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ABSTRACT  

 

Barriers to healthcare access are widespread in elderly populations, with a major 

consequence that older people are not benefiting from the latest technologies to 

diagnose disease. Recent advances in the automated analysis of speech show 

promising results in the identification of cognitive decline associated with Alzheimer’s 

disease (AD), as well as its purported pre-clinical stage. We utilized automated methods 

to analyze speech recorded over the telephone in 91 community-dwelling older adults 

diagnosed with mild Alzheimer’s disease (AD), amnestic mild cognitive impairment 

(aMCI), or cognitively healthy. We asked whether natural language processing (NLP) 

and machine learning could more accurately identify groups than traditional screening 

tools and be sensitive to subtle differences in speech between the groups. Despite 

variable recording quality, NLP methods differentiated the three groups with greater 

accuracy than two traditional dementia screeners and a clinician who read transcripts of 

their speech. Imperfect speech data collected via a telephone is of sufficient quality to 

be examined with the latest speech technologies. Critically, these data reveal significant 

differences in speech that closely match the clinical diagnoses of AD, aMCI and healthy 

control.   
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1. INTRODUCTION 
  
 

Unequal access to health services is a growing problem for the elderly, and is 

attributable to vast differences in financial resources, geographical location and the 

obvious physical challenge of attending in-person to clinics when old and frail [1]. Such 

inequity in terms of access to basic services thus compounds the effects of aging and 

results in the elderly population not being uniformly able to take advantage of proactive 

health monitoring services and some advances in diagnostic methods. Therefore, this 

study assessed cognitive function using brief conversational tasks administered via the 

telephone, thereby obviating the need for in-person attendance. Detecting cognitive 

decline as early as possible is important to enable planning for the future, increase 

quality of life, reduce care costs and potentially gain added benefit from therapeutic 

drug trials [2]. However, current screening methods typically fail to detect it until such 

time when decline in memory and other cognitive functions are clearly evident. 

 

Early signs of cognitive decline may be evident in speech [3,4] such that it is possible to 

differentiate cognitively healthy from individuals with Alzheimer’s disease (AD) via 

speech alone [5,6] in highly controlled settings, but it is unknown whether this 

generalizes to naturalistic settings. The value of remote screening could be enormous, 

both in terms of earlier detection and for increased access. This study sought to 

establish if it is possible to detect these early signs in speech in a group who are at high 

risk for later conversion to AD [7,8] and often remain undiagnosed due to poor 

sensitivity of traditional screening tests (i.e., amnestic mild cognitive impairment 
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(aMCI)), by leveraging natural language processing (NLP) methods on speech collected 

in naturalistic settings. Specifically, we asked three questions: (1) What are the clinically 

relevant language features that best differentiate mild AD, aMCI and healthy controls? 

We hypothesized that speech coherence or intelligibility would differentiate control 

participants from AD participants, with the aMCI group intermediate between the two [9-

11]. (2) How well do NLP features and machine learning methods classify the three 

groups? We hypothesized that our models would be able to separate the three groups 

from one another, with the healthy controls most obviously different from the individuals 

with AD, and the aMCI group intermediate between the other two. Previous studies in 

controlled settings [5,6] have reported models capable of distinguishing healthy, aMCI 

and AD groups with good measures of separability (i.e., area under the receiver 

operating characteristic curve (AUC) in the 0.70 range. The higher the AUC, the better 

the model is at predicting who is in which group). We expected to find similar measures 

of separability using our real-world data, collected under significantly less controlled 

conditions. (3) Can automated methods provide more accurate diagnostic predictions 

than traditional dementia screening tools or expert humans? We hypothesized more 

accurate group categorizations than traditional screening tools and experts (with no 

contextual knowledge beyond a speech sample), due to highly sensitive machine 

learning techniques.  

 

2. MATERIALS & METHODS 

Here we report how we determined our sample size, all data exclusions, all 

inclusion/exclusion criteria, whether inclusion/exclusion criteria were established prior to 
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data analysis, all manipulations, and all measures in the study. No part of the study 

procedures or analyses was pre-registered prior to the research being conducted. 

  

2.1 Participants 

Participants (N = 91)1 were community-dwelling English speakers, recruited via the 

Memory Disorders Program (MDP) at Georgetown University (Table 1). One third 

carried a diagnosis of mild AD, one third amnestic MCI, and one third were cognitively 

healthy. Clinical diagnoses of AD [12] and mild cognitive impairment [13] followed 

established criteria. Since mild cognitive impairment is a heterogeneous clinical 

syndrome, individuals with aMCI (single or multiple domain [14]) were included to 

reduce clinical variability as this subgroup is at greatest risk for conversion to AD [7,8]. 

Control participants had no significant medical history or subjective cognitive complaint. 

All participants had Mini Mental State Exam (MMSE [15]) scores within the last 6 

months, had adequate hearing, and no self-reported history of neurological disease 

(e.g., Parkinson’s disease or epilepsy), drug or alcohol abuse, psychiatric 

hospitalization, current cancer treatment, or stroke or heart attack within the last year. 

Individuals with minor physical ailments (e.g., diabetes with no serious complications, 

essential hypertension) were included. Participant recruitment, written informed consent 

(with authorized representatives also providing consent for participants in the mild AD 

group), medical history and administration of the MMSE were conducted in the 

Georgetown University MDP prior to the telephone interview. Only contact details for 

each participant were shared with the telephone interviewer, who remained blind to 

 
1 An a-priori analysis indicated that, to achieve power of .80 and a moderate effect size (f2=.40), a total 
sample size of at least 66 would be required to detect a significant model (f(2,63)=3.14,p<.05). 
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participant diagnostic group. The study was approved by the institutional review boards 

of Marymount University and Georgetown University (MU IRB#260).  All 

inclusion/exclusion criteria were established prior to participant recruitment. 

