images. An unsupervised learning approach is proposed in [9] and applied to
immunohistochemistry images. Liu et al. [10] proposed a multi-scale input strategy for virtual
labeling of cell nuclei in different cells and conditions. Cell nuclei, cell morphology, and golgi
bodies have been addressed also by Cheng et al. [11], and Kandel et al. [12] using low numerical
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aperture microscopes targeting relative large structures inside cells. Kandel et al. [12] used
quantitative phase image as the label-free modality, which is known to be closely related to the
3D morphology and optical contrast of the structures being imaged. 3D quantitative phase and/or
refractive index maps were also considered for virtual labeling [13] and organelle segmentation
[14]. Bright-field images on the other hand are related to these properties of the sample in
significantly non-linear manner and therefore pose significant challenges. Nonetheless, ubiquity
of bright-field microscopes attracts the users to consider virtual labeling of bright-field images.
Three-dimensional fluorescence images from transmission light microscopy are used in [15]. The
authors employed a multi-model architecture for predicting individual channels and validated
their method on, e.g., nuclei, micro-tubules, and mitochondria.

The majority of the virtual labeling is performed for histopathology, cell nuclei, and cell-level
labeling. Virtual labeling of nanoscale sub-cellular structures is complex and has received less
attention, where Ounkomol et al. [15] and Guo et al. [16] are prominent contributions. Notably,
deep learning solutions have been used in all the above works in a plug-and-play manner, with
almost no customization of architecture or learning for the specific application. It is also notable
that several SOTA works [7,13,15] use 3D or z-stacks of label-free and fluorescence images for
learning the mapping. While Christiansen et al. [7] explain that the need of z-stack is related
to the lack of information in single plane images, we differ in our opinion about the reason. In
the conventional widefield fluorescence and label-free images, including from epifluorescence
microscopes and label-free bright-field, transmitted light microscopes, etc, each imaging plane
of course images structures within the plane as the primary foreground, but it also includes
out-of-focus light leaking from structures in the other planes and the noise from various sources
which severely afflict the background region. In the sense of out-of-focus light, we believe that the
problem in using single planes for virtual labeling is not the lack of 3D information or 3D context,
but the over-representation of the 3D information even in single planes which is quite difficult to
isolate and/or map correctly. In the conventional plug-and-play approach, most of the efforts are
used for learning the noisy background and out-of-focus light which present insignificant value
for interpretation. Using the 3D data or the z-stack provides some overlapping 3D context for
where the out-of-focus light in each plane is coming from and therefore helps in better learning.
However, there are several disadvantages in using this approach. The foremost is the practicality
of acquiring large datasets of well-registered 3D correlative image pairs and the need of extensive
instrument calibration and imaging protocol optimization in order to achieve this target. In most
cases, this requires instrument upgrades and demand additional costs and time. Further, even if
in practice the users may be interested in single plane acquisitions only, they will be forced to
take 3D images simply because the model was not designed to tackle out-of-focus light. This
contributes issues in live cell imaging of moving entities and somewhat trumps the motivation
of using label-free for being the mode with less light-dose. Here, we propose a physics-guided
modification of the selected I2I approach that guides the deep learning model to focus on learning
the foreground and deprioritize learning the noisy and out-of-focus background characteristics.

1.1. Performance evaluation of virtual labeling

Evaluation of the performance of virtual labeling using quantitative metrics is also an exciting
aspect of the problem. The majority of the methods use Pearson correlation between the virtual
and fluorescence images [9,15] as a preferred metric. A few of them use an intensity confusion
matrix for the performance evaluation [7]. Other conventional image comparison metrics used in
I2I problems [17], such as structural similarity index metric (SSIM), peak signal-to-noise ratio
(PSNR), and intensity histogram comparison metrics such as Kullback–Leibler (KL) divergence,
have not been used. We hypothesize that the reason is that the Pearson correlation coefficient and
intensity confusion matrix are not sensitive to the actual intensity values. Therefore, structural
differences, pixel-wise differences, and differences in the intensity histograms that arise from
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learning both the foreground and the noisy background pixels with equal weightage do not
significantly affect comparisons based on these metrics. Nonetheless, different from previous
approaches, we opted for the use of SSIM, PSNR, and KL divergence in addition to the Pearson
correlation coefficient and intensity confusion matrix to evaluate the performance of virtual
labeling. Our method shows consistency across all these wide varieties of performance metrics.

1.2. Beyond virtual labeling

In addition to virtual labeling, we performed segmentation and tracking of mitochondria in
label-free bright-field images, with only very few precedents of such work on label-free data.
Here, we briefly cover some relevant works in segmentation and tracking.

Segmentation of cells and cell-organelles has a long history in computer vision and biological
research [18]. Morphological studies of subcellular structures like mitochondria attract many
researchers [5,19,20]. While fluorescence images are popularly used for segmentation in the
majority of cases [21,22], label-free segmentation is not intensely explored. Although label-free
analysis of mitochondrial dynamics is proposed in Ref. [23,24], mitochondria segmentation
and their stitching over time are not explicitly used to understand the dynamics at the level
of individual mitochondria. Instead, a metric such as mean aspect ratio or connectedness is
generated for each image containing several mitochondria, and the change in this metric over time
is monitored. An underlying reason for the lack of individual mitochondrion segmentation and
motion analysis in label-free data is that label-free segmentation is different and complex due to
the visually suppressed nature of structure and lack of contrast [25]. Furthermore, the fact that it
is challenging to isolate mitochondria in label-free images, such as those shown in Fig. 1, causes
difficulties in generating segmented ground truth for training. Here, we propose to use virtually
labeled images for segmenting label-free images. This also allows for using fluorescence images
for training.

