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Abstract. This paper focuses on the spectral properties of a bounded self-adjoint operator in
L2(R

d) being the sum of a convolution operator with an integrable convolution kernel and an
operator of multiplication by a continuous potential converging to zero at in�nity. We study both
the essential and the discrete spectra of this operator. It is shown that the essential spectrum of
the sum is the union of the essential spectrum of the convolution operator and the image of the
potential. We then provide a number of su�cient conditions for the existence of discrete spectrum
and obtain lower and upper bounds for the number of discrete eigenvalues. Special attention is
paid to the case of operators possessing countably many points of the discrete spectrum. We also
compare the spectral properties of the operators considered in this work with those of classical
Schr�odinger operators.

Keywords: convolution operator, potential, essential spectrum, discrete spectrum, minimax prin-
ciple.

Mathematics Subject Classi�cation:

1 Introduction

In this work we study the spectral properties of a non-local self-adjoint operator L in L2(Rd) of the
form

Lu = Au+ V u, (Au)(x) :=

∫
Rd

a(x− y)u(y) dy, (1.1)

where A is a convolution operator with an integrable kernel a(·), and V is a potential being a bounded
continuous real-valued function that tends to zero at in�nity. Our goal is to characterize the structure
of the essential and discrete spectra of this operator.

In recent years there is a growing attention to non-local convolution type operators with integrable
kernels. This is stimulated by a number of interesting and non-trivial mathematical problems appearing
in the theory of such operators on the one hand, and by various important applications of this theory
on the other hand. Among the applied �elds in which zero order convolution type operators are of
essential importance we mention population dynamics, ecological problems and porous media theory.
In particular, in the population dynamics models the operators de�ned in (1.1) with a non-negative
function a(·) can be used to analyse the spread of infections or the growth of biological populations of
plants or animals.

A rigorous mathematical theory of population dynamics relies on the so called contact model in
continuum, see e.g. [10, 14, 17]. This model deals with a birth and death process that describes the
evolution of stochastic interacting in�nite-particle systems in terms of birth and death rates. The
function a(·) is called the dispersal kernel, it de�nes the distribution of a position of a newly born
particle in the con�guration.
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The evolution of the �rst correlation function denoted by u(x, t) and being the density of a popu-
lation is described by the following Cauchy problem:

∂u

∂t
= Lu− 〈a〉u, u = u(t, x), x ∈ Rd, t > 0, u(0, x) = u0(x) > 0, (1.2)

where 〈a〉 =
∫
Rd

a(z) dz. The potential V (x) in (1.2) is a real-valued function de�ned as the di�erence

between the birth and death rates at a point x ∈ Rd. In spatially inhomogeneous environments the
birth and death rates are functions of the position in the space and thus the potential V (x) need not
be equal to a constant. It is assumed that at in�nity the birth and death rates coincide so that V (x)
tends to zero as |x| → ∞.

This gives rise to an interesting mathematical question that reads: �nd a class of potentials V (·)
and dispersal kernels a(·) for which the operator L− 〈a〉 has a positive spectrum and thus the density
of population shows an exponential growth everywhere in the space. The problem of the existence of
positive eigenvalues has been discussed in [1, 11, 13], and the structure of the principal eigenfunction
has been investigated in [12]. Also, in [13] a possible location of the essential spectrum of the operator
L − 〈a〉 was studied.

It is known, see, for instance, [2, Theorem 19.1], that in the region x .
√
t the large time asymptotics

of the fundamental solution of the equation

∂tv(x, t) =

∫
Rd
a(x− y)

(
v(y, t)− v(x, t)

)
dy (1.3)

coincides with that of the heat kernel of the operator div
(
â∇
)
with

âij =

∫
Rd
zizja(z)dz.

Therefore, it is natural to consider the operator on the right-hand side of (1.3) as an approximation of
the Laplacian and to call L a non-local Schr�odinger operator.

The operator L de�ned in (1.1) can be regarded as a perturbation of the convolution operator A
by the potential V or vice versa, a perturbation of the multiplication operator by the convolution one.
From this point of view, there is a clear analogy with spectral properties of the Schr�odinger operators
perturbed by potentials or other lower order perturbations. There is a vast literature and hundreds of
works devoted to such operators. Not trying to mention all of them, we just cite few classical works
[20], [3], [8], [9] and a recent book [5]. However, there exists a fundamental di�erence between the
classical Schr�odinger operator and the non-local Schr�odinger operator of the form (1.1). The potential
term in the classical Schr�odinger operator is a relatively compact perturbation of the Laplacian, while
the terms of the operator L in (1.1) are equipollent. As our main results show, this fact makes the
spectral pictures for such operators and for classical Schr�odinger operators rather di�erent.

Also, in the mathematical and physical literature a number of works is devoted to the properties
of the discrete spectrum of the so-called quantum Hamiltonians and other Schr�odinger type operators
which are self-adjoint operators in L2(Rd) of the form H = H0 +V , where H0 = H0(−i∂) is a pseudo-
di�erential operator with symbol H0(p), and V is the operator of multiplication by a potential V ,
see [18], [6], [4], [7] and the references therein. Under the assumptions imposed in these works the
essential spectrum of the said Schr�odinger type operators was always determined by the operator H0.
The results on the existence of discrete spectrum and lower bounds for the number of eigenvalues
relied on the minimax principle and local properties of functions H0, V and the Fourier image of
V . In particular, it was assumed in [18], [6], [4] that the symbol H0 of the considered operators
grows at in�nity and degenerates along a manifold of dimension at least one. This fact was used to
establish su�cient conditions ensuring the existence of in�nitely many discrete eigenvalues. In [7] no
degeneration condition was assumed and the symbol H0 could attain its minimum at a single point.
The main contribution of this work was a collection of su�cient conditions for the existence of the
discrete eigenvalues and a series of upper bounds similar to the Cwikel-Lieb-Rozenblum inequalities.
The su�cient conditions were formulated in terms of certain integral inequalities, characterizing the
behaviour of the symbol near its minimum.

Paper [15] deals with a rather general class of Schr�odinger type operators of the form H0+V , where
H0 is a self-adjoint non-negative operator de�ned on a σ-compact metric space. It is assumed that
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the semigroup generated by −H0 acts on the space of continuous functions and that the corresponding
heat kernel satis�es certain decay in time conditions. Then, under the assumption that H0 + V has
a discrete spectrum on the negative semiaxis, the authors proved Cwikel-Lieb-Rozenblum and Lieb�
Thirring inequalities.

The case of operators H0 such that the Markov process with generator −H0 is recurrent was
considered in [16], where several lower and upper bounds for the number of negative eigenvalues of
H0 + V were obtained.

In the present paper two conditions are imposed on the kernel a(·). Namely, we assume that
a(−z) = a(z) for all z ∈ Rd, and a ∈ L1(Rd). The �rst condition makes the operator L symmetric,
while the second one ensures that A is bounded in L2(Rd). The function V is real, continuous,
and vanishes at in�nity. We observe that the operator A is unitary equivalent to the operator of
multiplication by the Fourier image of the function a(·) and that this Fourier image is a continuous
function that vanishes at in�nity.

It should be emphasized that we impose no conditions on the sign of a(·) and V (·). This makes a
di�erence with the operators studied in [11, 13] where, due to probabilistic background of the operators,
it was assumed that both the kernel a(·) and the potential V (·) were non-negative.

Our �rst result characterizes the essential spectrum of operator L in L2(Rd). We show that σess(L)
is the union of the spectra of A and of the multiplication operator u 7→ V u. Then we provide a number
of su�cient conditions for the existence of the discrete spectrum and obtain several upper and lower
bounds for the number of points of the discrete spectrum. The lower bounds rely on the detailed
analysis of the convolution operator and the minimax principle. In order to prove an upper bound, we
use a modi�cation of the Birman-Schwinger principle adapted to the non-local operators studied here.

We also pay a special attention to the cases, when the operator L possesses in�nitely many dis-
crete eigenvalues accumulating to the edges of the essential spectrum. We provide various su�cient
conditions guaranteeing such a behaviour of the spectrum. In particular, these conditions show that
the class of non-local Schr�odinger operators having in�nitely many points of the discrete spectrum is
rather wide in contrast with classical di�erential operators with lower order perturbations.

2 Problem setup and main results

Let V = V (x) and a = a(x) be given measurable functions de�ned on Rd, which are real- and complex-
valued, respectively. We assume that the function a belongs to L1(Rd) and satis�es the identity

a(−x) = a(x). (2.1)

By F we denote a Fourier transform on L1(Rd) de�ned by the formula

F [u](x) :=

∫
Rd

u(ξ)e−ix·ξ dξ.

The same symbol stands for the Fourier transform extended to L2(Rd). We then assume that the
function V is an image of some function V̂ ∈ L1(Rd) satisfying also condition (2.1), that is,

V = F [V̂ ], V̂ (−x) = V̂ (x).