 

INSERT TABLE 1 HERE 

 
2.2 Materials & Procedures 

The telephone interview (approx. 20 mins) (i) collected speech samples and (ii) 

administered a screening test for cognitive decline (in counterbalanced order). 

Telephone Screener: A modified version of a telephone based screening instrument for 

cognitive decline - the  Telephone Interview for Cognitive Status [16] - was employed 

(TICS-M). The TICS-M is modeled after the MMSE in providing a brief, global measure 

of cognitive functioning, and has good sensitivity and specificity to detect dementia [17], 

but its utility to screen for milder cognitive syndromes is unknown [18,19]. Legal 

copyright restrictions prevent public archiving of the TICS-M and MMSE which can be 

obtained from the copyright holders in the cited references. 

Speech Samples: Participants generated as many ‘animal’ words as possible in one 

minute (semantic word fluency), and described a favorite memory from childhood (free 

speech) (Table 1).  

Participants were telephoned at home via the Cisco Jabber interface on a laptop 

computer, and the semantic word fluency and free speech portions of the interview were 

recorded onto the device and later uploaded to a secure cloud-based application. 

Spouses/companions were asked to remove visual memory aids (e.g., calendars) and 

turn off audible distractors prior to the interview. The speech samples were digitally 



7 

recorded and transcribed by the first author or a trained research assistant (intraclass 

correlation coefficient = 0.988) to check for accuracy and screen for personally 

identifying information. (The conditions of our ethics approval do not permit public 

archiving of anonymized study data. Readers seeking access to the data should contact 

the corresponding author. Access will be granted to named individuals in accordance 

with ethical procedures governing the reuse of sensitive data. Specifically, requestors 

must meet the following conditions to obtain the data: completion of a formal data 

sharing agreement; approval by the Marymount and Georgetown University IRBs).  

 

2.3 Data Analysis 

A range of natural language features were extracted from participant responses in the 

free speech task and the semantic fluency task. In general, features were extracted 

automatically using custom written Python code and various packages for data 

management, statistical calculations, NLP analyses, and word vector creation. For each 

classification setting, the most predictive and clinically relevant features were chosen to 

train and test machine learning models. The best performing models are reported in the 

Results. 

 

2.3.1 NLP Feature Selection 

For the free speech task, three classes of NLP features (a set of 73 total) were 

extracted, namely (i) word-level (lexeme), (ii) sentence-level (syntactic), and (iii) 

meaning (semantics) of expressions [20]. The first class of language features included 

simple counts of word tokens and word types (i.e., unique words), and slightly more 
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sophisticated metrics (type to token ratio (TTR; a measure of lexical richness), content 

density (a measure of actual information spoken, as opposed to filler words), Brunét’s 

Index (a measure of lexical richness less affected by text length), Moving Average Type 

Token Ratio (a version of TTR that is calculated on a sliding window of the text and is 

less affected by text length) Honoré’s Statistic (emphasizes words that are only spoken 

once), and counts and frequencies of specific parts of speech that were computed with 

NLTK’s standard TreeBank tagger (https://www.nltk.org/). Some of these features are 

more impacted by text length as longer utterances will receive a higher score. Since 

poverty of speech is a common symptom in conditions such as AD, features that take 

this into account tend to be more highly discriminable of the AD group than those that 

do not have such an effect.  

The second class of language features were syntactic features, or those that seek to 

measure the complexity and arrangement of sentences. These included measures 

extracted from dependency parses or speech graphs. Examples of such metrics are 

distances of dependencies in parses or the number of nodes, edges, or loops in speech 

graphs.  

The third class, semantic features, were computed in a few different ways. Generally, 

semantic analyses are performed using high-dimensional vector space word 

embeddings of text. These embeddings operate under the premise that the meaning of 

a word is derived from the context in which it tends to appear. Words that tend to 

appear in similar contexts are semantically related and thus should be close to each 

other in a derived vector space. Examples of word embedding techniques are Latent 

Semantic Analysis (LSA; [21]), word2vec [22], Embeddings from Language Models 
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(ELMo; [23]), and Bidirectional Encoder Representations from Transformers (BERT; 

[24]). LSA performs a singular value decomposition on a sparse type-to-document 

matrix to obtain lower dimensional vectors of each of the types. Word2vec is a neural 

network-based word embedding model trained on a large corpus of text with the goal of 

predicting either a word given its context or the context surrounding a word given the 

word. ELMo and BERT are deep neural language models that are built on long short 

term memory neural language models and transformers, respectively. Metrics are 

computed on the cosine distances between consecutive embeddings or windows of 

embeddings, or by calculating the slope of coherence through the text. For end-to-end 

models like BERT, the entire network can be harnessed and subsequently tuned with a 

new layer to produce predictions. 

