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Abstract 12 

Wind energy assessment of a territory where a wind park is planned to be built is important. This can 13 

be performed through an appropriate evaluation of the wind characteristics in this territory. To 14 

simulate the wind speeds, a Weibull function is recommended whose parameters are classically 15 

determined either applying logarithms or using one of the formulas proposed in the literature. In the 16 

present study, direct optimization procedures are applied, which consist to minimize the squared 17 

difference between the experimental and simulated densities or probabilities. These procedures are 18 

applied on the wind characteristics collected from the ERA5 website during forty-one years at three 19 

Russian sites close to Arkhangelsk. These direct optimization procedures are proved to give lower 20 

errors than the classical one or the formulas of the literature. They also lead to lower values of the 21 

estimated Annual Energy Production for a Vestas V90-2.0 wind turbine. Direct optimization 22 
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procedures are also applied to determine the optimal parameters associated with a unique or a 23 

superposition of two von Mises distribution functions to simulate the wind directions in these three 24 

Russian sites. 25 

 26 
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 29 

1. Introduction 30 

The continuous development of the world economies leads to an increasing energy consumption. 31 

Fossil energy sources still account for the major part in the energy balance of many countries 32 

throughout the world. This highly affects the climate and environmental changes observed and 33 

described by scientists around the world. The use of fossil fuels for energy production indeed causes 34 

the formation and release into the atmosphere of hazardous substances such as sulfur, nitrogen and 35 

carbon oxides, as well as particulate matter. Carbon dioxide is one of the main gases that contribute 36 

to the greenhouse effect. Compounds of substances that are released into the atmosphere by 37 

combustion of fossil fuels can have a serious impact on human health and wildlife. In northern 38 

countries, the difficulty of delivering fossil fuel here increases its cost several times. There is a further 39 

risk of spills during transportation. In addition, fossil fuel power plants produce large amounts of 40 

pollutants as well as noise emissions. Considering these disadvantages, the use of large quantities of 41 

fossil fuels is unsustainable in remote northern territories. These issues make the use of renewable 42 

energy sources a priority for many countries throughout the world. The use of environmentally 43 

friendly natural renewable energy sources can provide effective, sustainable and safe energy 44 

production. Renewable energy sources have almost no significant impact on the environment, when 45 

compared to fossil sources and are available in large amounts in many regions of the world, even if 46 

they are non-permanent sources. 47 
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Wind energy is one of the main renewable sources. Wind energy industry has strengthened its position 48 

in the electricity production throughout the world in the recent years. In some countries, wind power 49 

plays an important role in the balance of power generation. More and more new wind parks are being 50 

built in the world every year. However, at the moment it is difficult to replace fossil fuels with wind 51 

power everywhere. Therefore, scientific research and new technical developments that can increase 52 

the efficiency of wind energy usage are needed. 53 

Estimating the wind energy potential of the territory where a wind park is planned to be built is very 54 

important. A preliminary estimation based on available data concerning the wind characteristics and 55 

a forecast of these characteristics in a reasonable future can give an idea of whether the location of 56 

the wind park in this area will be efficient and how much energy can be generated by its installation. 57 

An important parameter of a wind park project is its Annual Energy Production (AEP). This 58 

parameter can be increased with a correct location of wind turbines. An inaccurate assessment of the 59 

wind energy resources of the area, as well as an incorrect location of the planned wind turbines can 60 

cause inefficient production from the wind farm. The energy production will be less than planned and 61 

this situation may lead to significant economic losses. Wind resource assessment of the territory is 62 

very important for areas where no wind parks were constructed before. Therefore, each territory 63 

requires appropriate studies before installation of a wind park. Wind resource assessment can 64 

contribute to the successful implementation of a wind park project and prevent from fatal mistakes at 65 

the design stage. Northern areas have high wind energy potential [1–3]. 66 

In the present study, a Vestas V90-2.0 wind turbine is intended to be located in three Russian sites: 67 

Dolgoshchelye (lat. 66.3, long. 43.3), hereafter called in short Dolgo, Mezen (lat. 62.4, long. 38.5) 68 

and Solovetsky Islands (lat. 65.7, long. 35.4), hereafter called Solov. The wind directions and speeds 69 

were collected over forty-one years at the altitude of 100 m from ERA5 site [4]. Simulations of the 70 

wind speeds using a Weibull function were performed through different formulas or procedures 71 

already proposed in the literature, [5,6], for example. Direct optimization procedures were also 72 

applied which allow determining the optimal parameters of a Weibull distribution function. These 73 
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direct optimization procedures avoid the use of the logarithm which overrides the variations of the 74 

data to be considered. The simulations returned by these direct optimization procedures are compared 75 

with that returned using a classical procedure or formulas of the literature. To validate the values of 76 

the parameters, different error formulas are used. The differences between the values of the 77 

parameters have a significant impact on the wind potential of a site, as evaluated for example through 78 

the Annual Energy Potential. Direct optimization procedures are also applied to simulate the wind 79 

directions, considering a unique or the superposition of two von Mises distribution functions. 80 

 81 

2. Material and Methods 82 

2.1. Characteristics of the Russian sites and of the Vestas V90 wind turbine 83 

The behavior of a Vestas V90-2.0 wind turbine to be located in three Russian sites is investigated. 84 

The three sites are located in the Arkhangelsk region (oblast), northwest of the Russian Federation, 85 

see Fig. 1 a). 86 
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a) 

  

b) c) 

 87 

Fig. 1. Position of the three Russian sites in the Arkhangelsk region a), and photos of the Mezen b) 88 

and Solovetsky Islands c). 89 

 90 

The sites where the wind turbine is intended to be placed are almost flat and do not present irregular 91 

obstacles, see Fig. 1 b) and c). The Dolgoshchelye site is located around a small village in the tundra. 92 

For the Dolgoshchelye site, the maximal and minimal wind speeds are respectively equal to 14.61 93 

and 0.91 m/s, respectively. For the Mezen site, the maximal and minimal wind speeds are respectively 94 

equal to 14.16 and 0.85 m/s, respectively, quite comparable to that of the Dolgoshchelye site. For the 95 

Solovetsky Islands site, the maximal and minimal wind speeds are respectively equal to 20.76 and 96 

0.84 m/s, respectively, the maximal wind of this last site being much higher than the maximal values 97 

for the two other sites. In the three cases, the wind directions cover almost the whole range 0-360°. 98 