We also denote
â(ξ) := F [a](ξ).

The main object of our study is an operator in L2(Rd) de�ned by the formula

L := La? + LV , (La?u)(x) :=

∫
Rd

a(x− y)u(y) dy, (LV u)(x) := V (x)u(x).

We shall show, see Lemma 4.1, that this operator is bounded in L2(Rd) and self-adjoint. Our main
aim is to describe the structure of the spectrum of this operator depending on the properties of the
functions a and V .
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Observe that under the above assumptions on a and V the functions â and V are real-valued,
bounded, continuous and decaying at in�nity. In view of these properties the following quantities are
�nite:

amin := inf
Rd
â, amax := sup

Rd
â, Vmin := inf

Rd
V, Vmax := sup

Rd
V. (2.2)

It follows from the aforementioned properties of a and V that

amin 6 0 6 amax, Vmin 6 0 6 Vmax.

By σess( · ) we denote the essential spectrum of an operator, while σdisc( · ) stands for the discrete
spectrum. The spectrum of an operator is denoted by σ( · ). Let Qr(x0) be a cube in Rd with a side r
centered at a point x0.

Our �rst result describes the essential spectrum of the operator L.

Theorem 2.1. The essential spectrum of the operator L coincides with the segment [µ0, µ1], where
µ0 := min{amin, Vmin}, µ1 := max{amax, Vmax}. The discrete spectrum of the operator L can be located
only in the semi-intervals [amin + Vmin, µ0) and (µ1, amax + Vmax] and it can accumulate to the points
µ0 and µ1 only.

The rest of our results describes the discrete spectrum of L. First, we provide su�cient condition
ensuring its existence.

Theorem 2.2. Let x0 be a point of the global minimum of the function V , and assume that Vmin 6 amin.
Assume furthermore that there exists δ > 0 such that∫

Q2(0)

d∏
i=1

(1− |xi|) Re a(δx) dx+ δ−d
∫

Q1(0)

(
V (x0 + δx)− Vmin

)
dx < 0. (2.3)

Then the discrete spectrum of the operator L in the semi-interval [amin + Vmin, µ0) is non-empty.

Once we know that the discrete spectrum is non-empty, we are interested in the number of discrete
eigenvalues. Various lower bounds for this number are provided in Theorems 2.3�2.7 below.

We �x some r > 0 and denote

an := (2r)−d
∫

Q2r(0)

a(x)e−
πi
r n·x dx, n ∈ Zd. (2.4)

Since a ∈ L1(Q2r(0)), all Fourier coe�cients an are well-de�ned. Employing identity (2.1), it is
straightforward to con�rm that all constants an are real-valued. We then introduce the following sets
of indices:

J0 := {n ∈ Zd : a2n < 0}

and assume that this set is not empty.
Supposing that x0 is a point of the global minimum of the function V (x), that is, Vmin = V (x0),

we introduce

Vn :=

∫
Qr(x0)

(V (x+ x0)− Vmin)e
2πi
r n·x dx, V−n = Vn, (2.5)

and, given a subset J ⊂ J0, we denote

νJ := r−d sup
n∈J

∑
m∈J
|Vn−m|.

Theorem 2.3. Assume that Vmin 6 amin, x0 is a point of the global minimum of the function V (x),
and there exists a subset I ⊂ J0 such that

rd max
n∈I

a2n + (2r)d sup
n∈Zd\(2Z)d

an + νI < 0. (2.6)
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Then the operator L possesses at least #I eigenvalues below Vmin, where #I is the total number of
indices in the set I. The lowest eigenvalue λmin of the operator L satis�es the upper bound

λmin 6 rd min
n∈Zd

a2n + (2r)d sup
n∈Z\(2Z)d

an + r−d
∫

Qr(x0)

(V (x)− Vmin) dx. (2.7)

In the next theorem we consider the case of a su�ciently smooth kernel a. Namely, given N ∈ N,
we suppose that a ∈ C2N+1(Qr(0)) for some �xed r > 0. We introduce a quadratic form

aN [ζ] :=
∑

n,m∈Zd+
|m|,|n|6N

(−1)|n|∂n+ma(0)ζmζn, ζ := (ζn)n∈Zd+, |n|6N , (2.8)

on CM(N), where |n| = n1 + n2 + . . .+ nd and M(N) := #
{
n ∈ Zd+ : |n| 6 N

}
.

Let x0 be a point of the global minimum of V . We then let

hN (δ) := max
n∈Zd+
|n|62N

∣∣∣∣ ∫
Q1(0)

(
V (x0 + δx)− V (x0)

)
xn dx

∣∣∣∣. (2.9)

Theorem 2.4. Let x0 be a point of the global minimum of V (·), and Vmin 6 amin. Assume that
a ∈ C2N+1(Qr(0)) with some r > 0, the identity

lim
δ→0

hN (δ)

δ2N+d
= 0 (2.10)

holds and there exists a subspace S in CM(N), on which the form aN de�ned in (2.8) is strictly negative.
Then the operator L possesses at least dimS eigenvalues in the interval [amin + Vmin, µ0).

As it has been demonstrated in Theorem 2.4, su�cient conditions of the existence of a discrete
spectrum of L can also be formulated in terms of the Taylor coe�cients of a(·) about the origin and
the behaviour of V in the vicinity of its minimum point. Namely, it su�ces to check the negative
de�niteness of the form aN on some subspace S and the validity of (2.10). In the next theorem we
provide a class of functions a(·) and V (·) for which these conditions hold.

Theorem 2.5. Let x0 be a point of the global minimum of the function V , and assume that

� Vmin 6 amin.

� The estimate
V (x)− V (x0) 6 C|x− x0|α (2.11)

holds for all x in a small neighbourhood of x0, where C and α are some positive constants
independent of x.

� There exists a subset I ⊆ {n ∈ Zd+ : |n| 6 N} such that the derivatives of the function a(·) obey
the conditions

(−1)|n|∂2na(0) < 0, n ∈ I, (2.12)

|∂n+ma(0)| 6 βn,m
√
|∂2na(0)|

√
|∂2ma(0)|, n,m ∈ I, n 6= m, (2.13)

where N < α−d
2 and βn,m, n, m ∈ I, are some non-negative numbers that satisfy at least one of

the following two conditions

β1 := max
m∈I

∑
n∈I
n6=m

βn,m < 1 (2.14)

or

β2 :=
∑
n,m∈I
n 6=m

β2
n,m <

(#I)
1
2

(#I)
1
2 − 1

. (2.15)
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Then the operator L possesses at least #I eigenvalues in the interval [amin + Vmin, µ0).

The following two theorems concern the operators L possessing in�nitely many discrete eigenvalues.
In the �rst of them we consider the case of a smooth convolution kernel.

Theorem 2.6. Let a ∈ C∞(Qr(0)), and assume that condition (2.11) holds with an arbitrary α > 0.
Assume furthermore that Vmin 6 amin and there exist constants γ > 0 and c1, c2 > 0 and an in�nite
subset I ⊆ Zd+ such that

(−1)|n|∂2na(0) < 0 for all n ∈ I, (2.16)∣∣∂2na(0)
∣∣ > c1((2n)!)γ for all n ∈ I, (2.17)∣∣∂na(0)
∣∣ 6 c2(n!)γ for all n ∈ Zd+; (2.18)

here n! = n1! · . . . · nd! for n = (n1, . . . , nd) ∈ Zd+. Then the operator L has in�nitely many
eigenvalues below µ0.

Our next theorem describes the situation when the operator L possesses in�nitely many discrete
eigenvalues for kernels that need not be smooth.

Theorem 2.7. Let Vmin 6 amin, V (x) ≡ Vmin on some cube Qr(x0) and assume that at least one of
the following two conditions hold:

1. The inequalities
amin < 0 and amax = 0 (2.19)

are satis�ed.

2. For all n ∈ Zd the quantities an introduced in (2.4) satisfy the inequalities

an 6 0

and there exists an in�nite subsequence of indices in Zd such that on this subsequence the above
inequalities are strict.

Then the operator L possesses countably many eigenvalues in the semi-interval [amin +Vmin, µ0), which
accumulate to the point µ0.

In complement to the lower bounds for the number of discrete eigenvalues, we also provide an upper
bound for this number in the following theorem.

Theorem 2.8. Let µ0 = Vmin and assume that Vmin 6 amin and that

IV :=

∫
Rd

V−(x) dx

V−(x) + Vmin
<∞, Ia :=

1

(2π)d

∫
Rd

â−(x) dx

â−(x) + Vmin
<∞,

where V−(x) := −min{0, V (x)}, â−(x) := −min{0, â(x)}. Then the number of the eigenvalues of the
operator L below µ0 does not exceed IaIV .

