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Abstract
In this Ph.D. thesis, we focus on some problems of general interest both in en-
gineering sciences and applied mathematics. The close connection between
some problems concerning neural networks, wavelets, structural health moni-
toring, and modern Fourier analysis is highlighted and applied in various ways.
Themain body of the Ph.D. thesis consists of six papers, A–F, which are put into
a more general frame in the introduction.

In Paper Awe present a case for how systematic use of energy flexibility can
be an important instrument for managing peak loads and voltage problems in
weak power grids. The FLEXNETT Simulator addresses production and energy
dynamics down to every 10 minutes. A recurrent neural network was used to
generate realistic values for the simulator.

In Paper Bwemade a case for using a combination of time series from non-
intrusive ambient sensors and recurrent neural networks to predict roomusage
at a university campus. Training data was created by collecting measurements
from ambient sensors measuring room CO2, humidity, temperature, light,
motion, and sound.

The findings in papers A and B led to inquiries concerning the learning
ability of machine learning models.

In Paper C we propose a new approach to machine learning of geomet-
ric manifolds in Rn using single-layer or deep neural networks, Wavelet-Based
Neural Networks (WBNN). DeepWBNNs provide a highly efficient computing ar-
chitecture for the acceleration of the rate of convergence of the approximation
process by using iterative algorithms.

The investigations in paper C inspired further research on actual engineer-
ing problems where, e.g., wavelets are of crucial importance.

In Paper D we investigate the impact of extreme arctic conditions on
civil engineering infrastructures. Research and development of new methods
are needed for damage detection in these structures. Advances in artificial
intelligence could help solve the problem of structural damage detection,
especially in arctic regions.

In paper E, a new example of the applications of operational modal analysis
(OMA) techniques to a concrete railway arch bridge located over the Kalix river
in Långforsen is presented. Results from theOMA techniques are used for finite
element model (FEM) updating. Furthermore, artificial intelligence algorithms
that can be useful for addressing the problem of missing data sets in structural
health monitoring technologies are presented.

The questions discussed in papers D and E are not only related to neural
networks and wavelets but also to modern Fourier analysis.
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Abstract

In paper F we prove some new inequalities and sharpness results concern-
ing the Walsh-Fourier series. Moreover, a close connection between these se-
ries and wavelet theory is pointed out.
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This Ph.D. thesis in Engineering Science is submitted in fulfillment of the require-
ments for the degree of Doctor of Philosophy at UiT The Arctic University of Nor-
way. The research presented herewas done under the supervision of Professor
Bernt Bremdal and the co-supervision of Professor Børre Bang, Professor Lars-
Erik Persson, Professor Lubomir Dechevsky, and Associate Professor Asbjørn
Danielsen.

The main body of the Ph.D. thesis consists of six research articles, A – F, and
a corresponding introduction. In the introduction, the papers are discussed
and put into a more general frame. The introduction is also of independent
interest since it contains a brief discussion on the important interplay between
appliedmathematics and engineering applications, illustrated by a comparison
with some relevant international research presented in this light.

A brief description of the main content of the six papers can be found in
the abstract above, and a more complete description is given at the end of the
introduction.
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Chapter 1

Introduction

1.1 Background

It is part of human nature to record and remember information. This is pure
biology. Even the simplest life forms monitor and make sense of the world
around them. This is performed using biological sensors, such as eyes, ears, or
heat sensors. The information is then processed using a biological computer,
commonly known as the brain. Monitoring their environment is crucial for all
creatures.

Humanity has been collecting and recording information in various forms
since the dawn of civilization – and probably even before that. In most cases,
such information or data was used not only to remember the past but also to
say something about the future. Throughout history, people have made and
used things like written language, books, and, more recently, computers to
record and store information. Today, enormous amounts of information are
recorded, stored, and processed every day by computers.

In fact, many of the largest, wealthiest, and most influential companies in
the world came into being due to their ability to collect, process, and structure
information. To understand the data and extract meaningful insights, various
mathematical and statistical techniques, known as algorithms, can be applied.
These algorithms provide a set of precise steps for completing a task or making
a decision based on a given situation.

1.2 Time Series

A common, universal procedure for making sense of information is to order it
sequentially. For biological sensors and intelligence, this process is apparently
done in an automated fashion that is not yet fully understood by neuroscience.
However, for artificial sensors, it is common to collect the information in
a timely fashion – simply leave the measurements in the order they were
collected.

Such information or data is commonly referred to as time series. Since any
chronologically ordered data can constitute a time series, they are ubiquitous.
Data from fields such as statistics, signal processing, finance, and weather
forecasting is usually represented as a time series, butmost domains of applied
science or engineering can make use of time series.
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1. Introduction

1.2.1 Time Series Analysis
Methods for extracting statistics and data characteristics are commonly called
time series analysis. Methods for predicting future values of such chronological
data are usually referred to as time series forecasting. Depending on the field,
methods for analysis or forecasting are preferred. Commonly applied are
methods from statistics for forecasting or signal processing methods for signal
detection.

Some of the statistical properties of time series data include trend, season-
ality, autocorrelation, and stationarity. Trend refers to the overall direction in
which the data is moving, such as upwards or downwards. Seasonality refers
to regular patterns that repeat over time, such as increased sales during the
holiday season. Autocorrelation is the degree to which the data points are cor-
relatedwith each other. Stationarity is the property of a time series in which the
statistical properties do not change over time. These properties can be quanti-
fied and analyzed to better understand the underlying dynamics of the data.

These properties can be quantified and analyzed using statistical techniques
such as time series decomposition, autocorrelation function plots, and station-
arity tests. Time series decomposition involves breaking down the data into
its trend, seasonality, and residual components. This can help identify the un-
derlying patterns and trends in the data. Autocorrelation function plots can be
used to visualize the degree of correlation between the data points. Stationar-
ity tests can be used to determine whether a time series is stationary or not.
These tests typically involve looking at the mean and variance of the data over
time and checking for any significant changes.

Ergodicity is a property of a system that describes how its statistical prop-
erties evolve over time. A system is said to be ergodic if the long-term time
average of a system’s properties is equal to the average of the system’s proper-
ties over a single time period. In other words, a system is ergodic if its statistical
properties do not change over time.

For time series data, ergodicity is an important concept because it allows
us to make predictions about the future behavior of the system based on its
past behavior. If a time series is ergodic, we can make predictions about its
future behavior by examining its past behavior and assuming that its statistical
properties will remain the same over time. However, if a time series is not
ergodic, we cannot make predictions about its future behavior based solely on
its past behavior because its statistical properties may change over time.

However, approaches such as machine learning can be used for both
purposes [1].

1.3 Machine Learning

The field of machine learning is devoted to buildingmodels that "learn." "Learn-
ing," in this context, means utilizing information in such a manner that the
model, or algorithm, itself designs the proper set of rules or instructions for
performing or improving upon some sort of task. Machine learning algorithms
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build a model based on sample data, called training data, to make predictions
or decisions without being explicitly programmed to do so. Machine learning al-
gorithms are used in many applications, such as medicine, speech recognition,
and computer vision, where it is difficult or impossible to develop conventional
algorithms to perform the necessary tasks.

1.3.1 Generalization and Learnability

The primary objective of a machine learning algorithm is to generalize from
unknown information or experience. Generalization in this context means
the ability of the algorithm to correctly classify or predict new and unseen
data after having gone through a set of training data. The training examples
come from a normally unknown probability distribution (which is considered
representative of the occurrence space), and the learner must build a general
model on this space that allows him to make accurate predictions in new cases.
Because the training sets are finite and the future is uncertain, learning theory
in general makes no guarantees about the performance of algorithms. If the
hypothesis is less complex than the function, then the model is fully equipped
with the data. This is further discussed and addressed in Paper C. Learning
theorists investigate the time complexity and feasibility of learning in addition
to performance limitations. In computational learning theory, a calculation is
considered feasible if it can be performed in polynomial time.

1.3.2 Neural Networks

Some machine learning methods make use of data in ways that are similar to
how biological brains work. The most common model is known as the neural
network.

A neural network is based around a collection of connected units, or nodes,
that receive or send signals between each other. These signals are real
numbers, and all signals going to a node are (usually) summedupon arrival. The
node then employs some sort of non-linear function to transform this sum. This
transformed signal then becomes the output of the node. This output is then
ready for transfer to connected nodes. The connections between nodes are
often referred to as "weights" and are also represented by a real number. The
weights change during evaluation to increase or decrease the signal strength
between nodes. Usually, nodes and weights are organized into layers, but they
do not have to be.

Since non-linearity is built into the neural network, it is able to reproduce
and model non-linear processes. This leads to neural networks having almost
endless application disciplines.

Since the output, or result, the neural network calculates is independent of
its inner workings, it can be used for both regression and classification tasks.
The concept of a neural network is also extendable to endless mathematical or
structural changes.
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1. Introduction

1.4 Smart Buildings and Cities

Smart buildings and smart houses can be defined as a set of communication
technologies enabling different sensors and functions within a building to
communicate and interact with each other and also be managed, controlled,
and automated in a remote way. Also, smart buildings and homes need to
be sustainable on at least three fronts: the environment, the economy, and
the quality of life for the people who live in them. Smart building projects are
usually different from smart house projects because smart building projects
aremore business-to-business while smart house projects aremore consumer-
focused. Over the past years, overall EU energy expenditure has been reduced
by 5-6% due to energy efficiency measures in buildings.

The main drivers are new and modern needs from users and owners, the
automation of functions, and the search for better efficiency and productivity.
There are also worries about using more renewable energy sources like photo-
voltaic (PV) panels, wind turbines, and generators made from bio-based mate-
rials. Smart buildings can be part of a larger ecosystem in which the building
is linked to other parts of the smart city. The smart city is, in some ways, the
macro-version of the smart building. Before, functions in a building were in-
dependent of each other. The smart building tries to link them all together so
that they work better and use less energy. In the same way, the smart city uses
digital solutions to connect different groups so they can work together, avoid
duplication, and improve synergies. A major element of this emerging technol-
ogy is artificial intelligence and machine learning. In a smart setting, energy
efficiency and using non-fossil energy sources are the most important things.
In May 2019, with effect from 2020, the EU introduced the “Clean Energy for
All European Citizens” package. The idea of local energy markets and energy
communities is part of this set of directives.

In paper A, the neural network architecture long short-termmemory (LSTM)
was investigated for the prediction of rooftop solar energy production in a
neighborhood. The number of rooftop solar panels has been steadily increas-
ing in recent years. Overproduction on sunny days can lead to households feed-
ing electricity back to the grid. Most electricity grids are designed to feed elec-
tricity only one way, towards the customers. Thus, predicting production could
lead to better control of production on local grids. A web application for simu-
lating different neighborhoods was developed during this work but is no longer
maintained.

The same neural networkmodel (LSTM) was used in a different way in paper
B, specifically to predict human occupancy numbers in university group rooms.
These rooms are available for students to use throughout the day. As such,
these rooms could see uneven usage patterns, such as students using them
during overnight hours or for just a few hours at a time. Manymodern buildings
have sensors that measure the CO2, humidity, temperature, sound level, and
light level in the air. This monitoring is usually used to adjust ventilation
and air conditioning as changes in sensor measurements are detected. Such
measurements can also be collected and used with prediction algorithms. In
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fact, the measurements are represented as a multivariate time series.
It is commonly known within the field of neural networks that collecting

and curating training data can be challenging. One of these problems can be
caused by how the network weights are set up. Usually, the weights are chosen
at random. Depending on how the random numbers play out in the initial
distribution, the training phase may go very smoothly or it may not converge at
all. This is in relation to the distribution of the training dataset.

Another common caveat relates to deciding on network architecture. This
is generally an unsolved problem, but approaches such as Neural Architecture
Search exist. This approach, as can be assumed, is very computationally
demanding and, in practical terms, not very feasible for large models. Some
of these problems are discussed, and in some regards, addressed in paper C.

During the course of this paper, the problem of missing data, or in this case,
irregular time series, came up. The sensors used to collect the indoor climate
time series were not necessarily synchronized with the manual headcount
used to establish the training data. As such, it was assumed that the machine
learning models used for the prediction would learn biases because of the lack
of synchronization. Paper E delves deeper into and describes this direction.

1.5 Structural Health Monitoring

The societal impact of solutions from science and technology is described in
Section 1.4. Related to this, the creation and maintenance of public infrastruc-
ture represent an enormous cost for society, both in the public and private sec-
tors. Structures sustain wear and tear during their operational lifetime due to a
variety of environmental or human factors. Lack of maintenance and monitor-
ing can result in the accumulation of damage over time, which can significantly
reduce the performance of structures, cause changes in natural symmetry, or
even lead to destruction. Civil engineering structures are typically designed to
last 50 to 100 years. Structures are assumed to have the expected structural
integrity during this lifetime. However, in general, structures are vulnerable to
unforeseeable and unexpected damage caused by a variety of factors over the
course of a structure’s lifetime.

The deterioration of civil engineering infrastructures such as bridges, tun-
nels, and buildings causes numerous problems with significant consequences,
both practically and economically. Governments andmunicipalities around the
world must devote considerable resources to maintenance, repairs, or the con-
struction of new structures to replace deteriorated or damaged ones in order
to provide adequate service to citizens. Infrastructure maintenance costs for
governments around the world are rising as many infrastructures near the end
of their life cycles. Furthermore, the scarcity of expert labor to analyze such
challenges exacerbates the problem. Analyzing these kinds of problems is very
important, especially in places like northern Scandinavia, where harsh arctic
conditions make them worse.
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Large amounts of seafood cargo are exported along public roads in north-
ernNorway. As of 2021, Norway’s seafood industry exported 12 billion euros and
contributed roughly 10%of Norwegian export earnings. Since the year 2000, the
seafood industry has grown at a 7% annual rate, effectively doubling every ten
years (see [2]) and [3]). The seafood industry is expected to continue growing
at the same rate and has already seen 20 percent year-on-year growth in the
first half of 2022 (see [4]). This is expected to increase the strain on an already
– deteriorating infrastructure, particularly in sparsely populated northern Nor-
way.

In Norway, the majority of civil engineering infrastructure operators and
owners aremunicipalities or government-owned enterprises. Infrastructure as-
set management decisions are made for now based only on visual inspections.
Non-destructive testingmethods like acoustic, ultrasonic, ormagnetic field test-
ing could help with localized diagnosis. However, these testing methodologies
have several limitations, including the inaccessibility of some parts of the struc-
ture, the inability to detect internal damage, the localization of the damage, and
the difficulty of performing continuous monitoring with such techniques.

Structures vibrate as a result of natural or artificial excitations such as earth-
quakes, wind, or other vibrations. The output signals from these vibrations,
such as accelerations, strains, or displacements, can be recorded as time se-
ries.

In a typical SHM system, sensors are placed all over the building and are
used to calculate the structure’s state. Damage is described as a deliberate or
accidental alteration of a structure’s material or geometric features, including
alterations to boundary conditions or system connectivity that have an adverse
effect on the structure’s performance now or in the future (see [5]).

These signals have a non-stationary nature, which means that with time,
their features change. But these signals can contain lots of information, which
can be useful for stating the health of the structure. Windowing the signal can
provide time localization with Fourier transforms, but it does not matter what
the frequency component of the signal is.

1.6 Fourier Analysis

Since the first fundamental discoveries of Jean-Baptiste Joseph Fourier (1768-
1830) in connection with his attempts to solve the heat equation, Fourier
analysis has been greatly developed and applied.

The impact of Fourier analysis is heavily dependent on its many scientific ap-
plications, e.g. in physics, partial differential equations, number theory, combi-
natorics, signal processing, probability theory, statistics, forensics, option pric-
ing, cryptography, numerical analysis, acoustics, oceanography, sonar, optics
diffraction, geometry, protein structure analysis, etc. The standard variants of
Fourier analysis are the Fourier transform, which is an integral transform, and
the Fourier series. Other popular variants are the discrete-time Fourier trans-
form and the fast Fourier transform. Fourier analysis has been very important
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for the applications described in papers D and E. The most recent variant of
Fourier analysis is that in the new book, [6]. Instead of having building blocks
like sine and cosine, the basic elements here are sequences:

x := (x0, x1, ..., xj , ...) where xj = 0 ∨ 1
The study is done on a group G, which is the complete direct product of the

group z2 := {0, 1}. This new approach gives a theory that, in great parts, gives
a similar theory as in the classical case, but there are many differences too (see
[6]). This new approach seems to fit well with the problems of sequential data
in papers A and B. It could also have implications for general computer science
due to these being sequences of binary code. In paper F of this Ph.D. thesis, we
have proven some inequalities and sharpness results that are new also vis-à-vis
the new, fairly complete book [6].

1.7 Wavelet Theory

The Haar wavelet is a sequence of rescaled "square-shaped" functions that
together form a wavelet family as its basis. Wavelet analysis is similar to
Fourier analysis in that it allows a target function over an interval to be
represented in terms of an orthonormal basis. These wavelets are named
after the Hungarian mathematician Alfred Haar (1885–1933). The Haar system
forms an orthonormal basis in the Lebesgue space L2. For more information,
see also the Appendix of paper D. After these first discoveries, it has been
a fantastic development of the wavelet theory, and also in this case, the
main reason is the great importance for applications, e.g. for most of those
mentioned in Section 1.6. For several of these applications, wavelet theory
has great advantages for various reasons. Also, in this case, there exists a
continuous form (corresponding to the Fourier transform) and a discrete form
(corresponding to the Fourier series). But as in the case of Fourier theory, there
exist today a number of variants and generalizations in wavelet theory.

In papers D and E of this Ph.D. thesis, a number of these variants are
discussed and applied, e.g. in connection to the serious problem of controlling
and discovering in time, serious damage problems in bridges and buildings.

The most important theoretical contribution in this connection is found in
Paper C. In particular, here we propose and describe a new machine learning
approach combining neural networks with multiresolution wavelet analysis. It
is described in very general and precise form, namely as the frame of a general
Besov space (instead of L2) and Rn, n ∈ Z ( instead of R).

1.8 A short description of the results in papers A - F

1.8.1 Paper A

The introduction of distributed, renewable energy sources has necessitated
research into how production at the grid’s terminal points should be best
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catered for. The grid was never designed to handle a two-way flow of energy
with production facilities at its terminal points.

In this paper, we describe a new analysis tool that we developed to study the
impact of increasing rooftop solar installations in Norway. This simulation tool
was created using geospatial data from the database of Norwegian buildings.
A recurrent neural network (LSTM) was trained and applied to simulate the
consequences of the high-density deployment of solar panels in different areas
at Hvaler. The primary goal was to use the tool to investigate the impact of
prosumers on the local distribution grid. By selecting a house or a group of
houses linked to the same part of the grid, the tool generates the dynamics of
loads for a single household as well as a neighborhood or a larger area.

We were able to provide evidence that the magnitude of peak loads on
the local grid sections would not exceed the distribution limits. This is even
with both large panels and a high number of local energy producers. We also
showed that the local infrastructure for the grid areas studied at Hvaler (the tar-
get area) was robust enough to handle a high density of large rooftop panels. In
this paper, we also determined the costs for single households using the power
tariff introduced by the local distribution system operator, compared with the
regular tariff. This analysis showed that the economic benefits of rooftop solar
panels combined with peak hour consumption combined with power tariffs
would be significant.

This paper cites the following sources: [7], [8], [9], [10], [11], [12], [13], [14], [15],
and [16].

1.8.2 Paper B
With the advent of the Internet of Things (IoT), a multitude of monitoring
and control opportunities have arisen. The development of smarter buildings,
neighborhoods, and cities has already embraced this. Energy use and indoor
climate control are central aspects related to the performance of buildings.
Selective energy use can lead to more efficient buildings (see [17]). Monitoring
the number of people in the specific rooms of a building can be used to
achieve a more focused and efficient use of energy in a building. That in turn
requires the ability to compare an estimate of space occupied with energy use.
CO2, illumination, and sound are known to be highly correlated with human
occupancy (see [18]).

In this paper, we first present a correlation analysis between training fea-
tures. Traditional algorithms like Pearson correlation and principal component
analysis showed that the six different features were correlated to amild degree.
In particular, this fact implied that around 50% of variance could be retained in
one component and that at least four components were needed to retain 90%
variance. Because of this, we used all the data features for training themachine
learning models.

Furthermore, we present results from a neural architecture search. This
was done to investigate if certain architectures would perform better, given the

8



A short description of the results in papers A - F

limited dataset. This search made it apparent that the activation function and
loss function were the crucial parameters. Our search showed that rectified
linear units and sigmoid units showed the same performance. For the loss
function, mean squared error (L2 loss) was most effective.

We also present a search for feature selection. This was done by training
on select combinations of features, i.e., only CO2 and humidity. This search
revealed that CO2 was the feature contributing the most to the learning ability
of the neural network.

Finally, we show that recurrent neural networks such as LSTM are more
efficient than regular neural networks, support vector machines, and random
forest regression at modeling the relationship for prediction for the sequential
data in this paper.

This paper cites the following sources: [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37] and [38].

1.8.3 Paper C
In this paper, we present a new type of wavelet-based neural network (WBNN).
We compare it to existing wavelet neural networks (WNNs) and demonstrate
that WBNNs outperform WNNs. This superior performance is due in part
to the advanced hierarchical tree structure of WBNNs, which is based on
biorthonormal multiresolution analysis. Additionally, our new approach of
incorporating wavelet tree depth into the neural width of the network allows
for increased functionality and more efficient learning.

We show that WBNNs are able to efficiently learn not only regular distribu-
tions but also singular distributions like the Dirac delta and its derivatives. We
also provide the general characteristics of the various activation operators that
can be used in WBNNs and discuss the differences between non-threshold and
threshold activation in learning fractal and piecewise smooth manifolds. We
then introduce a new activation method based on the concept of decreasing
rearrangement and provide proof of its consistency and optimality. Finally, we
present four model examples and compare their results.

This paper cites the following sources:
[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53],

[54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [12], [67], [68],
[69], [70], [71], [72], [73], [74], [75], [76] and [77].

1.8.4 Paper D
Damages to structures occur during their operational lifetime due to various
environmental or human factors. Operators or owners of civil engineering in-
frastructure such as bridges, dams, and tunnels are mostly municipalities or
government-owned enterprises in Norway. As for infrastructure assets, man-
agement decisions are based on visual inspections, which could be aided by lo-
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calized diagnosis techniques such as the use of acoustic, ultrasonic, ormagnetic
field non-destructive testingmethodologies. These testingmethodologies have
several limitations, such as inaccessibility to some parts of the structure and
the inability to detect internal damage. For example, in a vibration-based SHM
system, accelerometers are used to find the key parameters: mode shapes,
mode frequencies, and mode damping. Once these parameters have been es-
timated, damage detection algorithms can be utilized. For example, in the case
of a bridge, a label of critical damage, the need for inspection, or the need for
maintenance can be assigned by comparing the bridge to data for a healthy
bridge.

In this paper, we first describe and investigate this serious problem in
northern Norway. As a basis we use a dataset from the Norwegian Public
Road Administration. We conclude, from this dataset and according to internal
classification by the said agency, that almost 1 in 10 bridges in Norway are
in "critical" or "serious" states with regard to renovation. Moreover, almost
half of the bridges are classified as "missing inspection", which is a mandatory
regulation imposed by the agency itself. It is also apparent that around 1
in 3 bridges has had their planned renovation delayed. It is thus clear that
the agency is not able to deliver on its own standards. Moreover, in this
paper we put this struggling infrastructure into context in relation to the
bustling Norwegian seafood industry. This seafood industry has quadrupled
in economic magnitude in the last 20 years and is expected to continue to grow
at the same rate.

In order to be able to handle this serious problem, we present an overview
of the current state-of-the-art methods in structural health monitoring, such
as finite element and operational modal analysis. We also give an overview of
recently introduced techniques in machine learning in the context of structural
health monitoring. We remark that very little work has been conducted
in relation to vibration analysis, part of structural health monitoring using
machine learning.

In this paper, we also present a pipeline for combining machine learning
techniques with traditional monitoring techniques. Due to large amounts of
data, machine learning techniques could assist in this aspect. This database
can be accumulated over time and be used for training a mathematical frame-
work or machine learning algorithms.

This paper cites the following sources: [2], [3], [4], [78], [79], [80], [81], [82],
[83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98],
[99], [100], [101], [102], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112],
[113], [114], [115], [116], [5], [117], [118], [119], [120], [121], [122], [123] and [124].

1.8.5 Paper E
As described in the previous article, bridge infrastructure in Norway is in a
stressful situation due to various challenges. For example, in August 2022,
the Tretten bridge catastrophically collapsed in Norway, where a truck and a
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A short description of the results in papers A - F

car became stuck. In another incident in May 2022, a bridge in Kvænangen
municipality, Troms County, suffered serious damage, leading to the closure of
a bridge over the important E6 European road. We conclude thatmore research
is needed in this area so that precautionary measures can be taken to prevent
such incidences in the future.

In this paper, we present a new example of the application of operational
modal analysis techniques to a concrete railway arch bridge located over
the Kalix river in Långforsen. Results from the operational modal analysis
techniques are used for finite element model updating. During sensor data
collection, wind speeds decreased drastically. This led to a greatly reduced
signal-to-noise ratio, effectively crippling the data quality. The calibration of
sensors also led to a decrease in data quality.

In this paper, we also present an overview of recent machine learning mod-
els inherently designed for handling missing data. It is revealed that such mod-
els are very recent and most have not been tested in application areas such
as structural health monitoring. They do, however, show great promise for
solving such missing data problems. We conclude that, however, such testing
and bench-marking will require careful data collection and domain knowledge
of the application area.

This paper cites the following sources: [39], [40], [109], [110], [111], [112], [117],
[120], [121], [122], [123], [125], [126], [127], [128], [129], [130], [131], [132], [133], [134],
[135], [136], [137], [138], [139], [140], [141], [142], [143], [144], [145], [146], [147], [148],
[149], [150], [151], [152], [153], [154], [155], [156], [157], [158], [159], [160], [161], [162],
[163], [164], [165] and [166].

1.8.6 Paper F
Fourier analysis is very important for various types of applications, see Section
1.6 and e.g. those in papers D and E of this Ph.D. thesis.

In this paper we make a new contribution in connection to the most mod-
ern form of Fourier analysis presented in the recent book [6] (with one of my
supervisors as co-author). In particular, we investigate some new inequalities
connected to the Walsh-Fourier series. The main result (see Theorem 1) shows
that, in a special sense, the investigated inequalities are the sharpest possible.
Moreover, we point out that there is a deep relation between the corresponding
Walsh polynomials, Vilenkin groups, and wavelet frames (see [6] and especially
[167] and [168]).

This paper cites the following sources: [169], [170], [171], [172], [173], [174],
[175], [176], [177], [178], [179], [180], [181], [182], [183], [184], [185], [186], [187], [188],
[189], [190], [191], [192], [193], [194], [195], [196],
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Abstract. This paper documents research conducted in the Norwegian FLEXNETT project.
It describes a new tool that was developed to study the future impact of prosumers with PV
panels on the grid in Norway and the potential energy flexibility that lies with residential
prosumers. Systematic use of energy flexibility can be an important instrument for managing
peak loads and voltage problems in weak power grids. The influx of distributed energy resources
can amplify this problem, but also help to resolve it. Self-balancing neighborhoods can be very
attractive. This implies that loads related to energy demands can be curtailed and leveled
out by different controllable devices or managed by using local energy production in the area
to reduce the impact on the general distribution grid. The simulation tool is GIS based and
can be applied to study the situation related to a single household, a neighborhood or in a
specific transformer area. Unlike similar tools that address production yields over a period, the
FLEXNETT Simulator addresses production and energy dynamics down to every 10 minutes.
Due to the relatively low solar angle in Norway and rapidly changing weather these dynamics
can be very prominent and induce local impact that is specific to a house or a neighborhood.
The paper further describes how a recurrent neural network has been used as an engine to
produce realistic values for the simulator.