More detailed statistical analyses of the wind speeds and directions in the three sites are given in 99 

section 3.1. 100 

The Vestas V90-2.0 wind turbine to be installed in the three sites has a rated power equal to 2 kW 101 

[7]. Its hub height is 80 m. More details concerning this wind turbine are given in section 3.2.3. 102 

 103 
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2.2. Wind characteristics 104 

Wind characteristics were collected from the ERA5 website [4], at the altitude of 100 m and each 105 

hour during forty-one years (1979-2020). The Windographer software was used to collect the data. 106 

Because of the huge number of data (368,184), daily means were first computed to reduce the number 107 

of data to 15,341. 108 

 109 

2.3. Analysis of wind data and determination of the main parameters 110 

2.3.1. Simulation of the wind speeds distribution through a Weibull distribution function 111 

using the classical procedure 112 

Concerning the wind speed, a two-parameters Weibull distribution function is recommended by the 113 

standards IEC 61400-12-1:2017 [8], to assess the values of the wind speed according to their 114 

frequency. The density of the Weibull function is written as: 115 

𝑓𝑊(𝑣) =
𝑘

𝑐
(
𝑣

𝑐
)
𝑘−1

exp (−(
𝑣

𝑐
)
𝑘

),        (1) 116 

where 𝑘 is the dimensionless shape parameter and 𝑐 (m/s) is the scale parameter. The cumulative 117 

distribution function of this Weibull function is: 118 

𝑊(𝑣) = 1 − exp (−(
𝑣

𝑐
)
𝑘

).         (2) 119 

To determine the two parameters in the present context, the daily mean wind speeds are first ordered 120 

in an increasing way. Then a frequency is associated with each daily mean speed, according to the 121 

two following possibilities: 122 

- Either a constant frequency equal to 1/(𝑛𝑑 + 1) to each daily speed, where 𝑛𝑑 = 15,341 is 123 

the number of observed daily mean speeds in the present study, 124 

- Or the daily mean speeds are assembled in 𝑛𝑐 classes, for example according to Brook-125 

Carruthers’ formula: 126 

𝑛𝑐 = 5 × 𝑙𝑜𝑔10(𝑛𝑑),                 (3) 127 
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a constant frequency equal to #𝑗/(𝑛𝑐 + 1) is here associated with each daily mean speed in 128 

the class j, where #𝑗 is the number of daily mean speeds in the class j. 129 

In the present study, only the second method will be used. 130 

Cumulative probabilities are then deduced from these frequencies. 131 

Because of the structure (2) of the Weibull function, a classical attempt to determine the shape and 132 

scale parameters of the Weibull function consists to apply twice the natural logarithm to (2): 133 

𝑙𝑛(− 𝑙𝑛(1 −𝑊(𝑣))) = 𝑘𝑙𝑛(𝑣) − 𝑘𝑙𝑛(𝑐).     (4) 134 

A linear regression method is then used to determine the values of 𝑘 and 𝑘𝑙𝑛(𝑐), whence of 𝑐. This 135 

procedure will be called the classical method. This procedure uses the logarithm which is known to 136 

override the variations of the data. This quite simple procedure does not require any numerical 137 

software. 138 

 139 

2.3.2. Simulation of the wind speeds distribution through a Weibull distribution function 140 

using direct optimization procedures 141 

The shape and scale parameters of a Weibull function simulating the density or probability of wind 142 

speed in some territory can be derived minimizing the square root of the squared differences between 143 

the observed 𝑓𝑖,𝑜𝑏𝑠 and simulated frequencies: 144 

𝑙𝑓
2 = (∑(𝑓𝑖,𝑜𝑏𝑠 −

𝑘

𝑐
(
𝑣𝑖
𝑐
)
𝑘−1

exp (−(
𝑣𝑖
𝑐
)
𝑘

))

2
𝑛𝑑

𝑖=1

)

1/2

,        (5) 145 

or between the observed 𝑊𝑖,𝑜𝑏𝑠 and simulated cumulative probabilities: 146 

𝑙𝑝
2 = (∑(𝑊𝑖,𝑜𝑏𝑠 − 1 + exp (−(

𝑣𝑖
𝑐
)
𝑘

))

2
𝑛𝑑

𝑖=1

)

1/2

,         (6) 147 
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In the present study, the Scilab software and especially its routine ‘datafit’ is used to determine the 148 

optimal values of the shape and scale parameters. This Scilab ‘datafit’ routine uses the quasi-Newton 149 

algorithm. 150 

When considering the objective function defined in (5) based on the observed and simulated 151 

frequencies, the optimization procedure will be called Directf. When considering the objective 152 

function defined in (6) based on the observed and simulated probabilities, the optimization procedure 153 

will be called Directp. 154 

 155 

2.3.3. Simulation of the wind speeds distribution through a Weibull distribution function 156 

using other models or formulas 157 

Other methods or formulas have already been proposed in the literature to derive the shape and scale 158 

parameters of a Weibull function which simulates the wind speeds in a territory, see for example [9] 159 

and the references therein. For example, direct computations may be applied such as: 160 

- Modified maximum likehood 161 

The shape parameter 𝑘 is determined through the resolution of the nonlinear equation: 162 

𝑘 = (
∑ 𝑣𝑖

𝑘 ln(𝑣𝑖) 𝑓𝑖,𝑜𝑏𝑠
𝑛𝑑
𝑖=1

∑ 𝑣𝑖
𝑘𝑓𝑖,𝑜𝑏𝑠

𝑛𝑑
𝑖=1

−
∑ ln(𝑣𝑖)
𝑛𝑑
𝑖=1

𝑛𝑑
)

−1

,      (7) 163 

which is solved in the present study using the Scilab routine ‘fsolve’. The scale parameter is 164 

then computed as: 165 

𝑐 = (∑𝑣𝑖
𝑘𝑓𝑖,𝑜𝑏𝑠

𝑛𝑑

𝑖=1

)

1/𝑘

.        (8) 166 

- Lysen 167 

The shape and scale parameters are computed through: 168 

𝑘 = (
𝜎

𝑣̅
)
−1.086

; 𝑐 = 𝑣̅ (0.58 +
0.433

𝑘
)
−1/𝑘

,        (9) 169 

where 𝜎 is the standard deviations of the wind speeds and 𝑣̅ = ∑ 𝑣𝑖
𝑛𝑑
𝑖=1 /𝑛𝑑 their mean. 170 



9 

 