3 Discussion of main results

In this section we discuss the principal aspects of our model and main results. We begin with the fact
mentioned already in the introduction: both terms La? and LV in the operator L are bounded operators
in L2(Rd) and none of them is relatively compact with respect to the other. This is a fundamental
di�erence in comparison with classical Schr�odginger operators and it explains speci�c features of the
spectra of operators considered here.

The �rst di�erence is already demonstrated by Theorem 2.1, which says that the essential spectrum
of the operator L is the union of those of La? and LV . For the classical Schr�odinger operators with
localized perturbations the essential spectrum is determined solely by the unperturbed operator, while
in our case both the convolution and multiplication operators contribute to the essential spectrum. The
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entire spectrum is a bounded set, which can be located only in the interval [amin + Vmin, amax + Vmax];
this fact is due to the boundedness of operator L.

The next important question is about the existence of discrete spectrum. According to Theorem 2.2,
it can be located only in semi-intervals [amin + Vmin, µ0) and (µ1, amax + Vmax]. Our theorems deal
with the eigenvalues located in the former semi-interval under the assumption that Vmin 6 amin. These
results can be easily transferred to the case amin 6 Vmin and also to the interval (µ1, amax + Vmax).
Indeed, the opposite case amin 6 Vmin can be treated by passing to a unitary equivalent operator(

1

(2π)
d
2

F

)
L

(
1

(2π)
d
2

F

)−1
= Lâ + LV̂ ?.

In the latter operator, the functions a and V interchange their roles in the sense that the function â
generates the multiplication operator Lâ, while the function V̂ produces the convolution operator LV̂ ?.
In order to study the eigenvalues above the point µ1 = max{amax, Vmax}, we should simply replace the
operator L with −L.

Our �rst result on the discrete spectrum, Theorem 2.2, gives a su�cient condition of its exis-
tence. The �rst integral on the left-hand side of (2.3) represents the contribution of the convolution
kernel, while the second integral re�ects that of the potential V . Since Vmin is the global minimum
of V , the second integral is obviously non-negative and, in order to make condition (2.3) satis�ed,
the contribution of the convolution part should be negative. This condition is �rst of all aimed for
the case of small δ. In this case the existence of the discrete spectrum depends on the local prop-
erties of both the convolution kernel in the vicinity of the origin and the potential in the vicinity
of its global minimum point. If the kernel a is continuous and the function V satis�es the relation
V (x) − Vmin = c0|x − x0|α(1 + o(1)), c0 > 0, α > 0, as |x − x0| → 0, then condition (2.3) can be
rewritten in a simpler form:

Re a(0) + δ−d+αc0

∫
Q1(0)

|x|α dx < 0. (3.1)

Of course, the discrete spectrum can exist not only due to the local properties of the convolution
kernel and the potential, but also due to their global structure. Such cases are also covered by The-
orem 2.2 once condition (2.3) holds for some δ > 0. We also stress that in Theorem 2.2 we do not
suppose that the potential V possesses a single point of the global minimum. If it has several such
points, the theorem applies at each of them. The above discussion shows that Theorem 2.2 is quite
universal. It applies to rather general convolution kernels and potentials.

If the discrete spectrum of L is non-empty, it is natural to turn to estimating the number of
discrete eigenvalues of L. Lower bounds for the total number of the eigenvalues are presented in
Theorems 2.3, 2.4. Theorem 2.3 is formulated in terms of the (local) Fourier coe�cients (2.4) of the
convolution kernel and similar coe�cients (2.5) of the potential. The second result of Theorem 2.3 is
an upper bound for the lowest eigenvalue, see (2.7).

Since the results of Theorem 2.3 are expressed in terms of the local Fourier coe�cients, it gives a
nice opportunity to construct plenty of examples of convolution kernels and potentials satisfying the
assumptions of this theorem. Indeed, we can �x some r and a sequence of the Fourier coe�cients an
ensuring required conditions, and then de�ne the convolution kernel a as a sum of a Fourier series:

a(x) =
∑
n∈Zd

ane
πi
r n·x on Q2r(0)

and a is arbitrary outside Q2r(0). The potential V can be constructed in the same way via the Fourier
coe�cients de�ned in (2.5).

For su�ciently smooth convolution kernels a lower bound for the number of discrete eigenvalues of
L can be also formulated in terms of the derivatives of a at zero. This is the subject of Theorem 2.4.
Here again it is possible to construct plenty of examples of a and V to which Theorem 2.4 applies:
we can �x the derivatives ∂na(0) satisfying the assumptions of this Theorem and de�ne then the
convolution kernel a in the vicinity of zero as a polynomial with the prescribed derivatives. In view
of de�nition (2.9) of hN (δ), this function satis�es identity (2.10) provided the potential approaches its
global minimum quite fast.
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Once we are given a generic smooth convolution kernel a, the corresponding form aN de�ned in
(2.8) might be quite bulky and it could be technically di�cult to check whether this form is negative
de�nite or not. In particular, the standard Sylvester criterion does not seem helpful at this point. This
is why in Theorem 2.5 we provide some su�cient conditions guaranteeing the negative de�niteness of
the form aN and the validity of identity (2.10). The latter identity is ensured by estimate (2.11), while
the negative de�niteness of the form is due to estimates (2.12), (2.13) and one of inequalities (2.14),
(2.15). Both these inequalities mean that the diagonal entries of the matrix of the form aN dominate
the other entries. Inequality (2.14) is more adapted to the case, when #I is large enough, it states
that in each line of the matrix of the form aN the contribution of the diagonal entry dominates the
contribution of all other elements in the same line. Condition (2.15) works better in the case when the
cardinality of I is small or the nth order derivatives of a at zero grow extremely fast (like exp(n2+δ))
as n→∞.

Theorem 2.5 is an e�cient tool for checking the negativity of the form aN in various situations.
For instance, if condition (2.12) holds for at least one n ∈ Zd, we simply let I := {n}. Then, if
condition (2.10) holds with N = |n|, we conclude immediately that the operator L possesses at least
one eigenvalue below µ0.

Another way is to assume that conditions (2.12), (2.13) hold for all n ∈ Zd+ with |n| 6 N . Then we

let I = {n ∈ Zd+ : |n| 6 N} and S = CM(N) and we see that the operator L possesses at least M(N)
discrete eigenvalues below µ0.

Theorem 2.5 can be also employed for identifying the situations with in�nitely many discrete eigen-
values below µ0. Here we should assume that a ∈ C∞(Qr(0)) and condition (2.11) holds with an
arbitrary large α, i.e., |V (x) − V (x0)| = o(|x − x0|α) as x approaches x0. Assume furthermore that
there exists an in�nite subset I ⊆ Zd+ with such that conditions (2.12), (2.13) hold for all m,n ∈ I
and at least one of inequalities (2.14), (2.15) holds for each subset IN = {n ∈ I : |n| 6 N}. Then
the assumptions of Theorem 2.5 are ful�lled for each subset IN and, since #IN grows unboundedly as
N →∞, we conclude that the operator L possesses in�nitely many discrete eigenvalues below µ0 and
then these eigenvalues necessarily accumulate to µ0.

Observe that functions a(·), for which (2.12), (2.13) hold for all m,n ∈ Zd+ and βn,m = β|n−m| with
β < 1 can not be analytic at zero. The reason is that condition (2.13) requires a very fast growth of
the derivatives as n increases. Indeed, choosing one of the coordinate directions xj , we derive from
(2.13) that for each k ∈ Z+ the inequality∣∣∣ ∂2k+2

∂x2k+2
j

a(0)
∣∣∣(∣∣∣ ∂2k

∂x2kj
a(0)

∣∣∣)−1 >
1

β4

∣∣∣ ∂2k
∂x2kj

a(0)
∣∣∣(∣∣∣ ∂2k−2

∂x2k−2j

a(0)
∣∣∣)−1

holds true. Iterating this inequality, we obtain∣∣∣ ∂2k
∂x2kj

a(0)
∣∣∣ > ( 1

β

)2k(k−1)
|a(0)|.

Since a(0) 6= 0 due to (2.12), the Taylor series of a(·) about zero does not converge for any x 6= 0.
Ii is also possible to construct a very rich class of examples of analytic at zero functions a, for which

the operator L possesses in�nitely many discrete eigenvalues below µ0. We provide a way of doing this
in Theorem 2.6. Since the exponent γ in (2.17), (2.18) can be less than one, we see easily that there
is a wide class of analytic at zero convolution kernels obeying the assumptions of Theorem 2.6.

As an example, we consider the one-dimensional case and let

a(z) = −(1 + z2)−1, V (x) = e−x
−2

− 5.

