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Acquisition and expression of antimicrobial resistance (AMR)mechanisms in bacteria are often associatedwith a
fitness cost. Thus, evolutionary adaptation and fitness cost compensation may support the advance of subpo-
pulations with a silent resistance phenotype when the antibiotic selection pressure is absent. However, reports
are emerging on the transient nature of silent acquired AMR, describing genetic alterations that can change the
expression of these determinants to a clinically relevant level of resistance, and the association with break-
through infections causing treatment failures. This phenomenon of transiently silent acquired AMR (tsaAMR)
is likely to increase, considering the overall expansion of acquired AMR in bacterial pathogens. Moreover, the
augmented use of genotypic methods in combination with conventional phenotypic antimicrobial susceptibility
testing (AST) will increasingly enable the detection of genotype and phenotype discrepancy. This review defines
tsaAMR as acquired antimicrobial resistance genes with a corresponding phenotype within the wild-type distri-
bution or below the clinical breakpoint for susceptibility for which genetic alterations can mediate expression to
a clinically relevant level of resistance.
References to in vivo resistance development and therapeutic failures caused by selected resistant subpopula-
tions of tsaAMR in Gram-positive and Gram-negative pathogens are given. We also describe the underlying mo-
lecular mechanisms, including alterations in the expression, reading frame or copy number of AMR
determinants, and discuss the clinical relevance concerning challenges for conventional AST.

Background
The increased prevalence of antimicrobial resistance (AMR) in
bacterial pathogens emphasizes the need for rapid and accurate
antimicrobial susceptibility testing (AST) to guide antibiotic ther-
apy. Conventional AST is based on evaluating phenotypic inhib-
ition of growth of a bacterium in pure culture by an antibiotic.1

Complementary methods include the genetic detection of ac-
quired AMR determinants, which may allow inference of resist-
ance to the corresponding antibiotic.2 However, the expression
of acquired AMR determinants is often thought to be costly to
the bacteria.3 Thus, with reduced selection pressure fromantibio-
tics, evolutionmay support the expansion of subpopulations with
genetic modifications that tightly regulate or silence the expres-
sion of the acquired AMR determinant, suppressing the resistant
phenotype allowing discrepancies between the genotype and
phenotype. This poses a clinical concern as antibiotic exposure
may select for genetically altered subpopulations with clinically

significant expression of those quiescent acquired AMR
determinants.

In the last decade, several observations of genetic modifica-
tions that reverse the expression of transiently silent acquired
AMR (tsaAMR) to a clinically resistant phenotype have been de-
scribed.4,5 This phenomenon has been thoroughly characterized
for VanA-type vancomycin-resistant Enterococcus faecium and
MRSA, also associated with therapeutic failures.6,7 Conversion
of tsaAMR to clinical resistance has also been observed in
Enterobacterales and Pseudomonas aeruginosa.8–11

In this review, we define tsaAMR, describe the underlying mo-
lecular mechanisms and discuss challenges for AST.

Defining tsaAMR
We define tsaAMR as acquired AMR genes with a corresponding
phenotype within the wild-type distribution or below the clinical
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breakpoint for susceptibility. When these determinants are pre-
sent, genetic alterations can turn on or change their level of ex-
pression to a clinically relevant level of resistance. We define
clinically relevant as a ≥8-fold increase in MIC or an increase in
MIC to a level that needs antibiotic dosing adjustment (I -
Susceptible, increased exposure) or is regarded as resistant ac-
cording to internationally accepted guidelines.12,13 Within the
scope of tsaAMR we exclude genetic modifications in inherent
chromosomal genes that cause a significant increase in resist-
ance. These are well-described phenomena related to antibiotic
target site mutations occurring at certain frequencies as well as
mechanisms within the concept of monoclonal heteroresistance
(see below).14 Thus, we frame the concept of tsaAMR to acquired
AMR genes and their ability to be transiently silent causing dis-
crepancies and diagnostic challenges when comparing antibiotic
resistance phenotype and genotype. Alterations in acquired de-
terminants is an emerging field as their expansion in number
due to clonal dispersion and dissemination by multicopy mobile
genetic elements (MGEs) makes them more exposed to genetic
changes.