- Energy pattern factor or Justus 171 

The shape and scale parameters are computed through: 172 

𝑘 = 1 +
3.69

(𝐸𝑝𝑓𝑚)
2 ; 𝑐 =

𝑣𝑎𝑣

Γ (1 +
1
𝑘
)
,          (10) 173 

where Γ is the Gamma function and: 174 

𝐸𝑝𝑓𝑚 =
∑ 𝑣𝑖

3𝑛𝑑
𝑖=1

𝑛𝑑(𝑣̅)3
.         (11) 175 

- Moments 176 

The shape and scale parameters are computed through: 177 

𝑘 = (0.9874 ×
𝑣̅

𝜎
)
1.0983

; 𝑐 =
𝑣̅

Γ (1 +
1
𝑘
)
.         (12) 178 

The values of the shape and scale parameters returned by these methods or formulas will be compared 179 

for the three Russian sites, considering the properties of a Vestas V90-2.0 wind turbine. 180 

To validate the values of the shape and scale parameters determined through these different 181 

procedures or formulas, differences between the observed and simulated frequencies or probabilities 182 

are computed through the 𝑙𝑓
2-norm (5) involving the frequencies or the 𝑙𝑝

2-norm (6) involving the 183 

probabilities. Some authors also introduce a root mean square error (RMSE) which is equal to the 𝑙2-184 

norm, divided by 1/√𝑛𝑑. A 𝜒2 formula is usually computed but which is the square of 𝑅𝑀𝑆𝐸 ×185 

√𝑛𝑑/(𝑛𝑑 − 2), as there are two parameters to be determined (shape and scale parameters). A 𝑅2 186 

formula is also computed which involves the frequencies but which is equal to 1.0 −187 

(𝑙𝑓
2)
2
/∑ (𝑓𝑖,𝑜𝑏𝑠 − 𝑓𝑖,𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )

2𝑛𝑑
𝑖=1 , where 𝑓𝑖,𝑜𝑏𝑠̅̅ ̅̅ ̅̅  is the mean value of the observed frequencies. The maximal 188 

differences between the observed and simulated frequencies or probabilities hereafter respectively 189 

named 𝑙𝑓
∞- and 𝑙𝑝

∞-norms, can also be computed. In the present study, only the 𝑙𝑓
2, and 𝑙𝑝

2, 𝑙𝑓
∞, and 𝑙𝑝

∞ 190 

values will be computed to evaluate the simulations of the wind speeds, obtained through the different 191 

procedures or formulas. Inverting Weibull function, the differences between the observed and 192 

simulated wind speeds will also be evaluated, when considering the different sets of parameters. 193 
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 194 

2.3.4. Determination of the power density, of the Annual Energy Production, of the 195 

capacity factor, and of the power output of a wind turbine 196 

The wind power density (W/m2) is an important parameter to characterize the wind potential of a site. 197 

It is defined as: 198 

𝑃𝑑 =
1

2
𝜌𝑐3Γ (1 +

3

𝑘
),         (13) 199 

where 𝜌 is the air density which will be taken equal to 1.225 kg/m3, value corresponding to sea level 200 

(1 atm) and under a temperature of 15 °C. Some authors analyzed the variations of the air density and 201 

the impact of this physical parameter on the wind energy assessment, see [10] for example. 202 

Values of this power density may be taken per year in the present context. However, a unique value 203 

will here be considered for the forty-one years of observations. 204 

The theoretical Annual Energy Production (MWh) of the Vestas V90-2.0 wind turbine is computed 205 

through: 206 

𝐴𝐸𝑃 = 365 × 24 × ∫ 𝑃(𝑣)𝑓(𝑣)𝑑𝑣
𝑣𝑐𝑜

𝑣𝑐𝑖

,         (14) 207 

where 𝑣𝑐𝑖 is the cut-in wind speed (m/s), 𝑣𝑐𝑜 is the cut-off wind speed (m/s), 𝑃 (kW) is the power 208 

output of the wind turbine under consideration, given by the manufacturer [7], 𝑃 being a function of 209 

the wind speed, and 𝑓 is the Weibull density representing the frequencies of the wind speeds and 210 

defined in (1). 211 

From this theoretical Annual Energy Production and the rated power 𝑃𝑟 of the wind turbine, which is 212 

indicated by the manufacturer, it is possible to determine a theoretical capacity factor through: 213 

𝐶𝑓,𝑡 =
𝐴𝐸𝑃

𝑃𝑟 × 365 × 24
.       (15) 214 

The power density 𝑃𝑑, the Annual Energy Production and the capacity factor 𝐶𝑓,𝑡, respectively defined 215 

through (13), (14), and (15), depend on the shape and scale parameters involved in the Weibull 216 
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distribution function 𝑊 (2) and its density 𝑓 (1) which represent the probabilities and densities of the 217 

wind speeds observed in the site under consideration. 218 

The power output 𝑃 of the wind turbine depends on the wind speed and takes different expressions 219 

according to the value of this wind speed with respect to the cut-in wind speed 𝑣𝑐𝑖, the rated wind 220 

speed 𝑣𝑟, and the cut-off wind speed 𝑣𝑐𝑜: 221 

𝑃(𝑣) =

{
 

 
0 𝑖𝑓 𝑣 < 𝑣𝑐𝑖
𝑃𝑓(𝑣) 𝑖𝑓 𝑣𝑐𝑖 ≤ 𝑣 < 𝑣𝑟 

𝑃𝑟 𝑖𝑓 𝑣𝑟 ≤ 𝑣 < 𝑣𝑐𝑜
0 𝑖𝑓 𝑣 > 𝑣𝑐𝑜

          (16) 222 

these cut-in, rated, and cut-off wind speeds being defined by the manufacturer website [7]. 223 

The capacity factor defined in (15) may be expressed in terms of the power output as, [11]: 224 

𝐶𝑓,𝑡 =
𝑃̅

𝑃𝑟
;  𝑃̅ = ∫ 𝑃(𝑣)𝑓(𝑣)𝑑𝑣

+∞

0

= ∫ 𝑃𝑓(𝑣)𝑓(𝑣)𝑑𝑣
𝑣𝑟

𝑣𝑐𝑖

+ 𝑃𝑟∫ 𝑓(𝑣)𝑑𝑣
𝑣𝑐𝑜

𝑣𝑟

.       (17) 225 

In [12], the authors propose different formulas to estimate the capacity factor of a wind turbine. 226 

A sensitivity analysis and a parametric study of the Annual Energy Production will be performed for 227 

the Dolgoshchelye site, with respect to the power output or the density energy. 228 