The body of work on cell tracking is quite large [26–29] and even includes label-free imaging
[28,30]. However, tracking of sub-cellular, highly mobile structures is encountered quite rarely
[3,5,31]. Sub-cellular structures such as mitochondria are considered hard to track [1], and
recently some advanced image processing tools have been developed for the purpose of specifically
analyzing mitochondria and its dynamics. Examples include Mitometer [32], MitoGraph [33],
and MiNA [34], all of which use high resolution fluorescence images as the input data. Tracking
such sub-cellular structures in label-free images poses an even more difficult problem. However,
having virtually labeled the bright-field images, the SOTA segmentation and tracking methods in
fluorescence microscopy can be directly employed, as we present in this work. However, the
high quality and reliability of virtual labeling are imperative for the success of such advanced
analysis. In this sense, the ability of the proposed physics-guided loss function to improve the
performance of virtual labeling across all contemporary metrics provides confidence in taking
such advanced analytical approaches designed originally to work with fluorescence only data.

1.3. Contributions of our work

Here, we present the contributions of our work explicitly for the convenience of readers.
Physics-guided loss function: As discussed above, fluorescence microscopy images have only

a fraction of the pixels in the foreground. The remaining background pixels have non-zero
pixel-wise independent intensity distribution arising from different noise sources during image
acquisition. The conventional loss functions treat both the foreground and the background pixels
equally. This makes the learning biased towards background pixels and creates a one-to-one
match of the background pixel intensity. As the background intensity distribution is stochastic, it
is impossible to derive a one-to-one match.

Our elegant physics-guided modification of the conventional loss function encourages the
model to focus on learning the foreground structures in the labeled images while reducing the
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learning load to match the intensity at pixels in the noise-ridden background of microscopy
images. Our loss function uses the microscope’s fluorescent photon-to-pixel intensity mapping,
called the point spread function (PSF), to design such characteristics inherently and in a soft
manner, without resorting to the binary treatment of foreground and background pixels. This
does not only improve the performance of learning but also eliminates the possibility of artifacts
arising from binary segmentation of the foreground, which itself is usually not perfectly available
[5]. Furthermore, our loss function is usable in most I2I translation networks and other similar
deep learning approaches that involve fluorescence data.

Extensive performance analysis using various metrics: We present an extensive analysis of the
virtual labeling performance using different metrics, such as Kullback–Leibler (KL) divergence
based similarity, Pearson correlation, structural similarity, signal-to-noise ratio, and intensity
confusion matrix. These provide a comprehensive array for analyzing the performance of virtual
labeling until improved metrics are explicitly developed for this purpose. This is different from
the conventional use of only the Pearson correlation coefficient or normalized intensity confusion
matrix for virtual labeling.

Label-free segmentation and tracking: We extend the applicability of virtually labeled image
sequences in segmentation and tracking for potential application task in quantifying mitochondrial
dynamics. We essentially demonstrate that high-quality, virtually labeled data is directly amenable
to post-processing pipelines originally used for fluorescence microscopy data.

2. Materials and methods

2.1. Cell culture and sample preparation

The rat cardiomyoblast cell-line H9c2 (cells derived from embryonic heart tissue; Sigma Aldrich)
was genetically modified using a retrovirus to achieve a stable expression of tandem tagged
(mCherry-EGFP) mitochondrial outer membrane protein 25 (OMP25)-transmembrane domain
(TM). A uniform expression of fluorescence intensity in the cells was achieved through flow cytom-
etry sorting. The stable H9c2 cells were cultured in high glucose (4.5 g/L) Dulbecco’s Modified
Eagle Medium (DMEM; [D5796, Sigma-Aldrich]) with 10% FBS, 1% streptomycin/penicillin
and 1 µg/mL of puromycin (InvivoGen). For glucose deprivation and adaptation to galactose,
the cells were grown in DMEM without glucose (11966-025, Gibco) supplemented with 2 mM
l-glutamine, 1 mM sodium pyruvate, 10 mM galactose, 10% FBS, 1% streptomycin/penicillin
and 1 µg/mL of puromycin (InvivoGen). The cells were adapted to galactose for a minimum of
7 days before experiments. The cells were seeded on MatTek dishes (P35G-1.5-14-C, MatTek
Corporation) and imaged when they reached approximately 80% confluency.

2.2. Data acquisition

During image acquisition, the cells were kept at 37◦C, 5% CO2, atmospheric oxygen, and a
cell-culture medium (DMEM with 10% FBS). The time-lapse microscopy data were acquired
using a DeltaVision OMX V4 Blaze imaging system (GE Healthcare Life Sciences, Marlborough,
MA, USA) equipped with a 60X 1.42NA oil-immersion objective (Olympus) and three sCMOS
cameras for rapid multi-channel imaging. For each cell, a correlated pair of images in bright-field
and fluorescence modes were acquired.