1. Introduction
This work was conducted as part of the FLEXNETT project [1] lead by SINTEF Energi and
with contribution of more than 20 industrial partners. The overall focus of the project was to
investigate the present and future role of prosumers in the distribution grid. In particular, the
role of private prosumers as instruments of energy flexibility for the local Distribution System
Operator(DSO) was investigated. Energy flexibility relates to the possibility of reducing and
leveling loads in order to avoid congestions in the electricity infrastructure and to maintain a high
quality electricity supply. One of the central research questions specified was how prosumers with
roof top based photovoltaic (PV) panels, with and without batteries, can help reduce peak loads
in the grid. The grid was never designed to handle a two-way flow of energy with production
facilities at its terminal points. The advent of distributed, renewable energy sources has called
for research to understand how production at the grid’s terminal points best should be catered
for. As the use of PVs are still in its infancy in Norway it was considered important to determine
new policies and methods early and be proactive to avoid situations that can cause problems
for the operation of the grid. Experiences from southern Germany, where certain parts of the
distribution grid have suffered uncontrolled and rapid peak accumulations of feeds, alternated
by significant aggregated consumption loads triggered part of the research in FLEXNETT. High
loads and rapid peak shifts can be a challenge. Congestions and voltage problems related to the
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influx of distributed resources are not uncommon. Besides it has been shown that rapid peak
shifts can cause life degradation on transformers. One important cause for these problems are
related to the intermittency of solar and wind production. Another is that PV based production
typically tops when consumption is low. This is quite common for residential areas where people
spend time away from their house when the sun is at its highest and PV based production reaches
its maximum.

A proactive investigation of PV based production and the role of prosumers in a Norwegian
context was therefore called for. Some of the challenges experienced in southern Europe could be
amplified further north due to geographical latitude and the low azimuth levels of the sun during
larger parts of the year. The impact of local topography, vegetation and house architecture could
cause greater local variations and together with cloud conditions cause even a higher frequency
of alternating, aggregated loads in the distribution grid. At the same time opportunities were
spotted. If local production could be organized so that local load balance could be maintained
this could benefit the grid operations. Demand-response programs where loads are moved to
periods of sunshine have been introduced and tested [2]. As the quality and price levels of
batteries are improving they could also make a difference. Finally, pro-active planning could
help to eliminate or alleviate the load issues, especially for new residential areas to be built
where solar power is considered as an integral part of the construction project. But the same
procedure could also be used to for existing residential areas in combination with a distributed
set of batteries [3]. All of these issues were embraced by the FLEXNETT project. To answer
part of this it was decided to create a novel simulation tool. Members of UiT tied up with Smart
Innovation Norway to produce a solution that will be presented here. In the next paragraphs
we will first explain some prerequisites for the work undertaken.

Then we will describe the tool created and how it was applied to produce relevant results.
Finally, we will discuss the benefits and how we see the way forward.

2. Empirical Studies
Prior to the development of the FLEXNETT simulator empirical studies were conducted.
The data used were harvested from the municipality of Hvaler in the county of Østfold in
Norway. Hvaler was the first municipality in Norway where every residence was equipped with a
smart meter connected to an AMS infrastructure deployed by Norgesnett, the local DSO. This
happened in 2011. A substantial data history with a fair resolution was therefore available.
This data allowed us to study the hourly load profiles of many different residences across the
municipality. The double hump consumption profiles were quite uniform around the year with
a distinct morning peak and a similar one in the late afternoon or early evening. However,
there were certain differences with respect to when these peaks appeared. On the level of
the principal substation these differences tended to even out, suggesting non-uniform behavior
across areas and individual residences. However, within a single neighborhood the opposite
seemed to be the case. Here, acute peaks were more common since the origin of the data
received was not disclosed for the study we could only compare with consumption profiles of
people we were able to get closer too. These were residential owners who took a special interest
in the project. A statistical analysis showed, not surprisingly, that there was a relationship
between demographic parameters and the type of consumption profile obtained. But we also
found that many of the neighborhoods represented in the area were populated by people in the
same age group and with matching daily routines. This could be related to the fact that many of
these neighborhoods, mostly single residences and chained houses, were established at distinct
points in time as the needs for housing emerged. Thus, older neighborhoods were typically
inhabited by older and retired people, while recent property developments were dominated by
families with smaller children. Hvaler was also the first municipality in Norway with a distinct
population of residences with roof top panels. An active and facilitating policy introduced in
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2015 created a set of incentives for residents to invest in panels. A small subset of these shared
their production data with the project from the start, thus making it possible to create a history
on local production, albeit not more than records for 20 units. To determine the conditions for
production we studied the local topography and weather conditions for each one. For half of
these we were allowed to inspect the property physically to specify features like height and angle
of the roof and its orientation with respect to vegetation and other structures. The records
harvested, and the observations made were used for a wider set of project purposes, some of
which have been published elsewhere [4, 5]. One important conclusion from these studies was
that production varied significantly for different neighbors in the same area and with the same
type and size of roof top PV panels. It was apparent that local conditions causing shadows,
both permanent, arbitrary and periodic made an impact. On an aggregated level this increased
the intermittency, although much of this could be considered periodic.

One of the objectives of FLEXNETT was to carry out analyses to create the basis for the
FLEXNETT simulation tool. The basic task was to examine empirical data and to use it to
develop a tool to study the non-observed and the non-existent. In other words, we would use the
tool to study what would happen if whole new areas were equipped with rooftop panels. What
impact would a high-density deployment of PVs cause and how can it potentially be exploited for
the benefit of the grid? A simulation tool was an obvious answer, if not the sole option. There
was enough time series to power the generation of records for the simulations. But the set with
production data was significantly leaner. These records represented far less households, despite
significant histories for each of them. Standard statistical methods were considered but were
rejected in favor of machine learning techniques based on a form of recurrent neural networks
called the Long Short Term Method (LSTM).

3. Tool Making
One reason that standard statistical methods were rejected for the simulation was the inclusion
of circumstantial data such as local weather and contextual elements representing causes for
non-permanent shadows. All of this influence the rate of production and thus the degree of
intermittency. Hence, the current state of production may, in the general case, not honor
the Markov assumption. In other words, the current input does not hold all the information
needed to compute the next event. LSTMs represent a type of deep learning techniques [6] that
have proven useful for different applications, including time series and text analysis. Like most
regression techniques these type of neural networks are typically used for prediction. And as such
they can also be used for generating series of data based on the history [7]. The FLEXNETT
problem was treated as a Partially Observable Markov Decision Process (POMDP). Each house
in the municipality and their future production history could be considered the full state space
where only part of it could be observed. Like other vanilla neural networks, a recurrent network
can be seen as a function approximator for such a universe. But a recurrent network like
LSTM produces a dense state specification as a function of the entire history. This is due to
their ability to carry out operations over sequences of vectors. In addition, it combines the
vector containing the input with a state vector that in addition to the output vector creates
a new state vector. Hence neural networks like the LSTM can be effectively used as a world
model generator. The LSTM in FLEXNETT was constructed accordingly. The output y(t, R),
representing the production at any given time of the year, t, of any residence R, equipped
with a solar panel would then be approximated with the LSTM representing the function
f(P1, P2, P3, P4, ..., Pn, R(PV, x1, x2, ..., xn)). Here, Pi, PV, xi represent historic production at
specific times, peak panel production and a vector of geographical and topographical parameters
xi, respectively. Different versions of the part vector R(PV, x1, x2, ..., xn)) were attempted, but
problems with convergence was experienced. The final version of R was limited to PV panel size
and physical orientation in 3 dimensions. The LSTM was trained on the time series collected
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and tested on a part of the collected data history separated from the training set.
Since PV production follows the sunlight, it has an inherent Sin Wave-like property. As such,

variations in production would come as a consequence of physical objects existing between the
sun rays and the PV panel. Such objects could come in the form of weather, such as clouds, and
stationary or mobile ground objects. The LSTM should be able to account for ground objects
simply from the recurring change in production. For the weather, including data from nearby
PV panels should include information about changing weather conditions. A multi-dimensional
training data consisting of production times series from multiple PVs was tested to see if it could
provide better predictions than using only the time series from one single PV. For any given
installation Pi, its training data consisted of time series Pi1 , Pi2 , Pi3 , ... as well as time series from
other PVs Pj , Pk, Pl in the area. The training data was organized in sliding windows(batches)
of 36 time steps (6 hours X 6 values per hour), where the first (35 x number of PVs) values were
input. The sliding windows was shifted by 1. The output then, was a single floating point value
that represents the predicted next production value.

Real consumption data was applied. The rich data set made available to the project permitted
this. Time series from the complete data set was chosen at random. Bias was further reduced
by introducing multiple replications for the simulations. One issue was the difference in time
resolution. As the training data was sampled on a 10-minute interval this became the standard
for the simulations too. Since the meters provide on hourly data for the consumption we used
that. For the purpose at hand it sufficed to use average data across the hour. In the future
higher resolution consumption data is desired. A graphical interface was developed to control
the simulation. It included a Geographical Information System (GIS) section that also provided
information to the simulation engine (see Figure 1). By selecting a house or a group of houses
linked to the same part of the grid the tool would generate the dynamics of loads for a single
household as well as a neighborhood or a larger area. Similarly, it would be possible to choose
simulations for a particular period i.e. day, month, season or a full year and the results could
be shown in real time or produced as a batch.

Figure 1. The FLEXNETT user panel showing time series for consumption and production
on the left, the GIS panel in the middle where a selection of houses belonging to the same grid
connection is investigated. Right a set of tabs can display aggregated power and cost data for
the group and per building.

A selection of houses could also be equipped with batteries. For the economic calculations,
battery degradation was taken into account, but the battery management was held very simple.
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Battery would always have priority to surplus when fully or partly discharged. Degradation
was based on the rainfall method [8]. Beyond this we applied a Coloumb Counting [9] method
to monitor the state of charge. Economic calculations used the principal grid tariff at Hvaler
introduced by Norgesnett as default. This includes a power part [kW]. The tariff for regular
households is shown in Table 1 below. But the tool can be also used to analyze economic impacts
due to tariffs with fixed and energy related fees only.

Table 1. Tariffs introduced by Norgesnett at Hvaler. Note the power related part

Fixed fee(NOK/year) Period Energy part Power part NOK pr.
NOK/100*kWh max hour per month

[NOK/100*kW]

625 May-Oct 26.36 61.25
0 Nov-April 28.23 61.25

4. Results

Figure 2. Scatter plot shows predicted
values (x-axis) vs. actual values in test set
(y-axis).

Figure 3. : Learning rate- showing the
reduction of the Mean Square Error (y-axis)
per training epoch (x-axis).

Figure 2 and Figure 3 shows the result of the training of the LSTM. The method showed
good fit and acceptable error rates (MSE). It should be noted that the potential for overfit
was present due to the limited sample size available. The network was trained until standard
overfitting cutoff measures kicked in. Figure 4 shows the graphs produced for aggregated loads
across time for a group of houses connected to the same point of coupling.

The tool was used to determine the impact of PV size on the grid and the potential role of the
battery. The orientation of PV-panels on self-consumption was also investigated with the tool
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Figure 4. The cumulative net loads (kWh/h) for different hours for a period of app. 50 hours.

[3]. For the selection of households shown in Figure 2 the maximum loads on the neighboring
transformer was calculated. Examples are given for three cases: No production facility, all
houses equipped with 3,1kWp and 9,3kWp panels.

Table 2. Aggregated net loads for a selection of houses (kWh/h) (see Figure 1) equipped with
roof top panels. Min specifies the minimum net load. Max the hour during the year with highest
accumulated consumption.

Panel Size 0 kWp 3.1 kWp 9.3 kWp

Min -9.94 31.58 86.61
Max -118.93 119.43 -129.45

As can be observed from Table 2, the panel sizes need to be large in order to reach the
magnitude of negative loads typically during the month of January with no production. During
the warm and sunny part of the year the simulations also showed huge differences in max and
min from minute to minute. The tool thus provided evidence that the local infrastructure for the
grid areas studied at Hvaler were robust enough to handle a high density of large rooftop panels.
Another issue studied was the impact of house orientation. Figure 5 shows the production
profiles based on actual metering in the month of June for three different houses in the same
neighborhood at Hvaler with PV panels oriented at 106, 182 and 200 degrees. In addition, and
arbitrary consumption profile is shown for comparison in order to highlight self-consumption
issues and the possibility of self-balancing by design. As can be observed, the easterly oriented
panel meet the morning peak of the consumption better than the other two. But the westerly
and southerly oriented profile meets the afternoon/evening peak better. The westerly oriented
panel could have better absorbed the consumption if it was not cutoff as the curve in Figure
5 shows. This illustrates the susceptibility to local topography and vegetation that obstruct
the sun at early and late hours during the summer. Using the tool to investigate the degree of
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self-consumption related to PV orientation the easterly or westerly evening peaks did not match
the consumption as well as expected. One explanation is that the neighborhoods investigated
was inhabited by a several retired couples. (See Table 3). The dominant morning and evening
peaks in the pilot areas at Hvaler came later than expected compared to the average records for
the country and that generally show an earlier morning peak and a a more distinct afternoon
peak. This fact favored the panels facing south. With the power tariffs introduced the economic
benefit of the PV panels increased significantly for the prosumers. The tool further highlighted
the need for diversity in orientation. An average neighborhood in Norway with a high density of
panels facing south are more likely to accumulate high peaks at noon than areas with roof tops
pointing slightly different ways. Moreover, with power tariffs it makes economic sense to adjust
panels according to the households consumption profile. But it is important that production
does curb the consumption at the hour with the highest energy use. For more on the economic
part of FLEXNETT see [10].

Figure 5. Shows production profiles for an easterly oriented rooftop PV (106), a panel pointing
south (182) and a westerly oriented one (200). A consumption profile is shown for comparison.

Table 3. Max and min power for the average household equipped with a 3.1kWp panel. Max
net consumption is obviously experienced during winter time. Max net consumption is positive
during the summer.

Compass direction Max power Month Min power Month
of PV consumption[kW] (feed-in) [kW]

South -12.82 january 2.41 june
East -12.82 january 2.06 june
Southeast -12.82 january 1.99 june
West -12.82 january 1.91 june

5. Conclusive Remarks
The FLEXNETT tool for analysis of load dynamics imposed by consumption and rooftop solar
panels have been explained. UiT is currently maintaining the software. The simulation tool
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created applies a machine learning approach for the purposes. A LSTM neural network was
trained and applied to simulate the consequences of high-density deployment of solar panels
in different areas at Hvaler. The primary idea was to use the tool to investigate the impact
of prosumers on the local distribution grid. The tool proved to be useful to determine the
magnitude of peaks caused by local feeds and consumption and how rapidly changes in loads
can occur. Local conditions play an important role on the production profile and yield at all
hours of the day. The tool accommodates this by means of the GIS. The tool developed made
it possible to analyse and conclude that the grid sections investigated would be able to absorb
a high number of prosumers. However, the tool also showed its strengths in exposing potential
vulnerabilities where grid weaknesses can be a reality. The tool can help analyses where collective
self-consumption is sought. This would be a kind of self-balancing ”by design” where residential
areas can be planned to minimize the impact on the grid and to avoid potential congestions. The
results from the simulations combined with the empirical studies, suggest that local demography
can impact the aggregated, net profiles for sections of the grid. When time of production does
not match consumption well demographic homogenity may be an important reason for this.
The tool was also useful to determine the cost for single households exposed to Norgesnetts
power tariff. The benefit of rooftop PVs that meet hours with maximum consumption can
be economically significant if power tariffs are introduced. The tool includes options where
batteries can be deployed, and their effects studied. This part has not yet been fully developed
and validated. But UiT is currently addressing the issue. Furthermore, the tool is considered
as an engine for future studies of local energy markets. The plan is also to extend it to be able
to address other areas in Norway. It is believed that the tool will be especially important for
studies in the northern parts of the country where the average azimuth is even lower.
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Abstract

This paper presents results from ongoing research
with a goal to use a combination of time series from
non-intrusive ambient sensors and recurrent neural
networks(RNNs) to predict room usage at a uni-
versity campus. Training data was created by col-
lecting measurements from ambient sensors mea-
suring room CO2, humidity, temperature, light,
motion and sound, while the ground-truth counts
was counted manually by human observers. Results
include analyses of relationships between different
sensor data sequences and recommendations for a
prototype predictive model using recurrent neural
networks.

Index terms— Indoor Air Quality, Occupancy
Prediction, PCA, LSTM, GRU, Neural Architec-
ture Search, Deep Learning, Internet of Things

1 Introduction

With the advent of Internet of Things (IoT) a
multitude of monitoring and control opportunities
arise. The development of smarter buildings, neigh-
borhoods and cities have already embraced this.
Energy use and indoor climate control are central
aspects related to the performance of buildings. To-
day there is little knowledge on how a particular
building is actually used. What part of the in-
door area is populated at different hours? Selec-
tive energy use can lead to more efficient buildings
[1]. Monitoring the number of people in the spe-
cific rooms of a building can be used to achieve a
more focused and efficient use of energy in a build-
ing and more optimal space management. That in
turn requires the ability to compare an estimate of

space occupation and energy use.

Room occupancy has historically been moni-
tored by means of cameras and smart phones(Wi-
Fi, Bluetooth). But this raises privacy issues.
However, ambient sensors that can monitor levels
of CO2, temperature, humidity, illumination and
noise are present in many office and educational
buildings today.

The research contribution presented here in-
volves applying recurrent neural networks as a pre-
dictive model for estimating the number of people
in a room based on measured indoor climate vari-
ables, formulated as a regression problem.

2 Related work

CO2 has proven a reliable indicator for occupancy
detection [2]. Further, CO2, illumination and
sound are known to be highly correlated with hu-
man occupancy [3]. Machine Learning algorithms
like Support Vector Machines(SVM) and Random
Forest have shown promise on such sensor data [4].
Feed-forward Neural Networks(FNN) are used in
[5] to predict occupancy numbers from CO2, sound,
temperature and motion. A combination of algo-
rithms k-Nearest Neighbors(k-NN), FNN and Ran-
dom Forest was used to achieve 85% accuracy in
predicting the exact number of people in two rooms,
it was however unable to predict accurately for un-
seen rooms [6]. In [7], k-NN is used to accurately
determine the number of people according the clas-
sification criteria used by the authors. [8] found
that utilizing a combination of averaged and first
order differential CO2 signal trained with SVM and
FNN achieved an accuracy between 70-76% for oc-
cupation numbers of up to 200 people. In [9] a
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combination of CO2 and light signals was used to
create a prototype smart HVAC(heating, ventilat-
ing, and air conditioning) system.

In recent years, RNN architecture Long Short-
Term Memory(LSTM) has proven its effectiveness
in a number of problem areas involving sequential
data [10]. RNNs are known to outperform FNNs in
problems involving sequential data. The main trick
to achieving such great performance is an elaborate
setup of information gates which lets each neuron
in the RNN control which information to forget or
remember depending on the patterns in the train-
ing sequence [11]. A simplified version called Gated
Recurrent Units(GRU) was proposed more recently
in [12]. Comparison between LSTM and GRU has
been described in the literature, with performance
being found to be roughly equal in [13].

3 Method

To explore the possibilities described above a device
that combines different sensors and enable synchro-
nization of time series from each sensor was used
(see Figure 1). The sampling rate and number of
sensors varied somewhat between devices. The two
most common sampling rates were 10 and 40 sam-
ples per hour. However, the sensor data was pre-
processed by a third-party that re-sampled the data
to 4 samples each hour.

The data set was collected from ambient sensors
placed in 10 relatively small study rooms that stu-
dents usually use between classes or for studying
alone and in groups. The data the sensors pro-
vided:

• CO2, as measured in parts per million(ppm)

• Humidity, as measured by the amount of water
vapour in the air

• Temperature, measured in Celsius

• Illumination, measured in lux

• Motion, which is a Passive infrared(PIR) sen-
sor that returns a binary signal

• Sound level, measured in decibel

Human observers manually counted people to es-
tablish the ground-truth data for occupancy. The
distribution of occupancy numbers in the collected
dataset are shown in Table 1. It can be observed
that samples with higher occupancy numbers are
lacking.

Figure 1: 10 days of data from a sensor placed in
a study room. Note that the values are scaled and
normalized for the plot.

The Method chapter consists of 3 separate sub-
sections:

1. Correlation Analysis Here the statistical re-
lationship between variables is described

2. Time-dependency Inspection This section
describes a hands-on visual analysis of the vari-
ables and how they change through time

3. Prediction Models A walk-through of the
process leading to the final LSTM model

3.1 Correlation Analysis

When using multivariate distributions as a basis for
function approximation the statistical relationship
between variables is of major importance. This is
because many such function approximators learn
better from uncorrelated data. First, the Pearson
correlation coefficient [14] between features was in-
vestigated. Pearson correlation returns a value be-
tween -1 and 1 where -1 is the maximum negative
correlation and 1 is the maximum positive. The
closer the value gets to 0 the lower the correlation
in any direction, and at 0 there is no correlation.

A common approach to pre-process training data
and reduce over-fit before training neural networks

2
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Number of people 0 1 2 3 4 5 6 7 8 9
Percentage of samples 60.6 14.7 8.4 4.9 4.8 3.0 1.3 0.5 1.6 0.3

Table 1: The distribution of ground truth occupancy numbers

is to apply Principal Component Analysis(PCA)
[15] to reduce the number of correlated features.
PCA can be used to determine the explained vari-
ance between the features. PCA helps to determine
a variable’s relative contribution to the overall. It
is also used to determine statistical co-variance be-
tween variables.

Since the dataset is multivariate PCA can give
indications on which variables correlate with each
other, and more importantly, which do not. Since
the sensor data is collected from multiple locations,
it is also of importance to inspect the variation
therein.

Before PCA, data should be standardized by re-
moving the mean and dividing by the standard de-
viation. After standardization, each variable is cen-
tered on the origin of the principal components,
which makes comparing the spatial relations possi-
ble. PCA does not handle missing values, so these
were set to zero.

3.2 Time-dependency Inspection

As can be seen in Figure 1: Time series of this type
often display a high degree of seasonality on a daily
basis. Inspection of the data suggested that there
were profound differences between rooms depend-
ing on their use, location in the building, heating
and ventilation. The CO2 variable would dominate
in one part while temperature and humidity gradi-
ents would be more pronounced in other parts of
the building. Latency issues became evident too.
It takes time for CO2 levels, humidity and tem-
perature to increase when people meet in a room.
Ventilation may flush stale air more or less effec-
tively. Seasonal and daily changes in weather may
affect conditions too. Spring or autumn with low
solar altitudes may produce rays that effectively
heat up a room in one part, while rooms on the
shady side may require heating. These occurrences
suggested a high degree of dynamics. States could
be affected by situations or actions that happened
several hours or even days before. Dry periods with
a lot of sun would heat up concrete constructions

and create more dust than rainy and chilly days.
A shift could impact the observations profoundly.
The conditions in a room caused by six people hav-
ing a morning meeting could be logged quite differ-
ently from a similar situation in the afternoon as
former meetings that day could create an “atmo-
spheric legacy”.

3.3 Prediction Models

The sequential nature of the recordings in this pa-
per infers that the ordering of variable measure-
ments can be taken advantage of. This is especially
advantageous when training cyclic learners such as
RNNs [16]. RNNs can be used for both classifica-
tion and regression, depending on the properties
of the output layer. Since a single scalar value
such as an occupancy integer number can be easily
scaled between 0 and 1, the learning process was
formulated as a regression predicting a single float-
ing number.

Designing architectures for neural networks has
traditionally been manually done by humans. With
the advent of great generalization tools and more
powerful hardware, this is beginning to change, and
Neural Architecture Search(NAS) is gaining trac-
tion [17]. NAS is a brute-force method that can
be applied in various ways. Due to the many varia-
tions that are possible with(already heavy to train)
neural networks like LSTM, narrowing down the
search space is a trade-off that is almost unavoid-
able. As such, the selective focus of the NAS was
to find the optimal activation functions for each of
the layers, as well as finding the optimal optimizer
rule. The NAS was also set up to give feedback
on whether dropout or recurrent dropout increased
precision. Finally, loss measurement and learning
rate was also part of the search.

With this in mind, 3 investigations were per-
formed:

1. Neural Architecture Search First, an ar-
chitecture search was performed using the
Keras wrapper Talos [18]. This package makes
it simple to set up extensive architecture
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Figure 2: Pearson correlation between training fea-
tures, as a mean between different rooms

searches to automate the process of optimiz-
ing hyperparameters.

2. How different features influenced the
learning process A second analysis was per-
formed to investigate the learning potential
and influence each of the training features had
on the model.

3. Reproducibility and the influence of ran-
dom initial parameters Uncertainty is often
experienced with regards to achieving repro-
ducible results when training neural networks.
The initial weights of a neural network are usu-
ally selected according to a random distribu-
tion.

Before training, the data was scaled between 0
and 1. If the feature had outliers, these were
clipped to a value that realistically matched the
rest of the distribution. The data was split into
training(90%) and test(10%) sets, and then scaled
with explicit range between 0 and 1. During the
training process, 20% of the training data is used
for validation.

4 Results

4.1 Correlation

First, the Pearson correlation between the features
was examined. The result is shown in Figure 2.
Observe that most signals correlate to varying de-
grees, except humidity.

Next, PCA was performed, shown in Figure
5,Figure 3 and Figure 4. The result is in agreement
with the findings from the Pearson coefficients. Hu-
midity is diverging from the other parameters, and

there is not even correlation between humidity in
different rooms. Of special interest, it can be noted
that rooms with numbers 09 and 21 stand out with
regards to both the CO2 and humidity variables.
In addition rooms 15, 18 and 19 are also display-
ing a different behavior compared to the rest of the
rooms with regards to the same variables, but in
opposite direction.

In Figure 5, observe that for most rooms, 40-50%
information can be retained in only one component.
From the same figure, it is clear that at least 4
principal components are needed to retain 90% of
variance. It is also of importance that the variance
is quite similar between rooms. But even the com-
ponent with least variance contributes 5-7%, which
can be quite substantial for a function approxima-
tor learning to distinguish between signals.

4.2 Prediction Model

4.2.1 Neural Architecture Search

The next step was finding a suitable RNN architec-
ture for the data set. The NAS tested more than
2000 models varying hyperparameters and number
of layers or nodes per layer. The architecture search
showed that the dimensions of the neural network
and training batches had little importance. The
activation function and loss function were found to
be the crucial parameters. In general, among the
20 best performing models all used Rectified Lin-
ear Unit(ReLU) or Exponential Linear Unit(ELU)
as activation function between the first and mid-
dle layer with minuscule differences in performance.
For the middle(hidden) layers, ReLU, Tanh and
Sigmoid layers all achieved similar performance.
For the activation of the last node, ReLU selected
in 19 out of 20 cases. As for the loss function,
Mean Squared Error(MSE) was common for all the
models in the top 20. Adaptive Moment Estima-
tion(ADAM)[19] was chosen as optimizing function
in all the top 20 cases. Dropout was found by
searches to lead to worse performance. However,
recurrent dropout led to better performance.