 229 

2.3.5. Simulation of the wind distributions through von Mises distribution functions 230 

Usually, simulations of the wind directions are performed considering a unique or the superposition 231 

of two von Mises functions, [11]. The use of a von Mises function first requires the conversion of the 232 

wind distributions in radians. The density of a von Mises function is defined as: 233 

𝑓𝑀,𝜇,𝜅(𝜃) =
exp(𝜅cos(𝜃 − 𝜇))

2𝜋𝐼0(𝜅)
=
𝐼0(𝜅) + 2∑ 𝐼𝑝(𝜅)cos (𝑝(𝜃 − 𝜇))

∞
𝑝=1

2𝜋𝐼0(𝜅)
,           (18) 234 

where 𝜃 is the wind distribution (Rad), 𝜇 is the shape or a location parameter (Rad), 𝜅 is the scale or 235 

concentration parameter (no unit), and 𝐼𝑗 is the modified Bessel function of order j. The associated 236 

cumulative probability is given as: 237 

𝐹𝑀,𝜇,𝜅(𝜃) =
𝜃𝐼0(𝜅) + 2∑ 𝐼𝑝(𝜅)(sin(𝑝(𝜃 − 𝜇)) + sin(𝑝(𝜇)))/𝑝

∞
𝑝=1

2𝜋𝐼0(𝜅)
.           (19) 238 
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In the case of a superposition of two von Mises distributions, a weight 𝑤 ∈ (0,1) is further introduced 239 

and the density of this superposition of two von Mises functions is the weighted sum of the previously 240 

defined densities: 241 

𝑓𝑀,𝜇1,𝜅1,𝜇2,𝜅2(𝜃)242 

= 𝑤
𝐼0(𝜅1) + 2∑ 𝐼𝑝(𝜅1)cos (𝑝(𝜃 − 𝜇1))

∞
𝑝=1

2𝜋𝐼0(𝜅1)
243 

+ (1 − 𝑤)
𝐼0(𝜅2) + 2∑ 𝐼𝑝(𝜅2)cos (𝑝(𝜃 − 𝜇2))

∞
𝑝=1

2𝜋𝐼0(𝜅2)
.           (20) 244 

The cumulative probability associated with this superposition of two von Mises distributions is equal 245 

to: 246 

𝐹𝑀,𝜇1,𝜅1,𝜇2,𝜅2(𝜃)247 

= 𝑤
𝜃𝐼0(𝜅1) + 2∑ 𝐼𝑝(𝜅1)(sin(𝑝(𝜃 − 𝜇1)) + sin(𝑝(𝜇1)))/𝑝

∞
𝑝=1

2𝜋𝐼0(𝜅1)
248 

+ (1 − 𝑤)
𝜃𝐼0(𝜅2) + 2∑ 𝐼𝑝(𝜅2)(sin(𝑝(𝜃 − 𝜇1)) + sin(𝑝(𝜇1)))/𝑝

∞
𝑝=1

2𝜋𝐼0(𝜅2)
.           (21) 249 

In the present study, the wind distributions are first ordered in an increasing way and classified in 20 250 

classes, according to Brook-Carruthers’ formula (3). In the present study, the optimal parameters of 251 

a unique or of a superposition of two von Mises function are again determined using the Scilab 252 

software and direct optimization procedures dealing with either the density or the probability. These 253 

procedures are respectively denoted as Directf1, Directp1, Directf2 and Directp2. 254 

To validate the simulations performed with these procedures, the 𝑙𝑓
2- and 𝑙𝑝

2-norms, as derived from 255 

(5)-(6), and the maximal differences (𝑙𝑓
∞- and 𝑙𝑝

∞-norms) between the observed and simulated 256 

cumulative probabilities will be computed and compared. 257 

 258 

3. Results and discussion 259 

3.1. Wind characteristics in the three Russian sites 260 
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The mean and standard deviations of the daily mean wind speeds collected from the ERAS5 website 261 

during forty-one years for the three Russian sites are gathered in Table 1. 262 

 263 

Table 1. Mean and standard deviations of the daily mean speeds and directions for the three Russian 264 

sites. 265 

Site Wind speed Wind direction 

 Mean (m/s) Standard deviations (m/s) Mean (rad) Standard deviations (rad) 

Dolgo 6.018 2.043 3.340 1.355 

Mezen 5.760 1.886 3.393 1.337 

Solov 8.561 3.272 3.276 1.337 

 266 

The mean of the daily mean speeds is much higher in the Solovetsky Islands than in the two other 267 

sites. Its standard deviations is also much higher, which means that the wind speeds here present 268 

larger variations around a higher mean, than in the two other sites. The wind speeds in Mezen present 269 

the lowest mean and standard deviations. 270 

The wind directions present quite similar mean and standard deviations for the three sites. 271 

According to Brook-Carruthers’ formula (3), the collected wind speeds and directions were 272 

assembled into 20 classes. For the wind directions, the first sector is centered around the north. Wind 273 

roses and wind speed distributions are shown in Fig. 2, for the three Russian sites. 274 

 275 

 

 
a) b) 
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Fig. 2. Wind speed frequencies a) and wind direction roses b) for the Russian site Dolgoshchelye 276 

(black squares or solid line), Mezen (red triangle or dotted line) and Solovetsky Islands (blue points 277 

or hyphened line). 278 

 279 

The wind speed frequencies exhibit small differences between the three sites: the Mezen site presents 280 

slightly higher frequencies around the peak and slightly lower frequencies for the last classes. The 281 

Solovetsky site presents slightly lower frequencies around the peak which occurs here for higher 282 

classes and slightly higher frequencies for the last classes. 283 

The wind roses also present small differences between the three sites, in the major or minor directions: 284 

the Solovetsky Islands site presents higher frequencies in the Northeast direction than the two other 285 

sites; the Mezen site presents higher frequencies in the Northwest direction than the two other sites. 286 

For the three sites, the wind mainly blows from the Northwest direction, which confirms the values 287 

of Table 1. 288 

 289 

3.2.Simulations of the wind characteristics through Weibull functions 290 

3.2.1. Determination of the shape and scale parameters of the Weibull distribution function 291 

through the classical procedure 292 

The parameters of a Weibull function which simulates the wind speeds are first determined through 293 

the classical procedure, according to the procedure described in section 2.3.1. The values are gathered 294 

in Table 2 for the three sites, together with the four selected errors. 295 

 296 

Table 2. Values of the shape and scale parameters, according to the model described in section 2.3.1, 297 