The imaging mode was sequential, with acquisition order “All Z then Channel", meaning
that different focal planes of one channel were acquired before imaging the same z-planes for
the next channel/imaging mode. For the bright-field images, the DAPI channel (blue light) was
used. For fluorescence, both FITC (green light) and A568 (red light) was used to capture the two
different mitochondrial markers (from the tandem-tag acquisition, inferences of mitochondrial
degradation can be made, although not relevant in to work). A total span along the z-axis of 8 µm
were used, sampling every 125 nm (nanometer, giving a total of 65 sections for each channel).
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For each plane, the exposure times for both the bright-field and fluorescence acquisition were
10 ms. Each image has the size of 1024 × 1024 pixels, where each pixel corresponds to 80 nm
in the cell sample. The different cameras and imaging modes were aligned using the imaging
system’s pre-calibration. From this, we used in total 3381 correlated pairs of images for training,
966 for validation, and 483 correlated pairs of images for testing.

2.3. Complete architecture for learning components

Our processing pipeline is depicted in Fig. 2(A). The first component is learning the I2I model
for virtual labeling which translates the bright-field image to the corresponding fluorescence
image. The second component applies the learned model to live-cell bright-field images/videos
and creates equivalent fluorescence images/videos. The third component performs segmentation
and tracking. This component may be another necessary image analysis or advanced processing
task, or completely absent; for our problem tracking has been identified as relevant.

Fig. 2. (A) Outline of the proposed method. The red coloured numbers represent the
principal modules and their sequence, and (B) conditional GAN of the employed architecture.
The details of the architecture are presented in section 2.3.

Considerations about training datasets for virtual labeling: A microscope capable of correlative
imaging of a sample in bright-field and fluorescence mode is used for collecting image pairs for
supervised learning. Registration using the microscope’s calibration software or fiducial markers
may be needed. However, it is essential to ensure sufficient data diversity, and therefore, images
acquired in different ROIs are preferred over videos. The input data comprises images in different
planes. Our objective is to perform 2D I2I, i.e. mapping bright-field image of a single plane to
the corresponding fluorescence image of the same plane without using other planes above and
below it. Therefore, there are some planes with significant out-of-focus light and some other
planes which are largely-in-focus and have relatively less out-of-focus light. When forming the
training dataset, we incorporated both largely-in-focus planes and the other planes in a proportion
for robust model training. Our empirical observation is that the inclusion of a small number of
out-of-focus images for training gives better results and helps in avoiding over-training.

Each correlated image pair of 1024 × 1024 pixels was randomly cropped into 25 smaller
patches (256 × 256 pixels). Random image cropping prevents the monotony of correlated image
frames in model training. To help the model converge better experimentally, patches consisting
mainly of background noise (i.e., the patches with less than 20% detected mitochondria) were
discarded from the learning. The obtained 4830 training image pairs were proportionally split
into 70-20-10% training, validation, and test sets. The validation and test result for other datasets
is done similarly and mentioned in result section.

I2I network for virtual labeling: We have used the conditional GAN model, which comprises
a generator network and a discriminator network working in tandem, as shown in Fig. 2(B).
A variety of architectures can be considered to design generator and discriminator networks.
We have used U-Net as the backbone, employed in a Pix2Pix architecture [35]. The flexible
and adaptable nature of the models to a wide variety of tasks without explicitly defining the
relationship is a major motivation for choosing this model.
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The architecture and components of the generator network we used are described here. It has
four downsampling convolution blocks in the following order: C32-C64-C128-C256. Here, C32
indicates a downsampling convolution block of 32 channels, and analogously for the remaining
blocks. They are followed by a 4 upsampling blocks and skip connections across layers of the
same level. Each residual block in each downsampling path consists of three convolution layers
followed by three leaky rectified linear units (leaky ReLU) employed as an activation function.
The blocks are connected by an average-pooling layer of stride 2 that downsamples the previous
block’s output by a factor of two (except for the initial block that increases from 1 input channel
to 64 channels). The blocks in the upsampling layer are linked by the bilinear upsampling layer,
which increases the size of the output by a factor of two in both lateral dimensions. To raise the
number of channels from the previous block’s output by two, a concatenation function, i.e., a skip
network with the appropriate feature map from the same level’s downsampling path, is utilised.

In the U-Net architecture, the modules have 3 types of configurations, namely in-scale,
down-scale, and up-scale. In the in-scale configuration, the convolution kernel size k = 7 and
stride s = 1 has been used. The downscale configuration has k = 3 and s = 2. In the up-scale
configuration, k = 3, and s = 2 have been used and followed by max-pooling.

We experimented with different hyper-parameter combinations, as reported in Table 1. However,
in each case we used a learning rate α = 2 × 10−4 and exponential decay β = 0.5. Pool size is
kept at zero. The convolution is not zero-padded rather uses reflection padding, thus "reflects" the
row into the padding. This is valuable because it assures that the outputs transitions "smoothly"
into the padding and the padded inputs are similar to the original data distribution [36]. Training
was performed from trained from scratch for 400 epochs.

Table 1. Hyper-parameters used for training the proposed architecture for virtual labeling (−
indicates that the parameter is the same as used in the method A). Learning rate α is set as 2 × 10−4

and exponential decay parameters β is set as 0.5.