The current literature describes several complex phenomena
that are named differently but potentially associated to tsaAMR
in different ways. These phenomena are depicted in Table 1,
which also provides a short description of these phenomena
and their potential relationship to tsaAMR. The concept of hetero-
resistance is a population-wide variation of antibiotic resistance,
whereby different subpopulations of an isolate exhibit various
susceptibilities to a particular antimicrobial agent.14,28 This defin-
ition covers a broad range of phenomena at defined frequencies
(greater than 1×10−7) as well as a defined increase in MIC
(≥8-fold) compared with the main population. The underlying
molecular mechanisms include chromosomal mutations in regu-
latory genes or determinants for antibiotic permeability (porins)
and efflux as well as increased gene dosage due to tandem
gene amplification. Importantly, recent studies have shown
that various Gram-negative and Gram-positive bacteria can ex-
press heteroresistance towards many classes of antibiotics, of
which some species-antibiotic combinations have been asso-
ciated with treatment failures.14 It is outside the scope of this re-
view to elaborate further on the other concepts or differences in
nomenclature except for silencing of antibiotic resistance bymu-
tation (SARM) and variable resistance that is mechanistically
clearly associated with the evolution of tsaAMR.4–6

Underlying molecular mechanisms of tsaAMR
The genetic basis of tsaAMR will be discussed within the frame of
mutational resistance and relevant characteristics of MGEs.
Mutations and MGEs are major players in bacterial genome plas-
ticity and the development of antimicrobial resistance. In par-
ticular MGEs play a crucial role in the capture, accumulation
and spread of AMR genes, as recently reviewed.29

The extensive study of antibiotic resistance phenotype/geno-
type discrepancies (10.3%) in a collection of 1470 Staphylococcus
aureus isolates clearly underlines the importance of mutations in
transiently silent acquired resistance determinants.4 The genetic
basis for silencing by mutations, including IS insertions, posi-
tioned within or upstream of the antibiotic resistance determi-
nants, could explain most of the discrepancies. Importantly,

SARMwas reversible inmost strains at clinically relevant frequen-
cies after exposure to the corresponding antibiotics.

The potential role ofMGEs in the evolution of tsaAMRcan be illu-
strated in at least two different contexts. The first one is related to
MGEs as major vehicles for horizontal gene transfer (HGT) of AMR
determinants. The multicopy and often replicative nature of
MGEs make them exposed to genetic alterations including muta-
tions that may affect expression of the inherent resistance gene
and contribute to subpopulations that favour the development of
tsaAMR. The second one is related to the mobile nature of major
classes of MGEs. The MGE itself may mediate silencing or conver-
sion tophenotypic resistance through insertionandexcisionevents
directly affecting the resistance gene integrity or its expression.
Figure1 illustratesmolecularmechanisms in theconversion toa re-
sistant phenotype: modifications in the promoter (Figure 1a), the
coding region (Figure 1b) or increased copy number of the AMR
gene (Figure 1c); thesewill be discussed in detail in sections below.

Intrinsic characteristics of MGEs related to the
occurrence of tsaAMR
Small MGEs, like ISs and transposons (Tns), encode their own intra-
cellular mobility (transposition). Through insertion and excision,
they candisrupt or restore anAMRdeterminant and/or its promoter,
enabling the switch between silence or expression in a single gen-
etic event. ISs carry a transposase gene (tnp) encoding their trans-
position but can also capture accessory DNA, including AMR genes.
Transposition can occur by non-replicative cut-and-paste or by rep-
licative mechanisms. In replicative transposition, the element joins
the donor and recipient DNA site in a co-integrate as for Tn3 and IS6
family elements, which is then resolved to the original donor plus
the recipient with the element30. Alternatively, non-replicative
transposition most commonly takes place by a copy-paste mech-
anism, which involves many IS families such as IS3, IS21, IS30,
IS256 and ISL3, where a double-stranded circular intermediate is
formed and then integrates into the recipient31 (reviewed in32–34).
The replicative mechanisms support gene amplification events.