𝑙𝑓
2 and 𝑙𝑝

2 errors as defined in (5)-(6), and maximal differences between observed and simulated 298 

frequencies 𝑙𝑓
∞ and probabilities 𝑙𝑝

∞. 299 

 k c (m/s) 𝑙𝑓
2 𝑙𝑝

2 𝑙𝑓
∞ 𝑙𝑝

∞ 

Dolgo 3.133 6.346 1.416 5.173 0.036 0.053 
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Mezen 3.260 6.058 1.554 5.406 0.035 0.053 

Solov 2.710 9.065 1.015 5.149 0.022 0.055 

 300 

The values of the shape and scale parameters present high differences between the three sites. The 301 

Solovetsky Islands site has the lowest shape value and the much higher scale value. On the contrary, 302 

the Mezen site has the higher shape value and the lowest scale value. The Dolgoshchelye site presents 303 

intermediate values of the shape and scale parameters. 304 

The 𝑙𝑓
2- and 𝑙𝑝

2-norms (5)-(6) are lower for the Solovetsky Islands site and higher for the Mezen site. 305 

The 𝑙𝑓
∞-norm is lower for the Solovetsky Islands site and higher for the Dolgoshchelye site. The 𝑙𝑝

∞- 306 

is slightly higher for the Solovetsky Islands than for the two other sites. 307 

The observed and simulated (through the classical procedure) frequencies and probabilities of the 308 

mean wind speeds are gathered in Fig. 3 for the three Russian sites. 309 

 310 

  
a) b) 

  
c) d) 
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e) f) 

Fig. 3. Observed (solid line) and simulated (dotted line), with the classical method, densities and 311 

cumulative probabilities of the wind speeds according to a constant frequency in each class of the 312 

20 wind speeds for the Dolgoshchelye (a) and b)), Mezen (c) and d)) and Solovetsky Islands (e) and 313 

f)) sites. 314 

 315 

The density curves present slightly different shapes, while the cumulative probability curves look 316 

similar. Whatever the site, the simulated frequency curve starts above and ends below the observed 317 

one. The probability curve is above the observed one, whatever the site. 318 

Inverting the Weibull function (2) with the parameters determined through the classical method, it is 319 

possible to build the wind speeds which correspond to probabilities equal to (𝑖 − 1)/(𝑛𝑑 − 1), 𝑖 =320 

1, … , 𝑛𝑑, and to measure the differences between the observed and simulated wind speeds. Fig. 4 321 

presents the curves of the observed and simulated wind speeds for the Dolgoshchelye site. 322 

 323 

Fig. 4. Observed (solid line) and simulated (dotted line) wind speeds for the Dolgoshchelye site. 324 
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The maximal difference between the observed and simulated wind speeds is equal to 1.51 m/s. The 325 

𝑙2 norm of the differences is equal to 45.27 m/s. Similar results can be obtained for the two other 326 

sites. 327 

 328 

3.2.2. Determination of the shape and scale parameters of the Weibull distribution function 329 

through the direct optimization procedures 330 

When considering the direct optimization procedure applied to the Weibull function, the objective 331 

function defined in (6) and to be minimized has the shape presented in Fig. 5, for k and c both varying 332 

in the interval [1,10]. Here only the Dolgoshchelye site is considered, the other Russian sites leading 333 

to quite similar results. 334 

 335 

 336 

Fig. 5. Values of the objective function defined in (6) for k and c both varying in the interval [1,10] 337 

and for the Dolgoshchelye site. 338 

 339 

This objective function presents a minimum for values of k close to 2 and of c close to 6. This 340 

minimizer looks unique. Quite similar observations can be brought for the two other sites (not shown 341 

here). 342 

 343 
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The values of the shape k and scale c parameters defined through the different models indicated in 344 

the expressions (7)-(12) of section 2.3.3 are also gathered in Table 3. 345 

 346 

Table 3. Values of the shape and scale parameters, according to the direct optimization methods 347 

described in sections 2.3.2 and to formulas presented in section 2.3.3, 𝑙𝑓
2- and 𝑙𝑝

2-errors as defined in 348 

(5)-(6), and maximal differences between the observed and simulated frequencies (𝑙𝑓
∞) and 349 

probabilities (𝑙𝑝
∞). 350 

 Directf Directp Max. like. Lysen Energy pattern 

factor (Justus) 

Moments 

Dolgo       

k 3.089 2.973 3.186 3.232 2.995 3.230 

c (m/s) 6.499 6.307 6.723 6.679 6.740 6.740 

𝑙𝑓
2 1.540 1.174 1.608 1.557 1.669 1.714 

𝑙𝑝
2 3.615 4.961 8.080 7.652 7.709 8.469 

𝑙𝑓
∞ 0.043 0.032 0.036 0.036 0.031 0.038 

𝑙𝑝
∞ 0.069 0.104 0.144 0.139 0.136 0.148 

Mezen       

k 3.091 3.219 3.307 3.362 3.075 3.361 

c (m/s) 6.016 6.204 6.422 6.381 6.444 6.444 

𝑙𝑓
2 1.721 1.276 1.771 1.712 1.941 1.915 

𝑙𝑝
2 3.818 5.283 8.534 8.124 8.166 9.049 

𝑙𝑓
∞ 0.043 0.033 0.038 0.036 0.039 0.039 

𝑙𝑝
∞ 0.072 0.111 0.153 0.148 0.144 0.159 

Solov       

k 2.574 2.671 2.837 2.842 2.738 2.836 

c (m/s) 9.065 9.437 9.621 9.552 9.622 9.622 

𝑙𝑓
2 1.012 0.731 0.944 0.924 0.821 0.943 

𝑙𝑝
2 3.220 5.045 7.106 6.583 6.706 7.111 

𝑙𝑓
∞ 0.019 0.026 0.024 0.023 0.022 0.024 

𝑙𝑝
∞ 0.058 0.096 0.125 0.121 0.118 0.125 

 351 

Whatever the site, the values of the shape parameter k and of the scale parameter c highly depend of 352 

the method or formula. The Energy pattern factor method returns the lowest values of the shape 353 

parameter k. The Lysen formula returns the highest values of the shape parameter k and scale 354 

parameter c. The direct optimization method Directp (based on the probability) returns the lowest 𝑙𝑓
2-355 

error, which is the smallest error among the six methods or formulas, and the highest 𝑙𝑝
2-error. The 356 
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direct optimization method Directf (based on the density) returns the lowest 𝑙𝑝
2-error among the six 357 

methods. The moments formula returns the highest 𝑙𝑓
2- and 𝑙𝑝

2-errors. 358 

For the Dologoshchelye site, the mean value 𝑘̅ and the standard deviations 𝜎𝑘 of the k parameters 359 

returned by the different models or formulas are equal to 3.1232 and 0.1151, respectively. The mean 360 

value 𝑐̅ and the standard deviations 𝜎𝑐 of the c parameters returned by the different models or formula 361 

are equal to 6.6147 and 0.1609 m/s, respectively. 362 

The density and cumulative Weibull distributions associated with these six sets of shape and scale 363 

parameters are gathered in Fig. 6. 364 

 365 

  
a) b) 