Hyper-parameter
Method

A B C D E F G H

Input channels 3 1 − − − − − −

Batch size 1 − 16 16 − 16 − −

Dropout N.A. 0.5 0.5 0.5 −. 0.5 − −

Optimizer Adam − RMSProp − − − − −

Generator loss PSF − − − L1 L1 TN Minimax

Activation ReLU − Sigmoid − − − − −

The architecture and components of the discriminator network we used are described here.
The discriminator network comprises of 1 convolutional layer, 5 discriminator blocks, an average-
pooling layer, and two fully connected layers. The first convolution layer receives the input
which is either the virtually labeled image generated by the generator network or the target
fluorescence image in the supervised data pair. This layer increases the number of channels to 64.
The discriminator blocks consist of 2 convolutional layers each with the first layer maintaining
the number of channels and the size of the feature map. In contrast, the second layer increases
the number of channels by twofold and decreases the feature map’s size by fourfold. The
average-pooling layer has a filter size of 8 × 8 and results in a matrix with a size of B × 2048,
where B refers to the batch size. The output is then fed into 2 fully connected layers with the
prior layer preserving the size of the feature map, and the later layer reducing the output channel
to 1. This results in an output size of (B, 1). The fully connected layer’s output goes through a
sigmoid function, indicating the probability that the channel discriminator input is a fluorescence
image. All the convolutional layers and the fully connected layers are connected by leaky ReLU
but with nonlinear activation functions for the discriminator network. The learnable parameters,
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including filters, weights, and biases in the convolutional layers and the fully connected layers in
the discriminator network are updated using an adaptive moment estimation (Adam) optimizer
with a learning rate of 2 × 10−5.

The implementation details are presented here. The conditional GAN model was implemented
using standard libraries and scripts that are publicly available, namely, Python (version 3.7.3),
Pytorch (version 1.6.0) and Tensorflow (version 1.14.0). The other python libraries incorporated
were Keras, OpenCV, scikit-learn, os, SciPy, NumPy, Matplotlib, time, the Python imaging
library (PIL), visdom, dominate, tqdm. The model’s training was majorly carried on a remote
desktop computer with a Xenon Gold 5218 CPU at 2.30 GHz (Intel) and 768 GB RAM, running
a Windows Server 2019 standard operating system. The network training, visualization, and
testing were performed on 96 GB Nvidia Quadro RTX 8000 GPU.

2.4. Segmenting and tracking

Tracking is performed by the process of tracing individual mitochondria over time by preserving
the identity. The process involves detection, identity assignment, and linking identity over time
(see Fig. 3).

Fig. 3. The tracking module uses a U-Net based supervised architecture [37] to segment
the mitochondria and a Kalman filter based tracker to estimate their motion.

The first step of detection is based on the segmentation of mitochondria. While the bright-
field images are not suitable for segmentation directly, their virtually labeled versions emulate
fluorescence images and are therefore amenable to segmentation. First, the U-Net network [37]
is trained on a set of manually segmented images of fluorescently labeled mitochondria. Next,
the virtually labeled images are used as the input for the segmentation.

After the segmentation step, a blob-based detection [38] is adopted to detect individuals or
groups of mitochondria in each frame. The detection is represented by bounding boxes. Next,
the bounding boxes are linked by preserving the identity (track number) in the temporal domain.
A linear motion model is fit for each track. Equation (1) represents the state of a target, i.e. a
bounding box during tracking:

x = [u, v, s, r, u̇, v̇, ṡ]T , (1)

where u and v are horizontal and vertical velocities, s and r represent the scale and the aspect ratio
of the bounding box, respectively. The dot quantities represent the values after δt time instance.
The target’s state is updated using the initial detection. Kalman filter [39] is utilized to solve
the velocity components. A linear motion model prediction is employed to update the missing
frames. The Hungarian algorithm solves the track assignment problem among the Kalman filter
prediction and newly arrived detection. We used the (squared) Mahalanobis distance to estimate
the distance and optimum association of tracks. Finally, continuously detected bounding boxes
with the preserved identity are included as the frames of a mitochondrion track.

3. Physics-guided loss function for virtual labeling

To the best of our knowledge, deep learning architectures and training approaches are often used
in unmodified form, without adapting them for the specific problem at hand. This implies that if
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there is a well-posed mapping between the input and output spaces, the deficiency in learned
models is mainly attributed to the architecture and learning process. Here, we assume that the
data quality and span of the input and output spaces are not a problem. We opine that there is an
opportunity for improvement if the process of learning can benefit from the application-specific a
priori knowledge. For microscopy, this knowledge includes the optical PSF. Further, an important
a priori information for fluorescence imaging is that fluorescence images consist of a large
fraction of background pixels where mainly noise is measured and no structural details are to
learn.

Choice or design of the generator loss function has a strong bearing on the performance of
the model. Examples of conventional loss functions for the generator include the minmax [40]
and the L1 norm based loss function [41]. Notably, these loss functions have successfully and
routinely been used for consumer cameras and medical images where the noise is very low.
However, we noted that their performance is poorer for fluorescence images of sub-cellular
structures.

Because of the labeling of specific (and often sparse) structures, fluorescence microscopy
images are largely empty with the fraction of foreground pixels being very small. In such a
situation, the minmax and L1 loss tend to focus on learning background noise rather than the
foreground structures since they consistently contribute to a mismatch in the background pixels
due to the nature of noise. For example, Fig. 4(A) shows an actual fluorescence image and
Fig. 4(B) a virtual candidate image created by the generator. Figure 4(C) shows the conventional
L1 loss at each pixel. We observed that the sum of background loss can be higher compared
to the foreground object due to the noisy background. If the generator minimizes the L1 loss,
learning the noisy background is prioritized.

