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Abstract

Research on the innate immunity has accelerated over the last decades. The main reason
for this has been the discovery of receptors recognizing danger molecules from
pathogens. This has been facilitated through genome and transcriptome sequencing of
different fish species. Also, endogenous host molecules from sterile physiological
insults may also bind to certain receptors and induce immunological processes. The
magnitude and quality of adaptive immunity are known to be dependent on the
instructions the innate response gives. This chapter gives an overview of selected innate
immune organs/tissues, factors, and processes that have been suggested to possess
important roles during innate immune response in fish.
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Abbreviations

AMP Antimicrobial peptide
APC Antigen-presenting cell
APP Acute-phase proteins. Resulting from acute inflammation
c1, c2, c3, c4, c5,
c6, c7, c8, and c9

Complement components

c1q A protein complex involved in the complement system
Cathl1 Cathelicidin gene 1. Antimicrobial peptide
Cathl2 Cathelicidin gene 2
Ccl19 Chemokine (C–C motif) ligand 19. A regulator of the

induction of T-cell activation, immune tolerance, and
inflammatory responses during continuous immune sur-
veillance, homeostasis, and development

Cd4 Cluster of differentiation 4
Chemokine A protein that can attract cells, toward a chemical gradient,

having the specific receptor, and promote differentiation
and multiplication of leukocytes, and cause tissue
extravasation

CircRNA Is a type of single-stranded RNA, which, unlike linear
RNA, forms a covalently closed continuous loop. Can be
protein coding and noncoding

CpG DNA DNA that contains methylated nucleotides (CpG islands).
Normally found in promoter regions, which modulate gene
expression

CRP C-reactive protein. An acute-phase protein
Cxcl13 Chemokine (C-X-C motif) ligand 13. Involved in chemo-

taxis of B lymphocytes
Cxcl9 Chemokine (C-X-C motif) ligand 9 is a small cytokine

belonging to the CXC chemokine family. Plays role in
chemotaxis

DAMPs Damage-associated molecular patterns. Molecules released
in a sterile inflammation or damage

DC Dendritic cell
DEGs Differentially expressed genes. From RNAseq data and

bioinformatics
DEPs Differential expressed proteins
dsRNA Double-stranded RNA
Epigenetics Is the study of heritable phenotype changes that do not

involve alterations in the DNA sequence
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Factor B (c3 convertase) Protein that is activated by cleavage, yielding Bb and Ba
fragments. Factor B is cleaved only when it is bound to c3b

Factor D A serine protease present in blood and tissue in an active
sequence but self-inhibited conformation. The only known
natural substrate of factor D is factor B. Alternative path-
way of complement activation

Factor H The main cofactor of factor I
Factor I Protein of the complement system (c3b/c4b inactivator).

Alternative pathway of complement activation
Foxp3 Forkhead box P3. Regulator of the regulatory pathway in

the development and function of regulatory T cells
Galectins Proteins that bind specifically to β-galactoside sugars
Hepcidin An antimicrobial peptide
Histone modifications and
DNA methylation

Both DNA methylation and histone modification are
involved in establishing patterns of gene repression during
development

HSP1 Heat shock protein I gene. Mitochondrial product
HSP90b A chaperone protein that assists other proteins to fold

properly, stabilizes proteins against heat stress, and aids
in protein degradation

Ifn Interferon (cytokine)
Ifnrel Interferon-related
Ifng Interferon-gamma
IL Interleukin (cytokine)
IRF Interferon regulatory factor
Isoforms (subtypes) Alternatively spliced genes
KEGG Kyoto Encyclopedia of Genes and Genomes
lncRNAs A large and diverse class of transcribed RNA molecules

with a length of more than 200 nucleotides that do not
encode proteins

LPS Bacterial lipopolysaccharide. A main constituent in gram-
negative bacterial cell wall

MAP kinase 1 Mitogen-activated protein kinase I. Transcription factor
MAP Mannan-binding lectin (MBL)-associated protein
MASPs Serine proteases that function as a component of the lectin

pathway of complement activation
MBL Mannose-binding lectin (lectin pathway of complement

activation)
MHC I and II Major histocompatibility complex I and complex

II. Function in antigen presentation
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MicroRNAs (miRNAs) are a family of small noncoding RNAs
MPO Myeloperoxidase. An enzyme that catalyzes the formation

of a number of reactive oxidant species
MyD88 Myeloid differentiation factor 88 (MyD88). A central com-

ponent of the Toll-like receptor pathway
Mx An interferon-induced GTP-binding protein
NOD-like receptors (NLRs)
and C-type lectin
receptors (CLRs)

Belongs to RIG-I and PPR family

PPRs Pattern recognition receptors. Expressed on many types of
cells, especially on antigen-presenting cells. Recognize
repeating molecular patterns often found in pathogens

RNAseq RNA sequencing
TLRs Toll-like receptors (belongs to PPR family)
PAMPs Pathogen-associated molecular patterns
Paraquat (PQ) Toxic chemical that is widely used as an herbicide
Pentraxins Family of acute-phase proteins produced during acute-

phase response
Poly I:C Polyinosinic:polycytidylic acid. Binds TLR3
QPCR A real-time polymerase chain reaction, also known as

quantitative polymerase chain reaction
RAG Recombination-activating gene
RIG-I-like receptors (RLRs) Retinoic acid-inducible gene I-like receptors. Belongs to

RIG-I and PPR family
ROS Reactive oxygen species
SAA Serum amyloid A. A protein formed during acute-phase

response
SETD3-OT Has function on histidine methylation which belongs to

epigenetic occurrence
ssRNA Single-stranded RNA
STAT1 Signal transducer and activator of transcription 1. STAT1

can be activated by several ligands such as IFN-α, IFN-γ,
epidermal growth factor (EGF), platelet-derived growth
factor (PDGF), IL-6, or IL-27

TGF-ß Transforming growth factor-beta
Th1 cells Pro-inflammatory T cells that are responsible for cell-

mediated immunity and phagocyte-dependent protective
responses

Tnf Tumor necrosis factor
Tnfr Tumor necrosis factor receptor
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TRIF TIR domain-containing adapter-inducing interferon-β. An
adapter in responding to activation of Toll-like receptors
(TLRs)

Type I interferon A role in antiviral responses
Type II interferon A role in adaptive and innate immunity
Viperin Virus-inhibitory protein, endoplasmic reticulum-

associated, interferon-inducible. An IFN-inducible gene

2.1 Introduction

2.1.1 Innate Immunity: The Concept

Innate immune defense is important for protecting the host from infection, not only in naïve
fish but also in fish that have previously been infected. “Innate immunity has shed its older,
disparaging title of ‘non-specific immunity’ and now stands as a proud partner with the
adaptive immune system in protecting human hosts from infectious insults. For any who
doubt the impressive protective capacity of the innate immune system, it is instructive to
consider that only vertebrates boast the added benefits of an adaptive immune system,
leaving most organisms on our planet to survive on innate immunity alone” (Turvey and
Broide 2010). Indeed, this applies also to fish. The immune system of teleost fish is
composed of two kinds of receptor types: The germline-encoded pattern recognition
receptors (PRRs) and the antigen-specific receptors are made from gene arrangement
after, e.g., pathogen infection. The latter consist of, e.g., antibodies, MHC I and MHC II,
and T-cell receptors. In addition, numerous other receptors/molecules can take part in the
innate immunity. The innate mechanisms can be divided into constitutive and inducible.
The former represents rapid ongoing ligand binding to receptors and a quick response,
while the inducible (e.g., many PPRs) acts slower—but with a higher magnitude (Paludan
et al. 2020) (Figs. 2.1 and 2.2).

2.1.2 Innate Receptors

Innate and adaptive immunity can cooperate to clear the infections. Central receptors in the
early innate responses are so-called Toll-like receptors (TLRs) and are vital for the
communication between the innate and adaptive branches (Rivera et al. 2016). The
germline-encoded pattern recognition receptors (PRRs) are central in the recognition of
microbial components and for the activation of innate immunity, which may induce
inflammatory response to eliminate pathogens. The PRRs, expressed in innate immune
cells, include receptors such as Toll-like receptors (TLRs), RIG-I-like receptors (RLRs),
NOD-like receptors (NLRs), and C-type lectin receptors (CLRs). Upon recognition of
microbial components known as pathogen-associated molecular patterns (PAMPs), PRRs
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Fig. 2.1 Simplified illustration shows how inducible innate immunity changes over time, whereas
the constitutive is stable vs. time. To get complete sterilization and resolution, both inducible and
constitutive innate immune responses plus antibodies are often needed. Epigenetic changes may
contribute to better fitness/increased protection when fish are exposed to a second infection. Targeted
gene expression surveys or transcriptomics has focused primarily on describing or identifying
inducible genes (e.g., DEGs), while in contrast, factors contributing to the constitutive arm have
been poorly described

Fig. 2.2 Hypothetical time-course study of a gene (qPCR) expression. The orange line represents a
gene with constitutive expression upon treatment with stimulant 1, and the black line demonstrates an
early expression of the same gene after the fish were treated with stimulant 2, whereas the dotted red
line represents a delayed expression of this gene after the fish were treated by stimulant 3. A specific
gene may be induced by a certain stimulant and not by others, or there may be a stable, rapid, or
delayed induction. The magnitude of induction may likely be dependent on number of specific
receptors on cells or/and the number of cells that harbor specific receptors
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induce intracellular signaling networks to activate transcription factors that regulate genes
involved in inflammatory responses. Importantly, these innate immune signals also trigger
dynamic chromatin changes. Such changes may in turn induce modulated gene-specific
expression patterns resulting in even more pathogen elimination.

2.2 Cells in the Innate Immune Response

The traditional view that the adaptive and innate immune defense is divided into two
compartments is now more or less history. The fish innate immune cells comprise not only
the “traditional” innate cells such as macrophages (Kordon et al. 2018; Rieger and Barreda
2011; Grayfer et al. 2014, 2018) and granulocytes (Pijanowski et al. 2013; Schmidt 1905)
but also red blood cells (Puente-Marin et al. 2018, 2019b; Dahle et al. 2015; Wessel et al.
2015), thrombocytes (Stosik et al. 2019), B cells (Wu et al. 2020), and subtypes of T cells
(Scapigliati et al. 2018).

2.2.1 Monocytes/Macrophages

Monocytes are large mononuclear circulating leukocytes, which become macrophages
when they settle tissues and organs. The nucleus may display different oval-, kidney-, or
bean-shaped conformations, while the cytoplasm is usually pale and agranular, with
varying amounts of vesicles and lysosomes. Macrophages are one of the main immune
cells performing phagocytosis, the other presumably being the neutrophilic granulocytes.
Phagocytosis is a multistage process for removal and cellular ingestion and destruction by
intracellular enzymes and other substances (Grayfer et al. 2014; Hodgkinson et al. 2015).
In addition to being professional phagocytes, macrophages can also function as profes-
sional APCs by presenting antigen to T cells on MHC class II. Such functions have also
been suggested from studies on fish monocytes/macrophages (Sugamata et al. 2009;
Wittamer et al. 2011). It has been suggested that fish display at least three different
phenotypes of macrophages, based on their activation processes: innately, classically,
and alternatively activated macrophages (Wentzel et al. 2020; Hodgkinson et al. 2015).
Innate activation occurs when a macrophage receives a stimulus from the recognition of a
microbial substance (e.g., PAMP) through cell receptor(s) without any need for any
co-stimulation. Classical activation, however, occurs with the combination of such a
stimulus and the cytokine interferon-gamma (IFN-gamma). Both innate activation and
classical activation typically lead to increased pro-inflammatory response as opposed to
alternative activation. A presence of cytokines (interleukin 4 (IL4) and/or interleukin
13 (IL13)) induces a macrophage phenotype with a resolving function (wound healing
and tissue repair). There is also a suggestion for a fourth type of macrophages, namely
regulatory macrophage. Regulatory activation is associated with the cytokine interleukin
10 (IL10) and important for downregulation of the inflammatory process (Wiegertjes et al.
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2016). However, macrophages are apparently able to change between different phenotypes,
and there is still some uncertainty whether all these activation pathways perform the same
way in fish, as in mammals (Forlenza et al. 2011). Please see Chap. 6 for a more thorough
overview of macrophages in fish.