The result in Figure 6 and Figure 7 shows the
relation between prediction and truth predicted by
the best-performing LSTM model(GRU performed
similarly with equal parameters) on the test set.
The input vector consist of a 16 × 6 where the for-
mer represents time steps and the latter training
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features. 4 recordings per hour was used, such that
each training sample contains 4 hours of previous
data. The model has 3 hidden layers with shape
(64, 64, 64, 32) (including input layer) in which the
last layer is densely connected to a single ReLU
node. The network was trained with MSE as the
loss function and ADAM as optimizer.

4.2.2 Feature Effectiveness

A feature effectiveness search was performed to in-
vestigate how well each feature and all combina-
tions of features trained the network. The shape
of the timestep vector remained the same. Here, it
is observed that a model trained only on CO2 had
good learning potential, and that the other features
alone had little or even no learning potential. A
combination of all features except CO2 did how-
ever have almost as good potential as CO2 alone.

4.2.3 Reproducibility

At last, a number of tests with different initial pa-
rameters and random seeds were performed to test
for reproducible results. For most seeds the net-
work performed as expected(such as in Figure 6),
but in rare cases with some seeds the neural net-
work would not train at all. If in such case one is
using a callback function to stop a network from
over-training by monitoring loss, the network will
not train and the data may appear useless.

4.2.4 Final Model

It is observed that the model is able to generalize
patterns in the training set, even if the low amount
of available training data probably leads to under-
performance on accuracy. The prediction was in-
versely transformed and rounded to the closest in-
teger. The mean absolute error from the model in
Figure 6 prediction on the test set was at 0.47. In
68% of cases of the test set the model was able to
precisely predict the number of persons, meaning
the absolute error was lower than 0.5. In 85% of
test samples, the error was lower than 1, and in
96% of samples the error was lower than 2 (Table
2). However, as seen in Table 2, a few outliers con-
tributed heavily to the overall error. These outliers
often correlate with higher occupancy numbers, as
seen in Figure 7. Due to the low number of train-

Error less than 0.5 1.0 2.0
Percentage of samples 68 85 96

Table 2: Prediction errors grouped by magnitude

Algorithm SVR RFR FNN LSTM
RMSE 0.151 0.110 0.102 0.097

Table 3: Comparison between machine learning
models

ing samples for states with a high number of peo-
ple(Table 1), it is likely that the network is under-
trained on these occurrences of larger groups and
as such scores particularly bad on these samples.

Finally, LSTM was compared to some of the ML
models from the literature on the same data set,
namely SVR, Random Forest Regression and FNN.
LSTM performs marginally better than its acyclic
cousin, the FNN.

5 Discussion

The PCA analysis indicates that creating a general
model for a certain type of room that has adequate
precision might be difficult, due to the differences
found in the correlation patterns between rooms.
All of the rooms share the same HVAC system and
are located at the same floor in the same build-
ing. Most rooms display similar behavior, but the
analysis shows that a few rooms show different be-
havior from the rest. A floor plan drawing of the
rooms was investigated to check if there were obvi-
ous architectural properties that could be influenc-
ing the data. The two rooms with numbers 09 and
21 were, unlike the other rooms, both situated next
to the building’s HVAC and/or plumbing system,
which could explain the disparity these rooms dis-
played with regards to CO2 and humidity. A solu-
tion to circumvent this problem could be to include
a one-hot encoded feature vector which would give
the learning model information about which room
each sample was collected from. However, there is
a chance that this could decrease the generality of
such a model. Further investigations are needed
to establish the degree of generality that can be
achieved.

The data patterns found in the training samples
are hard to analyse due to a large probability of
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noisy interventions because of the dynamic and un-
predictable states the sensors are subject to. While
some of the signals clearly contain more seasonal-
ity due the nature of the data it monitors, espe-
cially CO2, others are a lot more noisy and may
only occasionally contain trends, such as sound and
light. CO2, humidity and temperature signals are
influenced by pre-existing building monitor systems
such as ventilation and thermostats.

The scaling techniques used to pre-process the
training data might also ”skew” certain features
into influencing the training process more, espe-
cially since the distribution of the variables are not
necessarily similar.

It is not surprising that the most of the infor-
mation is contained in the CO2 time series. This
is consistent with previous research. Interestingly,
during the feature effectiveness search a combi-
nation of the 5 other features is able to train a
model that approaches the performance of a model
trained only with CO2 data on models trained from
scratch. One could assume that the patterns con-
tained in light and sound measurements would be
noisy due to external influences from beyond the
room itself. I.e. a solo person would probably not
change the sound signal very much. Such is also the
case for light, which is not exclusively influenced by
indoor lighting, but also from sunlight. The motion
sensor returns binary values and as such does not
say anything about the actual amount of people,
only if there are people or not. However, there was
found little difference in training precision between
networks that incorporate these features contrary
to those that do not. If anything, the model us-
ing all training features are seemingly more robust
since their performance is equal or better. It seems
that recurrent neural network models like LSTM
and GRU are able to filter the noisy parts of these
signals and only use them in cases where they ac-
tually have predictive capability.

The same seems to also be true for the temper-
ature feature. Temperature is controlled by ther-
mostats and as such would balance out any human
intervention in the heat signal. But this is also
a signal that would contribute to the training of
a recurrent neural network, since the temperature
would first rise, and the thermostat would respond
and adjust. These patterns could be present in the
sliding time window training samples, depending
on the time resolution.

Using human observers to gather ground-truth is
costly and the yield is limited. However, attempts
to introduce more automated means failed. The
room booking system proved to be a very unreli-
able source for the same purpose. Any effort to
let room users systematically share reliable mea-
surements of room use and space occupancy proved
very unreliable.

Employing NAS was useful in the sense that it
eliminated inefficient hyperparameters. However, it
seems that among the upper tiers of architectures
for the given dataset and problem the robustness of
trained models are very similar. This suggests that
the quality of the dataset is more important in this
case - a multitude of models manage to achieve sim-
ilar performance. The initial distribution of param-
eters also influence the training outcome of certain
models.

6 Conclusion

Earlier research on the correlation between indoor
climate and occupancy numbers suggested that a
number of machine learning models were able to
model this relationship for prediction. This re-
search set out to investigate how a recurrent neural
network would fare in this regard, and more specif-
ically LSTM.

The research shows that LSTM is within the
same league or better than the machine learning
models referred to in the literature for modelling
this relationship, in the case of our dataset. This
version of work focused on rather low-res time win-
dows on 15 minutes. It can be assumed, by the
notion that LSTM performance relative to other
models increase as sequential data gets more de-
tailed, that higher resolution data would lead to
even better relative performance.

7 Further Work

Low-resolution thermal cameras with RNNs has
proven promising as a non-intrusive method for
monitoring the presence or actions of persons [20].
Such data could be used as training labels in the
setting this paper describes, or act as a count-
ing/monitoring device on its own.
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Figure 3: Correlation of principal components 1 and 2 with the original features. The same-colored
arrows respond to the same components in 10 different rooms, while the number after each feature name
simple refers to the rooms internal name
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Figure 4: Correlation of principal components 2 and 3 with the original features. The same-colored
arrows respond to the same components in 10 different rooms, while the number after each feature name
simple refers to the rooms internal name
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Figure 5: Variance retained per principal component. The color strength of each bar scales with how
much variance is retained per component, per room. Here, result for 10 rooms are shown.
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Figure 6: Prediction compared to the truth values. Here, the prediction is rounded to whichever is
closest, 0 or any natural number. The size of the circles describes the amount of samples of this size, i.e.
there are quite a few 0’s. For a more precise interpretation of the same data, look at Figure 7
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Figure 7: Prediction vs Truth after inversely scaling the prediction output. Note that the darker red are
simply where the bars are drawn on top of each other, such that the colors are mixed. When there is no
red, the truth value is 0
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ABSTRACT

This is the first paper in a sequence of studies including also [DPS+–2022a] and

[DPS+–2022b] in which we introduce a new type of neural networks (NNs) – wavelet-

based neural networks (WBNNs) – and study their properties and potential for

applications. We begin this study with a comparison to the currently existing type

of wavelet neural networks (WNNs) and show that WBNNs vastly outperform

WNNs. One reason for the vast superiority of WBNNs is their advanced hierarchical

tree structure based on biorthonormal multiresolution analysis (MRA). Another

reason for this is the implementation of our new idea to incorporate the wavelet

tree depth into the neural width of the NN. The separation of the roles of wavelet

depth and neural depth provides a conceptually and algorithmically simple but

very highly efficient methodology for sharp increase in functionality of swarm

and deep WBNNs and rapid acceleration of the machine learning process. In

Theorem 1 (Section 2) we obtain a new result for the established WNNs: we

propose a type of activation which is shown to lead to optimal performance of

WNNs and show that even optimal performance of WNNs is vastly outperformed

by WBNNs. In Section 3, in Theorems 2 and 3 we obtain new results about the
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learnability via WNNs and WBNNs and in Corollary 1 we show that WBNNs

can be used to learn efficiently not only any regular distribution in L1,loc but also

singular distributions like the Dirac delta and its derivatives. In the same section we

provide the general characteristics (i–iii) of the rich diversity of activation operators

that can be used in machine learning via WBNNs of univariate and multivariate

manifolds in two, three and higher-dimensional spaces. Here we establish the

principal differences between non-threshold and threshold activation in learning

fractal and piecewise smooth manifolds, respectively. In Section 4 we briefly address

the importance of interconnection and interaction between swarm AI and deep

evolutionary AI and the relevance to computational implementations using CPU and

GPU parallelism. In Section 5 we introduce a new activation method based on the

concept of decreasing rearrangement in functional analysis and function space theory.

Theorem 4 is a uniform approximation theorem (UAT) providing qualitative proof

of the consistency of the learning process when using the decreasing rearrangement

activation. Theorem 5 provides an important quantitative upgrade of the UAT in

Theorem 4 by showing that decreasing rearrangement activation of WBNNs results

in machine learning process which is optimal in two key aspects: fastest learning and

maximal compression. In Section 6 we consider four representative model examples

which are then subjected to comprehensive graphical comparison the results of which

have been systematized into a collection of conclusions and comments. Section 7

is comprised of the proofs. In the concluding Section 8 we discuss the connection

of the present results with the studies in [DPS+–2022a], [DPS+–2022b], as well as

some additional computational and research topics.

MSC2020: Primary 68T07; Secondary 42C40, 46E35, 65T60, 68Q32

Keywords and Phrases: artificial intelligence, swarm, deep evolutionary, neural networks, wavelet-

based, machine learning, fastest learning, maximal compression, neural activation, threshold,

decreasing rearrangement, Sobolev embedding
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1 Introduction

The purpose of this paper is to propose a new approach to machine learning of geometric manifolds

in Rn, where n = 1, 2, 3, 4, ... using single-layer or deep neural networks (NNs) based on Riesz

unconditional bases of biorthonormal wavelets.

The first attempt to marry the theory of NNs with wavelet theory dates back to the early 1990s

[ZB–1992]. This initial study gave rise to particularly constructed NNs which were named by the

authors of [ZB–1992] as wavelet NNs (WNNs). In the course of the next twenty years, the theory

and applications of WNNs were studied by numerous authors. The results of these studies have

been summarized in [AZ–2013] which constitutes a comprehensive account of the current status of

the study of WNNs. Before going into the mathematical details of the construction and functioning

of WNNs, let us note that this type of networks was introduced relatively early, when wavelet

theory was still quite new to the developers of applications in the field of Artificial Intelligence (AI).

Due to this, WNNs make use only of a very small subset of the useful properties of wavelet bases.

Thus, while the theory of WNNs relies on the basic property of wavelet basis functions that they

are dilations and translations of one and the same function, this theory ignores the more advanced

properties of wavelet bases related to Multi-Resolution Analysis (MRA). As a consequence of this,

methods using WNNs are no more than a variant of meshless kernel estimation methods. The typical

representative of these meshless methods are the ones using radial basis functions [CCG–1991].

The only essential difference with the variant of WNNs is that radial basis functions are replaced

by tensor-product functions with sufficient number of vanishing moments. Not surprisingly, the

mathematical apparatus used with WNNs is identical with the one for radial basis functions: iterative

gradient or subgradient optimization methods. Unfortunately, these iterative methods can guarantee

providing the global extrema only when the respective criterial functionals (objective functions)

are convex. (Of course, in the particular case when the convex criterial functional is quadratic,

possibly with linear constraints, in addition to iterative methods there exists also a broad variety of

methods of computational linear algebra.) In practical applications, however, the realistic criterial

functionals are most often non-convex, with multiple local extrema and saddlepoint singularities. In

this general situation, the optimization methods used with WNNs and radial basis functions produce

only local extrema which are close to the global extrema only if a very good initial starting point of

the iterative algorithm is proposed. The usual defence of this type of results is to claim that all the

local extremal values are close in value to the global extremal value. Here is a typical exposition of

this type of argument [LBH–2015]: "..., In particular, it was commonly thought that simple gradient

3
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descent would get trapped in poor local minima – weight configurations for which no small change

would reduce the average error. In practice, poor local minima are rarely a problem with large

networks. Regardless of the initial conditions, the system nearly always reaches solutions of very

similar quality. Recent theoretical and empirical results strongly suggest that local minima are not

a serious issue in general. Instead, the landscape is packed with a combinatorially large number

of saddlepoints where the gradient is zero, and the surface curves up most dimensions and curves

down in the remainder. The analysis seems to show that saddlepoints with only a few downward

curving directions are present in very large numbers, but almost all of them have very similar values

of the objective function. Hence, it does not much matter which of these saddlepoints the algorithm

gets stuck at."

Some critical analysis of the above text in [LBH–2015] is due, as follows. While there is some

rationale in the above claims for large and very large sample and network sizes, these claims cannot

be accepted even as basic "rules of thumb"; expressions like "rarely", "nearly always", "very similar",

"strongly suggest", "not a serious issue in general", "seems to show", "almost all", "does not much

matter" are not good replacements for logical quantors. The argument about saddlepoints with only

very few negative components in the signature (that is - to use fuzzy terminology in the spirit of

[LBH–2015] - ’saddlepoints which are almost local minima’), is also unconvincing as a qualitative

statement without any criteria or means for quantitative measurement. Even if a saddlepoint in a

problem with a very large size has only one downward-curving dimension, the respective value

of the criterial functional (objective function) can be much larger than the global minimum, if the

downward curve is sufficiently steep. The one rigorous conclusion that can be drawn from the

above excerpt of [LBH–2015] is that, once the criterial functional (objective function) ceases to

be (globally) convex, iterative gradient/subgradient optimization is no longer a reliable approach

to achieving quality learning results. The only way to achieve best (or, at least, sufficiently high)

quality results is to start from a very good initial point of the iterative process, but the traditional way

of achieving this is by human intervention, i.e., the use of natural, rather than artificial intelligence.

In fact, the authors of [LBH–2015] acknowledge this in another excerpt of their text, as follows: "...

The conventional option is to hand design good feature extractors, which requires a considerable

amount of engineering skill and domain expertise. But this can all be avoided if good features can

be learned automatically using a general-purpose learning procedure. This is the key advantage of

deep learning ...". Our comment to this excerpt is that in the general case of non-convex criterial

functionals, gradient search only plays the role of an auxiliary tool for improvement of already good

4
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results. Achieving these good initial results using AI is thus claimed in [LBH–2015] to be the main

aim of deep learning, and, in general, this aim cannot be attained by only using local optimization

methods. The major weakness of WNNs proposed in [ZB–1992] is that the crucial problem of

finding a good initial starting point for iterative local optimization has only been addressed by the

vague recommendation that some ’explicit link between the network coefficients and the wavelet

transform’ should be provided. This weakness persists also in the later developments and upgrades

of WNNs discussed in [AZ–2013]. Our present study shows that for sufficiently large samples this

weakness can be overcome, at least partially, via tools from functional analysis. Namely, there is a

rigorous mathematical general way to automatically improve the quality of the starting point of the

iterative optimization process, valid for all cases when the criterial functional can be interpreted

as distance between two mathematical objects. Since, to the best of the authors’ knowledge, this

systematic approach seems to be new in the context of NNs (and much more certainly so in the

specific context of WNNs), we shall outline its main idea already in this early stage of our exposition,

as follows. If the metric criterial functional of an optimization problem has an equivalent metric

which can be computed efficiently without the need of iterative optimization, then this equivalent

metric d1:

0 < c0d1(x, y) ≤ d(x, y) ≤ c1d1(x, y) (1)

can be used to generate a consistently good starting point for the optimization of the original metric

d, provided that the equivalence constants cj, j = 0, 1, with 0 < c0 ≤ 1 ≤ c1 <∞, do not depend

on x, y and, in numerical problems, they are independent of the sample size of the numerical data

(in the sequel of this exposition we shall use the notation d ≍ d1). In most practical applications in

numerical analysis the metrics d and d1 are induced by respective equivalent norms or quasinorms

[BL–1976] or their seminorm variants. This refers not only to deterministic quantities, but also

in the indeterministic case, e.g. when considering equivalent risks in statistical estimation. A

typical model example, with various applications in deterministic approximation and statistical risk

estimation, is the Peetre K-functional between Lebesgue space Lp and homogeneous Sobolev space

Ẇ k
p , 1 ≤ p ≤ ∞, k ∈ N, [BL–1976],

K(hk, f ; Lp, Ẇ
k
p ) = inf

φ∈Ẇk
p

(||f − φ||Lp
+ hk||φ||Ẇk

p
) (2)

5
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where f ∈ Lp + Ẇ k
p (the algebraic sum of the two spaces) and h is the step (in applications, related

to the sample size). An equivalent seminorm of K(hk, f ;Lp, Ẇ
k
p ) is ||f − fk,h||Lp

+ hk||fk,h||Ẇk
p

where fk,h is the Steklov mean value of f with parameters k and h [DP–1997], the equivalence

constants being independent on f and h. The numerical computation of fk,h is based on quadrature

formulae and does not involve optimization. Thus, φ0 = fk,h can be used as a starting point of

iterative optimization. The quality of φ0 as initial solution of the optimization problem depends

on the size of the equivalence constants c0 and c1: if c0 = 1 = c1 (isometric equivalence) then φ0

is the exact solution of the optimization problem. In the considered example, c1 increases rapidly

with increase of k and so for a fixed step h > 0 (fixed sample) the quality of φ0 as initial solution

deteriorates with the increase of k. Fix k ∈ N and let h → 0+ (take sufficiently large sample):

since cj , j = 0, 1, do not depend on h (the sample size), for sufficiently large sample sizes φ0 will

be a consistently good starting point of the iterative optimization. Our first new result in Section 2

is to use the above idea for automatic generation of an initial starting point of iterative optimization

in the case of WNNs. Although satisfactory from theoretical point of view, the practical usefulness

of this generation would be rather limited, because the generated initial solution of the optimization

problem would be consistently close to the global optimum only for sufficiently large sample sizes.

Nothing is guaranteed for large samples of any a priori fixed size, let alone samples of medium or

small size (in our numerical examples in the sequel of this exposition we shall consider sample

sizes with N ≥ 212 as very large, 210 < N < 212 as large, 29 ≤ N ≤ 210 as medium-to-large,

28 ≤ N < 29 as medium, 27 ≤ N < 28 as medium-to-small, and 1 ≤ N < 27 as small). Our

conclusion is that WNNs can be used efficiently for finding a consistently good local extremum

only for very large sample sizes.

This weakness cannot be overcome within the conceptual construction of WNNs: a more advanced

construction of relevant NNs is needed which we shall introduce in the present paper and call

Wavelet-Based Neural Network (WBNN). The principal difference between WNNs and WBNNs

is explained, as follows. Let φ be a scaling function (father wavelet) and ψ be the corresponding

wavelet (mother wavelet) obtained by MRA [D–1992],[D–1997], so that for any j0 ∈ Z the functions

φj0k0(x1) = 2
j0
2 φ(2j0x1 − k0), ψjk(x1) = 2

j
2ψ(2jx1 − k) (3)

6
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x1 ∈ R, j = j0, j0 + 1, ..., k0 ∈ Z, k ∈ Z, form an orthonormal basis of L2(R) and
∫

supp ψ

xλ1ψ(x1) dx = 0 holds for all λ = 0, 1, ... with λ < r for some, henceforward fixed, r > 0,

where supp ψ is the support of ψ in R.

Let φ be compactly supported in R (which implies the same for ψ). Let Bs
pq(R),−∞ < s <

+∞, 0 < p ≤ ∞, 0 < q ≤ ∞ be the inhomogeneous Besov space with smoothness index s,

metric power index p and metric logarithmic index q (a definition will be given below). Assume

that φ ∈ Br
∞∞(R), ψ ∈ Br

∞∞(R). Then, since φ and ψ are compactly supported, φ ∈ Br
p∞(R),

ψ ∈ Br
p∞(R) holds for every p : 0 < p ≤ ∞. For x = (x1, ..., xn) ∈ Rn, k = (k1, ..., kn) ∈ Zn,

consider [D–1999]

φ
[0]
0k(x) = φ0k1(x1)φ0k2(x2)φ0k3(x3)...φ0kn(xn)

ψ
[1]
jk (x) = ψjk1(x1)φjk2(x2)φjk3(x3)...φjkn(xn)

ψ
[2]
jk (x) = φjk1(x1)ψjk2(x2)φjk3(x3)...φjkn(xn)

. . .

ψ
[2n−1]
jk (x) = ψjk1(x1)ψjk2(x2)ψjk3(x3)...ψjkn(xn) .

(4)

Denote φ[0] = φ
[0]
00 , ψ[l] = ψ

[l]
00, l = 1, 2, ..., 2n − 1. Then, φ[0] ∈ Br

p∞(Rn), ψ[0] ∈ Br
p∞(Rn for any

p : 0 < p ≤ ∞, where ψ[l] is orthogonal to all polynomials of n variables of total degree less than r.

Besides, {φ[0]
0k, ψ

[l]
jk}k∈Zn,j=0,1,...,2n−1 is an orthonormal basis of L2(Rn).

Moreover, for f ∈ Bs
pq(Rn), 0 < p ≤ ∞, 0 < q ≤ ∞, n(1

p
− 1)+ < s < r,

f(x) =
∑

k∈Zn

α0kφ
[0]
0k(x) +

∞∑

j=0

∑

k∈Zn

2n−1∑

l=1

β
[l]
jkψ

[l]
jk(x) (5)

for Lebesgue almost everywhere (Lebesgue – a.e.) x ∈ Rn holds, where α0k =< φ
[0]
0k, f >=

∫
Rn φ

[0]
0k(x)f(x)dx, β[l]

jk =< ψ
[l]
jk, f > and a+ = max{a, 0}, a ∈ R. Convergence in (5) is in

the quasinorm topology of the inhomogeneous Besov space Bs
pq(Rn) and, in view of the lower

constraint about s, also in every Lebesgue point of f , i.e., Lebesgue a.e. on Rn. Here, Bs
pq(Rn)

admits the following quasinorm in terms of wavelet coefficients:

7
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∥f∥Bs
pq(Rn) =

{(∑

k∈Zn

|α0k|p
) q

p
+

∞∑

j=0

[
2j[s+n(

1
2
− 1

p
)]
( ∑

k∈Zn

2n−1∑

l=1

|β[l]
jk|p
) 1

p

]q} 1
q

. (6)

The construction introduced in (3-6) above generates an MRA with an orthonormal wavelet basis

{φ0µ, µ ∈ Z} ∪ {ψ(l)
jν , j = 0, 1, ..., ν ∈ Zn, l = 1, ..., 2n−1} (7)

A typical example of such compactly supported wavelets are the Daubechies wavelets [D–1992]

which will be the ones used in the remaining part of this paper. It is possible to generalize this

construction to generate a broader class of MRAs based on bi-orthonormal wavelets [D–1997].

These are of considerable interest in the case of polynomial spline-wavelets which are the type

preferred in image processing for n = 2 and surface processing for n = 3. In this case it is

imperative to use bi-orthonormal and not orthonormal spline-wavelets, because only in the proper

bi-orthonormal case can the spline-wavelet be compactly supported. (Moreover, an additional

advantage in image processing is that there exist proper bi-orthonormal spline-wavelets which

are compactly supported and whose graphs are symmetric.) There are no MRAs with compactly

supported orthonormal polynomial spline-wavelet bases. We intend to consider the use of bi-

orthonormal compactly supported spline-wavelets in a subsequent publication dedicated to deep

image learning.

An important property of (bi)-orthonormal MRAs which follows from (3) is that j = 0 in (4) can

be replaced by any j0 ∈ Z, such that (5) continues to hold true with j = 0 replaced by j = j0. In

this case, (6) defines an equivalent norm in Bs
pq(Rn) for p ≥ 1, q ≥ 1 (quasinorm for 0 < p < 1

and/or 0 < q < 1) with equivalence constants dependant on j0. (The concept of equivalent

metrics continues to hold true for quasinorms, because quasinormed abelian groups are metrizable

[BL–1976, Section 3.10] – see also Section 3.

Consider now the above construction with j0 ∈ Z. Let J ∈ Z be such that j0 < J <∞ and consider

the truncation
∑J

j=j0
of the series

∑∞
j=j0

in (5) and (6). This defines a subspace VJ ⊂ Bs
pq(Rn)

such that

VJ = span
(
{φj0µ : µ ∈ Z} ∪ {ψ[l]

jν : l = 1, ..., 2n − 1, ν ∈ Zn, j = j0, ..., J}
)
. (8)

Due to the properties of MRA, the following sequence of nested inclusions holds:

8
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Vj0 ⊂ Vj0+1 ⊂ ... ⊂ VJ ⊂ VJ+1 ⊂ ... (9)

with

∞⋃

j=j0

Vj = L2(Rn) (10)

holds where X̄ is the topological closure in Y of X ⊂ Y , where Y is a complete topological

space. (In the case of MRA, the complete topological space Y is L2 with respect to the topology

induced by the inner product in L2 or, equivalently, the norm in L2.) Consider also the spaces

Wj = span{ψ[l]
jv : l = 1, ..., 2n−1, ν ∈ Zn} where j = j0, ..., J .

By the properties of MRA, f ∈ VJ admits two equivalent representations, as follows:

∑

kJ∈Zn

αJkJφJkJ (x) = f(x) =
∑

kj0∈Zn

αj0kj0φj0kj0 (x) +
J∑

j=j0

∑

kj∈Zn

2n−1∑

lj=1

β
[lj ]
jkj
ψ

[lj ]
jkj

(x), x ∈ Rn, (11)

where the equalities in (11) are in the sense of Lebesgue – a.e. Invoking the introduced spaces Wj ,

(11) can be equivalently rewritten as

VJ = Vj0
⊕

Wj0

⊕
Wj0+1

⊕
...
⊕

WJ = Vj0
⊕ J⊕

j=j0

Wj. (12)

In applications involving processing of numerical data with sample size N , J is chosen dependent

on N : J = J(N). Since
∫
Rn ψ(x)dx = 0, the usual selection of J(N) is such, that the size of the

support of ψ[lJ ]
JkJ

is comparable to the average step hN between adjacent data points:

diam(supp ψ
[lJ ]
JkJ

) ≍ hN ,where hN ≍ 1

N
, (13)

with equivalence constants independent of N . In view of the definition of ψ[lJ ]
JkJ

, (13) implies

J(N) ≍ log2N (14)

9
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with equivalence constants independent of N . With this selection, the father wavelet (scaling

function) φJkJ acts as a consistent approximation of the Dirac δ-function at the point x, as long as

x ∈ supp φJkJ , and the rate of this approximation improves with the number of consecutive vanish-

ing moments of ψ additional to the condition
∫
R
ψ(x)dx = 0 needed for consistent approximation

(these would be
∫
R
xψ(x)dx = 0,

∫
R
x2ψ(x)dx = 0 etc.). With this selection, the coefficient αJkJ is

taken to be equal to the value of f at the point where φJkJ is concentrated as a δ-function.