Several IS families carry a strong promoter facilitating gene
expression.35 Thus, the IS insertion can increase the expression
of a downstream resistance gene mediating a resistance pheno-
type (Figure 1a). IS families known to carry complete outward-
directed promoters include the IS3, IS4, IS5, IS6 and IS1380.
Besides providing a complete promoter, ISs may also activate
genes through the formation of a hybrid promoter. The IS can
provide a −35 box promoter sequence, which is functionally
aligned with the −10 box promoter sequence of the adjacent
gene. IS families related in hybrid promoter formation include
the IS256, IS1, IS3, IS6 and IS30 families.34 IS256 has also
been described to form hybrid promoters upstream of intrinsic
AMR genes.36–38 Moreover, ISs can alsomodify resistance pheno-
types by excision from or disrupting AMR-encoding ORFs.4

Stress-induced elevated levels of IS transposition—transpos-
ition burst—support mechanisms associated with silencing or re-
storing resistance.39,40 Antibiotic exposure, such as subinhibitory
concentrations of chloramphenicol, linezolid, spectinomycin, ci-
profloxacin and vancomycin, have been shown to induce trans-
position of IS256,41,42 whereas cefotaxime, ceftazidime and
piperacillin enhanced the transposition of ISEcp1B.43 Excision
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and transfer rates of integrative and conjugative elements or
cassette rearrangements are also influenced by environmental
factors44,45 including antibiotics.46 Moreover, β-lactams and anti-
biotics targeting DNA replication and repair have been shown to
trigger the excision of the staphylococcal cassette chromosome
mec via the SOS response,46 and erythromycin stimulated
transposition of the macrolide resistance-encoding Tn917.47

Importantly, antibiotic exposure has also been shown to pro-
mote genetic rearrangements supporting clinical resistance de-
velopment in vivo. Metronidazole treatment was associated
with an activated SOS response, increased integrase expression,
integron gene cassette rearrangements and subsequently in-
creased β-lactamase (OXA-28) expression mediating high-level
ceftazidime resistance in an epidemic P. aeruginosa strain.10

Table 1. Terminology of phenomena potentially related to tsaAMR

Term Description Relation to tsaAMR Ref.

Silencing of antibiotic
resistance by mutation
(SARM)

Defined as mutationally silenced acquired AMR genes
Exemplified in S. aureus, which in most cases can revert to
antibiotic resistance at frequencies ≥10−9

Covered within tsaAMR, but SARM makes no
distinction whether the isolate can revert to
resistance or not

4

Variable resistance Defined as an initially antibiotic-susceptible isolate that can
become resistant during exposure with the corresponding
antibiotic

Typically used for vancomycin variable enterococci (VVE)

Covered within tsaAMR. Mutational resistance and
increased copy number affecting the functional
expression of the acquired AMR gene

6,15–17

Cryptic resistance (1) Defined as hidden resistance escaping diagnostic testing
Description of various antibiotic resistance mechanisms in S.
aureus that might escape phenotypic detection including
oxacillin-susceptible MRSA (OS-MRSA), hVISA
(heteroresistant vancomycin-intermediate S. aureus) and
inducible clindamycin resistance

Partly related to tsaAMR as it includes the
mutational conversion of OS-MRSA to a full MRSA
phenotype

18

Cryptic resistance (2) Defined as unclassified resistance genes that confer
resistance upon amplification

Experimental manipulation of plasmid cloned E. coli
chromosomal DNA copy number revealed intrinsic genes
that conferred resistance to several antibiotic classes
when amplified

Not related to tsaAMR as it involves intrinsic
chromosomal genes only and gene amplification
that might be related to heteroresistance

19

Intermediate resistance Defined as an isolate with a MIC between susceptible and
resistant

Exemplified in experimental evolution of reduced
daptomycin susceptibility and vancomycin resistance in
vancomycin-intermediate S. aureus (VISA) during
vancomycin selection and experimental evolution of VISA
and reversion to vancomycin susceptibility after serial
passages without vancomycin selection

Not related to tsaAMR as it only involves changes in
intrinsic chromosomal DNA

20–23

Adaptive resistance Defined as a temporary increase in the ability of a bacterium
to survive antibiotic exposure due to alterations in
chromosomal DNA after environmental stress

Not related to tsaAMR as it only involves transient
changes in intrinsic chromosomal DNA

24

Heteroresistance Defined as a population-wide variation of antibiotic
resistance towards a defined antibiotic, where
subpopulations at a high frequency (>1×10−7) exhibit at
least 8-fold higher MIC than the clinically susceptible main
population

Not related to tsaAMR as it involves host tandem
gene amplifications and mutations in intrinsic
chromosomal genes including regulatory genes,
permeability and efflux