2.2.2 Dendritic Cells

Dendritic cells (DCs) are categorized as a professional APCs found within several different
tissues and are very effective at initiating both innate and adaptive immune responses in
mammals (Banchereau et al. 2000; Worbs et al. 2017). DCs are typically small cells, with
several elongated, cytoplasmic processes (dendrites) that increase the cell surface area
(Collin and Bigley 2018). Cell populations with DC-like morphology and functions have
been reported from teleost fish (Shao et al. 2015; Bassity and Clark 2012; Haugland et al.
2012), but due to lack of specific markers it is currently unknown whether they are true
homologs of the mammalian cell type.

2.2.3 Granulocytes

Granulocytes are leukocytes with cytoplasmic granules and often nucleus with varying
shapes (lobes) (Flerova and Balabanova 2013). They are central pool of the innate immune
cells (Lieschke and Trede 2009). The granulocytes have traditionally been grouped into
neutrophilic granulocytes (neutrophils), eosinophilic granulocytes (eosinophils), and baso-
philic granulocytes (basophils), based on their staining characteristics with different dyes.
However, this classification was originally developed for use in mammalian hematology
and does not appear to always correlate well with characteristics of fish granulocytes
(Kelenyi and Nemeth 1969; Drzewina 1909; Rombout et al. 2005).

2.2.3.1 Neutrophils
Neutrophils typically possess nucleus with varying degrees of lobulation and contain
granules that usually do not display marked affinity for staining with basic or acid dyes
(such as hematoxylin and eosin). Neutrophils are generally most abundant between the
granulocytes. In mammals, neutrophils are very mobile and are usually among the first cells
to infiltrate tissue during onset and early phases of inflammation (Rosales 2018). Similar
cellular recruitment speed has also been reported from teleosts (Lamas and Ellis 1994;
Katzenback and Belosevic 2009; Havixbeck and Barreda 2015). Neutrophils are armed
with a diverse arsenal of cellular weapons, making them effective combatants against
invading pathogens (Havixbeck and Barreda 2015). Like macrophages, they are able to
degrade ingested microbes and particles through production and release of reactive oxygen
species (ROS) and proteases (Katzenback and Belosevic 2009; Rieger and Barreda 2011).
They can also release different granules, upon degranulation, containing antimicrobial
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proteins and enzymes such as myeloperoxidase (MPO) (Lieschke and Trede 2009). In
addition, neutrophils are able to form extracellular traps, which contain antimicrobial
factors (Palic et al. 2007; Pijanowski et al. 2013; Chi and Sun 2016; Zhao et al. 2017;
Van et al. 2020).

Eosinophils, or acidophils, are described to contain cytoplasmic granules that stain
bright red with the acidic dye (eosin). However, cellular identification based solely on
cytochemical and/or histochemical staining characteristics may lead to misinterpretation as
basophils, eosinophilic granule cells, mast cells, some neutrophils (also called heterophils),
and rodlet cells also are capable to be dyed to various degrees. Consequently, it has been
suggested that mammalian terminology should be used whenever possible for describing
these cell types (Watanabe et al. 1997; Suljevic et al. 2017). In mammals, the eosinophils
have immunological roles regarding both immune regulation, defense against parasitic
infections, and allergic inflammatory reactions (Hogan et al. 2008). Teleost eosinophils
have been reported to be phagocytic (Watson et al. 1963), and they increase in cell numbers
and increase the degranulation activity as a response to infection (Balla et al. 2010).

2.2.3.2 Basophils
Basophils are large granulocytes with staining of their cytoplasmic granules with a basic
dye (hematoxylin). Basophils are rarely observed in teleost species (Tavares-Dias 2006).
Their granules contain histamine, an inflammatory mediator, and basophils are associated
with anaphylaxis, allergy, and hypersensitivity reactions (Chirumbolo 2012). As such, they
are similar to the mast cells. Although not fully established, these granulocytes might also
have other functions within the fish immune system (Odaka et al. 2018).

2.2.3.3 Eosinophilic Granule Cells
Eosinophilic granule cells (EGCs) and rodlet cells have been observed in fish (Reite and
Evensen 2006). Such cells resemble the classical mast cells (Reite 1998). Teleost EGCs
have been identified in several species, as part of the host inflammatory response to injected
vaccines, bacterial infection, parasite infestations, or other types of noxious stimuli
(Rombout et al. 2011).

2.2.4 Thrombocytes

Thrombocytes are oval-shaped, nucleated, and agranular cells located in fish. In some fish
species, thrombocytes have been shown to be phagocytic and it has been discussed whether
thrombocytes can function as APCs and/or is coupled to the innate immunity (Stosik et al.
2019; Passantino et al. 2005).
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2.2.5 Red Blood Cells

From a RNAseq study on trout red blood cells exposed to either poly I:C, it was found that
the cells expressed numerous transcripts of immune molecules—such as ifna, tlr3, tlr9,mx,
and ccl4 (Morera et al. 2011). Thus, the authors suggested that red blood cells indeed
participate in innate immune response.

2.3 Epigenetic Control of Innate Immunity

2.3.1 Epigenetics: The Concept

Epigenetics involves heritable factors that regulate spatiotemporal genome expression,
which may induce different phenotypes. Two of the molecular mechanisms, histone
modifications and DNA methylation, regulate gene expression at the chromatin level. In
contrast, microRNAs are molecules that affect gene expression at the posttranslational
level. Epigenetic histone modification involves acetylation/deacetylation, methylation/
demethylation, and phosphorylation/dephosphorylation of specific histone amino acids.
Pathogens have evolved a variety of strategies to modify host epigenetics. For example,
they can (1) directly modify host proteins and chromatin, (2) attenuate PRR binding and
signaling pathways, and (3) modulate the expression of activators and repressors of innate
immunity. Hosts can abrogate pathogen-induced epigenetic changes to maintain their
innate defense characters (Zhang and Cao 2019). Analysis of posttranslational processes
on immunity has not generally been well studied in fish. However, in one study, the impact
of histone modification after infectious necrosis virus infection (IPNV) and temperature
control has been shown (Boltana et al. 2018). In this study, IPNV-infected fish that
preferred a given temperature showed histone modification, which could explain
modulated expression of il1, il2, ifng, and ifnrg receptor. The pattern of histone modifica-
tion was different from IPNV-infected fish kept at constant temperature. In another study,
spring viremia of carp virus (SVCV) infection induced histone modification in zebrafish
(Danio rerio). The authors indicated that the ifn, tlr, and C-reactive protein promoters were
methylated postinfection; thus, these genes were upregulated compared to controls
(Medina-Gali et al. 2018). Since epigenetic modification of the genome is a heritable
trait, epigenetic programming of brood stockfish, by, e.g., immunostimulants, may be a
viable approach to produce offspring with higher innate disease resistance (Zhang et al.
2019).

2.3.2 Micro RNA

MicroRNAs (miRNAs) are a family of small noncoding RNAs that play vital roles in
modulating host immune response. Accumulating evidence demonstrates that host
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miRNAs are involved as mediators in regulating viral replication and host antiviral
immunity in mammals. In a miiuy croaker macrophages, miR-3570 that was upregulated
after rhabdovirus infection interfered and led to downregulation of type I interferon in the
cells. In turn, this downregulation caused increased virus replication in cells (Xu et al.
2018a). Binding to Toll-like receptors (TLRs) and subsequent intracellular signaling may
also bring about production of microRNA. This may result in a positive or negative
feedback loop system regulating immune response. More on this complex issue is
described in a review authored by Zhou et al. (2018).

2.3.3 Long Noncoding RNA

lncRNAs have been demonstrated to play pivotal roles in various biological processes,
especially gene expression regulations, including transcriptional regulation, posttranscrip-
tional control, and epigenetic processes. The functional significance of lncRNA lags far
behind what is the status on mammals. However, a novel lncRNA (SETD3-OT) in turbot
(Scophthalmus maximus) has been identified. From the annotation of neighboring adjacent
genes, SETD3-OT might be involved in the regulation of cell apoptosis and cycle, the
immune cell development, and the immune response against infection. The expression
pattern of SETD3-OT was similar to the majority of the neighboring genes following
Aeromonas salmonicida challenge. The SETD3-OT expression was high levels in mucosal
surfaces in controls fish (intestine, gill, and skin), but was downregulated following Vibrio
anguillarum infection (Yang et al. 2020). In another study, Nodavirus infected European
sea bass (Dicentrarchus labrax) displayed many putative lncRNA, suggested to possibly
be involved in immune responses (Pereiro et al. 2020). Other studies have also suggested
lncRNA to be involved in the regulation of immune responses (Boltana et al. 2016;
Valenzuela-Miranda and Gallardo-Escarate 2016; Paneru et al. 2016; Valenzuela-Munoz
et al. 2018, 2019).

2.3.4 Small Interfering RNA and Circular RNA

In addition to microRNA and lncRNA, the methylation of mRNA, occurrence of small
interfering RNAs, and circular RNAs may all contribute to epigenetic modulation of gene
expression in vertebrates, including fish (Wang et al. 2018a). Olive flounder (Paralichthys
olivaceus) experimentally infected with Edwardsiella tarda showed differentially
expressed circRNA. The authors suggested that these belonged to the circRNA-miRNA-
mRNA network, where KEGG analysis indicated that they were part of the Herpes simplex
infection and intestinal immune network for IgA production (Xiu et al. 2019). Another
study showed that circRNAs are involved in mammalian antiviral immunity (Wang et al.
2017). KEGG (Kyoto Encyclopedia of Genes and Genomes; www.genome.jp), a huge
database integrating genomic, chemical, and systemic functional information, is often used
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to find what cellular networks/pathways the DEGs belong to. It refers to what is described
in and annotated from human/mice systems.

2.4 Mucosal Innate Defense

2.4.1 Innate Immune Molecules of the Fish Skin

The skin of fishes protects fish from external pathogens. The outermost layer is mainly
composed of epithelial cells, termed keratocytes. These cells cover scales and are highly
phagocytic toward certain particles. They are also motile. The motility of fish keratocytes is
studied in a number of fish species (Asbakk and Dalmo 1998; Tsuchida and Theriot 2013;
Galbraith and Sheetz 1998; Jurado et al. 2005; Okimura et al. 2018; Ream et al. 2003).
There has been limited research on the production of innate defense factors, but this topic
deserves more attention. Whether the cells possess phagocytic receptors is not known, it
seems that the cells are able to discriminate the uptake dependent on the kind of bacteria
(Karlsen et al. 2012). The skin mucus contains an array of molecules enabling protection
from pathogens. In a study on yellow catfish (Pelteobagrus fulvidraco), 133 differentially
expressed proteins were found after bath infection with Edwardsiella ictaluri. A minority
of these differentially expressed proteins were directly immune-related. Examples of the
upregulated genes were complement component c3,MAP kinase 1, and interferon-induced
35 kDa protein (Xiong et al. 2020).

Among the antibacterial enzymes, the best studied in the fish skin is lysozyme. Lyso-
zyme is a glycoside hydrolase that catalyzes the hydrolysis of 1,4-beta-linkages between
N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan, which is the
major component of gram-positive bacterial cell wall. However, it seems that lysozyme-
like enzymes have activity also against gram-negatives, parasites, and virus, as reviewed by
Dash et al. (2018). This review also contains detailed description of other skin-related
innate immune factors (Dash et al. 2018).