So far, we have been considering (3 - 12) for Bs
pg(Rn) of functions defined on the whole space Rn.

This means that the subspaces Vj and Wj , j ∈ Z, are (countably) infinite-dimensional. To make the

construction computationally feasible, in numerical applications we limit the consideration to only

those f ∈ Bs
pq(Rn) which are compactly supported with diam(supp f) comparable to the diameter

of the convex hull of the numerical data set (this numerical data set is finite, therefore its convex

hull is a bounded subset of Rn, so its closure is compact (n < ∞)). In this case, the subspaces

Vj,Wj, j ∈ Z are all finite-dimensional, with dimensions depending on j, the distribution of the

data set and its sample size N .

Now, let us extend the consideration to include also f ∈ Bs
pq(Ω), where Ω ⊂ Rn is a nonvoid

compact hyper-rectangle, i.e.,

Ω =
n
×
i=1

[ai, bi] (15)

where ”× ” indicates Cartesian product, and −∞ < ai < bi < +∞, i = 1, ..., n. The construction

(3-12) continues to hold also in this case which is very similar to the case of f ∈ Bs
pq(Rn) such

that it is compactly supported, with supp f contained in the closure of the convex hull of the

numerical data set. In the present case, the finite dimensions of Vj,Wj depend on j, the sizes of

bi − ai, i = 1, ..., n, and the sample size N . Moreover, j0 ∈ Z is bounded from below by diam(Ω):

j0 ≍ log2 diam(Ω), (16)

with constants of equivalence possibly dependent on n, but not on N . There is one notable technical

modification: the orthonormal wavelet bases in Vj and Wj , j = j0, j0 + 1, ..., J , contain boundary-

corrected wavelet basis functions [CDV–1993a], [CDV–1993b]. For the theory of deep learning

of n-dimensional manifolds developed here, there is no principal difference between the case of

compactly supported f ∈ Bs
pq(Rn) and the case of f ∈ Bs

pq(Ω) with Ω a compact hyper-rectangle

10
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in Rn. Therefore, in our application we shall focus on the former one of these two cases, to avoid

the construction of boundary-corrected wavelets.

Now, we are in a position to provide a definition of WNNs which is equivalent to the original

definition in [ZB–1992] and [AZ–2013], but is in a new form which allows an insightful comparison

with the new type of WBNNs.

Consider the left-hand side (LHS) of the identity in (11). Define first a 1-layer WNN with its

JkJ -th node being a neuron processing the αJkJ -th coefficient in the expansion in the LHS of (11).

The edges of the WNN’s graph are only the ones connecting the input to the JkJ -th neuron and

the ones connecting the JkJ -th neuron to the output neuron where received results are summed

up. In contrast to this construction, repeat the 1-layer NN but with 1–1 correspondence to the

α-coefficients in Vj0 and the β-coefficients in Wj, j = j0, ..., J (in the right-hand side (RHS) of

(11)). The definition of the edges of the graph of the 1-layer WBNN is the same as with the previous

1-layer WNN construction. The widths of the so-defined 1-layer WNN and WBNN are, of course,

the same. A crucial advantage of the WBNN layer is its telescopic ordering which incorporates the

wavelet depth into the neural width of the WBNN layer. Adding neural depth to the 1-layer WNN

and WBNN is done in one and the same way: the next layers are added as intermediate between the

already defined 1st layer and the output neuron, and each intermediate layer has exactly the same

structure and ordering as the 1st layer.

As we shall see in the next sections, the learnability conditions and universal approximation

theorems for each of WNNs and WBNNs ensure that 1-layer NNs (with the widths specified via

the LHS and RHS of (11) and the compactness of supp f ) are sufficient for learning every element

of the range of the respective approximation theorem. From this point of view, deep WNNs and

WBNNs are theoretically redundant, but as we shall see, they provide a highly efficient computing

architecture for acceleration of the rate of convergence of the approximation process by using

iterative algorithms. A maximally sparse structure of the edges between the l-th and the (l + 1)-st

layer should be used (a neuron on the (l + 1)-st level is only connected with its corresponding

neuron at level l by way of the 1–1 correspondence between levels l and l + 1). In practice, in the

context of WNNs, the intermediate levels of the NN are used for iterative local optimization starting

with the initial approximation provided at level 1. Although the performance of the deep WNN

is expected to be better than the one of the 1-layer WNN, this can be expected to be noticeable

only for very large sample sizes and respective very large number of iterations (very deep WNN).

For example, in the case of Fig. 4 of [ZB–1992] the number of iterations is 10000. In the case of

11
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WBNNs, the quality of initial approximation is expected to be very high, due to the efficient use of

the wavelet depth within the layer of neural depth 1. As a consequence, in comparison with the

very large sample size needed for acceptable performance of WNN, it can be expected for the initial

approximation of the 1-layer WBNN to be sufficiently good for large to medium samples sizes,

while as the ultimate approximation achieved by a deep WBNN (with the 1-layer WBNN as its

initial layer) to be sufficiently good already for medium to small samples.

Notice the distinction we make between learnability conditions and universal approximation

theorems for a given type of single-layer NN computing f : Rn → R for a given n ∈ N. (To study

the general case of parametric manifolds on Rn, i.e., f : Rn → Rm, m ∈ N, n ∈ N, it is sufficient

to study it coordinate by coordinate, i.e., for m = 1 only.)

A universal approximation theorem (UAT) for a single-layer NN of width N is a qualitative

consistency result (i.e., refers to existence of convergence in a given topology without specifying

quantitative rates of convergence) when N → +∞ under the assumption of an activation function

of specific type being used in the neural computation. For example, in the case of sigmoid activation,

the respective UAT is due to Cybenko [C–1989], [C–1992] 1, and refers to continuous functions,

while in the case of Rectified Linear Unit (ReLU) activation [LPW+–2017], the respective UAT

refers to the more general class of functions in L1 (see [LPW+–2017, Theorem 1]. The learnability

set (LS) for a given single-layer NN of width N is the largest set of f : Rn → R which can be

approximated by neural computation via this NN when N → +∞ without the invocation of a

specific activation function, i.e., when activation is via the default identity function.

As mentioned above, both LSs and UATs are qualitative consistency results. In the next sections we

shall show that it is possible to obtain quantitative upgrades of LSs and UATs where the consistency

results are strengthened to results about concrete rates of approximation.

2 A new result about WNNs

In this section we shall show how the idea of using equivalent metric (as discussed in Section 1)

can be used to generate an initial solution in a single-layer WNN which is a good starting point for

local optimization in a deep WNN (having as 1st layer the said single-layer WNN). The universal

approximation theorem invoked in [ZB–1992] is Cybenko’s classical result, [C–1989], [C–1992],

valid for continuous functions f . As noted in [AZ–2013], after the publication of [ZB–1992]
1In [ZB–1992] Cybenko’s work has been imprecisely and incompletely cited. Here we provide the relevant corrected and

complete citation [C–1989], [C–1992]
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more general learnability conditions and universal approximation theorems were derived about

WNNs. Namely, results about UATs for ReLU NNs were formulated and proved in [LPW+–2017]

in relevance to the larger space of Lebesgue-integrable functions f ∈ L1(Rn). The ideas of the

proofs of the results in [LPW+–2017] make it possible to identify the LS for sufficiently wide NNs,

including the case of WNNs with (14).

To present this result, here we shall use terminology which will allow us to compare this result to

the respective result for WBNNs (derived in section 3 below). Namely, in the case of wavelets on

Rn, learnable by sufficiently wide single-layer WNN are all regular distributions f in S ′(Rn) - the

dual of the Laurent Schwartz space S(Rn) [RS–1980]. In the case of boundary-corrected wavelets

on Ω-compact hyper-rectangle in Rn (see Section 1), learnable by sufficiently wide single-layer

WNN are all regular distributions f ∈ D′(Ω) - the dual of the space D(Ω) [RS–1980] 2. In both

cases, the regular distributions f are exactly the elements of L1,loc(∆), ∆ = Rn or ∆ = Ω ⊂ Rn

(for Ω see Section 1). Here, as usual, L1,loc consists of all g defined Lebesgue – a.e. on ∆ and

such that for every compact subset C ⊂ ∆ the statement fχC ∈ L1(∆) holds true, where χC is the

characteristic function of C :

χC(x) = 1 for x ∈ C and χC(x) = 0 for x ∈ ∆ \ C

In the case ∆ = Ω, Ω considered in Section 1 is a compact in Rn, therefore, L1,loc(Ω) = L1(Ω).

Notice that in the wavelet context the width of WNN is exponential (solving (14) for N yields

the equivalent N ≍ 2J ) and sufficiently large for L1,loc to be learnable via single-layer WNN,

according to [LPW+–2017]. Therefore, ’deepening’ the WNN does not result in increasing the

set of learnable functions. However, deep WNN may offer the following advantage: while the

universal approximation theorem for sufficiently wide single-layer WNN provides only consistency

of the approximation (i.e., convergence exists but may be arbitrarily slow), the use of a deep WNN

with the said single-layer WNN forming its 1st layer may result in increasing the speed (rate) of

approximation.

Now we shall formulate a model problem for which we shall be able to automatically generate

a single-layer WNN that is asymptotically optimal with respect to the paradigm based on (1) in

Section 1. According to this paradigm, local optimization with starting point at the automatically

generated solution at the 1st layer of a deep WNN is expected to provide the global minimum for

asymptotically large sample sizes (N → +∞).

2In [RS–1980] a slightly different notation is used: DΩ instead of D(Ω) and D′
Ω instead of D′(Ω).
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Model problem. Let n = 1. From a random sample with sizeN , learn the density f of an absolutely

continuous cumulative distribution function F : R → [0, 1]. In this case, f = F ′, f ∈ L1(R),
f ≥ 0 on R,

∫
R |f(x)|dx =

∫
R f(x)dx = 1.

This problem was addressed in [DP–1997] and [DP–1998], as follows. The density f was approxi-

mated by a (father) wavelet expansion, using the basis of a frame more general than a biorthonormal

upgrade of LHS in (11). To consider the construction in [DP–1997] and [DP–1998] strictly in

our present context, it is necessary to consider only those particular cases for which the frame is

orthonormal, thus corresponding to the LHS in (11). In [DP–1998, Remark 2.3.2] were identified all

cases when the frame used in [DP–1997], [DP–1998] is orthonormal: namely, these are exactly the

cases in the LHS of (11) where the scaling function φ in (11) is of Haar type, i.e., the normalized

characteristic function

φ(x) =
1

a
· χ[−a

2
,a
2
](x− x0) (17)

where a > 0, x0 ∈ [−a
2
, a
2
], and a is chosen so, as to match with the selection of j0 in the RHS of

(11).

With this choice of φ in the LHS of (11), the random estimator of f is obtained by plugging in the

LHS of (11) the empirical density

f̂N(x) =
1

N

N∑

i=1

δ(x− xi) (18)

where δ(·) is the delta-function and {xi, i = 1, ..., N} is the sample data set. Here, as earlier, the

selection of the level J in (11) is such that (14) holds. In view of (18), the JkJ -th neuron in the

WNN associated with the basis function φJkJ in the LHS of (11) computes the empirical coefficient

α̂JkJ =
1

N

N∑

i=1

φJkJ (Xi), kJ ∈ Z (19)

In [DP–1998] the selection of metric in which the risk is measured was relevant to the expectation of

"the generalized Cramér-von Mises loss" [DP–1998, sections 2.2 and 2.3]. One very valuable feature

of the estimates of this risk obtained in [DP–1998] was that they revealed the precise interconnection

between the density’s smoothness and the weight of its tails as x→ ±∞. In our present study we

made the natural assumption of compactness of the density’s support in correspondence with the
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compactness of the convex hull of the sample data set. For densities with compact support with

fixed diameter of the support, the risk estimates in [DP–1998] simplify and are only dependent on

the smoothness of the density, and the following new result holds true.

Theorem 1. Under the above assumption about the compact support of the density f , assume

f ∈ Bs
p∞(R), 0 < p ≤ ∞, 0 < s < 2, and (14) holds. Let the single-layer WNN associated with

the Haar-type basis (17) used in (11) be defined as above, with (19) holding true. Let the risk of

estimating f via the empirical density f̂N in (18) be defined as in [DP–1998, Section 2.2]. Then,

(i) The risk R(f, f̂N) of learning f by the neural computations (19) in the LHS of (11) is:

R(f, f̂N) ≍ N− s
1+2s (20)

with constants of equivalence dependent on s and the fixed size of the support of f , but not

on the choice of f ∈ Bs
p∞(R).

(ii) The rate in the RHS of (20) is asymptotically optimal in the sense of [DP–1998, Theorem 2,

3.2].

As a consequence of Theorem 1, under its assumptions, the single-layer WNN computing (19)

generates automatically an element of VJ in (12) which is a good starting point for optimization

search in VJ when the sample size N (and J ≍ log2N ) is asymptotically large (N → ∞). For

such N and J , using a deep WNN upgrade of the single-layer WNN (with the latter being the 1st

layer of the deep WNN) it is possible to obtain an essential improvement of the learning of f within

VJ and, possibly, even obtain globally optimal solution of the iterative optimization search in VJ

performed by the deep WNN computing architecture. Thus, we have provided an instance when the

equivalent-metric paradigm based on (1) in Section 1 offers an efficient AI alternative of the use of

natural intellect in designing good starting point of deep WNN-compatible iterative optimization

search, as discussed in [LBH–2015] – see Section 1. Although results of the type of Theorem 1

provide a rigorous mathematical justification of the use of AI based on deep WNNs, in practice,

notable improvement can be generally expected only, or almost only, for very large samples sizes

N .

Let us note two additional new features in Theorem 1 and its proof.

• Theorem 1 shows that the optimal estimation rate can be achieved when the activation

function is the default identity (i.e., for the empirical density).
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• The quantitative result involving rates is achieved in Theorem 1 under less restrictive

assumptions for WNNs than the assumptions on generic NNs for the qualitative universal

approximation theorem in [LPW+–2017, Theorem 1] in the sense that the latter NN must be

fully connected (i.e., with densely distributed edges between the nodes of the NN) while the

former WNN has very sparse edge distribution.

In the remaining part of this exposition, we shall show that the alternative of using WBNNs

associated with the RHS of (11) and (12) provides highly efficient AI algorithms with quality

practical results achieved already for medium to small sample sizes N .

3 WBNNs: learnability and universal approximation

To study learnability conditions and universal approximation theorems in the case of WBNNs it

will be necessary to study some properties of the scale of Besov spaces Bs
pq(Rn) as defined via

(5, 6). (The case of Bs
pq(Ω) using boundary-corrected wavelets in (5, 6) can be studied, mutatis

mutandis, but our focus will continue to be on the case Ω = Rn.) To study the necessary aspects of

the properties of the Besov-space scale {Bs
pq(Rn), 0 < p, q ≤ ∞, s ∈ R}, n ∈ N, we need some

preparation, as follows.

• For the concept of quasinorm (or c-norm (c-quasinorm) with c ≥ 1 being the constant in

the quasi-triangle inequality), we refer to [BL–1976, Section 3.10]. See also there for the

definition of quasinormed abelian groups.

• By [BL–1976, Lemma 3.10.1], a quasinormed abelian group A with c-quasinorm ||.||A, :
c ≥ 1, is metrizable, in the sense that the ρ-power Aρ of A with 1-quasinorm ||.||ρA, 0 < ρ =

1
1+log2 c

≤ 1, is a metric space with d(a, b) = ||a− b||ρA.

• A necessary and sufficient condition for a normed space A to be complete (i.e. for A to be a

Banach space is given in [BL–1976, Lemma 2.2.1].

• The previous item is being generalized in [BL–1976, Lemma 3.10.2] to a necessary and

sufficient condition for a quasinormed abelian group A to be complete. (If A is not only

abelian group, but also a vector space, then, endowed with the quasinorm ||.||A, it is called

quasinormed space and, if it is also complete, quasi-Banach space.

• For example, consider the vector space l2 of all sequences: = (x1, ..., xn, ...), n ∈ N, xj ∈ R
or xj ∈ C, j ∈ N, with quasinorm ||x||lr = (

∞∑
j=1

|aj|r)
1
r , 0 < r <∞, or ||x||l∞ = max

j∈N
|aj|,
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r = ∞. By the theory in [BL–1976, Section 3.10], lr is a Banach space for r : 1 ≤ r ≤ ∞
and quasi-Banach space when r : 0 < r < 1. In the latter case, the constant c in the

quasi-triangle inequality for ||.||lr is c = 2
1−r
r > 1; for the power ρ one gets ρ = r ∈ (0, 1)

and the 1-quasinormed abelian group (lr)
r with 1-quasinorm ||.||rlr is a metric space with

metric d(a, b) = ||a− b||rlr .

• Using the properties of lr from the previous item, it is possible to establish that Bs
pq, as

defined via (5, 6), are Banach spaces for 1 ≤ p ≤ ∞, 1 ≤ p ≤ ∞, and quasi-Banach spaces

when 0 < p < 1 and/or 0 < q <∞ [T–1983].

• Another aspect of the theory of the Besov-space scale which proves to be relevant is the

lifting property of the Bessel potential Jσ, σ ∈ R, in the Besov-space scale. Following the

exposition in [T–1983, Section 1.2.1], we define the Fourier transform F and its inverse

F−1 first on S(Rn), and then extend it to S ′(Rn), after which, following [T–1983, Section

2.3.8], we define the Bessel potential Jσ : S ′(R) → S ′(Rn), as follows:

Jσf = F−1[(1 + |.|2)−σ
2Ff ], f ∈ S ′(Rn). (21)

where σ ∈ R. Now the σ-lifting property of the Bessel potential in the Besov-space scale

can be formulated, as follows [T–1983, Section 2.3.8]. Jσ acts bijectively on S ′(Rn) and

the restriction of Jσ on S(Rn) acts bijectively on S(Rn). Moreover, if s, p, q are as in (5,

6) and f ∈ Bs1
pq(Rn), where s1 ∈

(
−∞, n(1

p
− 1)

+

]
∪
[
r,∞

)
with σ : s = s1 + σ, then

Jσf ∈ Bs
pq and formulae (5, 6) can be applied on g = Jσf and

||Jσf ||Bs
pq(Rn) ≍ ||f ||Bs−σ

pq (Rn) (22)

Moreover, using (22) when s1 ∈ (−∞, n(1
p
− 1)

+
], i.e., for σ > 0 allows to extend the wavelet-

based representation (5) and the quasinorm definition (6) for arbitrary s ∈ R, i.e., including also

singular distributions like the δ-function and its derivatives which are not in L1,loc
1. Indeed, choose

and fix any s1 ∈ R and select and fix σ such that n(1
p
− 1)

+
< s − σ < r. Then (5,6) will make

sense for f replaced by Jσf and (22) can be used to define an equivalent quasinorm in Bs1
pq(Rn).

Now we are ready to formulate and prove the following results about WBNNs.

1This fact is relatively easy to derive even in the n-dimensional case, using the theory of Fourier multipliers on Lp(Rn),
1 ≤ p ≤ ∞, see [BL–1976, Section 6.1], [BTW–1975, Chapter 1] and [HL–2017, Introduction].
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Theorem 2. Using arbitrary samples with size N with J(N) satisfying (14), f ∈ S ′(Rn), is

learnable for N → ∞ by WNNs if, and only if (iff) f is also learnable by WBNNs, i.e. the

learnability sets by WNNs and by WBNNs coincide.

Theorem 3. Let N and J(N) be as in Theorem 2, and let f ∈ Bs
pq(Rn), 0 < p ≤ ∞, 0 < q ≤ ∞,

s ∈ R. Then, for any r : n(1
p
− 1)

+
< r <∞ and orthonormal wavelet basis satisfying (3, 4) and

for every σ ∈ R such that s− σ ∈ (n(1
p
− 1)

+
, r) it holds true that Jσf is learnable by the WBNN

generated by the said wavelet basis.

Corollary 1. The space Bs
pq(Rn) is contained in the learnability set of WBNN for every s ∈ R,

0 < p ≤ ∞, 0 < q ≤ ∞.

Corollary 1 implies that the learnability set of WBNNs contains not only all regular distributions

in S ′(Rn), but also singular distributions, since Besov spaces with s < 0 do contain singular

distributions.

Theorem 2 now suggests that Corollary 1 extends also to WNNs, but here lies one big difference

between the efficient use of WBNNs and WNNs. Recovering f from g = Jσf requires approximate

numerical computation of J−σg which is very numerically sensitive to errors in the computation of

g especially when f can be a singular distribution. Since for a given sample with size N the quality

of learning g via WNNs is expected to be much worse than via WBNNs, the deterioration of the

recovery of f from g when using WNNs would be much more exacerbated compared to the use of

WBNNs so that the only case of σ for which the use of WNNs could be marginally acceptable is

the trivial case σ = 0. (A detailed error analysis of the computations for σ ̸= 0 would require the

invocation of aspects of Paley-Wiener theory [FJW–1991, Sections 4–6], including sampling results

of Shannon type [FJW–1991, Theorem 6.4] which goes beyond the study of AI aspects considered

here.) Theorems 3 and 2 now imply that WNNs can be efficiently used (albeit only marginally for

very large sample sizes N only) for learning f ∈ Bs
pq(Rn) only for the original range s, p, q for

which (5) was formulated. Note that for the these values of s, p, q Bs
pq(Rn) ⊂ L1,loc(Rn).

The results obtained here for wavelet bases on Rn can in principle be reformulated for boundary-

corrected wavelets on a compact hyperrectangle in Rn, this modification is technically involved.

For example, the lifting property of the Bessel potential has to be replaced by a respective property

of fractional integro-differential operators of Riemann-Lionville, Grünwald-Letnikov, Caputo and

other types under additional assumptions for each of these types [SKM–1993].
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As far as UAT for WBNNs is concerned, it is much more rich and diversified than UAT for WNNs,

due to the much more flexible telescopic structure of the RHS in (12). While in the case of WNNs

the focus has been only on sigmoid and ReLU activation, in the case of WBNNs there is a great

variety of meaningful activation methods, each of which is with its own UAT and own range of

practical applications. In this section we study the common features of all these activation methods

and provide a classification of these methods into two general subclasses, together with the general

range of applications for each of these subclasses.

Any activation method can be defined as a (generally, nonlinear) operator Λ acting on the space

sum in the RHS of (12) and being of shrinkage type, i.e. having the following properties.

(i) The restriction of Λ on Vj0 coincides with the identity on Vj0 , i.e.,

Λ(αj0k0φj0k0) = αj0k0φj0k0 (23)

for every j0, k0, ....

(ii) Using the Euler representation of z ∈ C

z = |z|(cos(arg z) + i sin(arg z)), arg z ∈ [0, 2π), (24)

the action of Λ on the space
⊕J

j=j0
Wj in the RHS of (12) is defined such, that

Λ(β
[lj ]
jkj
ψ

[lj ]
jkj

) = β̃
[lj ]
jkj
ψ

[lj ]
jkj

(25)

where

arg β̃
[lj ]
jkj

= arg β
[lj ]
jkj

(26)

|β̃[lj ]
jkj

| ≤ |β[lj ]
jkj

| (27)

for every (j, kj) participating in the formation of
⊕J

j=j0
Wj .

Notice that when β[lj ]
jkj

∈ R (26) reduces to

sgn β̃
[lj ]
jkj

= sgn β
[lj ]
jkj

(28)

where for x ∈ R\{0}
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sgnx =





+1, x > 0;

−1, x < 0;

undefined, x = 0;

(29)

and for the case z = x = 0 it is convenient to define

arg 0 = sgn 0 = 0 (30)

Clearly, Λ has the special property that it preserves the directrice and respective orientation of

every basis function in Vj0 and
⊕J

j=j0
Wj . It is also clear that, in general, Λ is nonlinear, since the

shrinkage is individual for every basis function. Now, we divide all possible activation methods Λ

with properties (i) and (ii) into two disjoint subclasses, as follows.

A. Non-threshold-type activation methods have the following additional property

(iii) for any selection of the coefficient vector {αj0k0 , β
[lj ]
jkj

} in the RHS of (11), such that β[lj ]
jkj

̸= 0

for some triple (j, kj, lj), it is fulfilled that β̃[lj ]
jkj

̸= 0 holds true. (In other words, there is only

reducing |β[lj ]
jkj

| > 0 without ever "killing" the coefficient β̃[lj ]
jkj

, i.e., having |β̃[lj ]
jkj

| = 0.

B. We shall say that the activation method Λ is of threshold-type, if (iii) is not fulfilled for Λ.

In the second part of this study we shall study an important model example of activation of WBNNs

resulting in learning geometric manifolds with compression. The analysis of concrete examples

will show that there is an intrinsic separation of geometric manifolds into ones that are highly

compressible and ones that are not. From a geometric point of view, the latter class of manifolds

will be identified as fractal-type while the former class consists of manifolds of piecewise-smooth

type. Our forthcoming study [DPS+–2022a] of diverse activation methods of both threshold and

non-threshold type (type B and A) will demonstrate that activation of threshold type is performing

well when learning piecewise-smooth manifolds, while activation of non-threshold type performs

well when learning manifolds of fractal type.

4 Particle vs multiagent simulation and swarm vs. deep evolutionary AI

A very new research topic in AI research is establishing connection between swarm AI and deep

neural networks by the invocation of evolutionary algorithms [I–2018], [I–2022]. Scientifically,

this is a very new field, but conceptually it appeared in some of the most famous early sci-fi novels
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[H–1957], [L–1964] (latest English translation [L–2020]) which were written in the first few years

after the concept of AI emerged as a term at the workshop "Dartmouth Summer Research Project

on Artificial Intelligence" at Darthmouth College, Hannover, NH, USA in 1956, to designate a

specialized branch of cybernetics. Both of the novels of Fred Hoyle and Stanisław Lem successfully

predicted the development of important modern scientific trends: the latter – nanotechnology and

swarm AI; the former – deep learning by AI systems and connections with evolutionary algorithms.

Our present interest to the connection between swarm and deep evolutionary AI is only limited to its

computational aspects. From this limited point of view, the above-said connection can be considered

as a particular case of particle simulation and multiagent simulation (i.e., simulation of systems

involving large numbers of relatively simple agents vs. simulation of systems involving small to

moderate number of agents with relatively high level of individual intelligence features). Notice

that the most efficient simulation of each of these two types of system is performed on different

types of parallel computing architectures.

(a) Swarm of sufficiently broad single-layered NNs (including single-layered WBNNs with

(14)) – CPU parallelism – (relatively expensive) large-size multi-CPU supercomputing

architectures; e.g., hypercubic [L–1992].

(b) Deep (multi-layered, sufficiently broad) NNs (including deep WBNNs with (14)) – GPU par-

allelism – (relatively cheap) small-size multi-GPU computing architectures using GPGPU-

programming – currently in CUDA, and more recently, Python [OUN+–2017].

Using connections between swarm intelligence and deep NNs [I–2018], [I–2022], it is possible

to emulate the performance of the expensive computing architectures in item (a) by the cheap

computing architectures in item (b), but at the inevitable price of some loss of efficiency. Ideally,

hybrid multi-CPU multi-GPU computing architectures should be recommended.

5 Best activation of WBNNs for fastest learning and maximal compression

In [DRP–1999] was considered and systematized a rich diversity of threshold and non-threshold

wavelet shrinkage methods for nonparametric statistical estimation of densities and denoising of

nonparametric regression functions. In [DPS+–2022b] we shall show that each of these shrinkage

methods gives rise to respective activation of WBNNs, generating highly efficient learning algo-

rithms. Moreover, in some cases these learning algorithms can be shown to be best possible with

respect to certain aspects which are important for applications. As a model example of the high
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efficiency of learning with WBNNs, we shall study here the activation induced by only one of these

wavelet shrinkage methods, namely, the one discussed in [DRP–1999, Appendix B10 b)].