For the semantic fluency task, a task-specific feature set (comprising 26 features) was 

extracted from participant responses. Traditionally, the semantic fluency task is 

administered and scored by trained humans who count the number of unique items (in 

this case, animals) spoken. More detailed analyses of responses to this task have been 

proposed by researchers that can provide additional insights into human cognitive 

performance [25-28]. Classically, Troyer et al. [29] proposed two metrics that measure 

important components of the animal fluency task - clustering (i.e., producing words 

within the same subcategory of animals, like safari animals or house pets) and 

switching (i.e., changing between clusters). This approach can be implemented with 

hand-coded categories of animals or by using semantic distances. Using semantic 

distances entails computing the cosine distance of the word embedding of each 

exemplar to the next and setting a threshold of belonging to a category or not. 
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A number of features were extracted from the semantic fluency task, namely the 

number of unique animals spoken, the number of categories produced (employing both 

the hand-coded Troyer categories as well as a BERT [24] word embedding-based 

thresholding method where cosine distances between consecutive BERT 

representations of animal words are computed and those distances that fall below a 

predetermined threshold are considered a jump to a new category of animals), the 

average number of animals per category, the average cosine similarity between 

successive animals and successive categories, and the average vector length of each 

exemplar’s word embedding.  

Each time the average was computed, so too was the standard deviation, minimum, 

and maximum. The length of the animal vectors has been shown previously to be an 

indicator of the “usualness” of the animals spoken [30]. Researchers in NLP have 

shown that words that occur in many different contexts, and thus have less meaning 

(such as stop words or other commonly used words), move around in vector space 

during computation and are shortened with each move due to an averaging 

computation. Thus, the longer the vector representation is, the more unusual the word 

tends to be [31]. 

 

The discriminability of each feature was determined by multivariate statistical analyses 

(specifically f-statistics) and feature importance in machine learning models. 

Specifically, the NLP features with an f-statistic greater than 5.0 (range of f-statistics for 

features in all prediction scenarios: free speech, 0.00 - 11.72; animal fluency, 0.00 - 

35.01) were initially chosen for experimentation and the machine learning models 

further narrowed down this choice by eliminating those features that were not critical for 
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increasing model performance (e.g., due to multicollinearity with other features). 

Features were computed for the entire dataset, but each prediction setting followed its 

own distinct feature selection process on its corresponding labels and data. 

 

2.3.2 Classification 

We sought to answer how well contemporary NLP methods can differentiate the three 

groups and whether machine learning methods can inform further about the relative 

importance of language variables in different stages of decline. When performing these 

experiments, some models overfitted the samples’ idiosyncratic characteristics such 

that some features were statistically important in differentiating groups, but lacked 

clinical relevance (e.g., amount of numbers used in free speech) and thus were omitted 

to improve potential generalizability.  

 
For each classification setting, we first performed a feature selection process that 

narrowed down our feature set to those that had the highest discriminability, yet were 

also clinically relevant (detailed in the first section of the Results). Then we used a grid 

search methodology to optimize the hyperparameters, and investigated 7 different 

machine learning model architectures (specifically a Decision Tree Classifier, Extra 

Trees Classifier, Gradient Boosting Classifier, K Neighbors Classifier, Logistic 

Regression Classifier, Random Forest Classifier, and Support Vector Classifier), 

including those with 0-4 tunable hyperparameters with 1-13 options each. The grid 

search was performed with the goal of not just building the best model, but rather 

understanding the relevance of features and how they may be used for the detection of 

dementia. If certain features were consistently implicated in each model, it would be 
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clear that they were not simply idiosyncratic to a particular algorithm. Furthermore, it 

was important to explore which model and hyperparameter combinations tended to 

work best with the distribution of the chosen features. Decision Tree Classifiers, Extra 

Trees Classifiers and Gradient Boosting Classifiers worked particularly well, and placed 

consistently in the top 10% of model architectures for each scenario, as they assume no 

prior distribution of the data, do not depend on probability distribution assumptions, and 

allow the data to be partitioned on different combinations of the chosen features. They 

also tend to have excellent accuracy with high-dimensional datasets.  

 
In the Results sections, we report statistics of the accuracy of not only the top 

performing model, but also the top 10% of the models tested so as to offer transparency 

around the level of accuracy consistency in the overall results of the grid search. We 

used leave-one-out cross-validation in each setting as this type of cross-validation 

allowed us to simulate how the model would predict a new participant after being fully 

trained on our initial dataset.  

Codes for feature extraction and model training can be accessed at: 

https://github.com/ckchandler/Increasing-Access-to-Cognitive-Screening 

 
3. RESULTS 

  

3.1 What are the clinically relevant language features that best differentiate 

between the three groups? 
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Aberrations in meaning and language have been identified as critical indicators of 

cognitive decline in both aMCI and AD [9,19], thus we focused on text-based analyses. 

All NLP features with significant f-values in group comparisons for both the free speech 

task and the semantic fluency task are listed in Table 2.  

For the free speech task, certain word-level features consistent with poverty of speech 

(raw count of nouns, determiners, present participle verbs, and modals) had statistically 

significant f-values when comparing the AD group to the cognitively healthy group and 

to the aMCI group. (A modal is a type of verb that is used to indicate modality such as 

likelihood, requests, suggestions, and so on – for example, can, could, may, and might; 

the frequency is computed by dividing the number of modals spoken by the total 

number of words spoken). 