How the mucus is obtained, for concomitant analysis of factors, will inevitably decide
which substances will be found during a screening process. As an example: If the mucus
sample contains cells or scales, it is clear that the samples also contain cellular factors and
most probably also immune factors normally localized in deeper layers (e.g., connective
tissue and muscle). The most gentle and sensible protocol is to adsorb the mucus using a
tissue paper. While a wiping method using tissue paper also gives a good protein yield, this
method comes with some degradations. If the research requires a high mucus yield together
with substances from the epithelial layer, the wiping method is preferable (Faeste et al.
2020). It is quite difficult to discriminate between substances normally found in mucus
compared to what is intracellularly or extracellularly localized in epidermis, subdermis, and
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connective tissue. Thus, many reports describe the presence of substances not (only) found
in the mucus itself but also found in the underlaying tissue. As an example of the latter, the
transcriptomic analysis of a skin sample (3 � 1 cm) from large yellow croaker
(Larimichthys crocea) followed by Cryptocaryon irritans challenge revealed up to 1055
DEGs (differentially expressed genes) (96 h postinfection). Since many of the DEGs were
clearly innate immune-related, it would have been interesting to see how many and which
transcripts were from epithelial cells, connective tissue cells, blood cells, and muscle cells,
respectively. Probably, a similar sampling protocol was followed by Liu et al. (2020a, b)
where zebrafish were challenged with spring viremia of carp virus (SVCV)—causing skin
lesions. This study revealed 320 DEPs (differentially expressed proteins) (48 h postinfec-
tion) and 181 DEPs (96 h postinfection). Sixteen of these were confirmed by means of
QPCR analysis (Bai et al. 2020). DEPs often found are complement factors, and
chemokines, heat shock proteins, MHC, cell adhesion molecules, TNF-induced protein,
and many more were regulated (Liu et al. 2020b). In conclusion, analysis of skin innate
defense mechanisms should discriminate between mucus itself, epidermis, subdermis, and
connective tissue.

The epidermis consists of keratocytes, which are highly mobile cells and also possess
(mostly overlooked) phagocytic activity (Asbakk and Dalmo 1998; Sveen et al. 2020). The
immunological significance of their phagocytic ability is not yet fully understood. One
theory is that they engulf as many particles they can before going into a cell death pathway
and are sloughed off from the epidermis (Asbakk and Dalmo 1998). It is speculated that
these cells possess some innate defense mechanisms (e.g., receptors) (Lindell et al. 2012).
The epithelial layer of the fisheye cornea consists of cells that highly resemble skin
keratocytes. These cells are not studied with respect to their innate defense abilities. We
have preliminary results showing that these cells also engulf foreign particles (Fig. 2.3). For
more details on mucosal immunity in fish, see Chap. 12.

Fig. 2.3 Corneal epithelial cells
of Atlantic salmon (Salmo salar)
possess phagocytic ability, as
illustrated by the intracellular
presence of (cyan) microbeads.
Lysosome is stained by pink
color. Courtesy: Dalmo,
Wolfson, Kjølstad, Svartaas
(UiT)
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2.4.2 Nasopharynx-Associated Lymphoid Tissue (NALT)

NALT has been discovered to harbor lymphocytes, but also genes central in induction of
innate immunity. These include mx1, tlr3, il1r, il8, tnfr, myD88, c3, c4, c7–1, cxc9, cxcl9,
cathl1, ccl19, and il6 (Tacchi et al. 2014; Yu et al. 2018). The significance of NALT-
mediated innate response, compared to, e.g., skin or intestine, is not clear. Another
assemblance of lymphoid cells can be found in the buccal cavity of rainbow trout
(Oncorhynchus mykiss) that have been infected by Flavobacterium columnare. After
infection, this buccal cavity lymphoid tissue was found to express innate factors such as
il8, il1b, chemokine like 19, cathl1 and cathl2, rig1, among other adaptive immune genes
(Xu et al. 2020).

2.4.3 Gills in Innate Immunity

Gill-associated lymphoid tissue (GIALT) has been characterized in Atlantic salmon and
different fish species (Resseguier et al. 2020; Haugarvoll et al. 2008). This tissue was, in
Atlantic salmon, identified to express upregulated genes such as complement component
c3, il18, mx3, il20, ifn type II, viperin, rig1, and ifna after ISAV challenge (Austbo et al.
2014; Valenzuela-Miranda et al. 2015). Pro-inflammatory (il6, il17c1) and anti-
inflammatory (il10, tgfb) genes have been found, in rainbow trout gills, after Ich
(Ichthyophthirius multifiliis) infection (Syahputra et al. 2019). Another study aimed at
doing a transcriptomic survey of Atlantic salmon gills suffering from multifactorial
pathologies. Genes that were differentially expressed were depicted to be involved in
pathways such as cellular immune response (IL-17 signaling, IL-6 signaling, granzyme
A signaling, crosstalk between dendritic cells and natural killer cells, granulocyte adhesion
and diapedesis, and HMGB1 signaling), cytokine signaling (IL-17 signaling, IL-6 signal-
ing, acute-phase response signaling, role of JAK family kinases in IL-6 type cytokine
signaling, TNFR2 signaling, and HMGB1 signaling), and tissue damage and repair (Krol
et al. 2020). Some of these genes possess central functions in innate immunity. More details
on the gills’ function in the immune response, please see Chap. 1.

2.4.4 Intestine in Innate Immunity

During the recent years, many excellent review articles describing the fish’s intestinal
immunity have been published (Dawood 2020; Nadal et al. 2020; Sitja-Bobadilla et al.
2016; Brugman 2016; Dezfuli et al. 2016; Scapigliati et al. 2018; Brinchmann et al. 2018).
Recently, there have been many innovative approaches to better understand intestinal
immunity. In one of these studies, proteomic and transcriptomic examination of the
intestinal mucus in Tilapia infected with Streptococcus agalactiae showed that innate
factors such as c1r-like EGF domain, c1q-binding protein, hsp1, hsp90b, galectin, and
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membrane attack complex component/perforin domain, conserved site, complement
factor D, C-type lectin fold, il1, il1r, and foxp3 (Wu et al. 2016). Another study, in grass
carp, did a transciptomic and proteomic examination of the intestine after oral DNA
vaccination (Li et al. 2020). The study revealed 250 and 50 immune-related DEGs and
DEPs, respectively, after the oral vaccination. KEGG enrichment analysis showed genes
and proteins participating in the Toll-like receptor signaling pathway, MAPK signaling
pathway, NOD-like receptor signaling pathway, and the complement cascade were present
both in the mucous and tissue homogenates. It is obvious that the intestinal innate
mechanisms are quite diverse. More research using modern omic technologies will inevi-
tably give us more information about the significance of the various intestinal innate factors
that have on disease resistance.

Recently, a lymphoid structure in the cloacal region was discovered in Atlantic salmon
(Loken et al. 2020). This may be the same as Inami et al. (2009) described in Atlantic cod—
although the work on cod did not specify the anatomical localization properly (Inami et al.
2009). Whether this collection of lymphatic cells has any function in innate defense is not
clear. However, through gene expression studies, genes encoding il1b, il8, il10, hepcidin,
and ccl19 were found. These genes likely play roles in the innate immunity.

Future studies of intestinal mucus must be carefully planned and executed to avoid
contaminant cells and blood. This may give false assumptions with regard to the actual
presence of innate factors.

2.5 Innate Defense Mechanisms in Muscle Tissues

Skeletal muscles have been implicated in several atypical physiological processes includ-
ing immune response, especially after pathogen challenge. When zebrafish were intramus-
cularly challenged by Salmonella enterica, pro-inflammatory il1b and tnfa were highly
expressed in their skeletal muscle. Likewise, hep (hepcidin) and il10 were also expressed
(Chatterjee et al. 2016). The authors did not examine any presence of leukocytes in muscle
tissue samples after the fish were challenged with Salmonella. Thus, it is likely that
inflammatory leukocytes did contribute to the expression of the pro-inflammatory
cytokines. The contribution of incoming leukocytes to the inflammatory event is discussed
by Valenzuela et al. (2017) and Kaitetzidou et al. (2012). Similar to the induction of innate
immune genes in skeletal muscle, Atlantic salmon infected with salmonid alphavirus and
piscine reovirus showed altered gene expression in the heart tissue (Johansen et al. 2015).
In this study, several innate genes were expressed in the heart muscle. The authors did not
elaborate whether this contribution was caused by inflammatory cells or not.
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2.6 Innate Defense Mechanisms in Kidney and Spleen

The kidney and spleen are hematopoietic organs capable of inducing and exerting innate
immune responses (Uribe et al. 2011; Svingerud et al. 2012; Kumar et al. 2018). The head
kidney is the principal immune organ responsible for phagocytosis, antigen processing, and
formation of Igm and immune memory (Page et al. 2013; Stosik et al. 2018; Rauta et al.
2012; Rombout et al. 2005; Kim et al. 2017). Kidneys in fish are paired and have a Y shape
along the body axis. The immune relevant part, the head kidney, is located anteriorly. The
posterior is mostly the renal system. The form of the head kidney varies between species. In
some species, there are two separate extensions in the most anterior part of the organ, while
in salmonid species the kidney is present as a single organ (Press and Evensen 1999). It is
acknowledged that the head kidneys’ main function is hematopoiesis of lymphocytes,
phagocytosis, antigen presentation, and maturation of lymphocytes. Its significance in
innate immunity is not very well researched yet, although the head kidney leukocytes are
armed with innate factors (Aballai et al. 2017; Gerdol et al. 2015; Cao et al. 2020; Hwang
et al. 2017; Rozas-Serri et al. 2019; Zhou et al. 2019). It should be clear that cells in the
posterior part of the kidney also have capability to express immune genes after pathogen
challenge, as reported by Sudhagar et al. (2019).

2.7 Innate Defense Mechanisms in the Spleen

It is acknowledged that the main functions of the spleen are in hematopoiesis of
lymphocytes, antigen trapping, and destruction of red blood cells (Press and Evensen
1999). However, from RNAseq analysis it is evident that the spleen cells contain and
express numerous innate immune genes such as those involved in chemokine signaling,
Toll-like receptor signaling, RIG-1, and NOD-mediated signaling and complement cascade
(Ali et al. 2014).

2.8 Innate Defense Mechanisms in the Liver

The liver is acknowledged to produce acute-phase proteins, including complement
components following infection or physiological insult. An array of innate defense factors
has been found following a transcriptomic study of rainbow trout. This study revealed
transcripts coding for genes important in acute-phase response, inflammatory response,
genes coding for PAMP-binding receptors, and molecules central in chemotaxis (Martin
et al. 2010). This finding suggests that the liver also has capacity to mount innate responses.
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2.9 Receptors and Molecules of the Innate Immune Defense

Innate immunity is orchestrated by numerous molecules such as cytokines, complement
factor, and receptors. Many molecules participate in both innate immunity and adaptive
immunity. The following chapters describe the roles of selected innate molecules that have
been ascribed to innate immunity—as central components.