14

Interniche
heteroresistance

Defined as a phenomenon where susceptible and resistant
isolates of the same strain are located in different sites

Exemplified by susceptible and resistant Helicobacter pylori
isolates of the same strain located in different anatomical
sites—the antrum versus corpus ventriculi in humans

Not related to tsaAMR. The phenomenon is
associated with monoclonal heteroresistance

25,26

Phenotypic
heterogeneous
resistance (PHR)

Defined as growth of colonies within the inhibition zone of
antibiotics

Exemplified by carbapenem heteroresistance in
Acinetobacter baumannii

Not related to tsaAMR. The phenomenon is
associated with monoclonal heteroresistance

27

(1) and (2) are used when there is more than one definition described by a single term.
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Furthermore, MGEs are enriched in extreme environments,
such as antibiotic-exposed niches, where they contribute to niche
adaptation.48 In E. faecium MGEs, including plasmids, phages,
genomic islands and especially ISs (IS3, IS110, IS256 and IS16),

are more prevalent in clinical than in commensal strains.49–51

MGEs, like plasmids, prophages, ISs (IS256) and other transpo-
sons, are numerous in clinical Staphylococcus haemolyticus
strains,52 and specific MGEs are associated with epidemic S. aur-
eus,53,54 Escherichia coli55,56 and Klebsiella pneumoniae
clones.57,58 Extended examples of themolecularmechanisms in-
volved in tsaAMR are given in Table 2, and some are discussed be-
low. The mechanisms encompass alterations in the regulation of
AMR gene expression, reading frame or copy number, predomin-
antly through mutations. Silencing typically comprises trunca-
tions of AMR genes or their promoters and corresponding
mutations. Conversion to the resistant phenotype can either be
a direct reversion or a compensatory genetic change in a differ-
ent location. Silencing may also be irreversible.4

Alterations in the regulation of AMR expression
Rapid de novo evolution of functional promoters (Figure 1a) from
random sequences has been demonstrated in an experimental
E. coli system.70 Correspondingly, single nucleotide mutations
in silent E. faecium vanB clusters were shown to be associated
with restored expression of clinical vancomycin resistance upon
antibiotic exposure.59 Similarly, selection of deletions predicted
to remove a transcription inhibitory secondary structure and
introduce a constitutive promoter for vanHAX expression was
observed during vancomycin exposure of vancomycin variable
enterococci (VVE).61 VVE are van-positive isolates with a vanco-
mycin-susceptible phenotype that can convert to resistance
and be selected for during vancomycin selection. Likewise, a
44 bp deletion in the promoter region leading to constitutive
vanHAX expression was observed in a VVE strain with a
5′-truncated vanR gene.15 Moreover, constitutive vanHBX expres-
sion and teicoplanin resistance in E. faecium were caused by an
18 bp deletion in the vancomycin sensor gene vanSB. In combin-
ation with an insertion in the housekeeping ddl gene inactivating
the host D-alanine:D-alanine ligase, the constitutive synthesis of
D-alanyl-D-lactate terminating precursors supported peptidogly-
can synthesis.60

Corresponding findings have been observed in Gram-negative
bacteria and MRSA. A 118 bp deletion upstream of the
Tn4401-associated K. pneumoniae carbapenemase gene blaKPC,
created the novel isoform Tn4401h with a stronger promoter
and enhanced blaKPC expression in E. coli, increasing the merope-
nem MIC from 0.5 mg/L to ≥16 mg/L.9 The expression of mecA,
encoding methicillin resistance in staphylococci, can be regu-
lated by the bla operon in the absence of the homologous
mecRI–mecI.71 In S. aureus, a frameshift mutation in the blaRI
regulator gene silenced mecA.4 However, the truncated blaRI
failed to sense the antibiotic and derepressmecA. Upon cefoxitin
exposure, the resistant revertant lost the bla operon, allowing
constitutive mecA expression.