For the sake of maximal clarity, we shall consider here only the simplest univariate case n = 1. This

will be a very clear illustration of the optimal speed of learning and compression in model examples

of curve learning in the next sections. The general case n ∈ N and some graphical visualization for

the cases n = 2 and n = 3 will be considered in [DPS+–2022b].

Assume f ∈ Bs
pq(Ω) where Ω = R or Ω = [a, b], −∞ < a < b <∞, 0 < p ≤ ∞, 0 < q ≤ ∞ and

(1
p
− 1)

+
< s < r. Assume also that both the metric power index p1, the metric logarithmic index q

and the smoothness index s are exact, that is, f /∈ Bs1
p1q1

(Ω) for any p1 : 0 ≤ p1 < p, 0 < q1 ≤ q

and any s1 : s1 > s.

As usual in our present study, when considering the domain R, we shall be making the default

assumption about compactness of supp f (in the case of boundary-corrected wavelets and Ω = [a, b]

with −∞ < a < b < +∞, we do not need this default assumption, i.e., it is possible that f(a+) ̸= 0

and/or f(b−) ̸= 0). For the index triple (p, q, s) consider now the Sobolev embedding plane passing

through the point (p, q, s), i.e.,

{(ρ, η, σ) : σ − 1

ρ
= τ(p, s) = s− 1

p
, 0 < ρ ≤ ∞, 0 < η ≤ ∞} (31)

What is important about this selection is the well-known embedding

Bs
pq(Ω) ↪→ Bσ

ρη(Ω), σ − 1

ρ
= s− 1

p
, 0 < p ≤ ρ ≤ ∞, 0 < q ≤ η ≤ ∞ (32)

where Ω = R or Ω = [a, b].

(For two quasinormed spaces A and B, the notation B ↪→ A ("B is embedded/imbedded in A")

means B ⊂ A and ∃c ∈ (0,∞) : ||b||B ≤ c||b||A for any b ∈ B.)

Due to the Sobolev embedding/imbedding (32), our assumption f ∈ Bs
pq(Ω) implies

f ∈ Bσ
ρη(Ω) (33)

for any (ρ, η, σ) : σ − 1
ρ
= s − 1

p
, 0 < p ≤ ρ ≤ ∞, 0 < q ≤ η ≤ ∞. In [DRP–1999, Appendix

B10 b)] it was explained that for the Besov spaces Bσ
ρη with (ρ, η, σ) lying on one and the same
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Sobolev embedding plane, an important part of the function-space theory is related with the so-

called decreasing rearrangement of f in all Besov spaces Bσ
ρη with (ρ, η, σ) on the same Sobolev

embedding plane. A detailed consideration of the concept of decreasing rearrangement can be

found in [BL–1976, Section 1.3] and the Peetre-Krée formula [BL–1976, Theorem 3.6.1] together

with [BL–1976, 3.14.5.6 and Theorem 5.2.1 (2) for q = p in local notation] (see also [DRP–1999,

(B8)]. For our purposes in our present context it is sufficient to consider the normalized decreasing

rearrangement of the β-coefficients in the series (5) and in
⊕J

j=j0
Wj in its truncation (11, 12),

as follows (compare with [DRP–1999, Appendix B10 b), items b1 and b2]). Recall that here we

consider only the case n = 1 in (5-16) - in particular, in (5-8, 11) this implies l = 1. Thus, in the

sequel of the present definition of decreasing rearrangement, we shall be skipping the index l.

b1) Fix j0 ∈ Z (with no loss of generality, it can be assumed that j0 = 0). Consider all (j, k) in

(5, 6) such that suppψjk ∩ supp f ̸= ∅. Denote the set of all such (j, k) by I(f, ψ) = I(f, ψ, j0).

It is clear that for every fixed j = j0, j0 + 1, ... in the generalization of (5, 6) involving j0 the

number Mj of elements of I(f, ψ) from the j-th level does not exceed c(f, ψ). 2j , for some

c(f, ψ) ∈ (0,∞). Therefore, Mj is finite for any j = j0, j0 + 1, ..., but M =
∞∑
j=j0

Mj is, generally,

not finite. On the other hand, for the truncation (11,12) the number m(j0, J) =
J∑

j=j0

Mj is finite,

with M = limJ→∞m(j0, J). Denote by i(f, ψ, j0, J) the subset of I(f, ψ, j0) such that (j, k)

participates in the formation of the truncation (11) and
⊕J

j=j0
Wj in (12).

The number of elements of i(f, ψ, j0, J) is

m(j0, J) ≤ c(f, ψ) · 2j0
J−j0∑

k=0

2k = c(f, ψ)2j0 · 2
J−j0+1 − 1

2− 1
= c(f, ψ)(2J+1 − 2j0) ≤ 2c(f, ψ)2J ,

(34)

regardless of the choice of j0.

b2) Recalling that τ = τ(p, s) = s − 1
p

in (31), for every (j, k) ∈ I(f, ψ) normalize |βjk| by

multiplying with the factor 2j(τ+
1
2
) and consider the decreasing rearrangement {bν : ν = 1, ...,M}

of the (possibly, infinite) set {2j(τ+ 1
2
)|β

jk
| : (j, k) ∈ I(f, ψ)}.

In the case of the truncation (11, 12), we get the subset {2j(τ+ 1
2
)|βjk| : (j, k) ∈ i(j0, J)} which is

finite, with number of elements Of,ψ(2
J), according to (34).
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For this model case, the activation operator Λ = Λδ is of threshold type, with threshold δ ∈ (0,∞),

defined in the following way. Let the decreasing rearrangement of I(f, ψ) be {bν , ν = 1, ...,M},

with (j, k) ∈ I(f, ψ) being ordered in a respective sequence {(jν , kν), ν = 1, ...,M} where (jν , kν)

corresponds to bν for any ν = 1, ...,M .

Then

Λ(βjνkνψjνkν ) =




0, if 2jν(τ+

1
2
)|βjνkν | ∈ (0, δ)

βjνkνψjνkν , if 2jν(τ+
1
2
)|βjνkν | ≥ δ

(35)

The selection of the threshold δ depends on the concrete context of the learning process. We shall

call every threshold activation method designed via the sequence of steps b1) and b2) a decreasing

rearrangement activation method. For this type of activation method with threshold δ, the UAT

corresponds to δ → 0+ and is given by the following theorem.

Theorem 4. Let δ → 0+ in (35), and let f be as assumed above. Then, the summands in the series

in the RHS of (5) can be commuted in such a way that (5) becomes

∑

k∈Z
αj0kφj0k(x) +

∞∑

j=j0

∑

k∈Z
βjkψjk(x) = f(x) =

∑

k∈Z
αj0kφj0k +

M∑

ν=1

βjνkνψjνkν (x) (36)

where the RHS converges to f(x) Lebesgue – a.e. in R, as well as in the topology of Bs
pq(R) and

Bσ
ρη(R) for any (ρ, η, σ) : 0 < p ≤ ρ ≤ ∞, 0 < q ≤ η ≤ ∞, σ − 1

ρ
= s− 1

p
= τ .

Theorem 4 continues to hold true for boundary–corrected wavelets and Ω = [a, b], with respective

modifications in (5) and (36).

We shall now upgrade the qualitative result of Theorem 4 by formulating a quantitative result

which proves to be best possible in a certain sense specified below. Among all Besov spaces with

(quasi)norm (6), the ones which are Hilbert spaces are exactly

Bs
pq(Ω) with p = q = 2 and 0 < s < r, (37)

where, for n = 1 considered here, Ω = R or Ω = [a, b],−∞ < a < b < +∞. Choose arbitrary

triple (p, q, s) such that 0 < p ≤ 2, 0 < q ≤ 2, (1
p
− 1)

+
< s < r, and consider the respective triple

ρ = η = 2, σ − 1
ρ
= s− 1

p
. For (5, 6) to hold for this choice of (ρ, η, σ) it is necessary that
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0 ≤ σ < r (38)

holds where σ = 0 corresponds to the case B0
22(Ω) = L2(Ω). Therefore, (5, 6) hold simultaneously

for the couples (p, q, s) and (2, 2, σ), iff the following inequalities and equalities are simultaneously

(
1

p
− 1)

+

< s < r, 0 ≤ σ < r, σ = s− 1

p
+

1

2
, p ≤ 2, q ≤ 2. (39)

Solving (39) for p, q and s, we obtain

1

r + 1
2

< p ≤ 2, 0 < q ≤ 2,
1

p
− 1

2
≤ s < r, (40)

under which assumptions (38) holds. Consider the orthocomplement

Oj0σ = O
(
Vj0 , B

σ
22(Ω)

)
= V

⊥(Bσ
22(Ω))

j0
(41)

of Vj0 in Bσ
22(Ω), with respect to the inner product in Bσ

22(Ω), 0 ≤ σ < r. This orthocomplement is

well defined because {φj0k0 , ψjkj} is an unconditional Riesz basis in all Besov spaces where (5, 6)

hold, and Bσ
22(Ω) is a Hilbert space, so that V ⊥

j0
is well-defined with respect to the inner product in

Bσ
22(Ω), 0 ≤ σ < r. For a given f ∈ Bσ

22(Ω), define fj0 ∈ Vj0 as follows

fj0 =
∑

k

αj0k(f)φj0k (42)

Let k ∈ N and consider an arbitrary subspace Sk with dimSk = k, such that

Sk ⊂ Oj0σ ⊂ Bσ
22(Ω), (43)

and define the best-approximation functional

Ek(f ;B
σ
22(Ω)) = inf

s∈Sk

inf
Sk⊂Oj0σ

||f − fj0 − s||Bσ
22
. (44)

Now, we are in the position to formulate the following remarkable result.
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Theorem 5. Assume that f is as in Theorem 4 with the additional assumption that (40) holds. Then,

||f −
k∑

ν=1

βjνkνψjνkν ||
B

s− 1
p+1

2
22 (R)

= Ek
(
f ;B

s− 1
p
+ 1

2

22 (R)
)
, k = 1, 2, ... (45)

The result (45) holds, mutatis mutandis, also for the case of boundary-corrected wavelets and

Ω = [a, b], −∞ < a < b < +∞.

Theorem 5 shows that using a sufficiently broad (i.e., satisfying (14)) single-layered WBNN for

learning curves with Besov regularity while using the current activation method results in a learning

strategy which is optimal in the following two senses.

1. Fastest learning – using a fixed number of active neurons, the learned function is closest

possible to the original, with the distance measuring the closeness being in terms of || · ||Bσ
22

,

0 ≤ σ < r, that is, taking into account not only position in space (σ = 0) but also fractional

derivatives up to order r.

2. Maximal compression – for a benchmark determined by a fixed distance between the target

function and its learned version measured in terms of || · ||Bσ
22

, the benchmark result is

achieved with the fewest possible activated neurons.

In the remaining part of the present study, we shall illustrate graphically aspects 1. and 2. of the

optimality of the learning process with WBNNs when the current activation method is being used.

6 Representative model examples

(a) "λ-tear" (b) Weierstrass type fractal

Figure 1: Piecewise smooth type vs fractal type manifolds

26

82



arXiv Template A PREPRINT

We shall consider in detail graphical visualization related to two model examples which are

representative in three important aspects.

1. The first one (the "λ-tear") is a typical manifold of piecewise smooth type, while the second

one (Weierstrass-type curve) is a typical manifold of fractal type.

2. For both of them, their exact metric power, metric logarithmic and smoothness index of their

Besov regularity is known.

3. The exact metric power, metric logarithmic and smoothness index of Besov regularity

can be selected to be the same for both examples, which allows for insightful graphical

comparisons.

Example 1 (see Fig. 1a). The "λ-tear"

f1(x) =




xλ+ exp(− x2

1−x2 ) x ∈ (0, 1)

0 x ∈ [−1, 0] ∪ [1, 2]
(46)

where λ ∈ (0, 1). This function is analytic for x ∈ [−1, 0)∪ (0, 1)∪ (1, 2]; it is C∞, but not analytic

at x = 1; at x = 0 it is only C0. Its exact Besov regularity for p : 1 ≤ p ≤ ∞ is f ∈ B
λ+ 1

p
p∞ (Ω),

where Ω = R or Ω = [−1, 2] [BTW–1975, Proposition 2.4.2], see also [DRP–1999, Section 7,

Example 1].

Example 2 (see Fig. 1b). Weierstrass-type curve

f2(x) =
∞∑

k=0

1.5−τk sin(1.5k × 5x), x ∈ R (47)

where τ ∈ (0, 2). For the purpose of comparing with Example 1, we shall consider only the

restriction of f2 onto supp f1, i.e., for x ∈ [0, 1].

The graph of f2 is a typical self-similar monofractal with constant local Hölder index τ and constant

local fractal dimension 2− τ which is also its global fractal dimension on [0, 1]. When considering

Ω = R, for any compactly supported χ ∈ C∞(R) such that [0, 1] ⊂ suppχ and χ ≡ 1 on [0, 1],

χ · f2 ∈ Bτ
p∞(R) [BTW–1975, Proposition 2.4.1 for the imaginary part Gt in local notations, with

additional rescaling], see also [DRP–1999, Section 7, Example 2]. For the restriction f 2 = f2

∣∣∣∣
supp f1

in the case of boundary-corrected wavelets with Ω = [0, 1], we have directly f 2 ∈ Bτ
p∞([0, 1]). For
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(a) "Double chirp" (b) Sinusoidal density

Figure 2: Curves used to study Besov regularity

every p : 1 ≤ p ≤ ∞ this Besov regularity of f 2 is exact. Clearly, when τ = λ+ 1
p
, f1 and f2 have

exactly the same exact Besov regularity.

Besides the detailed comparative study of Examples 1 and 2, we shall study some additional

geometric aspects of the learning process on two other model examples: "Double chirp" and

"Sinusoidal density".

Example 3 (see Fig. 2a). "Double chirp"

f3(x) =
4
√
x exp(− x2

1− x2
) sin[64πx(1− x)], x ∈ [0, 1], (48)

Compare also [DRP–1999, Section 7, Example 3]. The graph of f3 is very spatially inhomogeneous,

containing at the endpoints 0 and 1 two chirps of a very different nature. f3 in (48) is a product

of "λ-tear" for λ = 1
2

and C∞-smooth function, so its Besov regularity is exactly the same as the

Besov regularity of a "λ-tear" (Example 1) for λ = 1
2
. Of special interest is to compare how the

optimal learning algorithm deals in the spatially different parts of the graph for large, moderate and

small samples, or for small, medium or high compression percentage.

Example 4 (see Fig. 2b). "Sinusoidal density"

f4(x) =





1
2
| sinx| x ∈ [−2π

3
, π
3
]

0 x ∈ (−∞,−2π
3
) ∪ (π

3
+∞)

(49)
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f4 is analytic on (−∞,−2π
3
)∪ (−2π

3
, 0)∪ (0, π

3
)∪ (π

3
,+∞) ; f4 is C0 at x = 0; f4 is discontinuous

at x = −2π
3

and x = π
3
.

Because of the presence of the two jumps, f4 ∈ B
1
p
p∞(Ω), 1 ≤ p ≤ ∞, Ω = R or, for boundary

corrected wavelets, Ω = [−π, π]. This result about the Besov regularity of f4 follows from the

result about Besov regularity of the Heaviside step function which is present in implicit form in

the embeddings in [DRP–1999, Appendix B12b, item (iv)]. The function exhibits considerable

spatial inhomogeneity in the neighbourhoods of the three points of singularity (x = −2π
3

, x = 0

and x = π
3
). Of particular interest is to compare the performance of the optimal learning algorithm

in a neighbourhood of each of the three singularities. The comparison of the performance between

the two jump-singularities at x = −2π
3

and x = π
3

should include also comparative study of the

local Gibbs phenomenon.

The sample sizes in Figures 1-13 are N = 210 or less.

First we focus on faster learning and maximal compression, according to items 1 and 2 in Section 5.

The comparative graphical analysis of Figures 3–6 leads to the following conclusions.

1. Examples 1, 3, 4 are of piecewise smooth type, while Example 2 is of the fractal type.

2. The decreasing rearrangement activation allows very fast learning combined with very high

compression rate for the piecewise smooth curves: the quality of learning is superb at 85%

compression. In comparison, retaining such high quality of learning for the fractal curve in

Figure 2 is possible only at compression rate up to 3− 4%. (See item (a) in each of Figures

3–6.)

3. Approximation of the target function by the learned one is very good even for superhigh

levels of compression (98− 99%). This also indicates that if the large-to-medium sample

size N = 210 be reduced to moderate or even small sizes (cf. Section 1), the rate of learning

can be expected to be quite good, while the compression rates will decrease, but remain still

quite good.

4. The effect of subjecting the fractal-type curve to high or superhigh compression rates is

that the learned curve get smoothed out to a piecewise smooth (few isolated singularities,

similar to Examples 1,3 and 4) or even smooth – no singularities at all. In [DPS+–2022a]

and [DPS+–2022b] we shall show that if the fractality of the manifold is due to noise,

then, learning the manifold with WBNNs where the decreasing arrangement activation is

applied on the noisy (empirical) wavelet β–coefficients results in denoising and high-quality
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(a) 85 % compression

(b) 98 % compression

(c) 99 % compression

Figure 3: Target function (dashed black), learned function (red) and the error between the two (blue) for the "λ-tear"
under high compression.
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(a) 85 % compression

(b) 98 % compression

(c) 99 % compression

Figure 4: Target function (dashed black), learned function (red) and the error between the two (blue) for the "Weierstrass
function" under high compression.
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(a) 85 % compression

(b) 98 % compression

(c) 99 % compression

Figure 5: Target function (dashed black), learned function (red) and the error between the two (blue) for "the double
chirp" under high compression.
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(a) 85 % compression

(b) 98 % compression

(c) 99 % compression

Figure 6: Target function (dashed black), learned function (red) and the error between the two (blue) for "the sinusoidal
density" under high compression.
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statistical estimation of the manifold. The level of compression resulting from this process

can be useful in determining the chances for the manifold to have certain regularity.

The comparison of graphical data for the four examples on Figure 7 leads to the following observa-

tions.

5. For piecewise smooth manifolds having isolated singularities of the first kind only (left

and right onesided limits exist at the singularity) the distribution of the benchmark MISE

error is narrowly concentrated in small neighbourhoods of the respective singularities. This

also shows that the vector of β–coefficients of such manifolds tends to be sparse, i.e., it

contains large in absolute value coefficients on all levels j only in small neighbourhoods

of the singularities. Thus, manifolds of this type are highly compressible with threshold

activation methods and are the fastest to learn with WBNNs. Typical examples are 1 and 4,

see Figure 7 (a) and (d), resp.

6. Piecewise-smooth manifolds with isolated singularities of the second kind (at least one of

the onesided limits does not exist at the singularity). Typical case of this type of singularity

is the presence of a chirp on the side of the missing onesided limit (for example, functions

g(x) = xa sin 1
xb

, x > 0, a > 0, b > 0). Chirps can be very spatially inhomogeneous and

even exhibit some fractal properties (for example, the function g in the above formula, with

a = 0, has unbounded variation in a neighbourhood of x = 0 and the part of its graph in this

neighbourhood is infinitely long. Thus, functions with chirps take a somewhat intermediate

place between the functions in item 5 and the function in the next item 7. Typical example

is 3 – see Figure 7 (c).

7. Fractal-type curves, especially ones with locally constant Hölder index, gather their Besov

regularity from a dense vector of β–coefficients where all, or, at least, the vast majority of β–

coefficients provide significant contribution which can only be ignored at the price of slowing

the rate and decreasing the quality of the learning process. In [DPS+–2022a] and [DPS+–

2022b] we shall show that manifolds of fractal type can be learned well only using non-

threshold shrinkage activation. This type of activation produces 0% compression. Threshold

activation methods, including the decreasing rearrangement activation, oversmooth the

manifold, thereby altering its fractal type. This explains the low compression rate when

achieving the benchmark MISE in the typical Example 2 – see Figure 7 (b).
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(a) Distribution of benchmark MISE for "λ-tear", at compression rate ≈ 99.610%. This is the benchmark MISE for all cases (a) – (d).

(b) Distribution of benchmark MISE for "Weierstrass function", attained at compression rate ≈ 3.418%.

(c) Distribution of benchmark MISE for "double chirp", attained at compression rate ≈ 83.984%.

(d) Distribution of benchmark MISE for "sinusoidal density", attained at compression rate ≈ 83.984%.

Figure 7: Benchmark error distribution for Examples 1-4. Benchmark error was MISE for Example 1 at compression ≈ 99.610%.
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8. (Remark.) One of the main goals of research in [DPS+–2022a] and [DPS+–2022b] will

be to design hybrid activation strategies for adaptive learning by composing a sequence

of activation strategies of diverse – threshold and non–threshold – nature which will be

achieved by the use of deep WBNNs, each single-layer WBNN in which will contribute with

its own activation strategy.

Figure 8: Compression percentage (x-axis) vs standardized relative MISE for Examples 1-4

While Figure 7 provided detailed information about the local distribution of a benchmark MISE,

Figure 8 provides an insightful comparison of the ratio between compression percentage and relative

MISE for each of the four considered examples.

9. The aspect, in which Figure 8 is most insightful, is the comparative determination of the

fractality type of the curves in each of Examples 1–4: "the Weierstrass curve" of Example 2

exhibits markedly fractal behaviour, followed by the "double chirp" of Example 3 exhibiting

a somehow ’semi–fractal’ behaviour, and with the curves in Example 1 and 4 being of

markedly piecewise smooth type.

10. (Remark.) Tracing the behaviour of the "double chirp" of Example 3 in Figures 5, 7(c) and

8, some notable differences are observed with "the λ–tear" in Example 1, despite of the
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(a) Zoomed region for Example 1 (see Fig. 11a),
compression rate 98%

(b) Zoomed region for Example 2 (see Fig. 11b),
compression rate 91%

Figure 9: Local zooming for Examples 1 and 2

(a) Zoomed regions for Example 3 (from left to right,
see Fig. 12 12a) and 12b), resp.), compression rate
96%

(b) Zoomed regions for Example 4 (from left to right,
see (13a), 13b) and 13c), resp.), compression rate
98%

Figure 10: Local zooming for Examples 3 and 4

fact that they are both of the piecewise smooth type and, especially, despite of the fact that

they have exactly the same Besov regularity. The explanation of this phenomenon is that

although the Besov norms of f1 and f3 with the same exact parameters are both finite, the

norm of f3 is several orders of decimal magnitude larger than the norm of f1, mainly due to

the presence of the factor 64 = 26 in the sine component of the formula (48) for f3.

In Section 6 the exact Besov regularity of the example was known, and it was used in the construction

of the activation operator. What if only approximate information is available about each of the

parameters (p, q, s) of the Besov regularity? The algorithmically simplest way to overcome this

ambiguity is to use a swarm of sufficiently broad single-layer WBNNs. As discussed in Section 4,

using a deep WBNN is possible, but requires adjustments, with some loss of efficiency. This is why

here the new research topic about relation between swarm and deep evolutionary AI ([I–2022]) is of

great interest.
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(a) (b)

Figure 11: Region zoom for (a) Example 1, (b) Example 2 (see Fig. 9a and 9b), resp.

(a) (b)

Figure 12: Region zoom for Example 3: see Fig 10a

In Figures 9–13 we produce the graphical results of sequential emulation of the parallel learning

process of a ’swarm’ of 3 single-layered sufficiently broad (satisfying (14)) WBNNs, one of which

is biased towards underestimating the Besov regularity (blue colour), the second one is using the

exact Besov regularity information (green colour) and the last one is biased towards overestimating

the Besov regularity. The graphical results for Examples 1–4 are presented in Figure 9(a) and 9(b),

and Figure 10(a) and 10(b), resp. The rectangular regions on these figures, where the differences

are most notable, are marked with window frames.

In Figures 11–13 are given zoomings of all windows in Figures 9 and 10, as follows.

• The window in Figure 10(a): Figure 11(a)

• The window in Figure 10(b): Figure 11(b)

• The two windows in Figure 10(a): Figure 12(a) and (b)

• The three windows in Figure 10(b): Figure 13(a), (b) and (c)
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(a)

(b)

(c)

Figure 13: Region zooms for Example 4: see Fig 10b
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Some observations from the graphical comparison, as follows:

11. The learning process using WBNNs activated by decreasing rearrangement method proves

to be very robust with respect to errors of estimation of the Besov regularity information

when manifolds without singularities are being learned.

12. In the presence of singularities, the robustness in item 11 decreases: the more the singu-

larities, the less the robustness, with the maximal deterioration of robustness being in the

case of learning fractal-type manifolds. However, due to the relatively uniform distribution

over all, or most of the β–coefficients of a fractal manifold (see item 7 above), for the low

compression rate in Figure 7(b), the differences between the blue, green and red lines in

Figure 9(b) would hardly be noticeable (see also item 13).

13. Due to the robustness properties in items 11 and 12 above, it makes sense to use large-size

swarms of single-layered WBNNs only in the case of learning fractal-type manifolds, for a

reason that will be explained in item 15.

14. Learning of piecewise smooth manifolds with WBNNs activated via the decreasing rear-

rangement method is robust with respect to small errors of underestimating or overestimating

the manifold’s Besov regularity, as long as compression rate is none or relatively small. This

robustness rapidly deteriorates with the increase of the compression rate, but at the same

time the quality of learning deteriorates slowly with the increase of the compression rate

(which is an equivalent way of saying that piecewise smooth manifolds are being learnt fast).

This is why in the case of learning a piecewise smooth manifold, small to medium sized

swarms of sufficiently broad single-layered WBNNs are expected to be sufficient when the

Besov regularity of the manifold is only approximately known, see Figure 11(a) and Figures

12 and 13.

15. In the case of fractal manifolds, the crucial difference is that, unlike the case of piecewise

smooth manifolds, the quality of learning of the fractal deteriorates rapidly together with the

rapid deterioration of robustness with respect to errors in the Besov regularity estimation,

when the compression rates increases. This is why, contrary to the comparable compression

rates in Figure 7(a) vs. Figure 9(a), Figure 7(c) vs. Figure 10(a) and Figure 7(d) vs. Figure

10(b), resp., there is a sharp difference in the compression rates in Figure 7(b) vs. Figure

9(b): less than 4% vs. more than 90%, resp. Because of this important difference, it can be

expected that in the current context large-size swarms of sufficiently broad single-layered

WBNNs would be needed to attain high quality of learning fractal manifolds. Notice that in
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the context of item 4, when the fractality is due to noise, the denoised manifold may still be

of fractal type, or it may be of piecewise smooth type. In the context of the present item,

in this case determination of the size of the swarm requires special care (this topic will be

addressed in [DPS+–2022a]).

16. Finally, let us turn our attention on the three singularities in Figure 13. Comparing the

three singularities in Figure 13 with the singularity in Figure 11(a), it is observed that the

latter singularity is somehow intermediate between the one in Figure 13(b) and the two in

Figure 13(a) and (c). This is so, because, on the one hand, the singularities in Figure 13(b)

and 11(a) are of the same type – discontinuity of the first derivative f ′
1, resp. f ′

4 and, on

the other hand, f ′
1(0+) = +∞, which forces the graph of f1 left of 0 to resemble that of

the graph of f4 at the left discontinuity point in Figure 13(a) and, modulo vertical axial

symmetry, also the graph of f4 in Figure 13(c). What is remarkable about the discontinuity

singularities of the first kind in Figure 13(a) and (c) (and, to some less expressed extent, also

about the singularity in Figure 11(a)) is the presence of Gibbs phenomenon. As it can be

seen from Figure 3(a) and Figure 6(a), even at high compression rates there is no Gibbs

phenomenon at all, which is due to the selection of compactly supported wavelet basis. If in

this context a trigonometric basis is used there will be very significant Gibbs phenomenon

even at compression rate 0%. Thus, we conclude that in the case of use of compactly

supported wavelet basis, notable Gibbs phenomenon may eventually appear at jump points

only at superhigh levels of compression, and it is due to uncompressed β-coefficients with

low j (j = j0 or j near to j0). It is also at these superhigh levels of compression, and for the

same reason, that errors in the estimation of Besov regularity can result in the decreasing

rearrangement activation producing notable differences in regions with Gibbs phenomenon.