Fig. 6. Observed and simulated density a) and probability b) curves for the Dolgoshchelye site. The 366 

observed curves are in light blue, the simulated curves obtained with the direct optimization with 367 

respect to the probability in red, with the direct optimization with respect to the density in grey, 368 

with maximum likehood in yellow, Lysen in dark blue, Justus in green, and moments in violet. 369 

 370 

It is difficult to identify the different curves even if they present quite significant differences, see also 371 

Table 3. Figure 7 focuses on the observed and simulated density and probability curves for the three 372 

Russian sites, the simulated curves being obtained with the two direct optimization procedures 373 

described in section 2.3.2. 374 
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a) b) 

  
c) d) 

  
e) f) 

  

Fig. 7. Observed and simulated density and probability curves for the Dolgoshchelye (a) and b)), 375 

Mezen (c) and d)) and Solovetsky Islands sites (e) and f)). The observed curves are the solid lines, 376 

the simulated curves obtained with the direct optimization with respect to the density are the dotted 377 

lines, with the direct optimization with respect to the density are the hyphened lines. 378 

 379 

For the three sites, the probability curves seem to be better simulated when considering the direct 380 

optimization curves involving the densities. Whatever the site, the density curves indeed go more 381 

between the steps of the observed density curves when considering the direct optimization curves 382 

involving the densities, especially after the peak. 383 
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The simulations of the wind speeds presented in this section were based on observations performed 384 

at 100 m height, although the hub height of the Vestas V90-2.0 is 85 m. Corrections should be brought 385 

to these observed wind speeds, according to a formula given in the literature when considering a quite 386 

flat territory, see [12,13], for example. 387 

From the Weibull functions whose parameters are determined through the direct optimization 388 

methods presented in section 2.3.2, it is possible to build the wind speeds which correspond to 389 

probabilities equal to (𝑖 − 1)/(𝑛𝑑 − 1), 𝑖 = 1,… , 𝑛𝑑, and to measure the differences between the 390 

observed and simulated wind speeds. The maximal differences between the observed and simulated 391 

wind speeds are equal to 1.14 and 1.09 m/s, when considering the frequencies or probabilities, 392 

respectively. These maximal differences are slightly lower than that (1.51 m/s) obtained when 393 

considering the Weibull function whose parameters are determined through the classical method. The 394 

𝑙2-norms of the differences between the observed and simulated wind speeds are equal to 49.56 and 395 

29.47 m/s, respectively. The 𝑙2-norm of the differences between the observed and simulated wind 396 

speeds obtained when considering the Weibull function with parameters deduced from the classical 397 

method was computed at 45.27 m/s, between the two 𝑙2-norms. 398 

 399 

3.2.3. Determination of the power density, AEP and capacity factor 400 

For a Vestas V90-2.0 wind turbine, the cut-in wind speed 𝑣𝑐𝑖 is equal to 3.0 m/s, the rated wind speed 401 

𝑣𝑟 is equal to 12.5 m/s, and the cut-off wind speed 𝑣𝑐𝑜 is equal to 20.5 m/s. The rated power 𝑃𝑟 is 402 

equal to 2 MW. In the interval [𝑣𝑐𝑖, 𝑣𝑟], the power output 𝑃𝑓 (MW) of the wind turbine may be 403 

approximated through the polynomial function of degree 6: 404 

𝑃𝑓(𝑣)~2.4925 × 10
−5 × 𝑣6 − 1.1420 × 10−3 × 𝑣5 + 2.0165 × 10−2 × 𝑣4 − 0.1762 × 𝑣3405 

+ 0.8298 × 𝑣2 − 1.9213 × 𝑣 + 1.6817.        (22) 406 

The determination coefficient of this polynomial function of degree 6 is higher than 0.999. 407 
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As deduced from the formulas (13)-(15) in section 2.3.4 and of the values of the scale and shape 408 

parameters determined in the previous section, the values of the power density, of the annual energy 409 

production and of the capacity factor are gathered in Table 4. 410 

 411 

Table 4. Values of the power density 𝑃𝑑, of the Annual Energy Production AEP and of the capacity 412 

factor 𝐶𝑓, as deduced from the Weibull functions indicated in Table 3, through the expressions (13)-413 

(15). 414 

 Directf Directp Max. like. Lysen Energy pattern 

factor 

Moments 

Dolgo       

𝑃𝑑 (W/m2) 137.2 150.3 166.7 163.5 167.4 168.0 

AEP (MWh) 3695.2 3983.5 4352.4 4262.2 4436.8 4371.6 

𝐶𝑓 (%) 0.211 0.227 0.248 0.243 0.253 0.250 

Mezen       

𝑃𝑑 (W/m2) 119.2 131.1 145.5 142.9 146.5 147.1 

AEP (MWh) 3179.8 3447.6 3790.9 3707.7 3892.8 3814.7 

𝐶𝑓 (%) 0.181 0.197 0.216 0.212 0.222 0.218 

Solov       

𝑃𝑑 (W/m2) 405.1 457.6 485.9 475.6 485.4 486.0 

AEP (MWh) 8454.5 9060.4 9439.3 9340.8 9373.1 9440.3 

𝐶𝑓 (%) 0.483 0.517 0.539 0.533 0.535 0.539 

 415 

The power density, Annual Energy Production and capacity factor highly depend on the model. The 416 

direct optimization method based on the density returns the lowest values of the power density, of the 417 

Annual Energy Production and of the capacity factor, whatever the site. The Energy pattern factor 418 

and moments methods return the highest values of these parameters. Concerning the Annual Energy 419 

Production, the relative increase between the lowest and highest values is equal to 20.0% for 420 