Since in the vicinity of zero the function a(z) admits a representation

a(z) = −
∞∑
j=0

(−z2)j ,

then for all n ∈ Z+ we have

(−1)n∂2na(0) = −(2n)!, ∂2n+1a(0) = 0.
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Hence, conditions (2.16), (2.17), (2.18) of Theorem 2.6 are satis�ed and it follows from the de�nition
of V (·) that other conditions of this theorem are also ful�lled. We then conclude that the operator L
with the convolution kernel a(·) and the potential V (·) has in�nitely many eigenvalues in the interval
[−5− π,−5).

In a higher dimension d > 1 we can choose

a(z) = −
d∏
k=1

1

1 + z2k
or a(z) =

1

1 + |z|2d

and these kernels also satisfy the assumptions of Theorem 2.6.
Theorem 2.7 provides some more su�cient conditions for the existence of in�nitely many eigen-

values. These conditions are formulated either in terms of the range of the Fourier transform of the
convolution kernel, see Item 1 or via the local Fourier coe�cients, see Item 2. Observe that these
local Fourier coe�cients are exactly the ones previously used in Theorem 2.3. It should be also said
that conditions (2.19) are equivalent to the condition that the function â is non-positive and is not
identically zero. We emphasize that in the formulation of Theorem 2.7 it is assumed that the potential
V equals identically to its global minimum in some neighbourhood of the point x0. This condition is
crucial.

Our �nal Theorem 2.8 provides an upper bound for the number of the discrete eigenvalues. Its
proof is based on an appropriate adaption of the classical Birman-Schwinger principle. The �nal upper
bound is rather di�erent in comparison with the classical result, namely, here both the convolution
kernel and the potential contribute to the bound via the integrals Ia and IV . We also see that the
integral IV is �nite only provided the potential V does not approach its global minimum very fast and
this is in a good agreement with the above discussed theorems treating the cases of in�nitely many
eigenvalues.

In view of the above discussed statements we observe an important fact: the number of discrete
eigenvalues of L depends essentially on how the potential V approaches its global minimum. The
faster it tends to this minimum, the more discrete eigenvalues are present. In particular, according
to Theorems 2.3, 2.6, the operator L can have in�nitely many eigenvalues provided the potential V
approaches its global minimum either exponentially fast (in Theorem 2.3) or it coincides with this
minimum identically in some neighbourhood of x0 (in Theorem 2.6). And vice versa, if the potential V
approaches its global minimum very slowly then conditions (2.3), (2.6), (2.10), (2.11) are violated and
we can not guarantee even the existence of the discrete spectrum. Moreover, in this case Theorem 2.8
says that the operator L can have only �nitely many eigenvalues.

This explains why Schr�odinger operators with localized potentials typically have �nitely many
eigenvalues below the bottom of the essential spectrum, see [20], [8], [9], [5], and to get in�nitely many
eigenvalues, one has to assume that the localized potential should decay at in�nity quite slowly, see
[3]. Indeed, given a one-dimensional Schr�odinger operator with a localized potential

H := − d
2

dx2
+ V (x),

we make its Fourier transform getting then the operator

Ĥ = Lξ2 + LV̂ ?, V̂ := F−1[V ].

Here the second derivative becomes the operator of multiplication by ξ2 and only this part of the
operator Ĥ fully determines the essential spectrum, which is [0,+∞). The function ξ 7→ ξ2 approaches
its global minimum, which is zero, with a �xed rate, and exactly this prevents the existence of in�nitely
many eigenvalues for typical localized potentials V . In view of this fact, we can state that in the case
of non-local Schr�odinger operators we impose no apriori restrictions for the behavior of the potential
V in the vicinity of its global minimum and this is why the variety of possible spectral pictures is much
richer than in the case of di�erential Schr�odinger operators.

In conclusion of this section, we shortly discuss some applications of our results to the population
dynamics models mentioned in the Introduction. The large time behaviour of the population depends
crucially on whether the operator L − 〈a〉 on the right-hand side of (1.2) has a positive eigenvalue
or not. In the former case the population exhibits an exponential growth, and its asymptotic pro�le
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is proportional to the principal eigenfunction. Moreover, the rate of stabilization to this pro�le is
determined by the distance form the principal positive eigenvalue to the rest of the spectrum.

Under the assumption that 〈a〉 = 1 the operator L − I has a positive eigenvalue if and only if the
operator L has a point of the discrete spectrum above 1. Due to the biological interpretation of the
potential V , the inequality V 6 1 should be satis�ed. If maxV = 1 then the existence of a positive
eigenvalue of L− I is governed by condition (3.1). Otherwise, we should consider the Fourier image of
L and apply our results to the transformed operator.

4 Essential spectrum

In this section we prove Theorem 2.1. We begin with an auxiliary lemma.

Lemma 4.1. The operator L is bounded and self-adjoint in L2(Rd).

Proof. We introduce two auxiliary operators in L2(Rd) by the formulae

(La?u)(x) :=

∫
Rd

a(x− y)u(y) dy, (LV u)(x) := V (x)u(x).

Since the function V is bounded and real-valued, we immediately conclude that the operator LV is
bounded and symmetric in L2(Rd), and hence, it is self-adjoint.

Employing the fact that u ∈ L1(Rd), for each u ∈ L2(Rd) by the Cauchy-Schwarz inequality we
have:

‖La?u‖2L2(Rd)
6
∫
Rd

dx

∫
Rd

|a(x− y)||u(y)| dy

2

6
∫
Rd

∫
Rd

|a(x− y)| dy
∫
Rd

|a(x− y)||u(y)|2 dy

6‖a‖L1(R)

∫
R2d

|a(x− y)||u(y)|2 dxdy

=‖a‖L1(R)

∫
R2d

|a(x)||u(y)|2 dxdy = ‖a‖2L1(R)‖u‖
2
L2(Rd)

.

(4.1)

This proves the boundedness of the operator La?. The symmetricity, and hence, the self-adjointness,
is con�rmed straightforwardly by means of assumption (2.1):

(La?u, v)L2(Rd) =

∫
R2d

a(x− y)u(y)v(x) dxdy =

∫
R2d

u(y)v(x)a(y − x) dxdy = (u,La?v)L2(Rd).

The proof is complete.

The rest of this section is devoted to the proof of Theorem 2.1. It is straightforward to con�rm
that under the unitary Fourier transform the bounded self-adjoint operators La? and LV are unitarily
equivalent respectively to the operator of multiplication by â and to the operator of convolution with
V̂ . Namely, the identities hold:(

1

(2π)
d
2

F

)
La?

(
1

(2π)
d
2

F

)−1
= Lâ,

(
1

(2π)
d
2

F

)
LV

(
1

(2π)
d
2

F

)−1
= LV̂ ?. (4.2)

In view of the continuity of the functions V and â, the spectra of the operators Lâ and LV coincides
with their essential parts and are given by the following identities:

σ(Lâ) = σess(Lâ) = [amin, amax], σ(LV ) = σess(LV ) = [Vmin, Vmax]. (4.3)
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Hence, by identities (4.2), the same is true for the operators La? and LV̂ ?:

σ(La?) = σess(La?) = [amin, amax], σ(LV̂ ?) = σess(LV̂ ?) = [Vmin, Vmax]. (4.4)

We also observe an obvious identity
L = La? + LV .

Our next step is to prove the inclusion

σess(La?) ∪ σess(LV ) ⊆ σess(L). (4.5)

We introduce a family of functions:

φδ(x) :=

{
δ−

d
2 on Qδ(0),

0 outside Qδ(0),
(4.6)

where δ is supposed to be small enough. Then we choose arbitrary λ ∈ (Vmin, Vmax) and by the
continuity of V we conclude that there exists x0 ∈ Rd such that V (x0) = λ. By straightforward
calculations we then easily con�rm that∥∥(LV − λ)φδ( · − x0)

∥∥2
L2(Rd)

= δ−d
∫

Qδ(x0)

|V (x)− V (x0)|2 dx→ 0, δ → +0. (4.7)

We also observe that the family {φδ(x− x0)} is non-compact and ‖φd( · − x0)‖L2(Rd) = 1 for all δ and
x0. Hence, each sequence φδn( · − x0) with arbitrary sequence δn → +0, n → ∞, is a Weyl sequence
for the operator LV at the point λ. If we prove that

La?φδ( · − x0)→ 0, δ → +0, (4.8)

then together with (4.7) this will imply that the sequence φδn( · −x0) is also a Weyl one for the operator
L at the point λ and hence,

σess(LV ) ⊆ σess(L). (4.9)

We prove (4.8) by rather straightforward calculations. Namely,

‖La?φδ( · − x0)‖2L2(Rd)
6 δ−d

∫
Rd

dx

 ∫
Qδ(x0)

|a(x− y)| dy


2

6 δ−dJδ

∫
Rd

dx

∫
Qδ(x−x0)

|a(y)| dy, (4.10)

where we have denoted

Jd := sup
x∈Rd

∫
Qδ(x0)

|a(x− y)| dy = sup
x∈Rd

∫
Qδ(x−x0)

|a(y)| dy 6 ‖a‖L1(Rd).