7 Proofs

Proof of Theorem 1. Let first s : 0 < s < 1. Using the the definitions and notations of [DP–1998,

Section 2.2] for ρ, k∗, p and q, the upper bound

∃ c1 < +∞ : R(f, f̂N) ≤ c1N
− s

1+2s (50)

where c1 = c1(s, diam(supp(f))), follows after taking power 1
ρ

from the two sides of [DP–1998,

(2.2.3] where the choice q = +∞ has been made. Under the assumptions of [DP–1998, Corollary
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2.2.4] on f , taking in consideration the compactness of suppf implies the equivalence of the

assumptions in [DP–1998, Corollary 2.2.4] and the current assumption f ∈ Bs
p∞(R)

The lower bound

∃ c0 > 0 : R(f, f̂N) ≥ c0N
− s

1+2s (51)

where c0 = c0(s, diam(suppf)), follows from [DP–1998, Theorem 2.3.2] for q = ∞. The selection

of J in (14) assumes that in all cases considered in [DP–1998, Section 2.2], the optimal level k∗

defined there, always satisfies

j0 ≤ k∗ ≤ J (52)

which ensures the validity of all upper and lower bounds in [DP–1998, Corollaries 2.2.2-11 and

Theorem 2.3.2]. Under the assumptions q = ∞ and compactness of supp f , the norm ||.||p,s defined

in the formulation of [DP–1998, Theorem 2.3.2] can be replaced by the simpler ||.||Bs
p∞(R). This

proves (i). The optimality of the rate N− s
1+2s in the context of the assumptions of Theorem 1 follows

by the standard argument in risk estimation: with the increase of N , the bias term decreases and

tends to 0 when N → ∞, while the variance term increases and tends to +∞ when N → ∞. So,

the optimal rate in N is achieved when the contributions of the bias and variance terms are equal.

Under the assumptions of Theorem 1, it follows from the proof of [DP–1998, Theorem 2.2.1, under

the assumptions of Corollary 2.2.4] that the rate for which the bias and variance terms are balanced

is N− s
1+2s . (ii) is proved.

Now let s : 1 ≤ s < 2. In this case the proof is based on the same line of arguments, but with

[DP–1998, Corollary 2.2.4] being replaced by by [DP–1998, Corollary 2.2.8] and noting that the

expression
s− 1

r
+ 1

q

1+2s− 2
r
+ 2

q

in [DP–1998, (2.2.4)] becomes s
1+2s

for r = q = +∞.

Proof of Theorem 2. Follows straight-forwardly from the chain of equalities in (11).

Proof of Theorem 3. To prove the theorem for every quadruple (p, q, s, σ) : 0 < p ≤ ∞, 0 ≤
q ≤ ∞, n(1

p
− 1)

+
< s + σ < r we invoke [BL–1976, Lemma 3.10.2], as follows. Assume that

g = Jσf and g ∈ Bs+σ
pq (Rn), that is, the RHS of (6) is finite when s is replaced by s+ σ. Then, by

[BL–1976, Lemma 3.10.2], the series (5) for g is convergent in the topology of Bs+σ
pq (Rn), therefore,

g = Jσf is learnable by the WBNN generated by the specified wavelet basis.
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In the particular case 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, the above proof can be simplified, by using

[BL–1976, Lemma 2.2.1] instead of [BL–1976, Lemma 3.10.2].

Proof of Corollary 1. Follows from Theorem 3 by using the lifting property of Jσ.

Proof of Theorem 4. The RHS of (36) is just a commuted version of its LHS. Since the basis

{φj0k, ψjk} is a Riesz unconditional basis [D–1992] all that has to be shown is that the series in the

LHS of (36) is absolutely convergent, because then [BL–1976, Lemma 3.10.2] (or, alternatively

in the particular case of Theorem 4 when p ≥ 1 and q ≥ 1, [BL–1976, Lemma 2.2.1]) implies

the statement of the theorem. The absolute convergence of the LHS in (36) in Bs
pq follows from

f ∈ Bs
pq, implying the the finiteness of || · ||Bs

pq
in (6). From here, the absolute convergence of the

LHS of (36) in Bσ
ρη for every (ρ, η, σ) specified in the theorem follows from the Sobolev embedding

Bs
pq ↪→ Bσ

ρη, see (32).

Proof of Theorem 5. The space Bσ
22 is a Hilbert space and, by Theorem 4, the RHS of (36) holds

true. Because of the Hilbertian geometry of Bσ
22, removing the term involving any one ψjν0kν0 from

M∑
ν=1

βjνkνψjνkν in (36) has the geometric meaning of orthogonal projection of

M∑
ν=1

βjνkνψjνkν ∈ span{ψjνkν}Mν=1 onto

(
ν0−1∑

ν=1

+
M∑

ν=ν0+1

)
βjνkνψjνkν ∈ span

{{
ψjνkν

}ν0−1

ν=1

⋃{
ψjνkν

}M
ν=ν0+1

}
.

Since |βjνkν | are ordered as decreasing rearrangement with factor 2jν(s−
1
p
+ 1

2
) and σ : σ− 1

2
= s− 1

p
,

(45) follows, which proves the theorem. Note the following remarkable geometric fact which

remained implicit, but is crucial for the proof of the theorem: the basis {φj0k0 , ψjk} is orthonormal

only in L2(σ = 0) but remains orthogonal in Bσ
22 (0 ≤ σ < 2) which has the norm of a weighted

l2–sequence space with weight 2jσ.

8 Concluding remarks

The present work is the first part of a sequence of studies dedicated to the new WBNNs. The

next two parts of this series [DPS+–2022a] and [DPS+–2022b] are currently in preparation. The

main focus in [DPS+–2022a] will be on a detailed study of the rich variety of threshold and non-

threshold activation methods for learning curves in 2, 3 and higher dimensions. [DPS+–2022b]
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will be dedicated to the diverse problems which arise when learning multivariate multidimensional

geometric manifolds (surfaces, volume deformations and manifolds in dimensions higher than 3).

One topic will be to reduce the dimensionality of high-dimensional WBNNs to 1- and 2-dimensional

WBNNs with full preservation of their functional efficiency. One important application of this

approach is to enable the use of GPGPU programming algorithms for learning parametric manifolds

with arbitrary number of parameters, immersed in arbitrarily high-dimensional space [DBB+–2011],

[DBG–2012]. Another topic in these two studies is to make progress in understanding the connection

between learning and approximation [JSZ–2008] in the context of the new WBNNs. It should

be noted that the essence of our new approach in the present paper – (a) separating the roles of

wavelet depth and neural depth, (b) incorporating wavelet depth into the WBNN width to achieve

consistency of learning, and (c) using the neural depth for accelerating the rate of consistent learning

– can in principle be used also in the much more general context of arbitrary tree–based adaptive

partitions [BCD+–2007], [BCD+–2014].

We conjecture that Theorem 5 can be generalized for a broader range than (2, 2, σ) with σ ∈ [0, r),

namely, for the general assumptions on (p, q, s) and ρ, η, σ in (36) of Theorem 4. However, to

investigate this conjecture, one needs to resort to a very different and much more technically

involved and spacious research approach, beginning with the derivation of direct inequalities

(Jackson-type, etc.) and inverse inequalities (Bernstein/Markov-type, etc.) and then, based on

the derived inequalities establish a connection between appropriately selected best-approximation

functionals and Peetre K-functionals. We refer to [PP–1987, Chapter 3] for an early, but sufficiently

complete general exposition of this line of argument.

In conclusion, we note that by focusing on gradient/subgradient iterative optimization method in

learning algorithms for NNs in the introduction, we left an important methodological gap which

needs to be filled here [S–2015]. Numerical methods for optimal control based on Bellman’s

principle are very powerful in learning theory, both by swarm and deep evolutionary AI, includ-

ing optimal control using feedback for supervised problems [S–2015]. Although, theoretically,

Bellman’s principle allows finding global extrema for a very general class of criterial functionals

(including non-convex, non-smooth (including non-Lipschitzian) ones), and under complicated sets

of constraints (including ones induced by technological standards in real-life engineering problems):

computing the/a global extremum is often unfeasible due to the huge computational complexity. So,

in many cases, a tradeoff is needed between affordable computational complexity and sufficiently

high quality of a local extremum attained [DG–2006a], [DG–2006b]. So far, similar to gradient
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methods, optimal tradeoffs in dynamical programming are also achieved via natural, rather than

artificial intelligence. Nevertheless, if a dynamical programming algorithm is being applied in the

context of machine learning using WBNNs, we may now have an acceptable automatic alternative.
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Abstract

Ageing civil infrastructures such as bridges and building causes many
consequences from practical and economical point of view. Especially in
northern Norway, the impact of extreme arctic conditions is intense on
civil engineering infrastructures (see [39]). With the increased loading
due to the prosperous seafood industry and increased cargo activity is
putting additional pressure on the aged infrastructures. Research and de-
velopment of new methods is needed for the damage detection in these
structures. In this paper we present, discuss and analyze the situation
concerning bridges in Norway with a special focus on northern Norway.
Moreover, based on the research in [40], [41] and [42] we describe and
emphasise the importance of structural health monitoring methods, arti-
ficial intelligence and machine learning when trying to solve these serious
problems of structural damage detection especially in arctic regions.

Keywords: Structural health monitoring, Vibration analysis, Operational
modal analysis, Damage detection, Bridges, Arctic conditions, Finite element
model, Signal processing, Wavelet transform, Artificial intelligence, Machine
learning, Neural network, Wavelet network and Statistical methods.

AMS Classification (2010): 35A22, 45A05, 44A15, 65T50, 65T60

1 Introduction

This paper is based on the recent Ph.D. thesis [40], especially the papers [39],
[41] and [42], where we highlighted the importance of using artificial intelligence
and machine learning for damage detection in structures such as bridges and
high-rise buildings. In this paper, we investigate the scale of ageing bridge
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infrastructure in Norway with focus on the special problems appearing in arctic
regions.

Signal processing plays a very important role in extracting the features from
the data generated by the sensors to find damages. Therefore, signal processing
is like the heart of structural damage detection methods. With the continuous
advancement in technology new techniques are under development for structural
health monitoring (SHM)

Some new artificial intelligence (AI) and machine learning (ML) algorithms
that are of importance for structural health monitoring (SHM), operation modal
analysis (OMA) and finite element (FE) model updating are discussed in this
paper. In fact, AI algorithms/techniques such as Deep Learning, Long Short-
Term Memory and Ant Colony Optimization were briefly discussed in [9], [45],
[46] and [47] for various smart city applications involving time series analysis
and flow distribution. These algorithms can be crucial for further development
of smart SHM solutions in the future.

This paper is organised as follows: In Section 2 we present and briefly discuss
the huge problems caused by the ageing infrastructures in Norway with a special
focus on the situation of all bridges in northern Norway. Section 3 covers the
topics of SHM, OMA, FE model updating and damage detection. In Section
4 an overview of the current state-of-the-art of SHM with AI are presented.
Machine learning, neural network and recurrent neural network are presented
with a focus on structural damage detection. Finally, in Section 5 we present
some concluding remarks including some suggestions of future research in this
important area.

2 Aged civil engineering infrastructure

Damages in structures occur during its operational lifetime due to various en-
vironmental or human factors. Lack of maintenance and monitoring can lead
to accumulation of damages with time that can significantly decrease the per-
formance of the structures, change in natural symmetry or even destruction.
In general, civil engineering structures are designed with a lifetime of 50 to
100 years. In this lifetime, structures are assumed to meet the expected struc-
tural integrity. But in general, the structures are prone to unpredictable and
unexpected damages arising due to various factors in the lifetime of a structure.

Ageing of civil engineering infrastructures such as bridges, tunnels and build-
ings cause many problems with great consequences, both from practical and
economical points of view. Governments and municipalities around the world
have to spend more time and budget for maintenance, repairs or construction
of new structures in place of deteriorated or damaged ones, so the citizens can
have a decent service.

Infrastructure maintenance costs for the governments around the world are
on the rise, as a lot of infrastructures around the globe are approaching towards
the end of its life cycle. Moreover, due to scarcity of expert work force to analyze
such challenges, it is adding up to the problem. Analysis of such problems is
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important e.g. in northern Scandinavia, since such problems are even more
serious due to the fact that the impact of extreme arctic conditions is quite
intense (see e.g. [40]).

A Norwegian newspaper Verdens Gang (VG) got access to a report pub-
lished by Statens Vegvesen (The Norwegian Public Roads Administration) in
2017. According to this report there are approximately 16,791 bridges in Nor-
way and Statens Vegvesen have been violating inspection rules for many of
them. It was discovered that for one of every two bridges, proper inspection is
lacking. Moreover, approximately 1087 bridges in Norway have damages that
are described as serious or critical according the internal classification system of
Statens Vegvesen (see [48]). In April 2022 it was revealed by the government-

Figure 1: Histogram of state of Norwegian bridges in logarithmic scale.

Figure 2: Histogram of Norwegian bridges, grouped by build decade.
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owned broadcasting company NRK that around 1000 bridges in Norway were
still not up to standard (see [31]).

The newspaper VG also created a map of bridges in Norway, using data
acquired from the internal database Brutus used by Statens Vegvesen, which
uses classifications such as seriously injured, delayed renovation and lacking
inspection (see [49]). From the analysis of this data that is available on the
VG website, an analysis of all the bridges in Norway is done and presented
in logarithmic scale in Figure 1. Classification is made with respect to bridges
that are missing inspection, delayed maintenance action, serious and critical that
need action. Moreover, in Figure 2 a histogram of Norwegian bridges classified
over different decades, is presented.

In northern Norway, large amounts of seafood cargo is exported along the
public roads. The seafood industry of Norway, as of 2021, exported for 12 billion
euros and contributed to around 10 percents of Norwegian export earnings. The
seafood industry has seen 7 percent year on year growth since the year 2000,
essentially doubling every ten years (see [13] and [29]). The seafood industry
is expected to keep growing at the same rate, and has already in the first part
of 2022 seen record growths of 20 percent year on year (see [34]). Especially in
the sparsely populated northern Norway this is expected to put ever increasing
loads on already struggling infrastructure. Thus the ageing infrastructure has
to be tested and maintained with respect to the increased loading. A down time
or failure of any such infrastructure can lead to substantial economic losses and
even human lives.

A detailed study is conducted in this paper that maps the clusters of bridges
in Nordland, Troms and Finnmark county where the large parts of the seafood
industry is concentrated. A graph of all the bridges in northern Norway is
presented in Figure 3 and Figure 4. As we know from geographical constraints,

Figure 3: The current state of bridges in the two northernmost Norwegian
counties – Nordland, as well as Troms and Finnmark.
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Norway is very long, so in order to have better visualization the area of focus
that is from Nordland to Finnmark is split into 3 regions. These figures illustrate
the extent of problem in northern Norway. Figure 5 is from latitude 57 degree
(border of Nordland and Trøndelag) till latitude 66 degree passing Bodø. Figure
6 covers the geographical area from from latitude 66 degree from Bodø till
latitude 68 degree. Finally, Figure 7 cover Finnmark from latitude 68 degree
Tromsø till 69 degree that is Nordkapp. The hexagon blocks indicate the density
of bridges that lack inspection while red circles represents the bridges in critical
or serious state.

With this in focus Statens Vegvesen has put a higher priority to investigate
and do maintenance of bridges that are critical or are seriously damaged. In
the year 2019, a major damage was found in the construction of the Herøysund
bridge located on the west-coast in Nordland county in Norway (see Figure
8). As a result concerned authorities decided that the special transport was no
longer allowed to drive over the bridge (see [3]).

Later in 2020, Nordland county and the Norwegian public road administra-
tion decided to work on building a new bridge that would be located just south
of the current bridge. The new Herøysund bridge is expected to cost about 270
million NOK and is expected to be finished in the summer of 2023. Moreover,
it was decided that the maintenance and reinforcements will be carried out on
the Herøysund bridge so it is safe to use until the new Herøysund bridge opens.

Remark 2.1 A detailed study of the Herøysund bridge will be presented in our
forthcoming article. This is possible because we have the concrete data for this
case. By doing this we can do a similar analysis for all other bridges in the
region of northern Norway. For a more detailed description see Remark 5.1.

Figure 4: The same data as in Figure 3, ordered by the decade the bridges were
built during.
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The remaining part of this paper is inspired by the recent research presented
in the PhD thesis [40] where some methods presented can be used to overcome
these serious problems in northern Norway. In the next section we present
structural health monitoring (SHM) along with the importance of artificial in-
telligence in SHM.

3 Structural health monitoring

Operators/owners of civil engineering infrastructure such as bridges, dams and
tunnels are mostly municipalities or government owned enterprises in Norway.
As for now, infrastructure assets management decisions are based on visual in-
spections, which could be aided by localized diagnosis techniques such as the

Figure 5: The bridges in southern and middle part of Nordland county.
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use of acoustic, ultrasonic or magnetic field non-destructive testing methodolo-
gies. Nevertheless, these testing methodologies have several limitations such as,
inaccessibility to some parts of the structure, inability to detect internal dam-
age, localization of the damage, and it is challenging to carry out continuous
monitoring with such techniques.

With the advancement in technology, new techniques are under continu-
ous development for the monitoring of structures. These techniques are com-
monly called structural health monitoring (SHM) techniques. SHM refers to the
process of systematizing, implementing and characterizing a damage detection
strategy in civil, mechanical and aerospace engineering structures (see [12]).
The process involves the observation of structure over the course of time with
periodically spaced static and dynamic response measurements, extraction of

Figure 6: The bridges in the northern Nordland county and southern Troms
and Finnmark county.
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damage sensitive features from measurements and finally statistical analysis of
these features to estimate the current state or health of the structure.

In a typical SHM system sensors are distributed throughout the structure,
that are used to estimate the condition of the structure. A damage is defined as
an intentional or unintentional change to the material or geometric properties of
the structures, including the changes in the boundary conditions or system con-
nectivity which adversely affect current or future performance of the structures
(see [12]).

In order to do damage detection and localization, the raw data generated
by sensors is processed for extraction of damage sensitive features. For exam-
ple in a vibration based SHM system, accelerometers are used to find the key
parameters: mode shapes, mode frequencies and mode damping. Once these
parameters have been estimated, damage detection algorithms can be utilized

Figure 7: The bridges in the northern Troms and Finnmark county.
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to figure out the magnitude of damage occurred, if any (see [17] and [21]).
The ordinary differential equation that represents a linear dynamical model

of a vibrating system is as below (see [33] and [42]):

M
d2u(t)

dt2
+ C2

du

dt
+Ku(t) = B2f(t). (1)

The different terms in the equation are described as: M is the mass matrix,
C2 is the damping matrix, K is the stiffness matrix, B2 is the selection matrix
(input matrix), f(t) is a vector with nodal forces and the solution u(t) of this
differential equation is the vector with nodal displacements (see [33]). A math-
ematical model to compute the modal parameters is described in detail in [33]
and [42].

In general traditional forced vibration tests with artificial excitation forces
can be performed on large structures, but such tests are costly and complicated.
Moreover, other vibration sources such as wind and traffic are treated as noise.

Finite element (FE) model updating is one of the most popular methods
nowadays to improvise the numerical models for various civil engineering struc-
tures such as bridges, high-rise buildings, and mechanical structures such as
steel bridges, wind mills, off-shore structures, etc. Moreover, the FE model is
updated and improved by updating the numerical response with respect to the

Figure 8: Herøysund bridge.
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observed experimental behaviour of the structure (see [18]). FE updated model
is also known as a digital twin. It is very crucial to have correct information
about the structure. In this context OMA and FE updated model both play
very important roles.

Operational modal analysis (OMA) is gaining popularity where ambient vi-
brations from the wind and traffic are considered as unknown input, and output-
only analysis is done to determine the resulting vibration modes. OMA tech-
nique has been tested on a steel truss structure bridge in Lule̊a (see [41]), a high-
rise fire tower building in Lule̊a (see [42]) and various other structures around
the world, see also the PhD thesis [40]. OMA are Multiple Input and Multiple
Output (MIMO) techniques, so these techniques can estimate the closely shape
modes and repeated modes for a high degree of accuracy. Single Input Multiple
Output (SIMO), Multiple Input Single Output (MISO) and Single Input and
Single Output (SISO) are traditional testing procedures that are not able to
find repeated poles due to lack of mode separation.

Remark 3.1 In the new upcoming project the plan is to test this OMA tech-
nology on the old Herøysund bridge that is going to be demolished in 2024, and
the new Herøysund bridge that is going to become operational in 2023 in the
county of Nordland in Norway.

Statistical pattern recognition paradigm for SHM is a model where a com-
parison between two different states of the structure, one being initial/normal
or undamaged state and the other being the damaged or a state with defects
is made. For example in case of a bridge, a label of critical damage, need of
inspection or need of maintenance can be assigned by comparing the bridge to a
database of healthy bridge. This database can be accumulated over the time and
be used for training a mathematical framework of machine learning algorithms.
This will further be discussed and described in the forthcoming paper.

The sensors used for SHM generate lots of data, thus signal processing tech-
niques makes the heart of SHM. Various signal processing techniques that are
of great importance for SHM and OMA have been discussed and compared in
our previous article (see [42]). Wavelet analysis is an effective mathematical
and signal processing tool that is based on time frequency analysis and over-
comes some of the limitations of conventional Fourier analysis based methods.
In our forthcoming article we will focus our discussion on wavelets in the con-
text of damage detection and artificial intelligence. However, for the readers
convenience already here in Appendix A we give some historical remarks and
newest development of wavelets from the first Haar wavelets till the remarkable
development described in more the 50 books.

Remark 3.2 SHM systems have very many sensors installed, so the challenge
of synchronization of data due to various sampling rates appears naturally. Fur-
ther, the issue of missing data can appear due to various factors such as sensi-
tivity of sensors or other environmental factors such as low wind or failure to
record data. In a SHM system problem of data synchronization and missing
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data appears naturally due to various types of sensors that are involved (see
[18]). Recent work in machine learning aims to alleviate such issues, which will
be addressed in a forthcoming article.

4 Artificial Intelligence and Machine Learning

While the terms are often used interchangeably, Artificial Intelligence (AI) and
Machine Learning(ML) have different meanings, and an important relation be-
tween each other. The term AI refers to any algorithm that can be used to
make a machine (or computer) perform a task. This range of tasks is enormous,
and encompasses anything from simple path-finding algorithms to advanced au-
tonomous drones. As such, the term ML is included under the AI umbrella.
Where ML differs from other types of AI can be suggested from the name.
ML algorithms are able to learn from data. This data can be collected from
many sources, including, but not limited to, real-world sensors or images (see
[26]), simulated worlds (see [38]) or data created by humans such as text (see
[6]). Typically, machine learning is divided into the three paradigms super-
vised, unsupervised and reinforcement learning. For the purposes of this paper,
we present supervised and unsupervised learning.

4.1 Supervised learning

Supervised learning is a machine learning paradigm which aims to learn a func-
tion that maps a set of input data points to a set of target data points. This
function should generalize well and also should be able to make good predictions
for unseen data points. The problem of supervised learning is often solved by
finding the closest points in the input space to the target points using a distance
function, i.e., by finding the nearest neighbor of each data point. The intuition
is that the predicted target point will be the nearest neighbor of the data point,
which is closest to the data point.

4.2 Unsupervised learning

Contrary to supervised learning, unsupervised learning algorithms do not re-
quire labeled data. The goal of unsupervised learning is to learn the structure
in the data, such as grouping some examples together, or finding similar exam-
ples. For instance, an unsupervised clustering algorithm, such as K-means, can
automatically partition a dataset into different groups. It is important to note
that the quality of the results produced by unsupervised learning algorithms are
typically lower than those of supervised learning algorithms.

Next, we introduce neural networks, which is a very important and common
machine learning model. Countless variations and improvements exist, but we
explain the basic version which is the foundation for more advanced models.
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4.3 Neural networks

Neural networks are models of computation inspired by the structure and func-
tion of biological nervous systems, including the brain. They are a paradigm of
machine learning and are used in the development of artificial intelligence. A
common choice for the structure of a neural network is the layered feed-forward
network, in which a set of input nodes receives data from a set of previous nodes,
which receive data from another set of nodes, and so on; the last layer is called
the output layer. In the layered feed-forward network, information flows only
in one direction, which is called the “feed-forward” direction. Information can
spread out to the output layers by activating all the nodes in the layers between
the input and output layers. Each of the nodes in the network has a strength
and all the nodes are connected with each other. The networks are trained by
calculating the error of the network, which is the difference between the desired
output and the output of the network, using back propagation (see [35]).

Consider a network N with w connections, x inputs and y outputs. NNs
are function approximators, and as such can be expressed as a function y =
fN (w, x). The weights w maps the inputs x to the outputs y. The weights
w are usually provided from a random distribution, while the inputs x are the
data the network is trying to learn from, such as sensor data, images or signals.
The outputs y is then the variable or classification the network is optimizing
towards.

Given an input sample pj(t), for each neuron j in the network, its contribu-
tion to to the outputs oi(t) can be described as:

pj(t) =
∑

i

oi(t)wij . (2)

where the elements wij in the matrix [wij ] represents the intermediate prod-
uct between each layer.

Next, we describe some variations and improvements on neural networks
that are of importance for upcoming section describing AI in the SHM field.

4.3.1 Recurrent neural networks

Recurrent Neural Networks (RNNs) are a variation of neural networks that in-
clude a sequential – or looping property. As such, they can be used to predict the
next element of a sequence. They are especially useful for modelling sequences.
The most common and famous RNN variation is called the Long Short-Term
Memory (LSTM) (see [20]), which was designed to address the vanishing gra-
dient problem found in earlier versions of the RNN. The vanishing gradient
problem appears in cases where the weights of the network become so small
that they effectively will not change. As such, the network will not train. This
problem is improved by improving learnable gating mechanisms in the network,
which allows better control over the information flow.
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4.3.2 Residual Networks

Inspired by the architecture of the LSTM, one of the motivating factors for
the Residual Network (ResNet) was to avoid the vanishing gradient problem.
However, it is not the preservation of sequentiality that is the main goal, but
rather to make it easier to train and optimize very deep neural networks. This
is achieved by utilizing skip connections – basically meaning that the neurons
do not only have to communicate between directly neighbouring layers, but can
also communicate between distant layers. Like with the LSTM, there are also
gating mechanisms to control information flow (see [19] and [44]).

4.3.3 Generative Adversarial Networks

The Generative Adversarial Network( (GAN) is in fact not a network architec-
ture, but rather a protocol that two neural networks use to generate new data.
The training data is then used as a statistical baseline for the generation of new
data. Indeed, there are two networks, the generator (generative network) and
the discriminator (discriminative network), both which having different, com-
peting goals. The generative network creates data samples (by guessing from a
sample distribution) that is then evaluated by the discriminative network (which
knows the full distribution). As such, the generator will incrementally get bet-
ter at emulating the true data distribution. This will lead to the generated
samples becoming more and more like the true distribution. This technique can
be especially effective for generating synthetic data (see [15]).