Other word-level features (frequency of modals, past participle verbs, non third person 

singular verbs, and all verb types) had statistically significant f-values only when 

comparing cognitively healthy participants to those with an aMCI diagnosis. For 

syntactic features, the mean distance of all dependencies between words in a sentence 

in a participant response served as a discriminable feature for the AD group when 

comparing to both the cognitively healthy group and the aMCI group, but did not 

significantly differentiate the cognitively healthy group from the aMCI group.  The 

semantic feature that proved to be most discriminable in our dataset was the mean 

coherence of a 4 word sliding window of the 300-dimensional word2vec word 

embeddings based on 3 million words from the Google News corpus. The window size 

(4 words) is a hyper-parameter that is generally tuned to be whatever size produces the 

most accurate representation of pieces of text; at a high level, each window should 
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represent a distinct phrase so as to smooth out the noise that would be produced if 

comparing consecutive words. We found that this feature discriminated the AD group 

from both the cognitively healthy group and the aMCI group, but failed to do the same 

with discriminating the aMCI group from the participants labeled as cognitively healthy. 

For the semantic fluency task, the number of unique animals spoken was the most 

discriminable feature overall; it was the highest for separating AD from cognitively 

healthy, fairly high when comparing aMCI to AD, and less high - yet still significant - for 

separating cognitively healthy from aMCI. The same can be said for the number of 

categories, based on the hand-coded Troyer et al. [29] categories, but with slightly less 

discriminatory power. Finally, with even less discriminatory power, yet still a significant 

amount, the maximum number of animals spoken per category (i.e., the maximum 

number of animals spoken consecutively from one category), discriminated all groups 

fairly well. 

 
INSERT TABLE 2 HERE 

 

3.1.1 Task Specificity  

Another finding of the feature extraction portion of our work is that there is no single 

language feature that is consistent between differing tasks that may be discriminable for 

varying levels of cognitive decline. As an example, we discuss coherence in language 

and how it varies between tasks. Previous work by our team has found that coherence 

in recalling a short story is generally lower in a group of individuals with varying levels of 

mental illness (see [32] and [33] for an overview of this work) and that higher coherence 

in story recalls generally received higher expert ratings of recall as well. In the current 



15 

study, we found the opposite: that lower coherence actually belonged to the cognitively 

healthy group, then the aMCI group, and finally the AD group had the highest cohesion. 

The methodology was the same in both approaches - the average cosine distance 

between consecutive windows of size 4 was computed for each response. There 

certainly will be differences when coherence is operationalized in different ways (see 

[34] for an overview of different approaches to computing coherence), but this is not a 

factor here. The only difference between the two experimental settings was the task. 

One is a constrained task where the participants try to remember specific details of a 

short story recently told to them, and the other is free speech where the response is 

given in a narrative manner, relying on long-term autobiographical memory, and likely 

retold with greater emotion and enthusiasm. The higher coherence of the AD group in 

this dataset could be attributed to more repeated words and less detail overall. To 

illustrate, we include portions of text from a participant from the AD group with the 

highest computed coherence to show how a wordy response that consists of repeated 

statements would generate a high coherence: 

  

“...And uh, it wasn’t a project actually it was a it was a um. It, it was a, it was a 

house. Um. It was a not a house, it was a it was a um, a development… She, she 

never learned to read and write. Um, but she um uh, I don’t, I don’t think she ever 

learned to read and write, but she um, uh she may have. I, I think she may have 

learned to, to read and write..." 
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Since this phenomenon is between two different studies and thus two different 

participant pools, we also explored whether the coherence between individual 

exemplars in participants’ animal fluency responses correlated with the coherence of 

participants’ childhood memory response. As noted earlier, these are two dissimilar 

tasks, tapping quite different cognitive processes, and it is perhaps unsurprising that we 

found a low correlation between the two features (Pearson r correlation of 0.26). Thus, 

we conclude that there is little commonality across tasks and advocate for task-specific 

measures and methods of computing such measures (e.g., either using larger window 

sizes to account for long, drawn out phrases, or removing verbatim repeated clauses in 

the case that repeated words and more verbosity in general are expected). We further 

advocate here that researchers working with computational methods must be explicit in 

reporting the manner in which their metrics were computed, especially in the cases 

where there do not yet exist standardized methodologies.  

  

3.2 How well do language features and machine learning methods classify the 

three groups? 

  

3.2.1 Classifying Cognitively Healthy, aMCI, and AD 

In the setting of classifying the three groups together as an assay of level of cognitive 

decline, the top three features chosen for machine learning modeling were the average 

coherence in free speech, and the number of unique animals and categories spoken in 

semantic fluency.  



17 

We used these three features to train a  model for classifying cognitively healthy, aMCI, 

and AD participants. The best model in this experimental setting was a Decision Tree 

Classifier with a maximum tree depth of 3. This model was 62% accurate overall when 

performing leave-one-out cross-validation (Table 3; Appendix A). Figure 1 shows the 

ROC curve of each of the three groups.  

 
INSERT FIGURE 1 & TABLE 3 HERE 

  

The model was most accurate at predicting cognitively healthy, then aMCI, and was 

least accurate in the AD setting.  

 
As a method to visualize the diagnostic groups based solely on these three features, we 

applied Principal Component Analysis (PCA) to the data. Figure 2 (top left panel) shows 

density plots of the first dimension of this reduction, separated by diagnosis. The 

distributions are ordered as expected, with the cognitively healthy and AD groups at the 

two extremes. The left edge of the aMCI peak aligned with the peak of cognitively 

healthy group, while the right edge of the aMCI peak aligned with the peak of the AD 

group. If an aMCI participant was incorrectly predicted as cognitively healthy, that is 

because they were within the healthy range for this sample. Similarly, if an aMCI 

participant was incorrectly predicted as a member of the AD group, that is because they 

performed more within the AD range. For these individuals, this prediction “error” could 

signpost a future conversion to AD.  