2.9.1 Toll-Like Receptors (TLRs) as Pattern Recognition Receptors (PPRs)

The number of TLRs adds to other pattern recognition receptors (Tribouley et al. 1978)
(including splice variants) such as different C-type lectin receptors, NOD-like (nucleotide-
binding oligomerization domain-like) receptors (NLRs), RIG-1-like receptors, and scaven-
ger receptors (Brubaker et al. 2015), and suggests that fish may very well be equipped with
innate receptors that may likely be targets for innate immune training. TLRs are a family of
pattern recognition receptors that bind pathogen-associated molecular patterns (PAMPs)
(Pietretti & Wiegertjes, 2014). In addition, several TLRs are able to bind certain endoge-
nous molecules called damage-associated molecular patterns (DAMPs) (following, e.g.,
trauma). TLRs are highly important since they represent a considerable diversity in their
ligand-binding properties and thus facilitate responses against a wide array of pathogens.
Genome duplication events in fishes during evolution have been attributed to the diversity
of TLRs; therefore, differences with respect to the number of TLR loci exist between
mammalian species and many fish species (Palti 2011). As an example: The genome of a
mudskipper species (Periophthalmodon schlosseri) contains 11 copies of tlr13 (You et al.
2014). Most vertebrate genomes are recognized to have at least one gene representing each
of the seven major tlr1, tlr2, tlr3, tlr4, tlr5, tlr7 and tlr11 families (Roach et al. 2005).
Within Osteichthyes, the large tlr1 subfamily members include tlr1, tlr2, tlr14, tlr18, tlr25,
tlr27, and tlr28 (Nie et al. 2018). The tlr3, tlr4, and tlr5 subfamilies recognize dsRNA,
LPS, and bacterial flagellin. The tlr7 subfamily ligands are nucleic acid motifs, whereas the
tlr11 family TLRs recognize an array of different molecules—from proteins to nucleic
acids—reviewed by Nie et al. (2018). The ligand specificities for each TLR have not been
very well studied in fish, though flagellin, synthetic triacetylated lipopeptide (Pam3CSK4),
lipopeptides from gram-positive bacteria, and short double-stranded RNA (dsRNA) have
been shown to interact with/bind to tlr1/2, tlr5, and tlr22, respectively (Nie et al. 2018).
This means that fish immunologists assume that tlr localization and ligand specificities of
fish tlrs are similar to mammalian counterparts. This is reviewed by Pietretti et al. (2014)
and Kanwal et al. (2014). Tlrs are, in mice and humans, localized in the cell membrane and
in the endoplasmic reticulum (ER), endosomes, and lysosomes (Fink et al. 2016). Tlr
receptors 1, 2, 6, and 10 have, in human or mice models, been found to recognize a broad
range of peptidoglycans and lipoproteins from, e.g., bacteria and parasites. These are
located on the cell surface and, following engagement, there is intracellular signaling
ending in NF-kB-dependent gene expression. NF-kB promotes expression of
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pro-inflammatory cytokines. Viral recognition may be brought about by tlr3, tlr7, tlr8, and
tlr9 where they potentially can bind dsRNA, single-stranded RNA (ssRNA), and CpG
DNA. As found in zebrafish, the tlr22 may also bind dsRNA or poly I:C (a dsRNA mimic)
(Li et al. 2017b) [Fitzgerald, 2020 #954]. These “antiviral receptors,” upon ligand binding,
confer (via TRIF or/and MyD88) activation of interferon regulatory factors 3 and 7 (tran-
scription factors), which in turn facilitates transcription of interferon type I expression.

Taken together, the common interpretation is that TLR activation results in the produc-
tion of pro-inflammatory cytokines (e.g., tnfa and IL-1ß) and/or in the expression and
synthesis of transcription factors involved in protection against viruses, bacteria, and
parasites (Sahoo 2020; Kanwal et al. 2014; Rauta et al. 2014; Zhang and Gui 2012; Palti
2011).

Tables 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16,
2.17, 2.18, 2.19, 2.20, 2.21, and 2.22 give an updated overview of tlrs 1–5, 7–9, 12–14, and
18–28 found in different fish species. This list is continuously growing as genome, and
transcriptome sequences from new species are completed and analyzed. This will be done
during the “Fish10K” project where the aim is to genome sequence 10,000 fish species
during a ten-year period (Fan et al. 2020), and through the ongoing “Fish1K” project (Sun
et al. 2016b) and Earth Biogenome Project (Lewin et al. 2018).

2.9.2 Interferon Type I

Interferons (IFNs) are a group of cytokines with important roles in defense against viral
pathogens (cf. Chaps. 13 and 14). They are divided into two families, type I and type II,
based on structural properties and functions. Both the type I and II IFN systems are
essential to antiviral defense in innate and adaptive immunity (Zou and Secombes 2011)
(Tables 2.23 and 2.24). In contrast to type I IFNs, which are more important in innate
immunity, IFN-γ (type II IFN) is exclusively produced in immune-related cells and is more
important later in the immune response. In innate immune responses, IFN-γ is produced by
natural killer cells (Jung et al. 2012). During adaptive cell-mediated immune responses,
IFN-γ is produced by CD4-positive Th1 cells and CD8-positive cytotoxic T lymphocytes.
IFNs induce the expression of a broad array of IFN-stimulated genes (isgs), which encode
for proteins with direct antiviral activity, including inhibition of viral transcription, degra-
dation of viral RNA, inhibition of translation, or modification of protein function. Several
reviews of the interferon system of teleost fish have been presented over the years
(Robertsen 2006; Workenhe et al. 2010; Zou and Secombes 2011; Secombes and Zou
2017). Chaves-Pozo and coworkers investigated the interferon response in the ovary of
rainbow trout (O. mykiss). They found that the VHS virus strongly upregulated all the ifn
genes studied, while the IPN virus either had no effect or strongly suppressed ifn gene
expression (Chaves-Pozo et al. 2010). Valero and coworkers investigated ifns in the gonads
of gilthead sea bream (Sparus aurata) and European sea bass (D. labrax). They evaluated
the expression after infection with the disease viral nervous necrosis (VNN) in the brain
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Table 2.1 Updated list of tlr1 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr3 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. Tlr1 can associate with tlr2 and
tlr6 to expand their ligand-binding specificities. In general, tlr1 may bind bacterial peptidoglycan and
triacyl and diacyl peptides. ND not determined

TLR
no Species Tissue expression References

1 Common carp Muscle, gills, skin, and others Gong et al. (2017)

1 Common carp Peripheral blood leukocytes,
mid-kidney, spleen, and others

Fink et al. (2016)

1 Pufferfish Heart, spleen, anterior kidney, and
others

Oshiumi et al. (2003)

1 Pufferfish Expressed in kidney Oshiumi et al. (2003)

1 Channel catfish Anterior kidney Quiniou et al. (2013)

1 Channel catfish Spleen, anterior kidney, kidney, gills,
and others

Zhang et al. (2013a)

1 Rainbow trout Spleen, anterior kidney Palti et al. (2010b)

1 Atlantic salmon ND Salazar et al. (2016)

1 Brown trout ND Sudhagar et al. (2020)

1 Orange-spotted
grouper

Anterior kidney, spleen, gills, skin,
brain

Wei et al. (2011)

1 Large yellow
croaker

Blood, spleen, heart, liver, kidney Wang et al. (2013a)

1 Nile tilapia Kidney, brain, spleen, intestine, muscle
+ other

Abouelmaatti et al.
(2020)

1 Golden pompano Skin, anterior kidney Wu et al. (2018)

1 Sea perch Anterior kidney, intestine, liver, spleen,
heart

Li et al. (2018a)

1 Yellow catfish Midgut, brain, foregut, head kidney,
spleen, and other

Zhang et al. (2017b)

1 Blunt snout bream ND Lai et al. (2017b)

1 Miiuy croaker Liver, head kidney, and other Xu et al. (2016)

1 Grass carp Spleen, mid-kidney, anterior kidney,
and other

He et al. (2016)

1 Rock bream Spleen, kidney, liver, and others Elvitigala et al. (2015)

1.1 Zebrafish Skin, liver, blood, spleen, testis, and
others

Jault et al. (2004)

1 Tibetan fish
(Przewalski’s carp)

ND Tong et al. (2015)

1 Yellow River
scaleless carp

ND Qi et al. (2017)

1–1 Spotted sea bass Details not given Fan et al. (2019)

1–2

1 Maraena whitefish Anterior kidney, kidney, and others Altmann et al. (2016)
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Table 2.2 Updated list of tlr2 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr mRNA is also given, where the highest
expression is found in the first organ/tissue listed, and so on. ND not determined

TLR
no Species Tissue expression References

2–1 Common carp Gills, spleen, and others Gong et al. (2017)

2–2 Common carp Spleen, kidney, and others Gong et al. (2017)

2a Common carp Peripheral blood leukocytes, gut, anterior
kidney, and other

Fink et al. (2016)

2b Common carp Heart and other Fink et al. (2016)

2 Japanese flounder Peripheral blood leukocytes Hirono et al. (2004)

2 Pufferfish Expressed in many tissues Oshiumi et al.
(2003)

2 Channel catfish Anterior kidney, gills, spleen Quiniou et al.
(2013)

2 Channel catfish Liver, brain, gills, trunk kidney, intestine,
and others

Baoprasertkul et al.
(2007a)

2 Channel catfish Anterior kidney, spleen, heart, kidney,
brain, and others

Baoprasertkul et al.
(2007a)

2 Rainbow trout Spleen, anterior kidney, thymus,
macrophages, B cells, thrombocytes

Brietzke et al.
(2016)

2 Orange-spotted
grouper

Spleen, gills, anterior kidney Wei et al. (2011)

2 Large yellow
croaker

Blood, spleen, heart, anterior kidney,
posterior kidney

Fan et al. (2015)

2b Large yellow
croaker

Intestine, blood, skin, liver Ao et al. (2016)

2 Indian major carp,
rohu

Spleen, intestine, gills, liver, blood Samanta et al.
(2012)

2 Darby’s sturgeon Blood, anterior kidney, brain, heart, muscle Tang et al. (2020)

2 Golden pompano Liver, intestine, blood, skin, anterior kidney Wu et al. (2018)

2 Yellow catfish Spleen, anterior kidney, foregut, gills, liver,
and other

Zhang et al. (2017b)

2 Grass carp Mid-kidney, anterior kidney, and other He et al. (2016)

2 Zebrafish Brain, liver, skin, spleen Jault et al. 2004)

2 Gibel carp Brain, gills, anterior kidney, and others Fan et al. (2018)

2 Turbot Kidney, liver, spleen, anterior kidney, and
others

Zhang et al. (2016)

2 Miiuy croaker Eye, gills, spleen, intestine, and others Xu et al. (2013)

2 Indian major carp,
mrigal

Gills, liver, kidney, intestine, blood Basu et al. (2012b)

2 Catfish Liver, brain, gills, trunk kidney, intestine,
stomach, and others

Baoprasertkul et al.
(2007a)

(continued)
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(Valero et al. 2015). The orange-spotted grouper, Epinephelus coioides, is a commercially
important fish that is widely farmed in tropical waters, e.g., in Taiwan, Japan, Australia,
and also Europe. Chen et al. characterized a type I ifn from this fish and determined the
expression during nodavirus infection. Groupers infected with nodavirus had elevated
levels of ifn and administration of recombinant IFN type I, which led to upregulated
antiviral activity (Chen et al. 2014). In large yellow croaker (L. crocea), a type I group II
interferon was identified by Ding and coworkers. The ifnwas constitutively expressed in all
examined tissues, spleen, liver, skin, head kidney, gills, blood, muscle, heart, brain, and
intestine. The expression was rapidly upregulated in spleen and head kidney by poly I:C
and Aeromonas hydrophila (Ding et al. 2019). A type I interferon gene was identified in
Japanese eel (Anguilla japonica). The ifn was expressed constitutively in liver, spleen,
intestine, gills, skin, kidney, heart, and muscle. After injection with LPS, poly I:C, and live
A. hydrophila, expression levels increased in both liver, spleen, and kidney (Feng et al.
2017). A transgenic cell line for the detection of salmon interferons has been established. It
is based on a CHSE-214 cell line containing a reporter construct expressing firefly lucifer-
ase under the control of a rainbow trout promoter for the IFN-induced mx1 gene. The mx
promoter was shown to respond to both salmon IFN type I and trout IFN type II in a dose-
dependent manner, while there was no response to recombinant tnfa and ilb (Jorgensen
et al. 2007). Three distinct members of type I interferons were identified in the mandarin
fish (Siniperca chuatsi) by Laghari et al. Fish injected intraperitoneally with poly I:C
resulted in an enhanced expression of all three genes in the head kidney. The disease
infectious spleen and kidney necrosis virus (ISKNV) caused an increased but delayed
response of ifns (Laghari et al. 2018). Liu and coworkers studied ifn subgroups of salmonid
species like rainbow trout (O. mykiss), chinook salmon (Oncorhynchus tshawytscha), coho
salmon (Oncorhynchus kisutch), Atlantis salmon (Salmo salar), and Arctic charr
(Salvelinus alpinus) and compared them with other species. The analysis confirmed that
salmonids have a complex (in terms of ifn subgroups present) and (large number of genes)
type I ifn repertoire relative to other teleost fish (Liu et al. 2020a). Milne et al. studied three