4.4 AI techniques for SHM and vibration analysis

With the recent technological advances in computer vision, artificial intelligence
(AI), and machine learning (ML), we are now witnessing a new era of computer-
based automated systems in the damage detection of facilities, infrastructure,
and vehicles. In this subsection, we review the use of AI and ML for automated
detection of damage in the SHM and OMA spaces.

Combinations of wavelets and ML approaches such as NNs have been ex-
plored in the SHM space, with the most basic approach being to first transform
the vibration signal with DWT, and then using the NN to train on the trans-
formed signal (see [37]).

A recent study presents a novelty-classification framework applicable to SHM
problems. LSTMs are utilized to perform the classification. Then, a GAN and
its generated data objects are used to improve the low-sampled data class clas-
sification (see [43]). Similarly, various deep learning approaches are explored for
automated Structural Damage Detection (SDD) during extreme events. Among
the approaches are ResNet for classification. ResNet is also combined with
a segmentation network for categorizing and locating structural damage (see
[4]). The applicability of Transfer Learning (pre-trained image models) to SHM
problems shows both promise and concern (see [7]). Unmanned Aerial Vehicles
combined with computer vision and deep learning has been shown to be a fast,
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cheap and effective means of SHM for civil infrastructures (see [32]). Data sets
from the construction industry is also used to benchmark machine learning ar-
chitectures, such as in the paper [25] where a large amount (56,000) of images of
cracks in concrete were used for training a novel algorithm for crack detection.
A Deep Belief Network (a NN that only has connections between layers, but
not between neurons) was used, and the configuration of neurons and layers in
the network was self-organized using Adaptive Restricted Boltzmann Machine.

Clearly, recent years has seen much work in the SHM space with regards to
techniques involving AI and computer vision. However, less work can be found
involving AI and vibration analysis from measured sensor data. The work in
this field has been more concerned with traditional statistical and mathematical
models.

However, some work combining ML with vibration analysis in the SHM
space has appeared, recently. An ensemble deep learning technique that com-
bines a Convolutional NN with Dempster-Shafer theory (DST) is proposed, and
called CNN-DST. The framework shows robust performance compared to other
state-of-the-art classification methods (see [50]). GANs have also been used for
synthetic data generation in the context of vibration analysis for SHM (see [27]).

5 Concluding Remarks

Remark 5.1 In the new upcoming project the plan is to test this OMA tech-
nology on the old Herøysund bridge that is going to be demolished in 2024, and
the new Herøysund bridge that is going to become operational in 2023 in Nord-
land county in Norway. The main aim is that this can essentially help us for the
better understanding of bridges with similar issues and take precautionary steps
before the damage in bridges can become serious. In this forthcoming article
we describe more details concerning this important motivation.

Remark 5.2 In the recent PhD thesis [40] some new statistical and mathemati-
cal results were stated and proved, which hopefully can be useful in the required
improvements of the traditional methods in this area of structural health mon-
itoring and artificial intelligence. So far a lot of development has been done in
the bounded systems for Fourier analysis and inequalities. Further development
of new Fourier analysis techniques (see [5]) and inequalities also in unbounded
orthogonal systems (see [1] and [2]) and signal processing problems in non-
separable function spaces (see [36]) can provide or help in the improvement of
the signal processing techniques used for the damage detection in suspension
bridges and related structures.

Remark 5.3 In our new paper we aim to analyze the bridge by using the meth-
ods above and also the new theoretical findings in the Ph.D. Thesis [40]. It is
especially important to note that the wavelet system (see Appendix A) is un-
bounded and the traditional theory of Fourier inequalities do not cover this case.
In the recent Ph.D. thesis also some new statistical methods were stated and
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applied. In particular, non-separable function spaces were used (see [36]), which
can further help to tackle similar problems for bridges, especially in northern
Norway.

Remark 5.4 The literature search reveals that the intersection of AI/ML and
SHM has a long history and many important studies has been conducted in this
field. However, the use of AI/ML combined with vibration analysis applied to
SHM still needs further research.
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A On Wavelet Theory

There exists both a discrete version (comparable with Fourier series) and a
continuous version (comparable with Fourier transforms) of Wavelets Theory.
The discrete version can be described as follows:

The Classical Haar Mother Wavelet φ and first Haar Wavelet ψ are defined
as follows:

φ(t) =

{
1, 0 ≤ t ≤ 1

0, elsewhere
ψ(t) =





1, 0 ≤ t ≤ 1
2

−1, 1
2 < t ≤ 1

0, elsewhere

The translations of φ(t−k), k ∈ R and k : t dilations of φ can be represented
as follows, respectively:

y = φ(t− k)
1

y

k

t

k+1

1

y

t

y = φ(2kt)

2−k

We can also combine Dilation and Translation, as follows:
y

1

t

y = φ(22t− 3)

3
4
1

The series
∑∞

0 αkφk(t) is called the Haar series of f(t). And since the system
{φn} is orthonormal, from the general Fourier theory it follows that f(t) can be
reconstructed exactly as follows:

f(t) =

∞∑

0

αkφk(t)

from its ”basis functions”

φk(t) = 2
n
2 φ(2nt− k)

and the corresponding Haar(-Fourier) coefficients

αk =

∫ 1

0

f(s)2
n
2 φ(2ns− k)ds .

Remark 1 Wavelets are functions that slice data into differing frequency com-
ponents. As such, the scale and resolution will match for each component. This
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means that wavelets can accommodate both large and small features, depending
on the scale and resolution. Wavelets are better at handling signals containing
discontinuities and sharp spikes compared to traditional Fourier methods.

Remark 2 These original Haar wavelets can be variated in various ways e.g.
involving different mother wavelets. The different wavelet families make differ-
ent trade-offs between how compactly the basis functions are localized in space
and how smooth they are. The Daubechies wavelet family is one such exam-
ple. Usually, each wavelet in a family is named after the number of vanishing
moments it contains. A vanishing moment is a rigorous mathematical term
that relates to the number of coefficients a wavelet has. The more vanishing
moments, the higher complexity can be represented by the scaling function.
For applications even more general discrete wavelets are used in different pro-
grams. In the basic cases the function space L2 is used. But for applications it is
sometimes important to consider more general function spaces like Besov spaces.

Remark 3 In recent decades, wavelet methods have shown themselves to be
of considerable use in Fourier analysis and related applications. The strength
of wavelet methods lies in their ability to describe local phenomena more accu-
rately than the traditional expansions in sinus and cosinus can. This is because
wavelet functions are localized in space. Thus, wavelets are ideal in many fields
where an approach to transient behavior is required, for example, in considering
acoustic or seismic signals, image processing, damage detection in bridges (see
[40]). For applications that are even more general, discrete wavelets are used in
even more different applied fields such as astronomy, nuclear engineering, sub-
band coding, signal and image processing, neurophysiology, music, magnetic
resonance imaging, speech discrimination, optics, fractals, turbulence, radar,
human vision, and pure mathematics applications such as solving partial differ-
ential equations ( see e.g. [16]).

Remark 4 As mentioned above, there exists also the continuous wavelet trans-
form, which is an integral transform, comparable with the Fourier transform.
Both of these transforms are very important for various types of applications.
For more information, see also the books referred to in the next remark.

Remark 5 From the first discoveries of Alfred Haar (1885–1933) it has been an
almost unbelievable development of the wavelet theory. The reasons are both
the interest from the mathematical point of view and the applications described
above. In particular, more than 50 books on the subject has been written. Here
we just mention [8],[14],[22],[23],[24],[28] and [30], as well as the papers [10] and
[11], which illustrates various aspects of this broad science and also how many
well-known authors have been involved.
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Abstract

In this paper, we present a comprehensive study of wavelet theory with
a focus on structural damage detection. A new example of the applica-
tion of operational modal analysis (OMA) techniques to a concrete railway
arch bridge located over the Kalix river in L̊angforsen is presented. Re-
sults from the OMA techniques are used for finite element model (FEM)
updating. Further, artificial intelligence algorithms that can be useful for
addressing the problem of missing data sets in structural health monitor-
ing technologies are reviewed.
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cial intelligence, Neural network, Wavelet network and Statistical methods.
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1 Introduction2

As described in the previous article [45], bridge infrastructure in Norway is in3

a stressed situation due to various challenges. Quite recently, in August 2022,4

the Tretten bridge catastrophically collapsed in Norway, where a truck and a5

car became stuck. This bridge is located across the Gudbrandsdalsl̊agen river6

in the Oyer municipality. Luckily, there have been no causalities (see [8]). In7

another incident in May 2022, a bridge in Kvænangen municipality, Nord-Troms8

had serious damage, leading to the closure of a bridge over the important E69

European road [49]. More research is needed in this area so that precautionary10

measures can be taken to prevent such incidences in the future.11
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The discussions in the paper [45] gave rise to the notion of writing this paper.12

The idea to do this paper originated during the discussions in papers [41], [43]13

and [44], where we emphasized the significance of utilising OMA techniques for14

structural health monitoring (SHM). In this paper, we do a comprehensive study15

of wavelet theory with a focus on structural damage detection. Moreover, we16

present a new example where the results from OMA of a concrete railway arch17

bridge located over the Kalix river in L̊angforsen are used for FEM updating.18

This paper is organized as follows: In Section 2, some basic definitions of19

wavelet theory are given and an overview of using wavelets for structural damage20

detection is described, along with the idea of wavelet networks to resolve some21

of the challenges that arise in this process. In Section 3, a new example of the22

application of OMA techniques to a concrete railway arch bridge located over23

the Kalix river in L̊angforsen is presented. Results from the OMA techniques24

are used to develop an FEM-updated model of the bridge. Further, Section 4 is25

dedicated to artificial intelligence algorithms that can be useful for addressing26

the problem of missing data sets in SHM technologies. Finally, in Section 5 we27

present some concluding remarks.28

2 Wavelet Theory and Applications29

Wavelet transforms are one of the most important transforms that have been30

developed in order to overcome the shortcomings of the Fourier transforms. The31

basic concepts of wavelet theory that are crucial for the applications discussed32

in this paper can be found in ( see [18], [19]), and the appendix of the paper33

[45]. More detailed studies can be found in the book [27]. With the use of34

the wavelet transform, one can cut data, functions, or operators into different35

frequency components with a resolution that is matched to their scale. The36

continuous wavelet transform (CWT) W for a time signal x(t) is defined as37

follows:38

W (s, τ) =

∫ ∞

−∞
x(t)ψ(s, τ, t)dt, (1)

where the wavelet function ψ(s, τ, t) includes a scaling variable s, a trans-39

lation variable τ and the time t. Starting with a mother wavelet ψ0 = ψ0(u)40

with the property
∫
ψ0(u)du = 0, the wavelet building blocks ψ = ψ(s, τ, t) are41

defined by (see e.g. [27])42

ψ(s, τ, t) =
1√
s
ψ0(

t− τ

s
). (2)

The amplitude of the wavelet function ψ(s, τ, t) can be controlled by the43

variation in the scaling variable s, whereas the translation factor τ controls the44

location of the wavelet function in time. Therefore, depending upon the spe-45

cific problem, wavelet transforms can be designed accordingly to fit the specific46

problem.47
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Since the building blocks ψ builds an orthonormal system (only for the dis-48

crete wavelet transform), the general Fourier theory is applicable; in particular,49

the inverse transform W−1 of W exists. This gives the re-construction of the50

signal x(t) is defined as follows:51

x(t) = Cψ

∫∫ ∞

−∞
W (s, τ)ψ(s, τ, t)dsdτ. (3)

The wavelet transform described above is an integral transform which can52

be compared with the usual Fourier transform. There is also a discrete wavelet53

transform, which in a sense, is comparable with the usual Fourier series (for54

further details, see also Appendix in [45]). Both are very important for various55

types of applications, e.g. those discussed in this paper.56

In the following sub-sections we cover the topics of damage detection meth-57

ods in structures, data compression, and multi-resolution analysis that are based58

on the further developments of wavelets, which are relevant to this paper.59

2.1 Wavelets in structural damage detection60

Most of the signals in structural damage detection methods are time-based sig-61

nals that are recorded by the sensors. Structures vibrate as a result of natural or62

artificial excitations, such as earthquakes, wind, or artificial excoriations. The63

output signals from these vibrations, such as accelerations, strains, or displace-64

ments, can be recorded. These signals have a non-stationary nature, which65

means that with time, their features change. But these signals can contain66

lots of information, which can be useful for stating the health of the structure.67

Mostly, the signals in the time domain are converted to the frequency domain68

because damage identification is more effective in the frequency domain (see69

[11]).70

Windowing the signal can provide the time localization with Fourier trans-71

forms, but since the window lengths are the same, it does not matter what72

the frequency component in the signal is. On the other hand, depending on73

the frequency components, wavelet transforms enable varied time resolutions.74

In contrast to Fourier Transforms, this results in high accuracy in numerical75

differentiation and flexible implementation of boundary conditions(see [11]).76

Moreover, Fourier sine and cosine functions are not localized in space whereas77

the wavelet functions are localized, which makes such functions using wavelets78

”sparse”. This feature makes many functions and operators using wavelets79

“sparse” (see [18]). In applications like data compression, feature detection,80

and noise removal from temporal signals, wavelets thus become very helpful81

tools. Wavelets are extremely helpful for non-stationary and non-linear prob-82

lems that arise in the identification of structural damage since there are no strict83

limitations on frequency and time resolution.84

For example, wavelet transformations are a useful approach for detecting85

structural degradation (see [23] and [25]). Using wavelet transformations, modal86

parameters for a structure like mode frequency and modal damping can be87

calculated (see [35]). The authors of [33] used wavelet transform of the vibration88
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signals from damaged and undamaged structures , and it was possible to detect89

and locate the damage.90

Another study by the authors employed continuous wavelet transform (CWT)91

and discrete wavelet transform (DWT) techniques to find damage to a tall air-92

port traffic control tower caused by seismic activity. It was found that CWT93

could detect seismically caused damage even if the vibration signals had noise94

in them. In contrast, DWT is more effective than CWT at detecting changes in95

the stiffness of a structure despite being more sensitive to noise.96

In the direction of damage detection using wavelets, researchers around the97

globe are working to develop new methods based on wavelets such as adaptive98

wavelet transform (AWT) ( see [7] and [32]), synchrosqueezed wavelet transform99

(SWT) ( see [4], [14] and [28]), and the empirical wavelet transform (EWT) (100

see [17]). Brief descriptions of these new wavelet transform methods along with101

examples of applications on structures can be found in [44].102

Moreover, continuous development is needed for the development of new103

mathematical methods based of Fourier theory that can address the challenges104

that appear in signal processing for damage detection problems in civil engineer-105

ing infrastructure ( see [1], [2], [5] and [37]) especially under arctic conditions106

(see [41]). A significant amount of data is produced in the field of structural107

damage detection from numerous sensors that are used to look for damage. As108

a result, a lot of data storage space and processing power are needed. We use109

wavelet theory to address this problem in the subsection that follows.110

2.2 Wavelets in data compression111

The Fourier transform is an integral transform, which means that it is defined as112

the integral of the transform function over the entire time or space domain (see113

[44]). As we have seen, the continuous wavelets are integral but consist of other114

types of building blocks, which gives great advantages for various applications.115

The wavelet transform is also reversible, which means that the original signal can116

be reconstructed from the wavelet transform by taking the inverse transform. In117

addition, the wavelet transform is localized in time and space. This means that118

the transform is zero outside of a small neighborhood around the point in time119

or space where the transform is being evaluated. This property is especially120

useful for compression, since it allows us to focus on the local features of the121

signal. In contrast, the Fourier transform is non-local since it is defined over122

the entire time or space domain. As such, wavelets have an inherent sequential123

property, which makes them useful for handling time series. Another strength is124

that the wavelet structure can be directly related to the shape of the underlying125

features of a signal.126

2.3 Multi-resolution analysis127

The DWT described earlier in this section is a multiresolution, band-pass rep-128

resentation of a signal. Wavelet multiresolution analysis(MRA) is a technique129

that mathematically describes the transition between information density levels.130

4

134



Transitioning between levels reduces or increases the information density. As131

such, it can be used to reduce the number of measurements required to repre-132

sent a signal, which basically amounts to compression. Wavelet neural networks133

(WNN) are a type of artificial neural network (ANN) that uses Wavelet MRA134

instead of sigmoid activation functions to represent the weights of the network.135

As described earlier, wavelets are well known for data compression. Yet for136

many applications, such as image processing, a multi-resolution representation137

of the data is required. A multi-resolution representation consists of a set of data138

representations at different scales, or resolutions. A representation at one scale is139

generated by low-pass filtering the data at a coarser scale. The multi-resolution140

representation can then be used to recover the original data by interpolating141

between the representations.142

Wavelets are, as such, a mathematical representation of a signal in which it143

is represented as a set of basis functions. Each basis function can be defined144

by a set of coefficients. Each set of coefficients can be obtained by the discrete145

wavelet transform for the corresponding dyadic dimension (see [15]).146

2.4 Wavelet networks147

Earlier work has shown that wavelet MRA can be used to perform multiscale148

analysis of time series data. Multi-scale analysis is a set of methods for studying149

the statistical properties of a signal at different scales. Different scalings are150

often provided by decomposing a signal into a set of wavelet components. This151

representation can be used as a replacement for the sigmoid activation functions152

in neural networks (see [52]).153

The basic model of a wavelet network takes form as a three-layer network,154

with an input, middle (hidden) and output layer. The computing units of the155

hidden layer are referred to as wavelons, as a contrast to neurons in regular156

neural networks. These computing units dilate and translate the input variables157

using the mother wavelet.158

The equation f(x) =
∑
i wiϕni

(x) describes how the wavelet MRA decom-159

position provides the weights wi for the network. These weights are changed160

when the network learns, or adapts, to the training data. The wavelet basis is161

thus modified according to the training data.162

The result is that the weights of the network are intrinsically tied to the signal163

it is representing (see [3]). The output of the network can be mathematically164

represented as165

gλ(x;w) = ŷ(x) = ω
[2]
λ+1 +

λ∑

j=1

ω
[2]
j ·Ψj(x) +

m∑

i=1

ω
[0]
i · χi (4)

where Ψj(x) is a multidimensional wavelet which is constructed by the prod-166

uct of m scalar wavelets, x is the input vector, m is the number of input nodes,167

while λ is the number of hidden units and ω are network weights, or trainable168

variables. The notations [0] and [2] denote the input and output layers, respec-169
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tively. For further details, see Figure 1 in [3]. The wavelet network is then170

trained using back-propagation.171

A lot of research is going on in the field of wavelet transforms for damage172

detection. Vibrational data from accelerometers is used to estimate parameters173

like mode shapes, mode frequency and modal damping. In SHM of structures,174

OMA approaches are utilized to identify the modal characteristics of the struc-175

ture (see [9], [34] and [43]). In the following section, we present a new example of176

operational modal analysis (OMA) that is used for finite element model (FEM)177

updating of a concrete railway arch bridge.178

3 Application of OMA techniques on a concrete179

railway arch bridge for FEM updating180

In this section, we describe some modal analysis results for a concrete railway181

arch bridge. The bridge is situated over L̊angforsen outside Kalix in Sweden. It182

is a 177 meter long and 60 meter high bridge, built in 1960 (see Figure 1). The183

bridge’s owner, Trafikverket, was interested and wanted to increase the allowed184

speed and also wanted to increase the maximum allowed axis load from 225 to185

300kN. Therefore, vibration measurements were done, as well as measurements186

of strain and displacements with trains passing at different speeds.187

Figure 1: The concrete arch railway bridge over Kalix river in L̊angforsen.
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3.1 Design and construction188

The railway arch bridge over the Kalix River at L̊angforsen has a length of 177.3189

m. The central arch is 89.5 m, while the two side spans are 42 m each. The free190

spans in the bridge have lengths of 13.0 + 12.8 +12.6 + 87.92 +12.6 + 12.8 +191

13.0 m = 164.7 m. The bridge was built in 1960. The arch of the bridge has192

a reinforced concrete slab via underlying longitudinal and transversal concrete193

beams that are connected through fixed columns. A reinforced concrete hollow194

box girder with two hollow chambers makes up the arch. The cross section is195

highest at the connection to the arch abutment and lowest at the arc’s crown.196

The actual train load corresponds to the locomotive’s axle load of 250 kN and197

a distributed load of 72 kN/m.198

3.2 Measurement plan199

It was unclear whether there was sufficient wind to excite ambient vibrations200

sufficiently for modal analysis. Therefore, before each measurement, a T43 ra201

240 railway engine was driven across the bridge at speeds ranging from 35 to202

63 km/h. The engine’s weight, which is divided among its eight wheels, is 72203

tonnes, while its dynamic weight is 79 tonnes. To have the same linear system204

(i.e. bridge alone) as in our FE models and to remove nonlinear effects, such as205

noises from the wheels clattering against the rails and bridge terminals clattering206

against the foundation, the measurements started after the engine passed the207

bridge.208

During the measuring days, the wind suddenly decreased, which steadily209

Figure 2: Measurement plan showing the placement of accelerometers for the
concrete arch railway bridge across the Kalix river in L̊angforsen.
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reduced the signal-to-noise ratio (SNR). Although the SNR was not as good as210

in earlier measurements from 2009, there was still a clear consistency between211

the modeled and measured modal data (mode shapes and frequencies).212

The Triaxial Colibrys SF 3000L accelerometers were securely fastened to213

the bridge using expander bolts. Accelerometers were connected with six-wire214

twisted pair cables to an MGCplus data acquisition system with an ML801B215

amplifier module. All measurements were made at a sample rate of 1200 Hz.216

The six-parameter calibration approach described in [16] and [20] was used217

to calibrate the measurements. Figure 2 shows the measurement plan for the218

placement of accelerometers over the railway concrete arch bridge.219

The Stochastic Subspace Identification (SSI) method was used to carry out220

modal analysis in the ARTeMIS 4.0 software.221

3.3 Finite element model updating results222

To employ structural control and SHM techniques, the FEM must be highly223

accurate. The type of FEM used to represent the structural members and the224

attributes given to these elements both affect how accurate the model is. The225

FEM of the railway arch bridge over the Kalix River at L̊angforsen along with its226

dynamic properties is presented in [36]. The boundary conditions, geometry, or227

material qualities that change as a material ages are not precisely determined228

by the finite element model. Depending on the loading conditions, material229

qualities might cause non-linearity. As a result, the FEM model needs to be230

calibrated using data from actual structures. The key parameters in the finite231

element model of the structure are calibrated to minimize the smallest feasible232

discrepancy between the observed vibrations and the simulated vibrations using233

a numerical optimization technique called FEM updating [43].234

Over the years, a lot of effort has been put into developing various FEM235

models. Two different bridge model types were created using Abaqus/Brigade in236

2011: A comprehensive model with foundations (Type I) and a simplified beam237

element model where the foundations have been exchanged for springs (Type238

II). The advantage of the earlier model is that the anticipated results from it239

could be more reliable and closer to the ”actual results,” but the drawback is240

that the scale of the problem is quite large. Type II has 47,438 components241

compared to Type I, which has 93,910. Moreover, Type II has 282,808 variables242

in comparison to the 438,800 variables in Type I.243

The L̊angforsen Bridge’s FEM update is computed using default settings244

in the main file located in the FEMU/Impl/LangforsenBridge directory and245

the results are shown in Figure 3. It can update the elasticity modulus and246

boundary conditions (which are modeled as springs) at various locations along247

the bridge.248

The primary issues were that the FEM update did not improve the top right249

bending mode shape in Figure 3. The top right bending mode shape in Figure 3250

has a mode frequency of 2.78 Hz, while the measured mode frequency was 3.06251

Hz. The beam element model, which was created to reduce size and increase252

computation efficiency for updating finite element models and dynamic response253
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simulations, may be one of the possible reasons. However, this model had the254

downside that the arch could not undergo torsion. Therefore, continued refining255

of the FEM model and FEM updating software is needed for updating shear256

modulus with some degrees of freedom [46].257

One of the major problems while doing the analysis of this railway arch258

bridge and similar projects like steel truss bridges (see [43]) and high-rise build-259

ings (see [44]) was the calibration of sensors with respect to seasonal differences260

between temperature measurements (winter vs summer measurements). Be-261

cause of extremely low wind conditions, missing data sets were also a problem.262

One possible way to deal with such problems could be the use of artificial intel-263

ligence, as mentioned in our previous article. In the following section, we will264

describe this in detail.265

4 Artificial intelligence and the problem of miss-266

ing data267

The fields of contemporary machine learning and artificial intelligence are fast-268

moving fields. New models such as transformers, residual networks (ResNet),269

and Generative Adversarial Networks (GAN) have been quickly introduced to270

application fields such as SHM. For more details on recent advances, see [45].271

Missing and irregular data are a problem in most fields that use real-life sen-272

sor data. This can be caused by sensors that are not synchronized, events that273

happen irregularly or network latency. In contrast, most machine learning mod-274

els expect evenly sampled data. This introduces the need for interpolation or275

imputation of missing or irregular data. This can, in turn, introduce unwanted276

bias into the model’s latent space.277

Figure 3: FEM updating results for the concrete arch railway bridge over the
Kalix river in L̊angforsen
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The SHM and OMA spaces naturally rely on sensor data. As such, the278

problem is present here (see [21]). In recent years, there has been an influx of279

new machine learning models trying to handle such data problems. We review280

those models of special interest for the applications in this paper.281

A time series is temporal data collected along the axis of time. This implies282

that the data is ordered temporally. A time series is usually a real-valued283

variable. It can be univariate or multivariate, corresponding to one or multiple284

dimensions, respectively. Time series can be regular or irregular, depending on285

whether the values of the variables are collected at equal or unequal time gaps.286