Fig. 4. Illustration of the proposed PSF-based loss function. (A) An example input data, (B)
a candidate image generated by the generator during training, (C) pixel-by-pixel L1 loss map,
(D) deconvolved image, (E) weight of each pixel for computing PSF-based loss function,
and (F) PSF-based loss function map. It is noted that the proposed PSF-based loss function
map under weighs the background pixels (scale bar 2.5 µm).

We propose to use a PSF-based loss function that is effective in mitigating the above-mentioned
problem. The deconvolution of fluorescence microscopy images with the microscope PSF can be
used to enhance the image contrast [42]. We computed a deconvolution kernel (square kernel of
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the size of approximately 1 PSF region) generated using the 2D Gibson-Lanni [43] PSF model.
This means that we computed the point spread function using the Gibson-Lanni model over
a region of 5×5 pixels and supplied it as the approximate PSF to the deconvolution function
which internally performed its inversion to compute the deconvolution kernel. The deconvolution
kernel is computed using the Lucy-Richardson algorithm [44]. Then, the deconvolution kernel is
convolved over the fluorescence image to obtain a high contrast deconvolved image, see Fig. 4(D).
This deconvolved image is normalized by the maximum value as shown in Fig. 4(E) to obtain a
weight matrix which is multiplied by the L1 loss map (such as shown in Fig. 4(C) to obtain the
proposed PSF based loss function map, shown in Fig. 4(F). In comparison to the original L1 loss
map, this new PSF-based L1 loss map has small values in the background regions and emphasizes
the foreground regions with a large mismatch. Since the value of the PSF-based loss is not
strictly zero in the background, the learning of the low-intensity features, such as contributed by
out-of-focus light, are still learned albeit with lesser priority. We highlight here that the target
image is still the original widefield fluorescence image and the deconvolved image is being used
to compute only the weight map in the loss function. The function of this intermediate weight
map is that it should guide the model to prioritize what is physically important to learn (the
structures largely-in-focus in the plane) and deprioritize what is physically either too random to
learn (like noise) or too difficult and uncontextual to learn (out-of-focus light). The deconvolution
does not improve the quality of target image since the target image itself remains unprocessed, it
rather improves the ability of model in learning how to mimic the target image for the portion
that is important to mimic.

The PSF-based loss is defined in Eq. (3), where yo is the original pixel and yg is the generated
pixel, computed for all n pixels in the input image. Figure 4(F) shows the PSF loss computed
for the real and generated image. Our observations confirmed that the proposed loss function
successfully suppressed the background noise and the loss was computed only for the foreground
objects.

Iweight = |If ⊗
−1 Ipsf |[0,1], (2)

LL1 =

n∑︂
i=1

|Ii
weight(yo − yg)|. (3)

4. Results

We first present extensive results on the core technical scope of the article, namely virtual
labeling. Then, we provide example results for segmentation and tracking of mitochondria using
bright-field images through virtual labeling.

4.1. Virtual labeling

Hyper-parameters of I2I: We have used six different sets of parameters (sets A to H) for the
ablation study and found a suitable set of parameters for the problem. The parameters are
summarized in Table 1. The networks for all the combinations were trained from scratch for
200 epochs, and the results were compared using SSIM and Pearson correlation (see Fig. 5).
The sets A-D (green color in Table 1 and Fig. 5)) use the proposed PSF-based loss function
while the sets E-F (red color) use the L1 loss function. The set G in yellow represents the
thresholding-normalized (TN) loss defined in 2020’s paper by Somani et al. [45]. The set H
used the modified minmax loss defined in [46].

As can be observed from Fig. 5, the PSF-based loss functions (A-D) perform better than all
other loss functions tested (E-H). Among these, set A performs the best. We have fine-tuned
convolution blocks by varying hyper-parameters to improve the prediction accuracy. We found
the best combination to be a filter size of 32, optimizer Adam, β1 = 0.5, learning rate = 0.0002,
and a batch size of 1. The pool size for all the network variants is kept at zero. The convolution
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Fig. 5. Comparison of the performance of the methods (variety of learning setups) listed in
Table 1 in terms of (a) SSIM and (b) Pearson correlation. The data consists of 10th, 25th,
50th, 75th, and 95th quartile. The black squares represent the maximum values. The methods
that use PSF-based loss functions (A-D) outperform the rest.

is not zero-padded but uses reflection padding, thus “reflects" the row into the padding. This
assures the output to transition “smoothly" into the padding [36]. In the following, we further
analyze the results obtained by this optimally curated and trained network.

Comparison of different weight maps: We explored and compared different candidates for
weight maps. For performing these experiments, we used the same setting as the method A in
Table 1, but used different candidates for weight maps. The results are shown in Fig. 6, where the
last candidate (PSF deconvolution) is the proposed solution as is the same as method A in Fig. 5
and used throughout the manuscript unless stated otherwise.We have broken the argument of
‘physics-guided learning by prioritizing foreground’ through weighted L1 loss into following
components:

1. If the foreground needs to be prioritized, one may simply use conventional binary
segmentation approaches to obtain a binary map that is used as a weight image. This does
not require any physics-guided learning except the knowledge that foreground needs to be
prioritized. However, it is easily appreciated that using a binary mask will lead to artefacts
at the boundaries of binary segmented regions and therefore it is not advisable.