Several of the referred deletions appeared between tandem
repeats.8,15,60,72,73 Therefore, it has been hypothesized that the
repeats in the AMR gene loci may act as emergency points allow-
ing bacteria to express resistance genes when challenged. Apart
from the mechanisms described here, it is likely that unknown
trans-acting elements can provide resistance on and off
switches. It has been suggested that chromosomally encoded
transcriptional control could override standard R-plasmid gene

(a)

(b)

(c)

Figure 1. Molecular mechanisms in resurrection of transiently silent ac-
quired AMR. Genetic alterations can occur in the promoter region upstream
of the acquired resistance gene (R-gene), in the acquired R-gene itself, or
change the R-gene copy number. (a) Promoter alterations may occur
throughmutations, insertions of ISs that provide functional or stronger pro-
moters enhancing gene expression or excision of ISs reversing blockage of
promoters. (b) Acquired R-genes may be restored through (point) muta-
tions or excision of silencing ISs. (c) Amplification of acquired chromosomal
or plasmid R-genes can restore resistance. Promoter regions are illustrated
as boxes with bent arrows, R-genes as boxes with double lined arrows in-
dicating reading frame direction,mutations as boxes with diagonal stripes,
and ISs as boxes flanked with vertical stripes.
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expression in E. coli.74 Resistance resurrection of intact silent
plasmid-encoded AMR determinants (blaOXA-2, aadA1, sul1 and
tetA) was observed only after introducing the plasmid into an-
other host.

ISs may insert alternative or hybrid promoters restoring ex-
pression of AMR (Figure 1a). Examples include those related to
the concept of VVE.6,16 For example, the silent E. faecium
VanA-type vancomycin-resistance gene cluster vanHAX was re-
covered by an IS1251-like element promoter implant5. The inser-
tion of an IS1542 hybrid promoter upstream of vanHAX in an E.
faecium isolate, provided a −35 box sequence supporting consti-
tutive expression of glycopeptide resistance.75 The latter mech-
anism was also described in resistance reversion of another
VVE, by insertion of an IS1167, providing the −35 box sequence
adding to the van plasmid −10 box itself.61

Excision of ISs from promoter regions can also enable expres-
sion of resistance (Figure 1a). In E. faecium an ISL3 element si-
lenced vancomycin resistance by interrupting the binding site
of the VanR activator and the vanHAX promoter. Resistance
was restored upon excision.6 In E. coli, IS26 insertion in the pro-
moter region of blaCTX-M-15 separated the AMR determinant
from its native promoter, which was associated with a signifi-
cantly reduced MIC to third-generation cephalosporins, allowing
a similar mechanism.76

A recent review summarizes observations supporting the im-
portance of epigenetics in AMR, in particular related to adaptive
resistance, heteroresistance and persistence.77 Epigenetic regu-
lation can affect mutation rates and gene expression thus modi-
fying phenotypic expression of resistance. Genetic changes and
epigenetics are tightly linked because mutations, also induced
by antibiotic stress, affect methyltransferases and thusmay alter
the overall epigenetic landscape.77 In the future epigenetic mod-
ifications will probably expand our understanding of AMR, where
genetic changes alone fail to fully explain the dynamic nature of
resistance phenotypes.

Alterations in the AMR gene
Mutations can silence or revive (Figure 1b) quiescent resistance
genes and antibiotic exposure can increase mutagenesis.78–80 A
single missense mutation in the coding region of an AMR deter-
minant can silence and revert resistance. In a large clinical collec-
tion of S. aureus, 10% of the strains harboured a resistance gene
silenced by mutations.4 The relevant mutations were mainly sin-
gle nucleotide insertions or point deletions introducing a frame-
shift. Importantly, 90% of the silenced AMR gene-carrying
strains converted to resistance upon exposure to the correspond-
ing antibiotic in vitro, whereas silencing was irreversible in the
other 10%. Likewise, a single base-pair deletion resulted in a
frameshift silencing the mupA gene encoding high-level mupiro-
cin resistance in S. aureus.81 Reinsertion of the single nucleotide
restored high-level resistance. In a similar manner, removal of
a 7 bp duplication restored the reading frame of the streptothri-
cin acetyltransferase gene, sat4, and the expression of strepto-
thricin resistance in Campylobacter coli.8

ISs can silence AMR genes and subsequent excision may res-
urrect resistance (Figure 1b). Oxacillin exposure of a silenced
MRSA was associated with reversion to resistance by excision of
IS1181 from the mecA reading frame.7 Similarly, excision of

IS256 from aacA-aphD in S. aureus restored the gentamicin/
tobramycin-resistant phenotype.4

Apart from direct reversion of the mutation causing the si-
lenced resistance, the occurrence of compensatory mutations
enabling functional resistance has been observed.4 A nucleotide
insertion intomecA caused inactivation through frameshift. After
antibiotic exposure resistant mutants had a deletion of a differ-
ent nucleotide restoring the reading frame and expression of a
functional mecA.