 
Of the models tested, the top 10% of the models were on average 53% accurate (SD 

0.03, minimum 51%, maximum 62%). 
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3.2.2 Classifying Cognitively Healthy against “Cognitive Decline”  

Next, we tested the setting of classifying the cognitively healthy group against cognitive 

decline in general (i.e., aMCI and AD participants were treated as belonging to the 

same group). Since coherence was not a significant indicator for differentiating 

cognitively healthy from aMCI, in this setting, we replaced coherence with the frequency 

of modals in the language. This feature, plus the number of unique animals spoken and 

the number of categories spoken were used to train a machine learning classifier to 

classify cognitively healthy against cognitive decline. The best model found in this 

experimental setting was an Extra Trees Classifier (a classifier comprising 32 Decision 

Trees) with a maximum tree depth of 10 and an entropy criterion for separating the data 

into subsets with more homogeneity within individual groups (Table 3; Appendix A). This 

model was 87% accurate overall when performing leave-one-out cross-validation and 

had an AUC of 0.86.   

 

Of the models tested, the top 10% of the models were on average 84% accurate (SD 

0.02, minimum 81%, maximum 87%). 

 

3.2.3 Classifying Cognitively Healthy and aMCI 

The next machine learning model implemented was that of distinguishing cognitively 

healthy from aMCI. This setting is where the dichotomy between the most accurate 

model and the most clinically relevant model was apparent. When allowing the machine 

learning model to choose the best features to differentiate the two groups, it 

overwhelmingly favored features such as cardinal (number) counts and frequencies, the 
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frequency of non-third person singular verbs and wh-adverbs (e.g., when, where, why), 

and the number of unique animals spoken in semantic fluency. This model achieved an 

accuracy of 87% and an AUC of 0.88, which is high compared to other studies (e.g., 

[6]). These features are not backed by literature or clinical relevance, so we report 

another model that, while less accurate on this dataset, has the potential to be more 

generalizable and have greater translational value. 

  

The clinically relevant model for this comparison was one based only on the number of 

unique animals and categories generated in the fluency task. Interestingly, the clinically 

relevant features extracted for the cognitively healthy and aMCI from the free speech 

task did not add additional information that was distinct from the differences derived 

from the fluency task. The best model in this setting was a Decision Tree Classifier with 

a maximum tree depth of 4. It achieved an accuracy of 80% and an AUC of 0.78 (Table 

3; Appendix A). The model correctly predicted 86% of the cognitively healthy group and 

75% of the aMCI group. Figure 2 (top right panel) shows the PCA dimensionality 

reduction of these two groups performed on their top features as determined by the f-

value.  

  

Of the models tested, the top 10% of the models in the clinically relevant feature setting 

were on average 76% accurate (SD 0.02, minimum 71%, maximum 80%). 

  
  

3.2.4 Classifying Cognitively Healthy and AD 

The best model for differentiating cognitively healthy from AD was based on the number 

of turns spoken by the participant in the free speech task (broken up by prompts to 
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continue speaking by the interviewer; some participants had one turn, but others 

needed to be asked many follow-up questions to continue talking), and the number of 

repeated animals, categories, and the average and maximum length of the animal word 

vectors spoken during the semantic fluency task. The best model was Extra Trees 

Classifier with 32 estimators, a maximum tree depth of 5, and an entropy criterion. It 

achieved an accuracy of 88% and an AUC of 0.90 (Table 3; Appendix A). Out of the 29 

cognitively healthy participants, 2 were predicted as AD and of the 30 AD participants, 5 

were predicted as cognitively healthy. Figure 2 (bottom left panel) shows the PCA 

dimensionality reduction of the data used in the machine learning model.  

 
Of the models tested, the top 10% of the models were on average 87% accurate (SD 

0.01, minimum 87%, maximum 88%). 

  
 

3.2.5 Classifying aMCI and AD 

Finally, we discuss the setting of differentiating aMCI from AD. This is of critical interest 

for clinical translational value as those with aMCI are at an increased risk to convert to 

AD. Thus, incorrect predictions for the aMCI group may indicate people who are more 

likely to convert to AD. A Decision Tree Classifier with a maximum depth of 3 based on 

the mean coherence in free speech and the number of unique animals, categories, and 

maximum coherence between successive animals in semantic fluency resulted in an 

impressive 79% accuracy and 0.74 AUC (Table 3; Appendix A). Figure 2 (bottom right 

panel) shows the PCA dimensionality reduction of these two groups alone performed on 

their top features as determined by the f-value.  
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 INSERT FIGURE 2 & TABLE 4 HERE 
 

 
Of the models tested, the top 10% of the models were on average 75% accurate (SD 

0.03, minimum 69%, maximum 79%). 

   

  
3.3 Can natural language processing models provide more accurate diagnostic 

predictions than traditional dementia screening methods? 

  

3.3.1 Comparison to human judgement 

Blind to diagnosis, co-author R.S.T., a neurologist specializing in the diagnosis of 

dementia, labeled the transcript of each participant’s free speech response as belonging 

to one of the three groups. The resulting labels assigned to each participant were 

49.45% accurate (Appendix B). We present two comparisons of the human 

classification to our machine learning models. The first used our best machine learning 

model (based on both the free speech task and the fluency task; labeled ML in Figure 

3), whereas the second used a separate model based only on the free speech task 

(labeled ML (fs) in Figure 3) to more accurately compare to the resources available for 

R.S.T’s labeling.  