Table 2.2 (continued)

TLR
no Species Tissue expression References

2 Tibetan fish
(Przewalski’s carp)

Details not given Tong et al. (2015)

2 Yellow River
scaleless carp

ND Qi et al. (2017)

2–1 Spotted sea bass ND (Fan et al. (2019)

2–2

2 Maraena whitefish Anterior kidney, kidney, and others Altmann et al.
(2016)

2 Goldfish ND Tu et al. (2016)
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Table 2.3 Updated list of tlr3 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr3 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. Tlr3 is able to bind double-
stranded RNA, which is a molecular signature of certain viruses. ND not determined

TLR
no Species Tissue expression References

3 Pufferfish Digestive tract Oshiumi et al. (2003)

3 Silvery pomfret Liver, kidney, intestine Gao et al. (2020)

3 Common carp Intestine, liver, kidney, spleen, and others Yang and Su (2010)

3–1 Common carp Spleen, skin, blood, and other Gong et al. (2017)

3–2 Common carp Gills, skin, blood, and others

3 Yellow catfish Liver, brain, swim bladder, and other Zhang et al. (2017b)

3 Zebrafish Skin, liver, blood, spleen, and other Jault et al. (2004)

3 Gibel carp Liver, gills, anterior kidney, brain, and
others

Fan et al. (2018)

3 Sea perch Spleen, liver, anterior kidney, and others Wang et al. (2018b)

3 Spiny eel Spleen, gills, and others Han et al. (2017)

3 Snow trout Kidney, liver, spleen, intestine, and others Belwal et al. (2017)

3 Atlantic salmon Spleen, anterior kidney, liver, heart,
intestine

Vidal et al. (2015)

3 Orange-spotted
grouper

Liver, anterior kidney, and others Lin et al. (2013)

3 Rohu Spleen, eye, intestine, blood, skin, and
others

Samanta et al. (2013)

3 Japanese flounder Anterior kidney, heart, gills, and others Hwang et al. (2012)

3 Yellow croaker Liver, intestine, heart, kidney, gills, and
others

Huang et al. (2011)

3 Turbot Anterior kidney, stomach, intestine, heart,
and others

Hu et al. (2015a)

3 Channel catfish Liver, muscle, spleen, and others Baoprasertkul et al.
(2006)

3 Channel catfish Expressed in many tissues and organs,
minor in blood

Zhang et al. (2013a)

3 Channel catfish Liver, gills, spleen, stomach, and others Bilodeau and
Waldbieser (2005)

3 Rainbow trout Liver, intestine, pyloric caeca, posterior
and anterior kidneys, and others

Rodriguez et al.
(2005)

3 Zebrafish Gills, spleen, kidney, heart, brain, liver Phelan et al. (2005)

3 Tibetan fish
(Przewalski’s
carp)

Details not given Tong et al. (2015)

3 Yellow River
scaleless carp

ND Qi et al. (2017)

3 Spotted sea bass Details not given Fan et al. (2019)
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distinct type I interferons in meagre (Argyrosomus regius), namely ifnc, ifnd, and ifnh.
Constitutive expression was analyzed during larval development and in adult tissues (gills,
midgut, head kidney, spleen). The spleen had high transcript levels of all three ifns. Ifnd and
ifnh were also highly expressed in gills. The expression of each subgroup increased
significantly across all four tissues following injection of poly I:C (Milne et al. 2018). In
Atlantic salmon, Sun et al. identified an ifn multigene cluster encoding three ifn subtypes
(ifna, ifnb, and ifnc). Each ifn subtype was constitutively expressed in head kidney. The
three subtypes showed a striking difference in expression properties in response to stimu-
lation with poly I:C. Both ifna and ifnc transcripts increased, while ifnb was only slightly
induced by poly I:C (Sun et al. 2009). Type I interferon genes were cloned and
characterized in the rock bream (Oplegnathus fasciatus). Their expression was upregulated
in blood cells and head kidney by LPS, poly I:C, E. tarda, Streptococcus iniae, and
iridovirus, and recombinant ifn I protein induced a rapid and transient expression of the
mx gene in head kidney cells (Wan et al. 2012). An overview of type I ifns in different fish
species with their activities is found in Table 2.23.

2.9.3 Interferon Type II

Interferon-gamma (ifng), the only type II interferon, is a pleiotropic pro-inflammatory and
antiviral cytokine. In mammals, it is constitutively produced by NK cells, whereas T
lymphocytes produce IFNG after activation or differentiation. IFNG is a key cytokine for
innate and adaptive immunity against viral and intracellular bacterial infections and is
involved in tumor control. An updated teleost interferon-gamma review has recently been
published (Pereiro et al. 2019). Arts and coworkers made recombinant proteins of the carp
(Cyprinus carpio) IFN-γ sequences of both clusters (ifng1 and ifng2) and tested their
effects on expression of pro-inflammatory mediators (Arts et al. 2010). An interferon-
responsive stable cell line RTG-3F7 has been developed for rainbow trout by modifying
the RTG-2 cell line through transfection with a plasmid construct containing a promoter

Table 2.3 (continued)

TLR
no Species Tissue expression References

3 Maraena whitefish Liver, heart, kidney, skin, gills, and others Altmann et al. (2016)

3 Atlantic cod Details not given Solbakken et al.
(2016)

3 Grass carp ND Liao et al. (2017)

3 Goldfish ND Tu et al. (2016)

3 Lamprey Skin, gills, peripheral blood leukocytes,
kidney, and others

Kasamatsu et al.
(2010)
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element from the IFN-γ responsive gene TAP2 linked to a luciferase reporter gene and a
hygromycin resistance gene. The results indicate that the stable cell line RTG-3F7 is an
excellent tool for monitoring the presence of trout ifng in biological samples (Castro et al.
2010). The large yellow croaker (L. crocea) is an important mariculture fish species in
China, and the bacterium Vibrio harveyi and the ciliate protozoan C. irritans are the two
major pathogens of this species. The nucleotide sequence of ifng was obtained, and
expression studies were performed. Fish were challenged with V. harveyi and C. irritans,

Table 2.4 A list of tlr4 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr4 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. TLR4 binds the lipid moiety of
bacterial lipopolysaccharide. ND not determined

TLR
no Species Tissue expression References

4all Channel catfish Gonads, gills Quiniou et al. (2013)

4mb Channel catfish Gills, liver, spleen

4 Channel catfish Intestine, gills, and others Zhang et al. (2013a)

4–1 Common carp Intestine, gills, brain, and other Gong et al. (2017)

4–2 Common carp Intestine, spleen, gills, skin, blood, and
others

4.1 Grass carp Heart, blood, liver, and others Pei et al. (2015)

4.2 Grass carp Skin, intestine, liver, spleen, and others

4.3 Grass carp Gills, skin, and others

4.4 Grass carp Heart, skin, and others

4.1 Grass carp Spleen, intestine, kidney, and others Huang et al. (2012)

4–2 Grass carp Spleen, intestine, kidney, and others

4–3 Grass carp Spleen, intestine, kidney, and others

4–4 Grass carp Spleen, kidney, anterior kidney, gills, and
others

4–1 Yellow catfish Liver, anterior kidney, gills, brain, trunk
kidney, heart, and other

Zhang et al. (2017b)

4.1 Zebrafish Blood, skin, testis, digestive organ, brain,
liver, heart, and other

Jault et al. (2004)

4.2 Zebrafish Blood

4 Rohu Blood, spleen, gills, kidney, and others Samanta et al. (2017)

4 Blunt snout Kidney, muscle, heart, liver, and others Tang et al. (2016)

4 Blunt snout Blood, skin, heart, spleen, gills, and
others

Lai et al. (2016)

4 Tibetan fish
(Przewalski’s carp)

Details not given Tong et al. (2015)

4 Yellow River
scaleless carp

ND Qi et al. (2017)
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Table 2.5 List of tlr5 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr5 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. Bacterial flagellin is the ligand
for TLR5. ND not determined, S soluble, m membrane

TLR
no Species Tissue expression References

5 s Pufferfish Reproductive organ, heart, gills, brain,
skin, eye, liver, spleen

Oshiumi et al.
(2003)

5 Digestive tract, reproductive organ,
liver,

5all Channel catfish Anterior kidney, liver, gonads, posterior
kidney

Quiniou et al. (2013)

5 mb Anterior kidney, liver, gonads, posterior
kidney

5–1
and
5–2

Channel catfish Expressed at low levels in many organs
and tissues

Zhang et al. (2013a)

5 s Liver, anterior kidney, kidney, and
others

5 Channel catfish Ovary, liver, anterior kidney, skin, and
others

Baoprasertkul et al.
(2007b)

5 Channel catfish Liver, kidney, and others Bilodeau and
Waldbieser (2005)

5 Golden pompano Intestine, liver, kidney, blood Zhu et al. (2020)

5 s Blood, kidney, spleen, skin, intestine

5 Common carp Muscle, spleen, and other Gong et al. (2017)

5 Yellow catfish Liver, gills, blood, trunk kidney, and
other

Zhang et al. (2017b)

5a Zebrafish Low expression in digestive organ,
negligible in others

Jault et al. (2004)

5 Spiny eel Liver, eye, gills, muscle, fins, and others Han et al. (2017)

5a Yellow River
scaleless carp

ND Qi et al. (2017)

5 m Tibetan fish
(Przewalski’s carp)

Details not given Tong et al. (2015)

5.1 Ya-fish Liver, spleen, anterior kidney, and
others

Du et al. (2019a)

5.2 Liver, spleen, and others

5 Spotted sea bass Details not given Fan et al. (2019)

5 Silver pomfret Liver, kidney, spleen, intestine, and
others

Gao et al. (2018)

5 s Miiuy croaker Liver, kidney, skin, and others Huo et al. (2018)

5 Dark barbel fish Anterior kidney, spleen, and others Qin et al. (2018)

5 s Anterior kidney, spleen, and others
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respectively. One day after injection with V. harvey, all 10 tissues investigated had a higher
expression of ifng, while only spleen, muscle, intestine, heart, and skin had higher
expression after infection with C. irritants (Chen et al. 2015). Jung and coworkers
produced a recombinant ifng (rifng) from the olive flounder (P. olivaceus). Stimulation
of kidney leukocytes in vitro with rinfg induced the gene expression of il1b, signal
transducer and activator of transcription 1 (stat1), CXCL-13-like chemokine (cxcl13),
and ifng. Intraperitoneal injection of a mixture of rifng and E. tarda into olive flounder
resulted in a survival rate of 60% compared to 0% in the group treated with E. tarda only
(Jung et al. 2012).