Since the measures of the set Qδ(x−x0) are equal to δd for all x−x0 and the function |a| is integrable
over Rd, by the absolute continuity of the Lebesgue integral we conclude that

Jδ → 0, δ → +0. (4.11)

Then we can continue estimating in (4.10) as follows:

‖La?φδ( · − x0)‖2L2(Rd)
6 δ−dJδ

∫
Rd

dy|a(y)|
∫

Qδ(x0+y)

dx = Jδ‖a‖L1(Rd)

and by (4.11) we then arrive at (4.8) and hence, to (4.9). In view of unitary equivalence (4.2) and
identities (4.3), (4.4) we then get that σess(La?) ⊆ σess(L) and together with (4.9) this leads us to
(4.5).
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To complete the proof of identity

σess(L) = σess(La?) ∪ σess(LV ) = [µ0, µ1], (4.12)

it su�cient to show that
σess(L) \

(
σess(La?) ∪ σess(LV )

)
= ∅.

Let λ ∈ σess(L) and λ 6∈ σess(La?), λ 6∈ σess(LV )
)
. Then there exists a Weyl sequence un ∈ L2(Rd),

which is bounded, non-compact and

fn := (L − λ)un → 0, n→∞. (4.13)

Since λ /∈ σess(LV ), by the second identity in (4.3), the inverse operator (LV − λ)−1 is well-de�ned
and bounded. We hence can rewrite (4.13) as

1

V − λ
La?un + un =

fn
V − λ

→ 0, n→ +∞. (4.14)

In view of (2.2), zero belongs to the essential spectrum of the operator LV and hence, λ 6= 0,
V − λ 6= 0. Then

1

V − λ
= − 1

λ
+
V1
λ
, V1 :=

V

V − λ
.

We substitute this identity into (4.14) and we get:

(La? − λ)un + V1La?un =
λ

V − λ
fn. (4.15)

By our assumptions and by (4.4) the number λ is in the resolvent set of the operator La? and hence,
the resolvent (La? − λ)−1 is well-de�ned and is a bounded in L2(Rd). This allows us to rewrite (4.15)
as

un = (La? − λ)−1
(

λ

V − λ
fn − V1La?un

)
. (4.16)

According to our assumptions on V , this function decays at in�nity. Hence, the same is true for
V1. Then it is easy to see that the operator V1La? is compact in L2(Rd). Since the sequence un is
bounded, it contains a subsequence, still denoted by un, such that V1La?un converges in L1(Rd). The
sequence λ

V−λfn also converges as n→ +∞; the limiting function is zero. Hence, the right hand side
in (4.16) is a converging sequence as n→ +∞. This contradicts the non-compactness of the sequence
un. Hence, identity (4.12) holds and this proves the �rst part of the theorem.

We proceed to proving the second part of the theorem. In view of the �rst identity in (4.2), the
quadratic form associated with the operator L reads

l[u] := (Lu, u)L2(Rd) = (La?u, u)L2(Rd) + (V u, u)L2(Rd) = (Lâû, û)L2(Rd) + (V u, u)L2(Rd), (4.17)

where

û :=
1

(2π)
d
2

F [u], ‖u‖L2(Rd) = ‖û‖L2(Rd).

Hence, identity (4.17) implies immediately that this form satis�es the estimate

(amin + Vmin)‖u‖2L2(Rd)
6 (Lu, u)L2(Rd) 6 (amax + Vmax)‖u‖2L2(Rd)

and hence, the spectrum of the operator L is located inside the segment [amin + Vmin, amax + Vmax].
Now the second part of the theorem follows from the standard properties of the spectra of self-adjoint
operators and identity (4.12). This completes the proof of Theorem 2.1.

5 Existence of discrete spectrum

In this section we study the existence of the discrete spectrum of the operator L, namely, we prove
Theorem 2.2.
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5.1 Proof of Theorem 2.2

The proof is based on the minimax principle: if we �nd a normalized function ϕ ∈ L2(Rd) such that
l[ϕ] < Vmin, this will imply the statement of the theorem; we recall that l[u] is the quadratic form
associated with the operator L, see (4.17).

We construct a required test function explicitly choosing it to be φδ(x− x0) with φδ introduced in
(4.6) and δ mentioned in the formulation of the theorem; we note that this function is normalized in
L2(Rd). Having this normalization in mind, we consider the quadratic form l on such function, namely:

l[φδ( · − x0)]− Vmin =δ−d
∫

Qδ(x0)×Qδ(x0)

a(x− y) dxdy + δ−d
∫

Qδ(x0)

(
V (x)− Vmin

)
dx

=δd
∫

Q1(0)×Q1(0)

a(δ(x− y)) dxdy +

∫
Q1(0)

(
V (x0 + δx)− Vmin

)
dx.

(5.1)

Let us calculate the �rst integral in the above identity.
First of all observe that owing to condition (2.1) we immediately get∫
Q1(0)×Q1(0)

a(δ(x− y)) dxdy =

∫
Q1(0)×Q1(0)

a(δ(y − x)) dxdy

=

∫
Q1(0)×Q1(0)

a(δ(x− y)) dxdy =

∫
Q1(0)×Q1(0)

Re a(δ(x− y)) dxdy.

Then we make the change of the variables (x, y)→ (x− y, x+ y):∫
Q1(0)×Q1(0)

Re a(δ(x− y)) dxdy =2−d
∫

Q2(0)

dxRe a(δx)

∫
{y: |yi|<1−|xi|, i=1,...,d}

dy

=

∫
Q2(0)

d∏
i=1

(1− |xi|) Re a(δx) dx.

Now by (5.1) we get:

l[φδ( · − x0)]− Vmin‖φδ( · − x0)‖2L2(Rd)
= δd

( ∫
Q2(0)

d∏
i=1

(1− |xi|) Re a(δx) dx

+ δ−d
∫

Q1(0)

(
V (x0 + δx)− Vmin

)
dx

)
< 0.

Hence, by the minimax principle we conclude that the operator L has a non-empty discrete spectrum
below Vmin. This completes the proof of Theorem 2.2.

6 Existence of �nitely many eigenvalues

In this section we discuss su�cient conditions ensuring the existence of at least �nitely many eigenvalues
of the operator L, namely, we prove Theorems 2.3 and 2.4.

6.1 Proof of Theorem 2.3

Since the restriction of the function a on Q2r(0) belongs to L1(Q2r(0)), for each η > 0 there exists an
in�nitely di�erentiable function aη ∈ C∞0 (Q2r(0)) such that

‖a− aη‖L1(Q2r(0)) 6 η. (6.1)
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Let u = u(x) be an in�nitely di�erentiable function on Qr(x0); we extend it by zero outside Qr(x0).
Then by estimates (4.1) and (6.1) we �nd:

(La?u, u)L2(Rd) =

∫
Qr(x0)×Qr(x0)

a(x− y)u(y)u(x) dxdy

=

∫
Qr(0)×Qr(0)

aη(x− y)u(y + x0)u(x+ x0) dxdy + rη[u],

(6.2)

where rη[u] is a quadratic form satisfying the estimate

|rη[u]| 6 η‖u‖2L2(R)d . (6.3)

We represent the function aη by its Fourier series, namely,

aη(x) =
∑
n∈Zd

aηne
iπ
r n·x, x ∈ Q2r(0), aηn := (2r)−d

∫
Q2r(0)

aη(x)e−
iπ
r n·x dx.

It follows from (6.1) that

|aηn − an| 6 η, n ∈ Zd, an := (2r)−d
∫

Q2r(0)

a(x)e−
iπ
r n·x dx.

Owing to the assumed smoothness of the function aη, its Fourier series converges uniformly on
Q2r(0). This allows us to substitute this Fourier series into the �rst term on the right hand side of
(6.2): ∫

Qr(0)×Qr(0)

aη(x− y)u(x0 + y)u(x0 + x) dxdy

=
∑
n∈Zd

aηn

∫
Qr(0)×Qr(0)

e
iπ
r n·(x−y)u(x0 + y)u(x0 + x) dxdy =

∑
n∈Zd

aηn|Un|2,
(6.4)

where

Un :=

∫
Qr(0)

e−
iπ
r n·xu(x0 + x) dx = e

iπ
r n·x0

∫
Q2r(x0)

e−
iπ
r n·xu(x) dx.

Here we have also employed that u vanishes on Q2r(x0)\Qr(x0). Up to a �xed multiplicative constant,
the numbers Un are the Fourier coe�cients of the function u, namely,

u(x+ x0) = (2r)−d
∑
n∈Zd

Une
iπ
r n·x, x ∈ Q2r(0),

and by the Parseval identity it holds:

‖u‖2L2(Q2r(x0))
= ‖u‖2L2(Qr(x0))

= ‖u( · + x0)‖2L2(Qr(0))
= (2r)−d

∑
n∈Zd

|Un|2. (6.5)

The function u(x) can be also regarded as de�ned on the cube Qr(x0) and it can be represented
by one more Fourier series

u(x+ x0) = r−d
∑
n∈Zd

une
2πi
r n·x, x ∈ Qr(0), un :=

∫
Qr(0)

e−
2πi
r n·xu(x+ x0) dx.