The human classifications were less accurate than our best model in predicting who 

was cognitively healthy (58.6% accurate versus 75.8% in the machine learning model) 

and aMCI (34.4% accurate versus 65.6% in the machine learning model). However, the 

human was more accurate in predicting AD than the machine learning model (56.7% 

accurate versus 43.3% in the machine learning model). 
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When comparing the human classifications with the machine learning model based only 

on the free speech data, R.S.T was more accurate in identifying cognitively healthy 

participants than our free speech based model (24.1%), but less accurate for aMCI, 

(46.87%) and AD (63.3%). This suggests that the free speech portion of our testing 

battery held the most signal in differentiating aMCI from AD, but very little signal in 

classifying cognitively healthy. The fluency portion carried much of the diagnostic 

accuracy in identifying cognitively healthy, but less so in the classes with higher degrees 

of cognitive impairment. 

  

INSERT FIGURE 3 HERE 

 

3.3.2 Comparison to traditional screening tools 

Several different dementia screening tools are used in clinical practice, but here we 

report on one common and widely-used paper-and-pencil screener (the Mini-Mental 

State Examination, MMSE; [15]) and a similar screener designed to be administered 

over the telephone (the modified Telephone Interview for Cognitive Status, TICS-M; 

[16]). We compared our automated approach to the MMSE and TICS-M in their ability to 

classify diagnostic groups, and found that our approach generally outperformed the 

traditional screening tests. Furthermore, the MMSE categorization had a stronger 

correlation with participant education level (correlation between education and group 

label: r = 0.271, p = 0.010). The TICS-M and the machine learning model 

categorizations were not significantly correlated with education (r = 0.093, p = 0.387 and 

r = 0.095, p = 0.375, respectively). 
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The Modified Telephone Interview for Cognitive Status 

We used the Knopman et al. [18] thresholds to differentiate our three groups. The point 

cutoffs for the AD group is between 0 and 27 (inclusive), the aMCI group is between 27 

and 31 (inclusive), and then the cognitively healthy group is any score above 31. 

The confusion matrix for this cutoff on our participants’ scores is contained in Appendix 

B. This shows a high skew towards cognitively healthy predictions.  

  

As our sample was highly educated, we sought to control for this effect on predictions 

with an education scaling factor. Following the guidelines set forth by Knopman et al. 

[18], we adjusted for participant education level by not adding any points to the raw 

TICS-M score for participants with between 11 and 15 years of education and 

subtracting 2 points for subjects with 16 or more years of education. Surprisingly, 

accuracy declined for the AD group when scaling for education as three previously 

correctly predicted AD participants were mislabeled into the aMCI group. The 

cognitively healthy and aMCI groups were unaffected. 

  

Our best machine learning model for classifying cognitively healthy, aMCI, and AD was 

more accurate than the TICS-M test. The TICS-M test was 45% accurate on our 

participants, even when scaled for education effects. The TICS-M test overwhelmingly 

classified the participants as cognitively healthy, whereas there was a more even 

spread of predictions in the machine learning approach. 
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Mini-Mental State Examination 

We again explored various cutoffs for the MMSE and chose to report the best 

performing cutoff on our dataset, which was set forth by Chapman et al. [35]. (The AD 

group was between 0 and 24 (inclusive), the aMCI group was between 25 and 26 

(inclusive), and the cognitively healthy group was any score above 27. 

Appendix B contains the confusion matrix using this cutoff for the three groups. The 

MMSE test was 42% accurate on our participants using the Chapman et al. [35] cutoffs. 

Our machine learning classification model achieved higher accuracy than the MMSE on 

our participants.  

  

4. DISCUSSION 

 

Reliably recognizing cognitive decline at the earliest stage is difficult [36, 37], yet recent 

advances in NLP and machine learning have made considerable progress in this 

regard. The ultimate goal is to translate this progress into a screening and monitoring 

tool that can facilitate equal access for older people with memory concerns, regardless 

of their location, mobility status and so on. While some studies (e.g., [5]) have reported 

impressive accuracy in the detection of cognitive decline using these technologies, the 

vast majority of these have recorded speech in controlled, laboratory-based settings, 

which may not generalize well to the elderly living in the community who are unwilling or 

unable to attend an in-person clinical evaluation. Using low cost methods, the current 

study demonstrated that NLP and machine learning could be successfully applied to 
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speech of variable quality, recorded remotely from telephone conversations conducted 

from participants’ homes.  

 

We do note however, that the participants in our study were recruited from a database 

of research volunteers who were relatively homogeneous in terms of important 

demographics such as race and education (being predominantly White and highly 

educated). This is a widespread characteristic of clinical research [38], which notably 

limits the generalizability of findings. Furthermore, machine learning models tend to 

learn from and propagate societal biases between demographic groups [39] and off-the-

shelf NLP models themselves are known to inflate disparities [40]. This is a critical issue 

that the entire field is facing [41], thus we are careful not to make generalization claims 

and acknowledge that further widespread work must be done to decrease this inequity. 

 
Another limitation of this study is the small sample size. In many computational studies 

in the clinical domain, only rarely is there a dataset large enough to have a separate 

evaluation set distinct from the training and validation sets used to train the models [42]. 

In our case, we chose to implement leave-one-out cross-validation as these results will 

be the best estimate of how the model would behave when fully trained and applied to 

new data. Although this sort of cross validation is a common approach with small 

datasets (e.g., [6] [43]), we do note that it has issues with overfitting and variable test 

results.      