2. From the same logic, it is clear that the foreground and background need soft treatment
in the fluorescence microscopy images. This is further understood from the fact that
point spread function blurs the boundaries between the foreground and background in
fluorescence image and this character needs to be retained in virtual labeling. Then, the
physics is incorporated through not just prioritizing foreground learning but also soft
treatment of foreground and background. However, this does not mandate the use of PSF.
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So, we consider two different approaches, where the weight maps are computed using
logit-based pixel-wise independent weight value in one case and Gaussian kernel based
blurring in the other case using a 5 × 5 kernel (σ = 1). The results of these weight maps
are shown in Fig. 6. In comparison to the PSF deconvolution (the proposed solution), they
perform quite poorly.

3. The logic of using a blurring or smoothing operation is that it can reduce the pixel-wise
random nature of noise in the background. Unsurprisingly, Gaussian blur based weight
map indeed performs better than Logit-based weight map. The question then is instead
of non-PSF based treatment, could using PSF (2D Gibson Lanni model) as the blurring
function help further. This is also tested and shown in Fig. 6. It works further better than
Gaussian blurring since it incorporates the softening of the order actually present in the
image, but still does not match the performance of using deconvoution with 2D PSF.

4. Lastly, we move to the full-scale physics-guided learning through deconvolved image as
the weight map. This incorporates not just the foreground prioritization, soft treatment of
foreground and background, but two more physical aspects specific to the problem. First,
It suppresses the pixel-wise random background noise without changing its distribution
(which gets altered by smoothing operation). This happens as a consequence of improved
contrast of the foreground. Second, deconvolution using PSF suppresses the out-of-focus
blur introduced in the image plane, thereby also introducing a systematic deprioritization
of out-of-focus blur without needing z-stack images from the other planes.

Fig. 6. Performance comparison of different weight map candidates is shown here. Hyper-
parameters are the same as method in Table 1 except for the use of different weight maps
for the weighted L1 loss. Conv. and Deconv. stand for convolution and deconvolution
respectively. Further, logit refers to pixel-wise independent weight map generated based on
classification strength of a pixel into background or foreground. Gauss indicates the use of
a Gaussian kernel for convolution. PSF refers to the 2-dimensional point spread function
computed using Gibson Lanni model. The right most candidate is the same as method A
reported in Fig. 5.

Metrics for analysis of virtual labeling: The histograms of SSIM, PSNR, KL divergence, and
correlation values obtained over the entire test datasets are shown in Fig. 7(A). The metrics are
computed on crops of size 256 × 256 pixels that are present in the test dataset. Only the crops
that had less than 20% of mitochondria pixels were removed from all the datasets. This means
that crops with high density of mitochondria were also retained, and therefore the possibility
of bias due to sparse regions can be excluded. The mean, median and Q75 values for the
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Pearson correlation coefficient are 0.86, 0.89, and 0.94, respectively. We note that our results are
significantly better than the mean value of 0.71 for the Pearson correlation coefficient reported
in [15] for mitochondria. We also note that our results are reported for 483 test images, in
comparison to 20 z-stacks used in Ref. [15]. We present a disclaimer that we are not sure which
64×64×50 (or 75) pixels were used, or if multiple such stacks were sub-sampled from the original
microscopy data.

Fig. 7. Histograms of the quantitative metrics SSIM, PSNR, KL divergence, and Pearson
correlation for the entire test dataset are shown in (A). An example of the original fluorescence
and the predicted virtual image (scale bar 2.5 µm) contrast-enhanced with 0.2% pixel
saturation for visualization purpose is shown in (B). Intensity distribution for the sample is
shown in (C).

Examples of performance on challenging images: A visual comparison of the fluorescence
images and corresponding predicted virtually labeled images are shown in Fig. 8. The first
sample, case I, is comparatively easy because of the high visibility of mitochondria using both
imaging modalities. It also contains less out-of-focus light compared to cases II and III. The
SSIM (0.89) and PSNR (33.9) are therefore high. Cases II and III are more challenging samples
due to the presence of (a) out-of-focus mitochondria, and (b) high visibility of organelles other
than mitochondria. We can observe that the proposed method is still able to isolate mitochondrial
structures and is successful in generating virtually labeled images with an SSIM of 0.87 and
PSNR of 33.0 for case II. Case III has an additional challenge due to the unusual presence of a
long tube-like structure in the bright-field image which are not mitochondria, resulting in slightly
poorer performance (SSIM 0.86 and PSNR 30.6). Still, we can see that the proposed method
successfully predicts both in-focus and out-of-focus regions in the qualitative sense. Since the
proposed loss function tends to deprioritize learning the out-of-focus light, the SSIM value is
poorer (0.86). The last two rows of Fig. 8 present the pixel-wise predicted histogram of the image
and the intensity confusion matrices consisting of pixel-by-pixel true and predicted intensities.
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We note that the model produces highly correlated fluorescence images for label-free images
given as input.