The corresponding Parseval identity reads:

‖u‖2L2(Qr(x0))
= ‖u( · + x0)‖2L2(Qr(0))

= r−d
∑
n∈Zd

|un|2. (6.6)
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We also observe the identity
U2n = un, n ∈ Zd, (6.7)

which will play an important role in what follows.
We substitute (6.4) into (6.2) and take into consideration estimate (6.3) and Parseval identity (6.5).

This gives:

(La?u, u)L2(Rd) 6(Laη?u, u)L2(Rd) + η‖u‖2L2(Qr(x0))
=
∑
n∈Zd

aηn|Un|2 + η‖u‖2L2(Qr(x0))

6
∑
n∈Zd

an|Un|2 + η
(
1 + (2r)d

)
‖u‖2L2(Qr(x0))

.

Passing then to the limit as η → +0 and using identity (6.7), we get

(La?u, u)L2(Rd) 6
∑
n∈Zd

an|Un|2 =
∑

n∈(2Z)d
a2n|un|2 +

∑
n∈Zd\(2Z)d

an|Un|2. (6.8)

By the Parseval identity (6.5) we obtain:∑
n∈Zd\(2Z)d

an|Un|2 6 sup
n∈Zd\(2Z)d

an
∑

n∈Zd\(2Z)d
|Un|2 6 α‖u‖2L2(Qr(x0))

, α := (2r)d sup
n∈Zd\(2Z)d

an;

here we have also used the inequality α > 0. This allows us to rewrite estimate (6.8) as

(La?u, u)L2(Rd) 6
∑
n∈Zd

a2n|un|2 + α‖u‖2L2(Qr(x0))
. (6.9)

Now let us consider test functions u ∈ L2(Rd) supported in the cube Qr(x0). We suppose that on
Qr(x0) the function u is a �nite linear combination

u(x) = r−d
∑
n∈J

une
2πi
r n·(x−x0), (6.10)

where J is a �nite subset of J0. Then for such u estimate (6.9) becomes

(La?u, u)L2(Rd) 6
∑
n∈J

a2n|un|2 + α‖u‖2L2(Qr(x0))
. (6.11)

We also have:(
(V (x)− Vmin)u, u

)
L2(Rd)

=

∫
Qr(x0)

(V (x)− Vmin)|u(x)|2 dx

=r−2d
∑
m,n∈J

unum

∫
Qr(0)

(
V (x+ x0)− Vmin

)
e

2πi
r (n−m)·x dx

=r−2d
∑
n,m∈J

unumVn−m.

Hence, by Cauchy-Schwartz inequality and Parseval identity,

(
(V (x)− Vmin)u, u

)
L2(Rd)

6r−2d
(∑
n∈J
|un|2

) 1
2
(∑
n∈J

∣∣∣∣ ∑
m∈J

Vn−mum

∣∣∣∣2
) 1

2

6r−2d
(∑
n∈J
|un|2

) 1
2
(∑
n∈J

(∑
m∈J
|Vn−m|

)(∑
m∈J
|Vn−m||um|2

)) 1
2

6r−
3
2d

(∑
n∈J
|un|2

) 1
2

ν
1
2

J

 ∑
m,n∈J

|Vn−m||un|2
 1

2

6 νJ‖u‖2L2(Qr(x0))
.
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This estimate, (6.11) and Parseval identity (6.6) lead us to a �nal estimate for the form of the operator
L on the functions u de�ned in (6.10):

l[u]− Vmin‖u‖2L2(Rd)
6 (rd max

n∈J
a2n + α+ νJ)‖u‖2L2(Qr(x0))

. (6.12)

We substitute for J in (6.12) the set I from the formulation of the theorem. Then combining (2.6)
and (6.12) yields

l[u]− Vmin‖u‖2L2(Rd)
< 0

for all linear combinations (6.10) with J ⊂ I. By the minimax principle this implies that the operator
L possesses at least #I eigenvalues below Vmin and this completes the proof of the �rst statement in
the theorem.

Now as the set J in (6.12) we choose J := {n} with n ∈ I. Then estimate (6.12) becomes

l[u]− Vmin‖u‖2L2(Rd)
6 rda2n + α+ r−d|V0|, |V0| = V0.

Taking the in�mum over n ∈ J of the right hand side in the above inequality, by the minimax principle
we arrive at (2.7). This completes the proof of Theorem 2.3.

6.2 Proof of Theorem 2.4

Let U be an arbitrary function de�ned on the cube Q1(0) and being an element of L2(Q1(0)). We
extend all such functions by zero outside Q1(0). Then we choose a su�ciently small δ and let uδ(x) :=
U((x− x0)δ−1). This function is supported in Qδ(x0). The quadratic form of the operator La? on the
function uδ reads as

(La?uδ, uδ)L2(Rd) =

∫
Qδ(x0)×Qδ(x0)

a(x− y)uδ(y)uδ(x) dxdy

=δ2d
∫

Q1(0)×Q1(0)

a(δ(x− y))U(y)U(x) dxdy.

(6.13)

Since the function a is smooth, we can represent it by the Taylor formula as

a(δ(x− y)) =

2N∑
j=0

δjAj(ξ) + δ2N+1Ã2N+1(x− y, δ), (6.14)

where Aj are homogeneous polynomials of degree j given by the formulae

Aj(ξ) =
∑
n∈Zd+
|n|=j

∂na(0)

n!
ξn.

The remainder Ã2N+1 in (6.14) satis�es the uniform estimate

|Ã2N+1(ξ, δ)| 6 C for all ξ ∈ Q2(0), (6.15)

where C is some constant independent of ξ and δ. Since

(x− y)n =
∑

m,q∈Zd+
m+q=n

(−1)|q|
n!

m!q!
xmyq,

we immediately get

Aj(x− y) =
∑

m,q∈Zd+
|m|+|q|=j

(−1)|q|∂m+qa(0)
xmyq

m!q!
.
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We substitute this formula into (6.14) and the result is plugged in (6.13). Denoting then

Um :=

∫
Q1(0)

xmU(x) dx,

we arrive at the identities

(La?uδ, uδ)L2(Rd) =
∑

m,q∈Zd+
|m|+|q|62N

(−1)|q|δ|m|+|q|∂m+qa(0)
UmUq
m!q!

+ δ2N+1

∫
Q1(0)×Q1(0)

A2N+1(x− y, δ)U(x)U(y) dxdy.

(6.16)

Estimate (6.15) yields immediately that∣∣∣∣∣∣∣δ2N+1

∫
Q1(0)×Q1(0)

A2N+1(x− y, δ)U(x)U(y) dxdy

∣∣∣∣∣∣∣ 6 Cδ2N+1‖U‖2L2(Q1(0))
,

where C is some constant independent of δ and U .
For now on we specify the choice of the function U . Namely, we assume that it is a polynomial of

degree at most N , i.e.,

U(x) =
∑
m∈Zd+
|m|6N

cmx
m. (6.17)

Then we have

Un =
∑
m∈Zd+
|m|6N

cm

∫
Q1(0)

xn+m dx. (6.18)

A matrix of sizeM(N)×M(N) with entries
∫

Q1(0)

xn+m dx, is the Gram matrix of linearly independent

functions {xn}, n ∈ Zd+, |n| 6 N , and hence, this matrix is non-degenerate. Then it follows from (6.18)
that the coe�cients cm are expressed as linear combinations of Un, n ∈ Zd+, |n| 6 N . Therefore, each
polynomial (6.17) can be equivalently characterized be means of the coe�cients Un, n ∈ Zd+, |n| 6 N .
In particular, this implies uniform estimates

c̃−1‖U‖2L2(Q1(0))
6
∑
n∈Zd+
|n|6N

|Un|2 6 c̃
∑
n∈Zd+
|n|6N

|Un|2, (6.19)

∑
n∈Zd+

N+16|n|62N

|Un|2 6 C‖U‖2L2(Q1(0))
, (6.20)

where c̃ and C are constants independent of U .
We rewrite the �rst term on the right hand side of (6.16) as

∑
m,q∈Zd+
|m|+|q|62N

(−1)|q|δ|m|+|q|∂m+qa(0)
UmUq
m!q!

=
∑

m,q∈Zd+
|m|,|q|6N

(−1)|q|δ|m|+|q|∂m+qa(0)
UmUq
m!q!

+
∑

m,q∈Zd+, |m|+|q|62N

|m|>N+1 or |q|>N+1

(−1)|q|δ|m|+|q|∂m+qa(0)
UmUq
m!q!