Alterations in the AMR gene copy number
AMR gene dose can alter resistance phenotypes. The mechan-
isms include increased copy number of the antibiotic resistance
gene itself or the MGE conferring AMR, as illustrated in Figure 1(c).

This notion has particularly been observed in Gram-negative
bacteria.82 A panel of almost 800 bacteria-drug combinations
was experimentally examined for emerging resistance in subpopu-
lations involvingclinical isolatesofE. coli,K.pneumoniae, Salmonella
typhimurium and Acinetobacter baumannii. Resistance appeared
at a median frequency of 4.9×10−5 in a quarter of the
bacteria-antibiotic combinations, and more than half of these
were associated with amplification of known resistance genes
located at both plasmids and chromosomes. In K. pneumoniae,
elevated carbapenem resistance correlated with higher
β-lactamase OXA-232 expression, the copy number of the
β-lactamase-encoding plasmid, and increased carbapenemase ac-
tivity.67 Likewise, carbapenem resistance levels correlated with
blaKPC-2 plasmid copynumber,68 and ceftazidime-avibactam resist-
ance of K. pneumoniae correlated with a higher blaKPC-3 gene dose
as well as blaKPC-3 plasmid copy number.69

Similar findings have been observed in clinical isolates of
Gram-positive bacteria. Vancomycin exposure selected for high-
level vancomycin-resistant variants in a vanM E. faecium strain.63

The high-level resistant phenotype was associated with multiple
copies of the vanM operon, flanked by IS1216 on plasmids and
the chromosome. Resistance through increased gene dosage
has also been described in vanA E. faecium15,17 and S. aureus.4

Clindamycin-susceptible S. aureus strains carrying a functional
clindamycin resistance gene, vga(A)v, became resistant after
clindamycin exposure, associated with an increase in the copy
number of the resistance-conferring transposon.4

Clinical relevance
The observed resistance conversion rates in tsaAMR strains vary
between 10−6 and 10−10 (Table 2). These numbers are compar-
able to the mutation rates for chromosomal ampC derepression
for Enterobacterales, which have resulted in breakthrough infec-
tions and treatment failure during oxyimino-cephalosporin
monotherapy.83,84 In terms of clinical relevance, these conver-
sion rates can also be compared to the bacterial load (in cfu) dur-
ing infection. In human bacterial infections, ≥104 bacterial
genome copies/mL in bloodstream and urinary tract infections
(UTIs) as well as ≥108 cfu/mL in tissue infections have been ob-
served.85–87 During bacteraemia, 104 cfu S. aureus per mL were
described, 88 and 105 cfu S. aureus per mL in UTI,89 105 cfu E.
coli per mL in UTI,85 103 cfu E. faecalis per mL blood were de-
tected during bacteraemia, and 105 cfu E. faecium per gram of
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human faeces during colonization.90 Overall, these numbers
show that at least 5×107 cfu E. coli in the urinary tract (assuming
a volume of 500 mL) or 5×107–9 cfu S. aureus in blood (assuming
a volume of 5 L) or 2.5×107 cfu E. faecium in the intestinal faeces
(assuming an amount of 250 g), can be obtained within patients
(Figure 2a). These bacterial population sizes allow the spontan-
eous conversion of tsaAMR genotypes (Table 2), which could be
enriched during antibiotic exposure.

Accordingly, in vivo resistance development and therapeutic
failures due to breakthrough infections caused by selected resist-
ant subpopulations of tsaAMR Gram-positive and Gram-negative
pathogens have been reported. These observations include the
emergence of high-level vancomycin-resistant E. faecium during
treatment of systemic infections with VVE strains6,15,61 convert-
ing at a frequency of 10−8. The ability of silenced vancomycin-
susceptible vanA-positive E. faecium to spread unnoticed causing
hospital-associated outbreaks has been documented in several
countries including Canada,5 Denmark92 and Norway.6

Similarly, an MRSA strain emerged during therapy of an
initially methicillin-susceptible mecA-positive S. aureus, termed
mecA-positive, oxacillin-susceptible S. aureus (OS-MRSA).7,62