Dolgoshchelye, to 22.4% for Mezen and to 11.7% for Solovetsky Islands sites, which are very high 421 

percentages. 422 

 423 

3.2.4. Sensitivity analysis and parametric study concerning the Annual Energy Production 424 

in the case of the Dolgoshchlye site 425 
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The formula (14) giving the Annual Energy Production involves the power output, the cut-in 𝑣𝑐𝑖 and 426 

cut-off 𝑣𝑐𝑟 rates of the wind turbine, as indicated by the manufacturer. The cut-in and cut-off rates 427 

are fixed by the manufacturer, as they deal with efficiency or security reasons. Consequently, the 428 

uncertainty of the Annual Energy Production comes from that of the power out curve or of the Weibull 429 

function. A sensitivity analysis is performed on these two terms, but in an additive way, the case of a 430 

multiplicative uncertainty being indeed trivial. In the case of additive uncertainties on the power 431 

𝛿𝑃(𝑣) and on the Weibull density 𝛿𝑓(𝑣), the uncertainty on the Annual Energy Production is 432 

computed through: 433 

𝐴𝐸𝑃 + 𝛿𝐴𝐸𝑃 = 365 × 24∫ (𝑃(𝑣) + 𝛿𝑃(𝑣))(𝑓(𝑣) + 𝛿𝑓(𝑣))𝑑𝑣
𝑣𝑐𝑜

𝑣𝑐𝑖

434 

= 365 × 24∫ (𝑃(𝑣)𝑓(𝑣) + 𝛿𝑃(𝑣)𝑓(𝑣) + 𝑃(𝑣)𝛿𝑓(𝑣) + 𝛿𝑃(𝑣)𝛿𝑓(𝑣))𝑑𝑣.   (23)
𝑣𝑐𝑜

𝑣𝑐𝑖

 435 

The power curve given in (17) was slightly modified through the formula: 436 

𝑃𝑓𝑚(𝑣) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (𝑃𝑓(𝑣) −
(𝑣 − 𝑣𝑐𝑖)(𝑣 − 𝑣𝑐𝑜)

1000.0
, 𝑃𝑓(𝑣𝑐𝑜)) , 0.0).      (24) 437 

The Weibull density given in (1) and determined through the direct optimization method with the 438 

probabilities, leading to the values 𝑘 = 2.973, 𝑐 = 6.307 m/s, see Table 3, was modified according 439 

to the formula: 440 

𝑓𝑊𝑚(𝑣) = 𝑓𝑊(𝑣) −
(𝑣 − 𝑣𝑐𝑖)(𝑣 − 𝑣𝑐𝑜)

10000.0
.        (25) 441 

The curves of the original and modified power outputs and densities are gathered in Fig. 8. 442 
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a) b) 

Fig. 8. Original (solid line) and modified (dotted line) power output and density in the interval 443 

[𝑣𝑐𝑖 , 𝑣𝑐𝑜]. 444 

 445 

The integral of the absolute difference between the power curves is equal to 0.44 MW, to be compared 446 

to the integral of the power output, which is equal to 24.90 MW, thus representing a relative variation 447 

of 1.7%. The integral of the absolute difference between the density curves is equal to 0.089, to be 448 

compared to the integral of the density which is equal to 1.0, thus representing a relative variation of 449 

8.9%. 450 

Only modifying the power output according to (24), the Annual Energy Production increases from 451 

3983.5 to 4317.1 MW, which represents a relative variation of 8.4%. Only modifying the density 452 

according to (25), the Annual Energy Production decreases from 3983.5 to 3943.6 MW, which 453 

represents a relative variation of 1%. Modifying the power output and density expressions, the Annual 454 

Energy Production increases from 3983.5 to 5557.9 MW, which represents a relative variation of 455 

39.5%! Even if the relative variation of the power output is lower than that of the density, its impact 456 

on the variation of the Annual Energy Production is much higher, due to the expression of the integral 457 

leading to the Annual Energy Production. 458 

Considering the Dolgoshchelye site, a parametric analysis with respect to the k and c parameters of a 459 

Weibull function can be performed on the Annual Energy Production, taking the five values (𝑘̅, 𝑐̅) 460 
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and (𝑘̅ ± 𝜎𝑘, 𝑐̅ ± 𝜎𝑐). The values of the Annual Energy Production obtained for these four last values 461 

are gathered in Table 5. 462 

 463 

Table 5. Values of the Annual Energy Production for the five values (𝑘̅, 𝑐̅) and (𝑘̅ ± 𝜎𝑘, 𝑐̅ ± 𝜎𝑐), and 464 

relative variations with respect to the value of the Annual Energy Production obtained when taking 465 

(𝑘̅, 𝑐̅) and equal to 4176.8 MWh, third line), and also with respect to the mean value of the Annual 466 

Energy Productions determined through the different methods (Table 4) and equal to 4183.6 MWh, 467 

fourth line). 468 

 (𝑘̅, 𝑐̅) (𝑘̅ + 𝜎𝑘, 𝑐̅) (𝑘̅ − 𝜎𝑘, 𝑐̅) (𝑘̅, 𝑐̅+𝜎𝑐) (𝑘̅, 𝑐̅−𝜎𝑐) 

AEP (MWh) 4176.8 4143.1 4208.8 4464.3 3895.8 
  0.81% 0.76% 6.88% 6.73% 
 0.16% 0.97% 0.60% 6.71% 6.88% 

 469 

Variations of the k parameter approximately equal to 3.7% do not highly modify so much the Annual 470 

Energy Production (relative variations less than 1%). On the contrary, variations of the c parameter 471 

approximately equal to 2.6% significantly modify the Annual Energy Production (variations greater 472 

than 6%). 473 

From the values of the parameters presented in Table 4, it is possible to perform an economic analysis 474 

of the wind turbine, like in [14], for example. 475 

 476 

3.2.5. Simulations of the wind directions with a superposition of two von Mises functions 477 

The wind distributions obtained from the ERA5 website [4] during forty-one years, converted in 478 

radians and gathered in 20 classes lead to the observed density and probability curves presented in 479 

Fig. 9. 480 

 481 
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a) b) 

  
c) d) 

  
e) f) 

Fig. 9. Observed density and cumulative probability curves of the wind directions for the 482 

Dolgoshchelye (a) and b)), Mezen (c) and d)) and Solovetsky (e) and f)) sites. 483 