The extensive use of paraquat (PQ) in agricultural practice throughout the world may
compromise the integrity of biological systems in fish. PQ toxicity has been found to be
mediated by the production of free radicals, which cause oxidative damage to cells. In a

Table 2.5 (continued)

TLR
no Species Tissue expression References

5 Pacific red snapper Intestine, liver, anterior kidney, brain,
muscle, and others

Reyes-Becerril et al.
(2017)

5 Triploid crucian
carp

Kidney, liver, anterior kidney, heart,
and others

Zhang et al. (2017a)

5 s Striped catfish Anterior kidney, kidney, liver, spleen,
and others

Jayaramu et al.
(2017)

5 Orange-spotted
grouper
Orange-spotted
grouper

Skin, anterior kidney, spleen, kidney,
and others

Bai et al. (2017)

5 s Liver, spleen, and others

5 Maraena whitefish Liver, fins, heart, skin, and others Altmann et al.
(2016)5 s Liver and others

5a Grass carp Anterior kidney, kidney, muscle, and
others

Jiang et al. (2015)

5b Anterior kidney, kidney, heart, gills,
and others

5 s Gilthead sea bream Liver, peritoneal exudate, blood, spleen,
thymus

Munoz et al. (2013)

5 Indian major carp,
mrigal

Liver, skin, muscle, and others Basu et al. (2012a)

5 Japanese flounder Kidney, liver, heart, gills, and others Hwang et al. (2010)

5a Blunt snout bream Liver, kidney, and others Zhan et al. (2019)

5b Spleen, kidney, heart, and others

5 Atlantic salmon ND Salazar et al. (2016)

5 s

5 Lamprey Peripheral blood leukocytes, skin, gills,
and others

Kasamatsu et al.
(2010)
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Table 2.6 Updated list of tlr7 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr7 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. TLR7 recognizes internalized
single-stranded RNA found in viruses. ND not determined

TLR
no Species Tissue expression References

7 Pufferfish Kidney, gills, reproductive organ Oshiumi et al. (2003)

7 Channel catfish Spleen, anterior kidney, posterior kidney Quiniou et al. (2013)

7 Channel catfish Anterior kidney, kidney, brain, spleen,
heart, gills, intestine, skin, and others

Zhang et al. (2013a)

7–1 Common carp Brain, gills, skin, blood, and others Gong et al. (2017)

7–2 Gills, heart, skin

7 Common carp Spleen, liver, heart, kidney, and others Tanekhy et al. (2010)

7 Yellow catfish Brain, spleen, swim bladder, anterior
kidney, and other

Zhang et al. (2017b)

7 Zebrafish Heart, skin, blood, brain, and others Jault et al. (2004)

7 Tibetan fish
(Przewalski’s
carp)

Details not given Tong et al. (2015)

7 Yellow River
scaleless carp

ND Qi et al. (2017)

7 Spotted sea bass Details not given Fan et al. (2019)

7 Maraena
whitefish

Anterior kidney and others Altmann et al. (2016)

7a-c Atlantic cod No details given Solbakken et al.
(2016)

7 Zig-zag eel Gills, muscle, spleen, intestine, and others Han et al. (2019)

7 Barbel chub Spleen, brain, heart, and others Jin et al. (2018)

7 Golden pompano Spleen, kidney, muscle, gills, skin, and
others

Wei et al. (2017)

7 Tongue sole Kidney, spleen, liver, heart, and others Li and Sun (2015)

7 Large yellow
croaker

Spleen, kidney, muscle, gills, skin, and
others

Qian et al. (2013)

7 Grass carp Spleen, skin, heart, intestine, gills, and
others

Yang et al. (2012)

7 Rainbow trout Spleen, anterior kidney, and others Palti et al. (2010a)

7 Goldfish ND Tu et al. (2016)

7/8a Lamprey Peripheral blood leukocytes, skin, and
others

Kasamatsu et al.
(2010)

7/8b Peripheral blood leukocytes, heart, and
others
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Table 2.7 List of tlr8 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr8 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. TLR8 may recognize guanosine
and uridine-rich single-stranded RNA found in viruses. Tlr8 associates with tlr7. ND not determined

TLR
no Species Tissue expression References

8 Pufferfish Reproductive organ Oshiumi et al. (2003)

8 Channel catfish Spleen, anterior kidney, posterior kidney Quiniou et al. (2013)

8a-1 Channel catfish Anterior kidney, kidney, spleen, and others Zhang et al. (2013a)

8a-2 Spleen, anterior kidney, kidney, heart, brain,
and others

8-1 Common carp Gills and other Gong et al. (2017)

8-2 Gills, intestine, skin, heart, and other

8-3 Intestine, kidney, spleen, and other

8 Common carp Spleen, skin, brain, gonads, and others Shan et al. (2018b)

8-2 Yellow catfish Spleen, brain, liver, foregut, and other Zhang et al. (2017b)

8.1 Zebrafish Heart, blood, liver, ovaries, digestive organ,
and others

Jault et al. (2004)

8.2 Skin, blood, heart, and others

8 Tibetan fish
(Przewalski’s
carp)

ND Tong et al. (2015)

8a Yellow River
scaleless carp

ND Qi et al. (2017)

8b

8 Spotted sea bass ND Fan et al. (2019)

8.1 Maraena
whitefish

Anterior kidney, kidney, and others Altmann et al. (2016)

8.2 Anterior kidney, kidney, heart, and others

8a-l Atlantic cod ND Solbakken et al.
(2016)

8 Zig-zag eel Spleen, gills, and others Han et al. (2019)

8 Barbel chub Spleen, brain, skin, kidney, heart, muscle,
and others

Jin et al. (2018)

8 Golden
pompano

Spleen, gills, muscle, skin, and others Wei et al. (2017)

8 Large yellow
croaker

Spleen, gills, muscle, skin, and others (Qian et al. 2013)

8 Grass carp Swim bladder, spleen, brain, posterior
intestine, anterior kidney, skin, and others

Chen et al. (2013)

8a Grass carp ND Liao et al. (2017)

8b

8a1 Rainbow trout Spleen, anterior kidney, kidney, and others Palti et al. (2010a)

8a2 Spleen, anterior kidney, kidney, and others

8 Turbot Blood, spleen, anterior kidney, and others Dong et al. (2016)
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Table 2.8 A list of tlr9 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr9 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. TLR9 binds unmethylated CpG
sequences in DNA—often found in prokaryotes. ND not determined

TLR
no Species Tissue expression References

9 Pufferfish Kidney, digestive organ, skin, heart Oshiumi et al. (2003)

9 Channel catfish Anterior kidney, spleen Quiniou et al. (2013)

9 Channel catfish Heart, anterior kidney, kidney, and others Zhang et al. (2013a)

9 Common carp Kidney, gills, brain, heart, and others Gong et al. (2017)

9 Common carp Kidney, gills, and others Gong et al. (2017)

9 Yellow catfish Spleen, anterior kidney, kidney, hindgut, and
other

Zhang et al. (2017b)

9 Yellow catfish Spleen, anterior kidney, gills, intestine,
adipose tissue, and others

Zhang et al. (2017b)

9 Zebrafish Blood, heart, testis, and others Jault et al. (2004)

9 Tibetan fish
(Przewalski’s
carp)

Details not given Tong et al. (2015)

9 Yellow River
scaleless carp

ND Qi et al. (2017)

9 Spotted sea
bass

Details not given Fan et al. (2019)

9 Silver pomfret Spleen, kidney, liver, intestine, gills, and
others

Gao et al. (2018)

9 Maraena
whitefish

Anterior kidney, gills, and others Altmann et al. (2016)

9a-e Atlantic cod ND Solbakken et al.
(2016)

9 Zig-zag eel Spleen, muscle, fin, gills, and others Han et al. (2019)

9 Golden
pompano

Spleen, kidney, skin, and others Wei et al. (2017)

9 Turbot Brain, anterior kidney, blood, intestine, gills,
and others

Dong et al. (2016)

9 Blunt snout
bream

Kidney, heart, spleen, gills, liver, and others Zhan et al. (2019)

9 Grass carp ND Liao et al. (2017)

9a Orange-spotted
grouper

Spleen, anterior kidney, liver, kidney Lee et al. (2015)

9b Spleen, anterior kidney, liver, kidney

9 Pacific red
snapper

Intestine, leukocytes, liver, skin, anterior
kidney

Reyes-Becerril et al.
(2015)

9 Rainbow trout Spleen, anterior kidney, peripheral blood
leukocytes, gut

Ortega-Villaizan
et al. (2009)

9A Spleen, skin, kidney, brain, and others Yao et al. (2008)
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study by Ma et al. (2014), the acute toxicity of PQ in common carp (C. carpio) was
determined. The results suggest that PQ exposure may result in suppression or excessive
activation of the immune system that leads to immune dysfunction and reduced immunity
(Ma et al. 2014). In the report of Pereiro et al. (2016), an antiviral turbot (S. maximus)
interferon-gamma gene was characterized, and its expression pattern under basal
conditions, after type I ifn administration and viral and bacterial infections, was evaluated
(Pereiro et al. 2016). The intramuscular injection of an expression plasmid encoding turbot
ifn gene was not able to affect the transcription of numerous immune genes directly related
to the activity of ifng. It was neither able to reduce the mortality caused by a VHSV nor
A. salmonicida challenge. Shibasaki and coworkers cloned and characterized two ginbuna
crucian carp (Carassius auratus langsdorfii)-specific isoforms of ifng called ifng rel1 and
ifng rel2. Recombinant ifng rel1 and ifng rel2 showed high antiviral activities against the
lethal crucian carp hematopoietic necrosis virus (Shibasaki et al. 2014).

The antiviral activity of ifn gamma against IPNV and salmonid alphavirus (SAV) was
studied by Sun et al. (2011). The studies were performed in Atlantic salmon TO cells and
Chinook salmon embryo cells (CHSE-214). Ifn-γ induced antiviral activity against both
IPNV and SAV3 in salmon cells (Sun et al. 2011). The marine flatfish Atlantic halibut
(Hippoglossus hippoglossus) is of great commercial interest. However, due to poorly
developed larva at hatching and a long live-feed stage, aquacultural use of this species is
limited. Øvergård and coworkers cloned and characterized the gene encoding the ifng. A
constitutive expression was found in both lymphoid and non-lymphoid organs with

Table 2.8 (continued)

TLR
no Species Tissue expression References

Large yellow
croaker

9B Spleen, skin, liver, and others

9 Gilthead sea
bream

Peripheral blood leukocytes, peritoneal
exudate, gills, spleen, anterior kidney, and
others

Cuesta et al. (2008)

9 Gilthead sea
bream

Gills, spleen, gut, anterior kidney, muscle,
and others

Franch et al. (2006)

9 Japanese
flounder

Spleen, kidney, intestine, gills, blood, and
others

Takano et al. (2007)

9 Goldfish ND Tu et al. (2016)

Table 2.9 Tlr12 found in Yellow River scaleless carp (common name). See citation for
corresponding Latin names. TLR12 recognizes profilin found in certain parasites. ND not determined

TLR no Species Tissue expression References

12 Yellow River scaleless carp ND Qi et al. (2017)
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Table 2.10 Updated list of tlr13 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr13 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. It has been suggested that tlr12
binds 23S ribosomal RNA (rRNA) found in bacteria. ND not determined

TLR no Species Tissue expression References

13 Darby’s sturgeon Anterior kidney, heart, and others Tang et al. (2020)

13 Orange-spotted grouper Spleen, anterior kidney, liver, and
others

Liang et al.
(2018)

13 Tibetan fish (Przewalski’s
carp)

Details not given Tong et al. (2015)

13 Yellow River scaleless
carp

ND Qi et al. (2017)

13-1 Spotted sea bass ND Fan et al. (2019)

13-2

13-3

13 Miiuy croaker Liver, spleen, anterior kidney,
and others

Wang et al.
(2016a)

13 Soiny mullet Anterior kidney, skin, and others Qi et al. (2020)

13-like
genes

Brown trout ND Sudhagar et al.
(2020)

Table 2.11 A list of tlr14 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr14 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. The natural ligand for TLR14 is
not known. Since it is a member of tlr1 subfamily one can speculate that this receptor may bind
similar ligands as TLR1/2/6—which are ligands from bacteria. ND not determined