4.2. Comparison with the state-of-the-art virtual labeling

There is one challenging problem of sub-cellular virtual labeling that has recently been addressed
successfully [15]. The authors trained a deep learning model to translate from z-stacks of
label-free images to z-stacks of fluorescence images. The use of z-stacks makes the mapping
better conditioned since what is out-of-focus in one plane may be in-focus in nearby planes.
However, the approach needed a deep learning architecture capable of learning 3D mapping. No
physics-guided loss function was used.

When evaluating the performance of virtual labeling, the authors used a modified version of
Pearson correlation where the performance on background pixels is discounted. This means
that the learning still treated the background and the foreground in a similar manner, but the
performance for background pixels was not assessed irrespective of the quality of reconstruction.
Nonetheless, a SOTA performance in terms of Pearson correlation coefficient was reported
for challenging structures qualitatively using fluorescently labeled human induced pluripotent
stem cells (hiPSCs) such as AICS-10 (endoplasmic reticulum) with max ∼0.78, AICS-54 (cell
membrane) ∼0.7 and AICS-11 (mitochondria) ∼0.71.

We propose a simpler architecture that only maps one label-free 2D image (x-y plane) to a
fluorescence counterpart. Therefore, we deal with a problem that is not as well-conditioned, but
using the PSF-based loss function. However, we compare how our model performs on the dataset
of [15] by considering 2D image pairs for both training and testing from their dataset. Further,
we assess the performance of virtual labeling for both the foreground and background pixels.

Quantitative results are shown in Fig. 9, for the endoplasmic reticulum, membrane, and
mitochondria. Example qualitative results are shown in Fig. 10. We see that the results of virtual
labeling are of high quality, both qualitatively and quantitatively. An intensity match is observed
in the histograms for both the foreground and background pixels, which is also seen visually.
Note that the Pearson correlation coefficients are consistently better than those reported in [15]
with no explicitly imposed performance evaluation biasedness (like lower and average upper
bound estimation by negating the variance of random fluctuations for background noise).

Through this experiment, we establish that (a) our method can be applied in a versatile manner
across a variety of sub-cellular organelles, (b) our method learns the noise distribution of the
background effectively even while prioritizing the learning of foreground pixels, and (c) the
overall performance of our method is boosted owing to a better match across both the foreground
and background pixels.

4.3. Failure analysis and discussion

Here, we present an example of a failure case in Fig. 11, which indicates an opportunity for
insight and possible improvement in the performance of virtual labeling. This figure uses test
examples from the dataset of [15]. The leftmost result has an SSIM of 0.16, significantly poorer
than our generally observed results. Further results on the right show increasingly better SSIM.
Below we present some insights and prospects for improvements.

Our observation across both our own dataset and the dataset of [15] is that the severity for
the learning paradigm is not evident in the complexity or visual nature of bright-field images.
However, the fluorescence images in the training datasets appear to have a strong bearing on
learning effectiveness and the quality of virtual labeling. For instance, in the leftmost failure case,
the fluorescence image contains a fairly complex structure lacking sharpness and exhibits high
background due to the non-specific fluorescence labeling. These characteristics make learning
structures quite challenging due to the minute pixel intensity differences. As we shift rightwards,
the sharp increase in metric accuracy is supported by the fact that the crispness of the structure is
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Fig. 8. Examples of bright-field, fluorescence, and virtually labeled (predicted) images
(scale bar 2.5 µm). The bottom row represents intensity confusion matrix of the fluorescence
and virtual images.
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Fig. 9. Boxplot distribution of pairwise aligned dataset [15] performance measured on
SSIM (marked in red), Pearson correlation (white), KL divergence, and PSNR (yellow) is
illustrated on top. The comparison derived from the marked sub-cellular structure with max,
mean, median, and interquartile range Q90, Q75, Q50, Q25, Q10 between the ground-truth
and predicted test image shows more promising performance over the reported result [15].
The number of images used for testing were 650 for the endoplasmic reticulum, 494 for
membrane and 620 for mitochondria.

higher, the contrast between the foreground and the background is higher, and this has likely
helped achieve better accuracy for the respective image samples. We assume the reason for this
behavior is that deep learning performs well with edge-based, high contrast and well-defined
structures.

Potential solutions are as follows. Choosing a label with high structural specificity (as the
genetically introduced mitochondrial tag used above) avoids both high background signals and
learning the wrong structures. Furthermore, high-quality electronics and a longer exposure time
can improve the signal-to-noise ratio and therefore present a good contrast in the fluorescence
images. Some computational compensation for poor contrast images may also be designed in the
future. However, the crispness of structures might be out of control of the experimental design.
If a high quality virtual labeling is sought for non-sharp structures, more advanced loss-function
design or modified architectures might be needed. Potentially a larger training dataset with more
diversity of images might have alleviated the problem significantly. However, this hypothesis
could not be tested within the regime of the limited data provided in Ref. [15].