Importantly, someOS-MRSA isolates recently observed in Brazil ap-
pear tobe relatedtoepidemicclones, emphasizing their potential to
spreadunrecognized.93 The referred in vivodevelopment of ceftazi-
dimeresistance inanepidemicP.aeruginosastrain illustrates the in-
herent possibility of activation of integron-borne quiescent AMR
determinants in Gram-negative pathogens.10

Diagnostic challenges and opportunities
The resistance conversion rates have implications for the inter-
pretation of phenotypic AST. The bacterial inoculum size in con-
ventional AST is of particular relevance, and the ability to
detect resistant subpopulations needs to be compared with the
observed conversion rates. The inoculum varies from 2.5×
104 cfu in broth microdilution, to 1×104 cfu per spot in agar dilu-
tion,94,95 and 2×105 cfu per plate in disc diffusion or gradient
tests96 (Figure 2b). Thus, compared with the observed resistance
conversion rates4,7,59,62,81 of between 10−6 and 10−10 standard
bacterial inoculum sizes in routine AST are not able to detect re-
sistant subpopulations in most tsaAMR strains (Figure 2c).
Phenotypic ASTmethods are validated with a standard inoculum
and do not allow a higher inoculum to overcome the problem
with undetectable tsaAMR. The current population analysis profil-
ing method,14 considered the gold standard for determining het-
eroresistance, is far too laborious and time consuming in a
routine laboratory. Thus, we must still rely on genetic methods
in combination with phenotypic methods for the detection of
tsaAMR. Knowledge of the circulating strains through genetic
methods can help to adapt phenotypic methods in order to im-
prove detection of challenging pathogens.97 A composite ap-
proach of genetic and phenotypic methods is currently
recommended in the Nordic countries for the detection of VVE
in cases of ampicillin-resistant E. faecium bacteraemia.92 The
identification of tsaAMR is of particular importance in controlling
nosocomial infections. For example, regional or national clonal
spread of the originally tsaAMR-vanA E. faecium strains in
Canada and Denmark, has been documented recently.92,98

(a)

(b)

(c)

Figure 2. Challenges in detection of tsaAMR. Bacterial loads that can be
reached during infection (a), the bacterial inoculum size for conventional
AST (b), and their comparison with the resistance conversion rate (c). The
numbers for the graph are based on Smith and Kirby,91 Kime et al.4 and
Peters et al.88
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In the future, increasing use of genomics in combination with
phenotypic methods for AMR pathogens will likely reveal more
cases of tsaAMR. This provides an opportunity to continue and ex-
pand the understanding of the prevalence and mechanisms of
tsaAMR, optimizing detection methods of tsaAMR strains.

Conclusions and future perspectives
The acquisition of AMR determinants by HGT often impairs bac-
terial fitness.3 Fitness cost compensation may support the ad-
vance of mutants with a silent resistance phenotype in the
absence of antibiotic selection.14 Thus, divergence in AST geno-
types and phenotypes is likely to increase due to the expansion
of acquired AMR and the increased use of genotypic AMR detec-
tion. This notion is supported by the recent study of the preva-
lence and nature of silent acquired AMR genes in a large
collection of MDR clinical isolates of S. aureus. A total of 10% of
the strains harboured silent AMR determinants. Most of those
strains (90%) were able to recover their resistance phenotype
at clinically relevant frequencies during antibiotic selection in
vitro.4

The epidemic potential of clinically relevant tsaAMR strains
and the ability to spread unnoticed was recently illustrated by
the clonal shift for vanA E. faecium in Denmark during 2015
and 2019.17 The VVE ST1421-CT1134 vanA E. faecium, first de-
scribed in Denmark in 2016, soon became the most dominant
vanA E. faecium clone occurring in all five regions in Denmark
as well as the Faroe Islands.92 Corresponding expansion of VVE
has been reported from Canada and the Republic of Korea.98,99

The observed discrepancies between phenotypic and geno-
typic ASTare a challenge for conventional AST, where the bacter-
ial inoculum is too low to be able to detect the observed
frequencies of resistance conversion. Extended use of genotyp-
ing, including pathogen WGS, will be a necessary supplement
to phenotypic AST to overcome such challenges. This is most im-
portant in species where tsaAMR is a particular clinical problem
such as S. aureus and E. faecium.100–103
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