 
Our machine learning predictions, based on a small amount of speech data recorded in 

suboptimal conditions, showed strong AUCs for classifying groups, and outperformed 
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the judgements of an expert clinician and two traditional screening tests. Our intent with 

these analyses was not to pit “human versus machine,” but rather to demonstrate that a 

machine learning approach can detect subtle diagnostic differences from just small 

samples of speech, and as such, could be a potential adjunct screener in a clinician’s 

battery to reach those individuals who might not otherwise be seen. As with traditional 

screening tools, a concerning result  would signal the need for a comprehensive 

dementia workup. 

 

Despite the proof of concept for this approach, much remains to be done. The next 

steps are to measure the predictive ability of our models to identify at an early stage 

who will go on to decline over time. Of particular interest in these analyses would be the 

cognitively healthy participants identified in our current models as belonging to the aMCI 

group, and the aMCI individuals identified as belonging in the AD group. If these 

participants were indeed to subsequently display cognitive decline and convert to aMCI 

and AD respectively, then the predictive ability of our models would be confirmed. 

Further, it remains unclear how well these models will perform with different speech and 

written language tasks, and this has important implications for future protocol 

development and to answer the question of whether a single ideal task can elicit the 

most accurate predictions. Finally, to address possible etiological heterogeneity in 

participant groupings, future studies would be strengthened by comparing clinical 

diagnostic categories against validated biomarkers of disease.  

 



27 

 A significant advantage of our approach (when compared to traditional screening tests) 

is that speech can be recorded countless times without the confounding influence of 

practice effects or interrater variability. Hence, in future work, intra-individual variability 

should be measured via repeated testing at various time intervals to tease apart the 

effects of comorbidities, medications and the like on cognition. By demonstrating that 

state of the art automated methods can successfully be applied to suboptimal speech 

data, we address both the issue of early identification of cognitive decline, and 

accessibility of health care. Consequently, we are one step closer to the development of 

a remote, low cost, sensitive and highly accessible tool for cognitive screening on a 

large scale.  
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Table 1: Demographic & descriptive characteristics of the sample (N=91). 

 
Variables Full Sample 

(N=91) 
Cognitively 
Healthy 
(N=29) 

aMCI (N=32) AD (N=30) p-
value 

Age (years) 
     

        Mean + SD 73.67 + 6.94   72.48 + 1.47   74.03 + 1.01   74.93 + 1.40   .486 

        Range     57-93   57-89   65-86   64-93   

Gender (n / (%)) 
     

        Male 41 (45)   12 (41)   13 (41)   15 (52)   .631 

       Female  50 (55)   17 (59)   19 (59)   14 (48)   

Education 
(years) 

     

        Mean + SD 17.35 + 2.01   18.00 + 0.37 *   17.34 + 0.30   16.68 + 0.43 *   .039 

        Range † 12-20    13-20   14-20   12-20   

Race/Ethnicity 
(n / (%)) 

     

        Non-
Hispanic White 

81 (90)   25 (86)   29 (91)   27 (93)   .665 

        Non-
Hispanic Black 

8 (9)   3 (10)   3 (9)   2 (7)   

        Asian   
     American 

1 (1)   1 (3)   0 (0)   0 (0)   

Words: 
Semantic 
Fluency 

     

        Mean + SD 16.33 + 7.44 21.03  + 6.64* 16.75  + 6.63* 11.37 + 5.92* <.001 

        Range  0-36 13-35 6-36 0-24 
 

Words:  
Free Speech 

     

        Mean + SD 328.98 
+166.74 

372.35  
+ 207.72 

336.72  
+ 152.28 

278.8  
+ 123.65 

.092 
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        Range  44-1110 118-1110 151-804 44-542 
 

TICS-M score             

        Mean + SD 35.26 + 6.36   39.44 + 0.63 *   36.03 + 0.69 *   30.32 + 1.31 *   <.001 

        Range ‡ 18-49   34-47   28-49   18-44   

MMSE score            

        Mean + SD 27.26 + 3.04   29.56 + 0.12 *   28.22 + 0.30 *   23.75 + 0.51 *   <.001 

        Range § 19-30   28-30   24-30   19-29   

 
† the equivalent of a high school education is 12 years. 

‡ possible range of scores = 0-50 

§ possible range of scores = 0-30 
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Table 2: Summary of significant features extracted by NLP across two speech tasks. F-

values are reported in brackets (all p-values <.05).  

 
FREE 

SPEECH 

  
 

   

 
Healthy vs 

aMCI vs AD 

Healthy vs 

combined 

AD/aMCI 

Healthy vs AD Healthy vs 

aMCI  

 AD vs aMCI 

Lexeme 

features 

Raw count of 

nouns (3.91); 

determiners 

(3.62); modals 

(2.92); and 

present 

participle verbs 

(2.58) 

Raw count of 

determiners 

(4.47); modals 

(4.32); and 

nouns (2.83) 

 

Raw count of 

determiners 

(6.95); nouns 

(6.77); modals 

(6.18); and 

present 

participle verbs 

(2.54) 

Frequency of 

past participle 

verbs (2.97); all 

verb types 

(2.39); non third 

person singular 

verbs (1.44); 

and modals 

(1.30) 

 Raw count of 

nouns (5.69); 

present 

participle verbs 

(5.59); 

determiners 

(3.79); and 

modals (1.80) 

Syntactic 

features 

Mean distance 

of all 

dependencies 

between words 

Mean distance 

of all 

dependencies 

between words 

Mean distance 

of all 

dependencies 

between words 

--  Mean distance 

of all 

dependencies 

between words 
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in a sentence 