4.4. Segmentation and tracking

Segmentation: The segmentation is performed using a U-Net based supervised deep neural
network [37]. First, a set of 30 fluorescent images of 1024 × 1024 were manually segmented
using the Sefexa image segmentation tool [47]. Next, randomly cropped (∼ 2500 images of
256 × 256 pixels) fluorescence images and the corresponding manually segmented images were
used to train the U-Net. The segmentation was validated on 500 images of 256 × 256 pixels. The
predicted virtually labeled images were used as the input of the pre-trained segmentation module.
Hence, errors in the virtual prediction model were also transferred to the segmentation module
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Fig. 10. A sample result each for all sub-cellular structures (scale bar 4 µm) obtained
from test transmitted-light images. We include pixel count projection graph and intensity
confusion metric, respectively.
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Fig. 11. Visualization of cell membrane prediction shown in red by our proposed loss. The
first column is a randomly cropped label-free image (scale bar 2.5 µm) of 256 x 256 from
the dataset [15]. The second row is the true fluorescence images for cell membrane, and the
third depicts the predicted embodiment with quantitative metric - SSIM & PSNR. Left to
right are the failure and successful cases for the dataset explained in detail in section 4.3.

and affected the accuracy. When applied to the test set, we achieved a mean intersection over
union (mIoU) of 0.78.

Tracking: Here, we present a case study of the proposed tracking method. A time-lapse
sequence of 100 frames (label-free) is used as the input. In Fig. 12, we show an example of
a mitochondrion (id:22) tracked over time. The temporal morphological changes are easily
identified.

Segmentation results on Mitometer: Mitometer [32] is an open source tool for performing
advance analysis of mitochondria including segmentation and tracking. It uses high resolution
fluorescence images of mitochondria as input. We show the versatility of our virtual labeling
approach by demonstrating that advanced fluorescence microscopy image analysis tools can be
applied directly without any modification to bright-field images through our virtual labeling. We
take different crops and perform segmentation using Mitometer on both fluorescence images
and virtually labeled images and present the results in Fig. 13. It is seen that the segmentations
are quite comparable, indicating good adaptation of Mitometer for mitochondria in our virtually
labeled images.
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Fig. 12. Example of tracking of mitochondria in a living H9c2 cell. A mitochondrion (id:
22) is tracked across several frames. The scale bar is 1 µm.

Fig. 13. Example of using mitochondria toolset Mitometer [32] without any modification
on virtually labeled images of mitochondria. They indicate comparable performance for
actual fluorescence and virtually labeled images.
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5. Discussion and conclusion

This work successfully integrated the microscope PSF in deep learning for obtaining SOTA
virtual labeling of sub-cellular organelles such as mitochondria. The PSF-based deconvolved
fluorescence ground truth image is used for weighing the L1 loss such that the learning of noisy
background is down-weighed while the learning for the foreground features are prioritized. The
concept is expected to pave the way for physics-guided artificial intelligence solutions for highly
sparse fluorescence microscopy data of sub-cellular organelles. Furthermore, virtual labeling for
very challenging situations is demonstrated successfully. Besides this, an important contribution
is to provide additional insights by incorporating quantitative performance evaluation metrics
conventionally used in computer vision, but not currently used in virtual labeling problems.
Finally, through a good virtual labeling approach, tasks like segmentation and tracking of
individual sub-cellular structures such as mitochondria using completely label-free strategies
have been demonstrated to be feasible. We expect such tracking to be a powerful tool for studying
organelles’ short- and long-term dynamics in living cells due to the infinite photon-budget and
low photo-toxicity of label-free microscopy.

We discuss some opportunities and future prospects of effective and accurate virtual labeling.
We have taken the problem of virtual labeling mitochondria in this work for two reasons – the
technical challenges of performing virtual labeling of mitochondria and our inherent interest in
studying mitophagy in cardiac cells in the long term. It will be interesting in the future to plan
more extensive virtual labeling of multiple organelles using single bright-field images in order to
facilitate studies of molecular cell biology mechanisms involving multiple organelles. Specific
studies of interests that benefit from such studies include autophagy, apoptosis, drug response
among others.

It will also be interesting to design studies in which most morphologically specific organelles
are virtually labeled and fluorescence labeling is used primarily for chemical specificity or other
spatially distributed biophysical features such as diffusing population of molecules or vesicles,
pH level markers, and other such properties. Such experiments will enable functional studies
with maximal information collection supported by multi-color multi-modal microscopes. Further,
as demonstrated, application of fluorescence image analysis tools on label-free images imply that
quantitative analysis and other morphology-based studies are not rules out in such studies.

Lastly, we draw attention to some drawbacks and possible improvements. The first drawback
is the need to exclude the crops that are primarily background. We need to ensure that each crop
has certain minimum number of pixels in the foreground otherwise the crops that are primarily
background bias the model to learn background noise, which may destablize the learning process
or result into poor learning despite the use of PSF-guidance or both. We believe that this drawback
cannot necessarily be worked around but sophisticated and optimized automated pipelines can
be designed to perform data curation with good outcomes. Next, we note that our approach of
PSF-guided virtual labeling is quite good for small structures such as mitochondria, but performs
poorly for distributed structures such as membrane, as seen in Fig. 9 and Fig. 11. Such distributed
structures may benefit from a weight map based on smoothing rather than deconvolution, however
this is pending exploration in the near future. Another interesting possibility to explore in the
future is whether the PSF-guided virtual labeling helps also to translate label-free widefield
images to equivalent confocal fluorescence images. The point of interest here is that the label-free
images widefield images suffer from out-of-focus light but the confocal microscopes suppress
out-of-focus light with significantly better efficiency than widefield fluorescence microscopes.
Lastly, we believe that the principle of physics-guided deep learning through PSF-guided weighted
loss functions will present advantages for applications of deep learning other than virtual labeling
in microscopy image processing and image translation problems.
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