.

(6.21)
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By (6.20) we can estimate the second term on the right hand side of the above identity as follows:∣∣∣∣∣∣∣∣∣
∑

m,q∈Zd+, |m|+|q|62N

|m|>N+1 or |q|>N+1

(−1)|q|δ|m|+|q|∂m+qa(0)
UmUq
m!q!

∣∣∣∣∣∣∣∣∣ 6 CδN+1‖U‖2L2(Q1(0))
, (6.22)

where C is a constant independent of δ and U . In view of the de�nition of the form aN in (2.8), the
�rst term on the right hand side of (6.21) can be expressed as∑

m,q∈Zd+
|m|,|q|6N

(−1)|q|δ|m|+|q|∂m+qa(0)
UmUq
m!q!

= aN [uδ], uδ :=

(
δ|m|

Um
m!

)
m∈Zd+, |m|6N

.

It follows from (6.19) that
‖uδ‖2CM(N) > c̃0δ

2N‖U‖2L2(Q1(0))
, (6.23)

where c̃0 is a positive constant independent of δ and U .
Since by the assumptions of the theorem the form aN is negative de�nite on the subspace S, there

exists a constant c̃1 > 0 independent of δ and uδ such that

aN [uδ] 6 −c̃1‖uδ‖2CM(N)

for each uδ ∈ S. Hence, for each polynomial (6.17), for which the corresponding vector uδ belongs to
S, by (6.23) we obtain:

aN [uδ] 6 −c̃1c̃0δ2N‖U‖2L2(Q1(0))
.

The above inequality and (6.22) allow us to estimate the form (La?uδ, uδ)L2(Rd) from above for su�-
ciently small δ as follows:

(La?uδ, uδ)L2(Rd) 6 δ2(N+d)(−c̃0c̃1 + δc̃)‖U‖2L2(Q1(0))
6 − c̃0c̃1

2
δ2(N+d)‖U‖2L2(Q1(0))

. (6.24)

We proceed to estimating the contribution of the potential V to the form of the operator L. Namely,
we have:

(LV uδ, uδ)L2(Rd) − Vmin‖uδ‖2L2(Rd)
=

∫
Rd

(V (x)− Vmin)|uδ(x)|2 dx

=δd
∫

Q1(0)

(
V (x0 + δx)− Vmin

)
|U(x)|2 dx

=δd
∑

m,q∈Zd+
|m|,|q|62N

cncm

∫
Q1(0)

(
V (x0 + δx)− Vmin

)
xn+m dx.

Hence, by de�nition (2.9) of the function hN (δ) and inequality (6.19) we �nd:

(LV uδ, uδ)L2(Rd) − Vmin‖uδ‖2L2(Rd)
6 CδdhN (δ)‖U‖2L2(Q1(0))

,

where C is some constant independent of δ and U . This estimate and (6.24) yield:

(Luδ, uδ)L2(Rd) − Vmin‖uδ‖2L2(Rd)
6 δ2(N+d)

(
− c̃0c̃1

2
+ C

hN (δ)

δ2N+d

)
‖U‖2L2(Rd)

.

Applying condition (2.10), we �nally see that for su�ciently small δ the estimate

(Luδ, uδ)L2(Rd) 6 −
c̃0c̃1

3
δ2(N+d)‖U‖2L2(Rd)

holds true for each polynomial U de�ned by formula (6.17), for which the corresponding vector uδ be-
longs to S. Since the dimension of the space of such polynomials coincides with that of the subspace S,
by the minimax principle we conclude that the operator L possesses at least dimS discrete eigenvalues
below µ0. The proof of Theorem 2.4 is complete.
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6.3 Proof of Theorem 2.5

We introduce a subspace S of CM(N) that consists of vectors ζ = (ζn)n∈Zd+, |n|6N such that ζn = 0 as

n /∈ I. It is obvious that the dimension of the space S coincides with #I.
Let us show that the conditions of this theorem imply the assumptions of Theorem 2.4 with the

introduced subspaces S. We begin with studying the form aN . We rewrite de�nition (2.8) of this form
as

aN [ζ] =
∑
n∈I

(−1)|n|∂2na(0)|ζn|2 +
∑

n,m∈I, n 6=m

(−1)|n|∂n+ma(0)ζmζn. (6.25)

Inequalities (2.12) then yield∑
n∈I

(−1)|n|∂2na(0)|ζn|2 = −
∑
n∈I
|∂2na(0)||ζn|2. (6.26)

Employing condition (2.13) and assuming that (2.14) holds, we estimate the second term in (6.25) as
follows:∣∣∣∣∣ ∑
n,m∈I, n6=m

(−1)|n|∂n+ma(0)ζmζn

∣∣∣∣∣ 6 ∑
n,m∈I, n 6=m

βn,m
√
|∂2na(0)|

√
|∂2ma(0)||ζn||ζm|

6
1

2

∑
n∈I

∑
m∈I,
m6=n

βn,m|∂2na(0)||ζn|2 +
1

2

∑
m∈I

∑
n∈I,
n 6=m

βn,m|∂2ma(0)||ζm|2

6 β1
∑
n∈I
|∂2na(0)||ζn|2.

Combining this estimate with identities (6.25), (6.26), we obtain the following estimate for the form
aN :

aN [ζ] 6 −(1− β1)
∑
n∈I
|∂2na(0)||ζn|2,

and, since β1 < 1, we conclude that the form aN is negative de�nite.
Recalling the de�nition of hN (δ) in (2.9), it is straightforward to show that estimate (2.11) implies

the following inequality:
|hN (δ)| 6 Cδα,

where C is some constant independent of δ. Since 2N < α − d by the assumption on N , condition
(2.10) is ful�lled, and therefore Theorem 2.4 applies.

If (2.15) holds, the second term on the right-hand side of (6.25) can be estimated as follows:∣∣∣∣∣ ∑
n,m∈I, n 6=m

(−1)|n|∂n+ma(0)ζmζn

∣∣∣∣∣ 6 ∑
n,m∈I, n6=m

βn,m
√
|∂2na(0)|

√
|∂2ma(0)||ζn||ζm|

6
( ∑
n,m∈I,
n 6=m

β2
n,m

) 1
2
( ∑
n,m∈I,
n 6=m

|∂2na(0)| |∂2ma(0)| |ζn|2|ζm|2
) 1

2

=β
1
2
2

((∑
n∈I
|∂2na(0)| |ζn|2

)2
−
∑
n∈I
|∂2na(0)|2|ζn|4

) 1
2

Therefore,

aN [ζ] 6−
∑
n∈I

∣∣∂2na(0)
∣∣|ζn|2 + β

1
2
2

((∑
n∈I
|∂2na(0)| |ζn|2

)2
−
∑
n∈I
|∂2na(0)|2|ζn|4

) 1
2

=

β2

(( ∑
n∈I
|∂2na(0)| |ζn|2

)2
−
∑
n∈I
|∂2na(0)|2|ζn|4

)
−
( ∑
n∈I

∣∣∂2na(0)
∣∣|ζn|2)2

β
1
2
2

(( ∑
n∈I
|∂2na(0)| |ζn|2

)2
−
∑
n∈I
|∂2na(0)|2|ζn|4

) 1
2

+
∑
n∈I
|∂2na(0)||ζn|2
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6−
(
1− β2

)∑
n∈I
|∂2na(0)||ζn|2 − β2

(∑
n∈I
|∂2na(0)|2|ζn|4

)(∑
n∈I
|∂2na(0)| |ζn|2

)−1
Considering the inequality(∑

n∈I
|∂2na(0)||ζn|2

)2
6 (#I)

∑
n∈I
|∂2na(0)|2|ζn|4,

we derive from the latter estimate the following upper bound:

aN [ζ] 6 −
(
(1− β2) + (#I)

− 1
2 β2
)(∑

n∈I
|∂2na(0)|2|ζn|4

)(∑
n∈I
|∂2na(0)| |ζn|2

)−1
.

Therefore, the form aN [ζ] is negative de�nite if 1− β2 + (#I)−
1
2 β2 > 0 or, equivalently,

β2 <
(#I)

1
2

(#I)
1
2 − 1

.

This completes the proof of Theorem 2.5.

6.4 Proof of Theorem 2.6

It su�ces to check that under the assumptions of Theorem 2.6 there exists an in�nite subset Ĩ ⊂ I
such that condition (2.14) holds for Ĩ. Indeed, letting ĨN = {n ∈ Ĩ : |n| 6 N}, N ∈ Z+, and assuming
that (2.14) holds for Ĩ, by Theorem 2.5 we obtain that there exist at least #ĨN points of the discrete
spectrum of L below µ0. Since N is an arbitrary number from N, and #ĨN tends to in�nity as N →∞,
the desired statement follows.