TLR
no Species Tissue expression References

14 Golden pompano Skin, intestine, kidney, blood Wu et al. (2019)

Ya-fish (Schizothorax
prenanti)

Peripheral blood leukocytes, brain, anterior
kidney, spleen, eye

Li et al. (2018c)

14a Lamprey
Lamprey

Gills Ishii et al.
(2007)14b Gills, gut, egg, skin, and others

14 Spotted sea bass ND Fan et al. (2019)

14 Atlantic cod ND Solbakken et al.
(2016)

14 Japanese flounder Kidney, spleen, liver, gills, and others Hwang et al.
(2011)

14a Lamprey Gills Kasamatsu et al.
(2010)14b Gills, peripheral blood leukocytes, intestine,

and others

14c Peripheral blood leukocytes, heart, gills,
brain, eye, and others

14d Liver, kidney, intestine, and others

2 Innate Immunity 61



Table 2.12 List of tlr18 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr18 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. TLR18 is also a member of the
TLR1 subfamily and may bind molecules from bacteria. ND not determined

TLR
no Species Tissue expression References

18 Channel catfish Gills, gonads, posterior kidney Quiniou et al. (2013)

18 Channel catfish Gills, kidney, brain Zhang et al. (2013a)

18-1 Common carp Kidney, intestine, heart, and other Gong et al. (2017)

18-2 Kidney, intestine, gills, heart, and
other

18 Common carp Skin, spleen, liver, hindgut, and
others

Shan et al. (2018a)

18 Atlantic salmon Muscle, liver, spleen, gills, and
anterior kidney

Lee et al. (2014)

18 Tibetan fish
(Przewalski’s carp)

Details not given Tong et al. (2015)

18 Yellow River scaleless
carp

ND Qi et al. (2017)

18 Grass carp ND Huang et al. (2012)

18 Grass carp Spleen, gills, heart, and others Huang et al. (2015)

Table 2.13 Updated list of tlr19 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr19 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. Teleost-specific TLR19 is
localized in the endosomes and recognizes dsRNA analogs. ND not determined

TLR
no Species Tissue expression References

19 Channel catfish Anterior kidney, spleen, posterior
kidney

Quiniou et al. (2013)

19 Channel catfish Heart, anterior kidney, kidney,
and others

Zhang et al. (2013a)

19 Common carp Brain, heart, skin, and other Gong et al. (2017)

19 Tibetan fish (Przewalski’s
carp)

Details not given Tong et al. (2015)

19 Yellow River scaleless
carp

ND Qi et al. (2017)

19 Grass carp ND Huang et al. (2012)

19 Atlantic salmon Spleen, anterior kidney, gills,
muscle, liver

Lee et al. (2014)

19 Brown trout ND Sudhagar et al. (2020)
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relatively high expression in the thymus and gills (Overgard et al. 2012). An overview of
type II ifng in different fish species is presented in Table 2.24.

2.9.4 Tnfa

Tumor necrosis factor-alpha (tnfa) is a cytokine involved in systemic inflammation,
apoptosis, cell proliferation, and regulation of immune cells (Wiens and Glenney 2011).
It is produced mainly by activated macrophages as a membrane or secreted form. The main
pro-inflammatory effects are mediated through the activation of endothelial cells (Roca
et al. 2008). In bony fish, tnfa was first discovered in Japanese Flounder (Hirono et al.

Table 2.14 A list of tlr20 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr20 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. TLR20 is proposed to play a role
in the immune response of carp to protozoan parasites. ND not determined

TLR
no Species Tissue expression References

20 Channel catfish Anterior kidney, spleen Quiniou et al.
(2013)

20–1 Channel catfish Anterior kidney, kidney, spleen, heart, gills,
and others

Zhang et al.
(2013a)

20 Channel catfish Stomach, anterior kidney, liver, spleen,
intestine, gills, and others

Baoprasertkul
et al. (2007b)

20a Atlantic salmon Spleen, anterior kidney, gills, muscle, liver Lee et al. (2014)

20b Spleen, anterior kidney, muscle, gills

20c Spleen, anterior kidney, gills, muscle, liver

20d Spleen, gills, anterior kidney, liver, muscle

20 Tibetan fish
(Przewalski’s carp)

ND Tong et al. (2015)

20 Yellow River
scaleless carp

ND Qi et al. (2017)

20.2 Grass carp Spleen, anterior kidney, liver, brain, and
others

Huang et al.
(2016)

20a Grass carp ND Huang et al.
(2012)20b

20a Atlantic salmon Spleen, anterior kidney, gills, and others Lee et al. (2014)

20b Spleen, anterior kidney, muscle, and others

20c Spleen, anterior kidney, gills, muscle, liver

20d Spleen, gills, anterior kidney, liver, muscle

20a–
d

Zebrafish ND Pietretti et al.
(2014)

20 Goldfish ND Tu et al. (2016)
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Table 2.15 Updated list of tlr21 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr21 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. It has been suggested, similar to
TLR9, that TLR21 may bind unmethylated CpG sequences in DNA. ND not determined

TLR
no Species Tissue expression References

21 Pufferfish Gills, heart, reproductive organ Oshiumi et al.
(2003)

21 Channel catfish Spleen Quiniou et al.
(2013)

21 Channel catfish Kidney, spleen, heart, gills, anterior kidney,
and others

Quiniou et al.
(2013)

21 Channel catfish Stomach, liver, spleen, intestine, kidney,
ovary, gills, and others

Baoprasertkul
et al. (2007b)

21-1 Common carp Gills, skin, heart, brain, and other Baoprasertkul
et al. (2007b)21-2 Spleen, heart, skin, and other

21 Common carp Spleen, anterior kidney, gills, and others Li et al. (2018b)

21 Atlantic salmon Spleen, gills, anterior kidney, muscle, liver Lee et al. (2014)

21 Tibetan fish
(Przewalski’s carp)

Details not given Tong et al. (2015)

21 Yellow River
scaleless carp

ND Qi et al. (2017)

21 Spotted sea bass ND Fan et al. (2019)

21 Maraena whitefish Gills, heart, kidney, anterior kidney, skin,
and others

Altmann et al.
(2016)

21 Atlantic cod ND Solbakken et al.
(2016)

21 Atlantic cod Kidney, gills, testis, spleen, and others Sundaram et al.
(2012b)

21 Blunt snout bream Gills, kidney, muscle, liver, and others Zhan et al. (2019)

21 Grass carp ND Huang et al.
(2012)

21 Grass carp Skin, spleen, intestine, anterior kidney, and
others

Wang et al.
(2013b)

21 Large yellow croaker Spleen, gills, anterior kidney, intestine, and
others

Sun et al. (2016a)

21 Large yellow croaker Spleen, anterior kidney, stomach, liver, and
others

Sun et al. (2018)

21 Olive flounder Spleen, gills, heart, muscle, and others Gao et al. (2013)

21 Orange-spotted
grouper

Kidney, anterior kidney, heart, spleen, and
others

Li et al. (2012)

21 Mudskipper Gills, reproductive organ, kidney, brain,
and others

Qiu et al. (2019)

21 Atlantic salmon Spleen, gills, anterior kidney, muscle, liver Lee et al. (2014)
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2000) rainbow trout (Laing et al. 2001) and has since been characterized in a number of
species. Fish have 14 tumor necrosis family genes. Their genomic existence and location
have been investigated in the Japanese pufferfish (fugu) (Takifugu rubripes) (Biswas et al.
2015). Fugu was found to possess nine tnf superfamily genes including seven newly
identified and two that had been previously reported. Poly I:C caused an elevated expres-
sion of three fugu tnf superfamily 10 genes in head kidney cells. Tnfa is an important factor
for bacterial pathogen killing. A. salmonicida subsp. salmonicida is highly pathogenic for
turbot, an economically important cultured flatfish in Europe, China, and Chile. In
A. salmonicida-infected fish, the number of tnfa immunopositive cells was significantly
increased in the kidney and spleen (Coscelli et al. 2016). Immunoreactive cells were also
present in the digestive tract, liver, heart, gills, and skin (Ronza et al. 2015).

The striped trumpeter (Latris lineata Forster) is a new species in Tasmanian waters. The
tnfa was cloned, and the expression was analyzed in response to an ectoparasite
Chondracanthus goldsmidi. A significant upregulation was found in the gills, which are
the site of parasite attachment. Head kidney cells showed a significant upregulation of tnfa,
but spleen cells did not (Covello et al. 2009). The European sea bass (D. labrax) is
intensely aquacultured in the Mediterranean area. The bacterial pathogen V. anguillarum
provokes the highest mortality among several pathogens of this species. Available vaccines
do not achieve the desired protection. In a recent study, recombinant tnfa was used as
adjuvant in a commercial sea bass oral vaccine against V. anguillarum. Tnfa significantly
enhanced disease resistance and induced recruitment of gut intraepithelial lymphocytes
(Galindo-Villegas et al. 2013). In rainbow trout, two tnfa genes have been described.
Recently, a third tnfa (tnfa3) that has low identities to known trout molecules was reported.

Table 2.15 (continued)

TLR
no Species Tissue expression References

21 Zebrafish ND Pietretti et al.
(2014)

21 Zebrafish Spleen, gills Sundaram et al.
(2012a)

21 Darby’s sturgeon Gills, intestine, anterior kidney, and others Qi et al. (2018b)

21 Nile tilapia Brain, gills, heart, muscle, stomach,
intestine, skin, and others

Pang et al. (2017)

21 Yellowtail Spleen, anterior kidney, intestine, liver,
gills

Reyes-Becerril
et al. (2016)

21a Lamprey Peripheral blood leukocytes, gills, and
others

Kasamatsu et al.
(2010)

21b Lamprey Gills and others Kasamatsu et al.
(2010)

21c Lamprey Gills, heart, muscle, kidney, liver, eye, and
others

Kasamatsu et al.
(2010)
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Table 2.16 List of tlr22 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr22 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. TLR22 is a typical fish-specific
TLR and is suggested to bind double-stranded RNA. ND not determined

TLR
no Species Tissue expression References

22 Pufferfish Kidney Oshiumi et al.
(2003)

22 Channel catfish Anterior kidney, gills, spleen, posterior kidney Quiniou et al.
(2013)

22 Channel catfish Anterior kidney, kidney, intestine, liver, gills,
heart, and others

Zhang et al.
(2013a)

22-1 Common carp Kidney, spleen, gills, heart, and other Gong et al.
(2017)22-2 Spleen, heart, gills, skin, blood, and other

22-3 Heart, skin, and others

22 Common carp Gills, anterior kidney, brain, hindgut, foregut,
and others

Li et al.
(2017a)

22 Rohu Kidney, muscle, spleen, and others Li et al.
(2017a)

22 Rohu Liver, kidney, gills, heart, eye, and others Samanta et al.
(2014)

22 Catla Kidney, intestine, brain, and others Samanta et al.
(2014)

22 Yellow catfish Spleen, anterior kidney, gills, heart Zhang et al.
(2017b)

22 Turbot Anterior kidney, kidney, spleen, heart,
intestine, stomach, and others

Hu et al.
(2015b)

22 Rainbow trout Spleen, anterior kidney, trunk kidney, and
others

Rebl et al.
(2007)

22L Spleen, anterior kidney, trunk kidney, gills, and
others

22 Tibetan fish
(Przewalski’s carp)

ND Tong et al.
(2015)

22 Yellow River
scaleless carp

Liver, muscle, and others Qi et al. (2019)

22a Yellow River
scaleless carp

ND Qi et al. (2017)

22b

22 Spotted sea bass ND Fan et al.
(2019)

22 Triploid crucian
carp

Anterior kidney, kidney, muscle, liver, and
others

Zhang et al.
(2017a)