 484 

Clearly, two peaks appear on the density curve Fig. 9 a), c) and e), which correspond to the wind rose 485 

given in Fig. 2 a), dotted line, the second one being more important and corresponding to winds 486 

oriented Southwest. 487 

The optimal values of the parameters involved in the unique or in the superposition of two von Mises 488 

functions which intend to simulate the wind densities and probabilities directions, according to the 489 

direct optimization procedures described in section 2.3.5 are gathered in Table 4. The different errors 490 

between the observed and simulated density and probability curves are also gathered in Table 6. 491 
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 492 

Table 6. Values of the parameters of a unique or of a superposition of two von Mises to simulate the 493 

wind directions, according to the model described in section 2.3.5, 𝑙𝑓
2- and 𝑙𝑝

2-errors as adapted in (5)-494 

(6), and maximal differences between the frequencies 𝑙𝑓
∞ and probabilities 𝑙𝑝

∞. 495 

 Directf1 Directp1 Directf2 Directp2 

Dolgo     

𝜇 (Rad) 3.661 3.661 - - 

𝜅 (Rad) 0.813 0.813 - - 

𝜇1 (Rad) - - 1.064 1.021 

𝜇2 (Rad) - - 3.683 3.527 

𝜅1 (Rad) - - 4.205 4.284 

𝜅1 (Rad) - - 0.974 1.107 

𝑤 - - 0.071 0.103 

𝑙𝑓
2 2.259 2.259 1.512 2.259 

𝑙𝑝
2 7.602 7.602 5.345 2.594 

𝑙𝑓
∞ 0.046 0.046 0.045 0.046 

𝑙𝑝
∞ 0.121 0.121 0.102 0.052 

Mezen     

𝜇 (Rad) 3.666 3.666 - - 

𝜅 (Rad) 0.825 0.825 - - 

𝜇1 (Rad) - - 1.187 1.111 

𝜇2 (Rad) - - 3.690 3.537 

𝜅1 (Rad) - - 4.335 4.740 

𝜅1 (Rad) - - 0.967 1.061 

𝑤 - - 0.063 0.082 

𝑙𝑓
2 2.208 2.208 1.654 2.208 

𝑙𝑝
2 6.732 6.732 4.858 2.618 

𝑙𝑓
∞ 0.050 0.050 0.044 0.050 

𝑙𝑝
∞ 0.116 0.116 0.099 0.054 

Solov     

𝜇 (Rad) 3.648 3.648 - - 

𝜅 (Rad) 0.778 0.778 - - 

𝜇1 (Rad) - - 1.244 1.170 

𝜇2 (Rad) - - 3.705 3.550 

𝜅1 (Rad) - - 4.289 4.022 

𝜅1 (Rad) - - 1.082 1.232 

𝑤 - - 0.121 0.151 

𝑙𝑓
2 3.392 3.392 1.506 3.392 

𝑙𝑝
2 8.902 8.902 5.337 2.590 

𝑙𝑓
∞ 0.069 0.069 0.044 0.069 

𝑙𝑝
∞ 0.133 0.133 0.102 0.052 

 496 
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Whatever the site and considering a unique von Mises function, the optimal values of the parameters 497 

determined through the two direct optimization procedures are exactly the same. In the case of the 498 

superposition of two von Mises functions, slight differences appear between the two sets of optimal 499 

values. In both cases, the 𝑙𝑓
2 and 𝑙𝑓

∞ errors are smaller when considering the direct optimization 500 

procedure involving the densities. The 𝑙𝑝
2 and 𝑙𝑝

∞ errors are also smaller when considering the direct 501 

optimization procedure involving the probabilities. 502 

Figure 10 gathers the observed and simulated density and probability curves for the wind directions 503 

in the three sites. 504 

 505 

  
a) b) 

  
c) d) 

  
e) f) 
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Fig. 10. Observed (solid line) and simulated with a unique von Mises (dotted line), or with a 506 

superposition of two von Mises (hyphened line) distributions, for the density and cumulative 507 

probability of wind directions and for the Dolgoshchelye (a) and b)), Mezen (c) and d)) and 508 

Solovetsky (e) and f)) sites. 509 

 510 

The simulations with a unique von Mises function are much poorer than that with a superposition of 511 

two von Mises functions. This is the consequence of two peaks, even if the first is much smaller than 512 

the second one. Clearly, the simulations with the superposition of the two von Mises distributions 513 

with the weight w better reproduce the two peaks and the shape of the observed cumulative 514 

probability. 515 

Considering the superposition of two von Mises functions, the 𝑙𝑓
2 and 𝑙𝑝

2 errors are quite large, 516 

whatever the direct optimization procedure. This is surely the consequence of the shape of the 517 

observed density and probability curves. Quite important jumps indeed appear for the lowest values 518 

of the wind direction. 519 

 520 

4. Conclusion 521 

Predicting the power delivered by a wind turbine is important, at least from an economic point of 522 

view. Such prediction can be realized analyzing the wind characteristics in the chosen site, simulating 523 

them with appropriate tools and taking into account the chosen wind turbine. In the present study, the 524 

characteristics of wind data collected from the ERA5 website during forty-one years and concerning 525 

three Russian sites in the Arkhangelsk region were analyzed. Concerning the wind speeds, different 526 

mathematical methods or formulas, among which two direct optimization ones, were used to 527 

determine the values of the shape and scale parameters of a Weibull distribution function representing 528 

the wind speeds organized in 20 classes. The direct optimization methods consist to minimize an 529 

objective function which involves the squared differences between the observed and simulated 530 

frequencies or probabilities, with respect to the two parameters of a Weibull function. The errors 531 
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between the observed and simulated wind speeds were lower using the direct optimization methods. 532 

The Annual Energy Potential deduced from the values of the parameters of the Weibull function 533 

simulating the wind speeds was significantly lower when considering the direct optimization 534 

methods. A sensitivity analysis and a parametric study were conducted on this Annual Energy 535 

Production with respect to the power output of the turbine and to the density of a Weibull function 536 

representing the wind speed probabilities. For the wind directions, a superposition of two von Mises 537 

distributions was applied with good agreement for each site. Here again, direct optimization methods 538 

were applied to derive the parameters involved in this superposition of two von Mises distributions. 539 

As soon as wind turbines will be installed in the three chosen sites, their behavior will be compared 540 

with the simulations performed in the present study. Working in an Arctic region, icing and de-icing 541 

phenomena surely will occur and should be taken into account, as they penalize the optimal behavior 542 

of the wind turbines. 543 
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