It remains to construct a subset Ĩ that satis�es the aforementioned conditions.

Lemma 6.1. There exists an in�nite sequence n1, n2, . . . , nj , . . . with nj ∈ I such that nj+1
k > njk for

all k = 1, . . . , d and all j ∈ Z+, and n
j+1 6= nj.

We choose the indices j` in such a way that at least for one k ∈ {1, . . . , d} the inequality

n
j`+1

k > 2|nj` |

holds. Denote |n|∞ = max
k

nk. Then for each m ∈ Z+ and ` ∈ Z+, m < `, we have

(2nj`)! (2njm)!(
(nj` + njm)!

)2 =

d∏
k=1

(2nj`k )! (2njmk )!(
(nj`k + njmk )!

)2 >
(2nj`k0)! (2njmk0 )!(
(nj`k0 + njmk0 )!

)2 >
(3

2

) 1
2 |n

j` |∞
;

here the index k0 is such that |nj` |∞ = nj`k0 . In view of conditions (2.17) and (2.18), this estimate
yields the following inequalities:

(|∂2nj`a(0)| |∂2njma(0)|) 1
2

|∂nj`+njma(0)|
>
c1
(
(2nj`)! (2njm)!

) γ
2

c2
(
(nj` + njm)!

)γ >
c1
c2

(3

2

) γ
4 |n

j` |∞

Choosing nj` in such a way that

c1
c2

(3

2

) γ
4 |n

j` |∞
> 2` for all ` ∈ Z+,

we obtain the desired subset Ĩ and complete the proof.
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7 Upper bound for the number of discrete eigenvalues

In this section we prove Theorem 2.8 establishing in this way an upper bound for the number of the
discrete eigenvalues under the threshold of the essential spectrum. The proof of this theorem follows
the main ideas of the Birman-Schwinger principle, see e.g. [19, Thm. XIII.10], but with appropriate
modi�cations needed for our operator L.

We begin with introducing an auxiliary operator

L(−) := −(La−? + LV−),

where a− is de�ned by the identity F [a−] = â−. According to the de�nition of the functions â− and V−
and by identities (4.2) we conclude immediately that both operators La−? and LV− are non-positive.

Hence, the operator L(−) is non-negative.

We denote by En and E
(−)
n respectively the discrete eigenvalues of the operators L and L(−) below

Vmin taken counting their multiplicities. By N0 and N (−) we denote respectively the total number of

the eigenvalues En and E
(−)
n , that is,

N0 = #{n : En < µ0}, N (−) = #{n : E(−)
n < µ0}.

Then expression (4.17) for the form of the operators L, a similar expression for the form of the operator
L(−) and the minimax principle imply that

N0 6 N (−). (7.1)

Hence, it is su�cient to �nd an upper bound for N (−).
We observe that if some E < µ0 6 0 is an eigenvalue of the operator L(−) and a corresponding

eigenfunction ψ solves the equation (
E − L(−))ψ = 0,

then the function ϕ := V
1
2
− ψ is a solution of the equation

ϕ = −V
1
2
−
(
La−? + E

)−1
V

1
2
− ϕ. (7.2)

Here the function V
1
2
− is well-de�ned and non-negative since the function V− is non-negative by its

de�nition. Equation (7.2) also means that 1 is an eigenvalue of the operator −V
1
2
−
(
La−? + E

)−1
V

1
2
− if

E is an eigenvalue of the operator L(−).
Since by the assumption of the theorem we have

min â− = inf â = amin > Vmin = µ0,

then for E < µ0 6 0 the inverse operator (La−? +E)−1 is well-de�ned and bounded in L2(Rd). It can
be easily found by means of formulae (4.2):

(La−? + E)−1 =

(
1

(2π)
d
2

F

)−1
(Lâ− + E)−1

(
1

(2π)
d
2

F

)

=

(
1

(2π)
d
2

F

)−1
(â− + E)−1

(
1

(2π)
d
2

F

)
.

(7.3)

Then, owing to a simple identity

1

â− + E
=

1

E
(1 + bE), bE := − â−

â− + E
,

and (4.2), we can rewrite formula (7.3) as

(La−? + E)−1 =
1

E

(
I + Lb̂E?

)
, b̂E := F [bE ]. (7.4)
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We observe that the function b̂E(ξ) is strictly positive for all ξ ∈ Rd and it increases monotonically
in E. This implies immediately that the operator Lb̂E? is increasing in E in the sense of quadratic
forms.

Substituting (7.4) into (7.2), we obtain

ϕ = −V−
E
ϕ− 1

E
V

1
2
− Lb̂E?V

1
2
− ϕ.

Taking into consideration that E + V− > 0, we denote φ := (−(E + V−))
1
2ϕ and we rewrite the above

equation as

QEφ = φ, QE :=
(
− (E + V−)

)− 1
2V

1
2
− Lb̂E?V

1
2
−
(
− (E + V−)

)− 1
2φ.

Hence, if E < µ0 is an eigenvalue of the operator L(−), then 1 is an eigenvalue of operator QE .
We observe that QE is an integral operator:

(QEu)(x) =

∫
Rd

QE(x, y)u(y) dy,

where
QE(x, y) :=

(
− (E + V−(x))

) 1
2V

1
2
− (x)b̂E(x− y)V

1
2
− (y)

(
− (E + V−(y))

) 1
2 . (7.5)

By their de�nitions, both the functions V− and b̂E vanish at in�nity. This ensures that the operator
Lb̂E? is compact in L2(Rd) and therefore, the same is true for the operator QE . And since the operator
Lb̂E? is monotonically increasing in E in the sense of quadratic forms, we obtain the same property
also for QE . These two properties of the operator QE yield that �rst, the spectrum of the operator QE
consists of discrete eigenvalues λm(E) and a possible point of essential spectrum at zero, and second,
these eigenvalues λm(E) increase as E → µ0−0. In view of the latter property and the aforementioned

relation between the eigenvalues of the operator L(−) and of QE , if E(−)
n is an eigenvalue of the operator

L(−), then λm(E
(−)
n ) = 1 for some m and λm(E) > 1 as E < E

(−)
n . Hence, in order to count the total

number of the eigenvalues E
(−)
n , it is su�cient to count the total number of the eigenvalues λm(E)

passing through 1 as E goes to µ0 from below. In view of an obvious inequality∑
m:λm(E)>1

1 6
∑

m:λm(E)>1

λm(E)

by (7.5) we then get:

N (−) = lim
E→µ0−

∑
m:λm(E)>1

1 6 lim
E→µ0−

∑
m:λm(E)>1

λm(E) = lim
E→µ0−

TrQE

= lim
E→µ0−

∫
Rd

QE(x, x) dx = lim
E→µ0−

b̂E(0)

∫
Rd

V−(x)

−(E + V−(x))
dx = IaIV .

In view of inequality (7.1), this completes the proof.

8 In�nite discrete spectrum

In this section we discuss the situations when the operator L possesses in�nitely many points of the
discrete sprectrum, namely, we prove Theorem 2.7.

We �rst assume that inequalities (2.19) are satis�ed. Since V (x) ≡ Vmin on Qr(x0), in view of
(4.17) for each in�nitely di�erentiable function u compactly supported in Qr(x0) we have

l[u]− Vmin‖u‖2L2(Rd)
= (La?u, u)L2(Rd) = (âû, û)L2(Rd), û :=

1

(2π)
d
2

F [u].

Inequalities (2.19) imply that â 6 0 and â is a non-trivial function. Therefore, this function is non-zero
and negative on a set of positive measure; we denote this set by Ω. Since the function u is compactly
supported, its Fourier transform û is analytic in ξ. Hence, it is non-zero on Ω and we get

l[u]− Vmin‖u‖2L2(Rd)
< 0 for each u ∈ C∞0 (Qr(x0)).
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Since C∞0 (Qr(x0)) is an in�nite dimensional space, by the minimax principle the above inequality
implies that the operator L possesses in�nitely many eigenvalues below the point µ0.

We turn to proving the second part of the theorem. Due to (6.8), for an arbitrary function u ∈
C∞0 (Qr(x0)) continued by zero outside Qr(x0) we have:

l[u]− Vmin‖u‖2L2(Rd)
= (La?u, u)L2(Rd) 6

∑
n∈Zd

an|Un|2. (8.1)

By our assumptions, all Fourier coe�cients satisfy an 6 0 and there exists an in�nite subsequence of
these coe�cients, for which the latter inequality is strict. We denote such subsequence by n′ and then
by (8.1) we get:

l[u]− Vmin‖u‖2L2(Rd)
6
∑
n′

an′ |Un′ |2 < 0

for u such that at least one of its coe�cients Un′ is non-zero. It is clear that the space of such functions
is in�nite-dimensional and by the minimax principle we conclude on the existence of countably many
eigenvalues below µ0. This completes the proof.
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