If a time series can be predicted exactly, it is deterministic. If it can only be287

determined probabilistically, it is stochastic.288

Most datasets collected from sensors measuring some real-world phenomena289

exhibit some form of irregularity. This can have several causes, such as different290

sample rates, network latency occurring when data is stored, or simply bugs or291

errors leading to missing or corrupted values. The literature often refers to this292

as missing or corrupted data. However, it is clearly a special case of an irregular293

time series.294

Multi-modal data, such as the case with multiple similar or different sen-295

sors or data sources, can likewise introduce related problems, such as measure-296

ments that are not timed or synchronized. Skewed synchronization can lead297

to decision-making algorithms misinterpreting correlation or causality between298

variables or events.299

The literature traditionally identifies two distinct strategies for handling300

irregular time series (see e.g. [48]). Imputation methods, such as interpolation301

or forward filling, can be used to create a complete time series. This is the more302

traditional and commonly used approach. Second, and contrarily, are models303

that inherently handle irregular data.304

4.1 Statistical methods305

Interpolation between irregular time spans assumes that missing data between306

recorded points behaves predictably. Such an assumption can obviously not307

always hold. Even small spans of missing data can introduce serious amounts of308

unpredictable bias. Other common approaches include padding training samples309

with zero values where data is missing, but this also influences the parameters310

of an algorithm to varying degrees. The time stamp itself can also be used as311

an input feature for the machine learning model.312

More sophisticated approaches are described in the literature, such as in-313

terpolation networks (see [40]). This model uses neural networks to learn the314

interpolation features for a specific time series in latent space.315

Another sophisticated approach is to generate so-called synthetic data. Syn-316

thetic data is basically a form of simulated data that can be combined with317

real-world data. Such data can be advantageous in situations when real data318

samples are scarce, missing or unavailable. In fact, this approach has been suc-319

cessful in applications such as damage detection in electric grids (see [30]) and320

self-driving cars (see [50]). In recent years, the aforementioned GAN model has321
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become a benchmark in many fields for generating synthetic data, especially322

image data augmentation (see [38]). GANs are also fast becoming the preferred323

generative model for time series (see [24]). Generating data for photovoltaic324

solar energy generation has also shown to be a very promising method (see325

[53]).326

4.2 Gated RNNs327

A number of recent developments in gated RNN architectures for time series are328

reviewed. Gated RNNs, such as LSTM and GRU, still stand as the most resilient329

and performant models for time series. However, vanilla versions such as LSTM330

and GRU are not designed to handle irregular data, possibly introducing bias331

and suboptimality.332

4.2.1 t-LSTM333

In particular, some architectures are designed to work with irregular time series334

naturally, without imputation. This design involves modifying the structure of335

the RNN to accommodate the irregular information supply. In [6], the LSTM336

memory cell, rather than the forget gate, is modified. The model is thus able337

to take the time span into consideration, according to the authors, hence the338

name time-aware LSTM(t-LSTM). The input dynamics of the model are not339

complex. In addition to the sample itself, another vector includes the elapsed340

time as a weight transformed by a time decay function.341

4.2.2 Phased LSTM342

In contrast, a more advanced structural change is presented in [29]. This model,343

called Phased LSTM, introduces two new oscillatory gates to the vanilla LSTM344

model, which reduces the number of updates required by the memory cell and345

hidden state. The authors explicitly state that this architecture is intended to346

handle irregular sampling rates. The model has been proven to be more effective347

than vanilla LSTM on long, irregular time series (see [54]).348

4.2.3 Bistable recurrent cell349

In [47], Vecoven et al. took inspiration from how biological neurons can store350

information for arbitrary time spans through a process called bistability. This351

lets the cells themselves remember information from their own past states and352

inputs. This leads to long-term memory that is potentially very useful for long,353

sparse, and irregular time series.354

4.3 ODE-RNN and derivatives355

Neural Ordinary Differential Equation(ODE) with an RNN lets the model have356

continuous-time hidden dynamics. ODE-RNN can naturally handle arbitrary357

time gaps between observations (see [12]).358
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The vanishing gradient problem is inherent to the Backpropagation Through359

Time(BPTT) algorithm, which is used in basic RNNs. As shown in [26], ODE-360

RNNs also suffer from this shortcoming. The same authors also show that361

additional gates found in the LSTM can be included to alleviate the problem.362

The innovations that came with Neural ODEs (see [12]) are utilized to write363

the standard GRU as a difference equation (see [13]). This is further combined364

with a network that updates the current hidden state with incoming observa-365

tions, making the combined model GRU-ODE-Bayes (see [10]).366

4.4 Transformer367

The performant and efficient Transformer architecture has in recent years out-368

performed various neural network-based models in many different fields. Trans-369

formers have been adopted to model time series and have been shown to be370

performing in the top tier. As for irregular time series, in [22], a Transformer371

model was used to compare with their SEFT-Attn model. It was adapted to a372

classification task by mean-aggregating the final representation, and it was then373

fed into a Softmax layer to predict classes.374

4.5 Attention networks375

The attention mechanism, usually connected to transformer models, was investi-376

gated for irregular time series in [39]. The approach is described as representing377

the irregular time series at a fixed set of reference points. An encoder-decoder378

framework is then utilized, such that the encoder produces a fixed-length latent379

representation over the aforementioned reference points. The decoder then uses380

the latent space to reconstruct the set of observed time points. The training is381

done by a Variational Auto-encoder(VAE). The main advantage compared to382

other cutting-edge techniques is that it gives faster training (1-2 orders of mag-383

nitude). This is especially noticeable compared to ODE-RNN methods, since384

they require an ODE solver.385

4.6 Set Functions for time series386

Recent advances in differentiable set function learning allow for models that387

are able to handle irregular and unaligned multivariate time series (see [22]).388

The multivariate time series is encoded as a set. Each data point is treated389

as having three values; the time it was collected, which variable it belongs to,390

and its value. As such, the data points lose their sequentiality, but the time391

information itself is still preserved. Furthermore, the sets are fed into the deep392

sets architecture with an attention mechanism (see [51]).393

5 Concluding Remarks394

Remark 5.1 The research discussed in this paper is also related to some re-395

cent research in more theoretical Fourier analysis [1], [2] and the PhD thesis396
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[42]. We aim to further develop the investigations in this paper as wavelets are397

unbounded systems.398

399

Remark 5.2 In the forthcoming article, we further aim to develop the the-400

ory of wavelet neural networks. We strongly believe that this work will help to401

address the issue of missing data sets for structural damage detection in struc-402

tures similar to the concrete railway arch over the Kalix River at L̊angforsen as403

discussed in this paper.404

405

Remark 5.3 Several experiments have been conducted on the concrete railway406

arch over the Kalix River at L̊angforsen over time. In this paper, we present the407

results for the finite element model updating in Figure 3. Continuous refining408

and development of FEM (see [36]) and FEM updating models is needed for409

updating shear modulus with some degrees of freedom.410

411

Remark 5.4 Multiple promising techniques and models for handling or mit-412

igating missing data have appeared in the AI/ML space recently (see [48]).413

However, investigating performance requires access to both relevant data and414

domain-specific knowledge as well as machine learning knowledge. It is thus415

clear that much work remains in this direction.416

417

Remark 5.5 The research groups at UiT The Arctic University of Norway418

and Lule̊a University of Technology Technology are interested in the new re-419

search problems that result from this difficult challenge of SHM and OMA in420

extreme arctic conditions [41] and [45].421

422

Remark 5.6 It is a close connection between wavelet theory and the type423

of modern Fourier analysis that is described in the new book [31]. We aim to424

further investigate this fact in relation to the problems described above in a425

forthcoming paper.426
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bility methods are not bounded from the martingale Hardy spaces
Hp to the space weak − Lp for 0 < p < 1/(1 + α), where 0 <
α < 1. Moreover, some new related inequalities are derived. As
application, some well-known and new results are pointed out for
well-known summability methods-Nörlund logarithmic means and
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1. Introduction

The terminology and notations used in this introduction can be found
in Section 2.

It is well-known that Walsh systems do not form bases in the space
L1. Moreover, there is a function in the Hardy space H1, such that
the partial sums of f are not bounded in the L1-norm. Moreover, (see
Tephnadze [26]) there exists a martingale f ∈ Hp (0 < p < 1) , such
that

sup
n∈N

∥S2n+1f∥weak−Lp
= ∞.

On the other hand, (for details see e.g. the books [22] and [28]) the
subsequence {S2n} of partial sums is bounded from the martingale

1
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Hardy space Hp to the space Hp, for all p > 0, that is the following
inequality holds:

(1) ∥S2nf∥Hp
≤ cp ∥f∥Hp

, n ∈ N, p > 0.

Weisz [29] proved that Fejér means of Vilenkin-Fourier series are
bounded from the martingale Hardy space Hp to the space Hp, for
p > 1/2. Goginava [8] (see also [21], [14, 15, 16, 17]) proved that there
exists a martingale f ∈ H1/2 such that

sup
n∈N

∥σnf∥1/2 = +∞.

However, Weisz [29] (see also [18]) proved that for every f ∈ Hp, there
exists an absolute constant cp, such that the following inequality holds:

(2) ∥σ2nf∥Hp
≤ cp ∥f∥Hp

, n ∈ N, p > 0.

Móricz and Siddiqi [12] investigated the approximation properties of
some special Nörlund means of Walsh-Fourier series of Lp functions in
norm. Approximation properties for general summability methods can
be found in [3, 4]. Fridli, Manchanda and Siddiqi [6] improved and
extended the results of Móricz and Siddiqi [12] to martingale Hardy
spaces. The case when {qk = 1/k : k ∈ N} was excluded, since the
methods are not applicable to Nörlund logarithmic means. In [7] Gát
and Goginava proved some convergence and divergence properties of
the Nörlund logarithmic means of functions in the Lebesgue space L1.
In particular, they proved that there exists an function in the space
L1, such that

sup
n∈N

∥Lnf∥1 = ∞.

In [5] (see also [13]) it was proved that there exists a martingale f ∈
Hp, (0 < p < 1) such that

sup
n∈N

∥L2nf∥p = ∞.

Counterexample for p = 1 was proved in [20] However, Goginava [9]
proved that for every f ∈ H1, there exists an absolute constant c, such
that the inequality holds

(3) ∥L2nf∥1 ≤ c ∥f∥H1
, n ∈ N.

In [2] and prove that for any 0 < p < 1, there exists a martingale
f ∈ Hp such that

sup
n∈N

∥L2nf∥weak−Lp
= ∞.

In [19] is was proved that for any non-decreasing sequence (qk, k ∈ N)
satisfying the conditions
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1

Qn

= O

(
1

nα

)
where Qn =

n−1∑

k=0

qk(4)

and qn − qn+1 = O

(
1

n2−α

)
, as n→ ∞,(5)

then, for every f ∈ Hp, where p > 1/(1+α), there exists an absolute
constant cp, depending only on p, such that

(6) ∥tnf∥Hp
≤ cp ∥f∥Hp

, n ∈ N.

Boundedness does not hold fromHp to weak−Lp, for 0 < p < 1/(1+α).
As a consequence, (for details see [30]) we get that Cesàro means σαn is
bounded from Hp to Lp, for p > 1/(1 + α), but they are not bounded
from Hp to weak − Lp, for 0 < p < 1/(1 + α). In the endpoint case
p = 1/(1+α), Weisz and Simon [24] proved that the maximal operator
σα,∗ of Cesàro means define by

σα,∗f := sup
n∈N

|σαnf |

is bounded from the Hardy space H1/(1+α) to the space weak−L1/(1+α).
Goginava [10] gave counterexample, which shows that boundedness
does not hold for 0 < p ≤ 1/ (1 + α) .

In this paper we develop some methods considered in [1, 2, 11] and
prove that for any 0 < p < 1, there exists a martingale f ∈ Hp such
that

sup
n∈N

∥t2nf∥weak−Lp
= ∞.

Moreover, we prove that a class of {t2nf} of Nörlund means with
respect to the Walsh system generated by non-increasing and convex
sequences are not bounded from the martingale Hardy spaces Hp to the
space weak − Lp for 0 < p < 1/(1 + α), where 0 < α < 1. Moreover,
some new related inequalities are derived. As application, some well-
known and new results are pointed out for well-known summability
methods-Nörlund logarithmic means and Cesàro means.

The main results in this paper are presented and proved in Section 4.
Section 3 is used to present some auxiliary lemmas, where, in particular,
Lemma 2 is new and of independent interest. In order not to disturb
our discussions later on some definitions and notations are given in
Section 4.
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2. Definitions and Notations

Let N+ denote the set of the positive integers, N := N+∪{0}. Denote
by Z2 the discrete cyclic group of order 2, that is Z2 := {0, 1}, where
the group operation is the modulo 2 addition and every subset is open.
The Haar measure on Z2 is given so that the measure of a singleton is
1/2.

Define the group G as the complete direct product of the group Z2,
with the product of the discrete topologies of Z2‘s.

The elements of G are represented by sequences

x := (x0, x1, ..., xj, ...), where xk = 0 ∨ 1.

It is easy to give a base for the neighborhood of x ∈ G namely:

I0 (x) := G, In(x) := {y ∈ G : y0 = x0, ..., yn−1 = xn−1} (n ∈ N).

Denote In := In (0) , In := G \ In and

en := (0, ..., 0, xn = 1, 0, ...) ∈ G, for n ∈ N.

If n ∈ N, then every n can be uniquely expressed as n =
∑∞

k=0 nj2
j,

where nj ∈ Z2 (j ∈ N) and only a finite numbers of nj differ from zero.
Let

|n| := max{k ∈ N : nk ̸= 0}.
The norms (or quasi-norms) of the spaces Lp(G) and weak−Lp (G) ,

(0 < p <∞) are, respectively, defined by

∥f∥pp :=
∫

G

|f |p dµ and ∥f∥pweak−Lp
:= sup

λ>0
λpµ (f > λ) .

The k-th Rademacher function is defined by

rk (x) := (−1)xk ( x ∈ G, k ∈ N) .

Now, define the Walsh system w := (wn : n ∈ N) on G as:

wn(x) :=
∞
Π
k=0

rnk
k (x) = r|n| (x) (−1)

|n|−1∑
k=0

nkxk
(n ∈ N) .

It is well-known that (see e.g. [22]) Walsh system is orthonormal
and complete in L2 (G) . Moreover, for any n ∈ N,

wn (x+ y) = wn (x)wn (y) .(7)
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If f ∈ L1 (G) let us define Fourier coefficients, partial sums and
Dirichlet kernel by

f̂ (k) :=

∫

G

fwkdµ (k ∈ N) ,

Snf :=
n−1∑

k=0

f̂ (k)wk, Dn :=
n−1∑

k=0

wk (n ∈ N+) .

Recall that (for details see e.g. [22]):

(8) D2n (x) =

{
2n, if x ∈ In
0, if x /∈ In

and

(9) Dn = wn

∞∑

k=0

nkrkD2k = wn

∞∑

k=0

nk (D2k+1 −D2k) , for n =
∞∑

i=0

ni2
i.

Let {qk, k ≥ 0} be a sequence of nonnegative numbers. The Nörlund
means for the Fourier series of f are defined by

tnf :=
1

Qn

n∑

k=1

qn−kSkf, where Qn :=
n−1∑

k=0

qk.

In this paper we consider convex {qk, k ≥ 0} sequences, that is

qn−1 + qn+1 − 2qn ≥ 0, for all n ∈ N.
If function ψ(x) is any real valued and convex function (for example

ψ(x) = xα−1, 0 ≤ α ≤ 1), then sequence {ψ(n), n ∈ N} is convex.
Since

qn−2 − qn−1 ≥ qn−1 − qn ≥ qn − qn+1 ≥ qn+1 − qn+2

we find that
qn−2 + qn+2 ≥ qn−1 + qn+1

an we also get that

(10) qn−2 + qn+2 − 2qn ≥ 0, for all n ∈ N.
In the special case when {qk = 1, k ∈ N}, we get the Fejér means

σnf :=
1

n

n∑

k=1

Skf.

If qk = 1/(k + 1), then we get the Nörlund logarithmic means:

(11) Lnf :=
1

ln

n∑

k=1

Skf

n+ 1− k
, where ln :=

n∑

k=1

1

k
.
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The Cesàro means σαn (sometimes also denoted (C, α)) is also well-
known example of Nörlund means defined by

σαnf =:
1

Aαn

n∑

k=1

Aα−1
n−kSkf

where

Aα0 := 0, Aαn :=
(α + 1) . . . (α + n)

n!
, α ̸= −1,−2, . . .

It is well-known that

(12) Aαn =
n∑

k=0

Aα−1
n−k, Aαn − Aαn−1 = Aα−1

n and Aαn ∼ nα.

We also define Uα
n means as

Uα
n f :=

1

Qn

n∑

k=1

(n+ 1− k)(α−1)Skf where Qn :=
n∑

k=1

kα−1.

Let us define V α
n means as

Vnf :=
1

Qn

n∑

k=1

ln(n+ 1− k)Skf where Qn :=
n∑

k=1

1

ln(k + 1)
.

Let f :=
(
f (n), n ∈ N

)
be a martingale with respect to 𭟋n (n ∈ N) ,

which are generated by the intervals {In (x) : x ∈ G} (for details see
e.g. [28]).

We say that martingale belongs to Hardy martingale spaces Hp (G)
where 0 < p <∞ if

∥f∥Hp
:= ∥f ∗∥p <∞, where f ∗ := sup

n∈N

∣∣f (n)
∣∣ .

In case f ∈ L1 (G) , the maximal functions are also be given by

M(f) (x) := sup
n∈N

(
1

µ (In (x))

∣∣∣∣
∫

In(x)

f (u) dµ (u)

∣∣∣∣
)
.

If f ∈ L1 (G) , then it is easy to show that the sequence F =
(S2nf : n ∈ N) is a martingale and F ∗ =M(f).

If f =
(
f (n), n ∈ N

)
is a martingale, then the Walsh-Fourier coeffi-

cients must be defined in a slightly different manner:

f̂ (i) := lim
k→∞

∫

G

f (k) (x)wi (x) dµ (x) .
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A bounded measurable function a is p-atom, if there exists an interval
I, such that

supp (a) ⊂ I,

∫

I

adµ = 0, ∥a∥∞ ≤ µ (I)−1/p .

3. Auxiliary Results

The Hardy martingale space Hp (G) has an atomic characterization
(see Weisz [28], [29]):

Lemma 1. A martingale f =
(
f (n), n ∈ N

)
is in Hp (0 < p ≤ 1) if

and only if there exist a sequence (ak, k ∈ N) of p-atoms and a sequence
(µk, k ∈ N) of real numbers such that for every n ∈ N :

(13)
∞∑

k=0

µkS2nak = f (n), where
∞∑

k=0

|µk|p <∞.

Moreover,

∥f∥Hp
∽ inf

( ∞∑

k=0

|µk|p
)1/p

,

where the infimum is taken over all decompositions of f of the form
(13).

We also state and prove new lemma of independent interest:

Lemma 2. Let k ∈ N, {qk : k ∈ N} is any convex and non-increasing
sequence and x ∈ I2(e0 + e1) ∈ I0\I1. Then

∣∣∣∣∣∣

22αk+1∑

j=22αk

q22αk+1−jDj

∣∣∣∣∣∣
≥ q1 −

3

2
q3.

Proof. Let x ∈ I2(e0+e1) ∈ I0\I1. According to (8) and (9) we get that

Dj (x) =

{
wj, if j is odd number,
0, if j is even number,

and
22αk+1−1∑

j=22αk

q22αk+1−jDj =
22αk−1∑

j=22αk−1

q22αk+1−2j−1w2j+1

= w1

22αk−1∑

j=22αk−1

q22αk+1−2j−1w2j.
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By using (10) we find that

22αk−1−1∑

j=22αk−2+1

∣∣q22αk+1−4j+3 − q22αk+1−4j+1

∣∣

=
22αk−1−1∑

j=22αk−2+1

(
q22αk+1−4j+1 − q22αk+1−4j+3

)

= (q22αk−3 − q22αk−1) + (q22αk−7 − q22αk−5) + . . .+ (q5 − q7)

≤ 1

2
(q22αk−3 − q22αk−1) +

1

2
(q22αk−5 − q22αk−3)

+
1

2
(q22αk−7 − q22αk−5) +

1

2
(q22αk−9 − q22αk−7)

+ . . .+
1

2
(q5 − q7) +

1

2
(q3 − q5)

≤ 1

2
q3 −

1

2
q22αk−1.

Hence, if we apply

w4k+2 = w2w4k = −w4k, for x ∈ I2(e0 + e1),

we find that
∣∣∣∣∣∣

22αk+1−1∑

j=22αk

q22αk+1−jDj

∣∣∣∣∣∣

=

∣∣∣∣∣∣
q0w22αk+1−2 + q3w22αk+1−4 +

22αk−1∑

j=22αk−1

q22αk+1−2j−1w2j

∣∣∣∣∣∣

=

∣∣∣∣∣∣
(q3 − q1)2w22αk+1−4 +

22αk−1∑

j=22αk−2+1

(
q22αk+1−4j+3w4j−4 − q22αk+1−4j+1w4j−4

)
∣∣∣∣∣∣

≥ q1 − q3 −
22αk−1∑

j=22αk−2+1

∣∣q22αk+1−4j+3 − q22αk+1−4j+1

∣∣

≥ q1 − q3 −
1

2
(q3 − q22αk−1)

≥ q1 − (3/2)q3.

The proof is complete. □
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4. Main results

Our first main result reads:

Theorem 1. Let 0 ≤ α ≤ 1, β be any non-negative real number
and tn be Nörlund means with convex and non-increasing sequence
{qk : k ∈ N} satisfying condition

(14)
q1 − (3/2)q3

Qn

≥ C

nα logβ n
,

for some positive constant C. Then, for any 0 < p < 1/(1 + α) there
exists a martingale f ∈ Hp such that

sup
n∈N

∥t2nf∥weak−Lp
= ∞.

Proof. Let 0 < p < 1/(1 + α). Under condition (14) there exists se-
quence {nk : k ∈ N} such that

22nk(1/p−1)

nkQ22nk+1

≥ 22nk(1/p−1−α)

nβ+1
k

→ ∞, as k → ∞.

Let {αk : k ∈ N} ⊂ {nk : k ∈ N} be an increasing sequence of the pos-
itive integers such that

(15)
∞∑

k=0

α
−p/2
k <∞,

(16)
k−1∑

η=0

(22αη)
1/p

√
αη

<
(22αk)

1/p

√
αk

and

(17)
(22αk−1)

1/p

√
αk−1

<
q1 − q3 − (3/2)q5

Q22αk+1

22αk(1/p−1)−3

αk
.

Let
f (n) :=

∑

{k; 2αk<n}
λkak,

where

λk =
1√
αk

and ak = 22αk(1/p−1) (D22αk+1 −D22αk ) .

From (15) and Lemma 1 we find that f ∈ Hp.
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It is easy to show that

(18) f̂(j) =





22αk(1/p−1)
√
αk

, if j ∈ {22αk , ..., 22αk+1 − 1} , k ∈ N,

0, if j /∈
∞⋃
k=1

{22αk , ..., 22αk+1 − 1} .

Moreover,

t22αk+1f(19)

=
1

Q22αk+1

22αk−1∑

j=1

q22αk+1−jSjf +
1

Q22αk+1

22αk+1−1∑

j=22αk

q22αk+1−jSjf

:= I + II.

Let j < 22αk . By combining (16), (17) and (18) we can conclude that

|Sjf (x)| ≤
k−1∑

η=0

22αη+1−1∑

v=22αη

∣∣∣f̂(v)
∣∣∣

≤
k−1∑

η=0

22αη+1−1∑

v=22αη

22αη(1/p−1)

√
αη

≤
k−1∑

η=0

22αη/p

√
αη

≤ 22αk−1/p+1

√
αk−1

.

Hence,

|I| ≤ 1

Q22αk+1

22αk−1∑

j=1

q22αk+1−j|Sjf (x)|(20)

≤ 1

Q22αk+1

22αk−1/p

√
αk−1

M2αk+1−1∑

j=1

qj ≤
22αk−1/p

√
αk−1

.

Let 22αk ≤ j ≤ 22αk+1 − 1. Since

Sjf =
k−1∑

η=0

22αη+1−1∑

v=22αη

f̂(v)wv +

j−1∑

v=22αk

f̂(v)wv

=
k−1∑

η=0

22αη(1/p−1)

√
αη

(D22αη+1 −D22αη ) +
22αk(1/p−1)

√
αk

(Dj −D22αk ) ,
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for II we can conclude that

II =
1

Q22αk+1

22αk+1∑

j=22αk

q22αk+1−j

(
k−1∑

η=0

22αη(1/p−1)

√
αη

(D22αη+1 −D22αη )

)
(21)

+
1

Q22αk+1

22αk(1/p−1)

√
αk

22αk+1−1∑

j=22αk

q22αk+1−j(Dj −D22αk ).

Let x ∈ I2(e0+e1) ∈ I0\I1. According to α0 ≥ 1 we get that 2αk ≥ 2,
for all k ∈ N and if use (8) we get that D22αk = 0 and if we use Lemma
2 we can also conclude that

II =
1

Q22αk+1

22αk(1/p−1)

√
αk

22αk+1−1∑

j=22αk

q22αk+1−jDj(22)

≥ q1 − (3/2)q3
Q22αk+1

22αk(1/p−1)

√
αk

.

By combining (17), (19)-(22) for x ∈ I2(e0 + e1) we have that

|t22αk+1f (x)| ≥ II − I

≥ q1 − (3/2)q3
Q22αk+1

22αk(1/p−1)

√
αk

− q1 − (3/2)q3
Q22αk+1

22αk(1/p−1)−3

αk

≥ q1 − (3/2)q3
Q22αk+1

22αk(1/p−1)−3

√
αk

≥ C22αk(1/p−1−α)−3

(ln 22αk+1 + 1)β
√
αk

≥ C22αk(1/p−1−α)−3

αβ+1
k

.

Hence, we can conclude that

∥t22αk+1f∥weak−Lp

≥ C22αk(1/p−1−α)−3

αβ+1
k

µ

{
x ∈ G : |t22αk+1f | ≥ C22αk(1/p−1)−3

αβ+1
k

}1/p

≥ C22αk(1/p−1−α)−3

αβ+1
k

µ

{
x ∈ I2(e0 + e1) : |t22αk+1f | ≥ C22αk(1/p−1)−6

αβ+1
k

}1/p

≥ C22αk(1/p−1−α)−3

αβ+1
k

(µ (I2(e0 + e1)))
1/p

>
c22αk(1/p−1−α)

αβ+1
k

→ ∞, as k → ∞.
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The proof is complete. □

In the concrete case we get result for Nörlund logarithmic means
{Ln} proved in [2]:

Corollary 1. Let 0 < p < 1. Then there exists a martingale f ∈ Hp

such that
sup
n∈N

∥L2nf∥weak−Lp
= ∞.

Proof. It is easy to show that

q1 − (3/2)q3 =
1

2
− 3

2
· 1
4
=

1

8
> 0,

and condition (14) holds true for α = β = 0. □

We also get similar result for Vn means:

Corollary 2. Let 0 < p < 1. Then there exists a martingale f ∈ Hp

such that
sup
n∈N

∥V2nf∥weak−Lp
= ∞.

Proof. It is easy to show that

q1 − (3/2)q3 =
1

ln 2
− 3

2
· 1

ln 4
= loge2−(3/2)

loge2
log42

= loge2

(
1− 3

4

)
> 0,

and condition (14) holds true for α = β = 0. □

We also get some new result for the Cesàro means:

Corollary 3. Let 0 < p < 1/(1 + α), for some 0 < α ≤ 0.56. Then
there exists a martingale f ∈ Hp such that

sup
n∈N

∥σα2nf∥weak−Lp
= ∞.

Proof. By routine calculation we find that

q1 − (3/2)q3 = α− α(α + 1)(α + 2)

4
= α · 2− 3α− α2

4
.

It is easy to show that when 0 < α < 0.56 this expression is positive.
Hence, condition (14) holds true for β = 0 and 0 < α < 1. □

Corollary 4. Let 0 < p < 1/(1 + α), for some 0 < α ≤ 0.41. Then
there exists a martingale f ∈ Hp such that

sup
n∈N

∥Uα
2nf∥weak−Lp

= ∞.
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Proof. By routine calculation we find that

q1 − (3/2)q3 = 21−α − (3/2)41−α = 21−α
(
1− 3/22−α

)
.

It is easy to show that when 0 < α < 0.41 this expression is positive.
Hence, condition (14) holds true for β = 0 and 0 < α < 1. □

5. Open questions

Open Problem 1: Let 0 < p < 1/(1 + α), for some 0.56 < α < 1.
Then there exists a martingale f ∈ Hp such that

sup
n∈N

∥σα2nf∥weak−Lp
= ∞

Open Problem 2: Let 0 < p < 1/(1 + α), for some 0.41 < α < 1.
Then there exists a martingale f ∈ Hp such that

sup
n∈N

∥Uα
2nf∥weak−Lp

= ∞.

We also can investigate similar problems for more general summa-
bility methods:

Open Problem 3: Let 0 < p < 1/(1 + α), for some 0.56 < α < 1
and tn be Nörlund means of Walsh-Fourier series with non-increasing
and convex sequence {qk : k ∈ N} , satisfying the condition (14).

Does there exist a martingale f ∈ H1/(1+α)(0 < p < 1), such that

sup
n∈N

∥t2nf∥H1/(1+α)
= ∞?
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