(3.25) 

in a sentence 

(3.21) 

in a sentence 

(5.72) 

in a sentence 

(3.58) 

Semantic 

features 

Mean 

coherence 

(5.93) 

Mean 

coherence 

(11.07) 

Mean 

coherence 

(11.07) 

--  Mean coherence 

(6.55) 

SEMANTIC 

FLUENCY 

  
 

   

 
Number of 

unique animals 

spoken (16.31) 

Number of 

unique animals 

spoken (19.64) 

Number of 

unique animals 

spoken (33.78) 

Number of 

categories of 

animals (6.05) 

 Number of 

unique animals 

spoken (11.27) 

 
Number of 

categories of 

animals 

(14.29) 

Number of 

categories of 

animals (18.40) 

Number of 

categories of 

animals (31.07) 

Number of 

unique animals 

spoken (5.76) 

 Number of 

categories of 

animals (8.17) 

 
Maximum 

number of 

animals 

spoken per 

category (4.81) 

Maximum 

number of 

animals spoken 

per category 

(6.86) 

Maximum 

number of 

animals spoken 

per category 

(8.44) 

Maximum 

number of 

animals spoken 

per category 

(2.59) 

 Maximum 

number of 

animals spoken 

per category 

(2.72) 
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Table 3: Confusion matrices. First panel: the cognitively healthy, aMCI, AD classifier; 

Second panel: the cognitively healthy vs aMCI/AD classifier; Third panel: cognitively 

healthy vs. aMCI in the most clinically-relevant model; Fourth panel: cognitively healthy 

vs AD in the most clinically-relevant AND accurate model; Fifth panel: aMCI vs AD in 

the most clinically relevant model. 

 
 
Cognitively healthy, aMCI, AD classifier 
 
 

  PREDICTED 

  HEALTHY aMCI AD 

TR
U

E 

HEALTHY 22 4 3 

aMCI 7 21 4 

AD 12 5 13 
 
 
Cognitively healthy vs aMCI/AD classifier 
 
 
 

                         PREDICTED 

  HEALTHY aMCI/AD 
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TR
U

E HEALTHY 18 11 

aMCI/AD  5 57 
 
 
 
Cognitively healthy vs. aMCI in the most clinically-relevant model 
 
 

                               PREDICTED 

  HEALTHY aMCI AD 

TR
U

E 

HEALTHY 22 4 3 

aMCI 7 21 4 

AD 12 5 13 
 
 

Cognitively healthy vs AD in the most clinically-relevant AND accurate model. 

                            PREDICTED 

  HEALTHY AD 

   
 T

R
U

E HEALTHY 27 2 

AD 5 25 
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aMCI vs AD in the most clinically relevant model. 
 

  
        PREDICTED 

  aMCI AD 

TR
U

E aMCI 29 3 

AD 10 20 
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FIGURE 1 
 

 
 
 

Figure 1: ROC curves of the three groups, as well as a micro- and macro-average. 

The model classified the cognitively healthy group with an AUC of 0.79, the aMCI group 

with an AUC of 0.64, and the AD group with an AUC of 0.69. It had an overall macro-

average AUC of 0.73 and an overall micro-average AUC of 0.75. The macro-average 

computes the AUC independently for each group and then computes the average with 

each group treated equally, whereas the micro-average combines the contributions of 

all groups together. 
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FIGURE 2 
 
 

 
 
 

Figure 2: PCA dimensionality reduction of the top features used in the classification 

model showing the distributions for various experimental settings. 

Top left panel: Using the top 3 features, applied to all three groups. The three groups 

are ordered as expected, with the peaks of cognitively healthy, aMCI, and AD ordered 

left to right with some overlap between each. 
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Top right panel: Using the top 6 features, applied to cognitively healthy vs aMCI. The 

two groups showed much overlap and tended to be difficult to differentiate from one 

another based on even their most discriminable features.  

Bottom left panel: Using the top 6 features, applied to cognitively healthy vs AD. The 

two groups show some overlap, especially right at the peak of the AD group, but 

generally have distinct distributions with more discriminability.  

Bottom right panel: Using the top 6 features, applied to aMCI vs AD. Again, the two 

groups show much overlap and tend to be difficult to differentiate from one another 

based on even their most discriminable features.  
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FIGURE 3 
  

 
 

Figure 3: Accuracy of each model type (ML: the machine learning model based on the 

free speech and animal fluency tasks, ML (fs): the machine learning model based on 

the free speech task alone, and human) in each classification setting (Cognitively 

Healthy, aMCI, and AD). 
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APPENDIX A 
 
Model Accuracy Metrics 
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APPENDIX B 
 
 

Confusion matrices. Upper panel: the human diagnoses; Middle panel: the TICS-

M; Lower panel: the MMSE. 

 
 
Human diagnoses 

  
                                  PREDICTED 

  
HEALTHY aMCI AD 

TR
U

E
 

HEALTHY 17 10 2 

aMCI 16 11 5 

AD 5 8 17 

 

 

TICS-M  

  
                                 PREDICTED 

  
HEALTHY aMCI AD 

TR
U

E
 

HEALTHY 29 0 0 



48 

aMCI 30 2 0 

AD 12 8 10 

 

 

 

 

MMSE 

  
                               PREDICTED 

  
HEALTHY aMCI AD 

TR
U

E
 

HEALTHY 29 0 0 

aMCI 25 6 1 

AD 4 10 15 

 

 