22a Maraena whitefish Anterior kidney, liver, heart, kidney, and others Altmann et al.
(2016)22b Anterior kidney, kidney, and others

(continued)

66 R. A. Dalmo and J. Bøgwald



Table 2.16 (continued)

TLR
no Species Tissue expression References

22 Gilthead sea bream Spleen, thymus, gills, and others Munoz et al.
(2014)

22a Grass carp ND Huang et al.
(2012)22b ND

22 Grass carp Anterior kidney, spleen, kidney, gills, and
others

Lv et al. (2012)

22 Grass carp Gills, anterior kidney, kidney, midgut, and
others

Lv et al. (2012)

22a Mudskipper Spleen, gills, kidney, intestine, and others Qiu et al.
(2019)22b Spleen and others

22c Spleen, kidney, and others

22d Kidney, brain, spleen, and others

22 Soiny mullet Liver, spleen, and others Qi et al. (2020)

22 Zebrafish Spleen, gonads, and others Sundaram et al.
(2012a)

22 Darby’s sturgeon Heart, gills, kidney, anterior kidney, and others Sundaram et al.
(2012a)

22 Nile tilapia Spleen, gills, and others Pang et al.
(2017)

22a Atlantic cod Kidney, liver, gills, testis, and others Sundaram et al.
(2012b)22b Kidney, liver, gills, and others

22c Kidney, gills, testis, liver, spleen, and others

22d Gills, kidney, spleen, liver, and others

22e,
f, l

Low in all organs and tissues

22g Gills and low in other organs and tissues

22h Kidney, gills, liver, spleen, anterior kidney,
blood, and others

22i Gills, liver, spleen, kidney, and others

22j Kidney, gills, liver, spleen, anterior kidney, and
others

22 k Anterior kidney, kidney, spleen, liver, gills, and
others

22a–
l

Atlantic cod ND Solbakken
et al. (2016)

22-1 Ya-fish Gills, liver, kidney, and others Du et al.
(2019b)22-2 Spleen, brain, heart, and others

22-3 Spleen, kidney, liver, anterior kidney, brain,
heart, and others

22 Atlantic salmon ND Salazar et al.
(2016)

(continued)
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The constitutive expression of tnfa3was generally lower than the other two genes in tissues
and cell lines. Expression of all three tnfa isoforms could be modulated by crude LPS,
peptidoglycan, poly I:C and recombinant Ifng in cell lines and primary macrophages, and
bacterial and viral infections (Hong et al. 2013). The genomic location of the two tnfa genes
in zebrafish (D. rerio) and medaka (Oryzias latipes) was recently determined. Zebrafish
tnfa1 and tnfa2 were found on chromosomes 19 and 15, and medaka tnfa1 and tnfa2 on
chromosomes 11 and 16, respectively. There was a constitutive expression of the genes in

Table 2.16 (continued)

TLR
no Species Tissue expression References

22 Wuchang bream Similar expression levels in many organs and
tissues

Lai et al.
(2017a)

22 Orange-spotted
grouper

Kidney, anterior kidney, peripheral leukocytes,
spleen, heart, and others

Ding et al.
(2012)

22 Large yellow
croaker

Anterior kidney, heart, spleen, blood, and
others

Xiao et al.
(2011)

22 Lamprey Eye, low in other organs Kasamatsu
et al. (2010)

Table 2.17 Updated list of tlr23 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr23 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. The ligand for TLR23 is
unknown, ND not determined

TLR no Species Tissue expression References

23 Spotted sea bass Details not given Fan et al. (2019)

23 Atlantic cod ND Solbakken et al. (2016)

23a Atlantic cod Kidney, gills, liver, and others Sundaram et al. (2012b)

23b Low in all tissues and organs

23a Mudskipper Kidney, spleen, gills, and others Qiu et al. (2019)

23b-e Kidney, spleen, and others

23f Kidney and others

23 g Spleen, kidney, and others

Table 2.18 List of tlr24 found in different fish species (common names). See citation for
corresponding Latin name. The main tissue distribution of tlr24 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. The ligand for TLR23 is
unknown

TLR no Species Tissue expression Reference

24a Lamprey Peripheral blood leukocytes, liver Kasamatsu et al. (2010)

24b Peripheral blood leukocytes, heart, and others
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Table 2.19 Updated list of tlr25 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr25 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. The ligand for TLR25 is
unknown, ND not determined

TLR no Species Tissue expression References

25 Channel catfish Gills, kidney, anterior kidney Quiniou et al. (2013)

25 Channel catfish Gills, anterior kidney, kidney, and others Lee et al. (2020)

25 Nile tilapia Spleen, anterior kidney, skin, muscle Lee et al. (2020)

25-1 Common carp Muscle, gills, heart, blood, and other Gong et al. (2017)

25-2 Muscle, heart, skin, blood, and other

25a–g Atlantic cod ND Solbakken et al. (2016)

25 Grass carp ND Huang et al. (2012)

25 Grass carp ND Liao et al. (2017)

25 Darby’s
sturgeon

Kidney, gills, skin, heart, and others Liao et al. (2017)

Table 2.20 Updated list of tlr26 found in different fish species (common names). See citations for
corresponding Latin names. The main tissue distribution of tlr26 mRNA is also given, where the
highest expression is found in the first organ/tissue listed, and so on. TLR26 is not yet found in any
other fish species. The ligand is unknown

TLR
no Species Tissue expression References

26 Channel
catfish

Anterior kidney, kidney, spleen Quiniou et al.
(2013)

26 Channel
catfish

Anterior kidney, kidney, brain, gills, and
others

Zhang et al. (2013a)

26 Yellow catfish Anterior kidney, blood, spleen, heart, and
others

Liu et al. (2019)

Table 2.21 Tlr27 is found in spotted gar, coelacanth, and elephant shark. See citation for
corresponding Latin name. ND Not determined. Its ligand is unknown

TLR no Species Tissue expression Reference

27 Spotted gar, coelacanth, elephant shark ND Wang et al. (2015)

Table 2.22 Tlr28 is found in miiuy croaker. See citation for corresponding Latin name. Like tlr27,
the tlr28 belongs to the tlr1 subfamily. Its ligand is unknown

TLR no Species Tissue expression Reference

28 Miiuy croaker Liver, eye, skin, gills, heart Wang et al. (2016b)
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Table 2.23 Innate immunity: interferon type I genes in fish

Fish Species Subject References

Rainbow trout Response in ovary against virus Chaves-Pozo et al.
(2010)

Orange-spotted grouper Functional analysis in response to virus
infection

Chen et al. (2014)

Large yellow croaker Characterization, function Ding et al. (2019)

Japanese eel Identification, expression Feng et al. (2017)

CHSE-214 cell line Mx1 promoter–reporter system Jorgensen et al.
(2007)

Mandarin fish Functional, signaling, and transcriptional
differences

Laghari et al. (2018)

Salmonids Evolution of subgroups Liu et al. (2020a)

Meagre Discovery, expression Milne et al. (2018)

Review Robertsen (2006)

Review Evolution of interferons and interferon
receptors

Secombes and Zou
(2017)

Atlantic salmon Multigene cluster, identification,
expression

Sun et al. (2009)

Gilthead sea bream, European
sea bass

Characterization, expression Valero et al. (2015)

Zebrafish Interferon-induced proteins (IFITs) Varela et al. (2014)

Rock bream Cloning, functional characterization Wan et al. (2012)

Review Workenhe et al.
(2010)

Review Zou and Secombes
(2011)

Table 2.24 Innate immunity: Presence of interferon type II (ifng) genes in fish

Fish Species Subject References

Common carp Functional analysis Arts et al. (2010)

Cell line (Rainbow trout) Castro et al. (2010)

Large yellow croaker Characterization, expression Chen et al. (2015)

Olive flounder Response against Edwardsiella
tarda infection

Jung et al. (2012)

Turbot Characterization, expression Pereiro et al. (2016)

Review Pereiro et al. (2019)

Ginbuna crucian carp Isoforms Shibasaki et al. (2014)

Atlantic salmon TO cells,
CHSE-214 cells

Antiviral activity Sun et al. (2011)

Atlantic halibut Characterization, expression Overgard et al. (2012)
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different tissues. An increased expression of both was induced in head kidney cells by LPS
in vitro (Kinoshita et al. 2014). Li and Zhang studied a tnfa homologue from the Tongue
sole (Cynoglossus semilaevis) named CsTNF1. Expression of CsTNF1 was detected in
liver, spleen, kidney, blood, gill, brain, muscle, heart, and intestine, and was upregulated by
experimental challenge with bacterial and viral pathogens (Li and Zhang 2016).

Meagre (Argyrosomus regius) is an emerging aquaculture species found in the Mediter-
ranean area and Black Sea due to its large size, fast growth, low feed conversion ratio, and
high processing yield. Two types of tnfa were expressed in meagre (type 1 and type 2).
Tnfa1 was more highly expressed in head kidney and gills. Both isoforms increased in
expression in head kidney following injection with LPS (Milne et al. 2017). Atlantic
bluefin tuna (Thunnus thynnus) was introduced into Mediterranean aquaculture in the
early nineties, and has become the most valuable finfish aquaculture, representing more
than half of the world’s total production (Pleic et al. 2014). Tuna aquaculture is a capture-
based activity, where wild-caught tuna is cultured in marine cages for a period of time in
order to increase their protein and fat content. The full-length cDNA and gene sequences of
Bluefin tuna tnfa1 and tnfa2 were determined, and expression studies showed that they
were constitutively expressed in liver and head kidney at similar levels. Expression of both
cytokines was examined in acute and chronic natural infection of the parasites
Pseudocycnus appendiculatus and Didymosulcus katsuwonicola (Pleic et al. 2015).
D. katsuwonicola-infected gills showed significantly higher expression of tnfa2, while
tnfa1 showed no difference in expression with either Pseudocycnus appendiculatus- or
Didymosulcus katsuwonicola-infected gills.

Rainbow trout red blood cells (RBCs) are able to endocytose nanostructured tnfa in vitro
despite not being phagocytic cells, and in response to nanostructured tnfa, the expression of
different immune genes could be modulated (Puente-Marin et al. 2019a).

Tnfa was cloned in large yellow croaker (Pseudosciaena crocea), mainly distributed in
coastal regions of East Asia, and is one of the most important cultured marine fish in China.
Vibrio parahemolyticus challenge demonstrated enhanced expression of tnfa in head
kidney and blood (Xie et al. 2008). Tnfa was also identified in grass carp
(Ctenopharyngodon idella), and its role in signaling was defined (Zhang et al. 2012).
Additionally, tnfa is involved in the control of ovulation (Crespo et al. 2010, 2015)
(Table 2.25). For more details, please see Chap. 10 (“cytokines”) by Dr. C. Secombes.

2.9.5 The Complement System

The mammalian complement system is composed of about 35 plasma and membrane-
associated proteins. The main functions of the complement system are opsonization,
inflammation, and formation of the cytolytic membrane attack complex. The proteins are
mostly produced by liver hepatocytes and secreted to the blood, except for some like factor
D and c1q. Several components of the teleost complement contain isoforms like c3, c4,
c5, c7, factor B, factor I, and MBL. Most homologs of mammalian complement
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components are present in teleosts and have been shown to be expressed in a variety of
tissues like the kidney, skin, and intestine. Several reviews on the complement system of
teleosts are available (Zhang et al. 2013b; Nakao et al. 2011; Uribe et al. 2011; Boshra et al.
2004, 2006). Additional information of the complement system in fish is given in Chap. 9.

Table 2.25 Innate immunity: tnfa genes in different fish species

Species Subject References

Japanese
pufferfish

Genomic identification, expression Biswas et al. (2015)

Turbot Aeromonas salmonicida infection,
immunohistochemical study

Coscelli et al.
(2016)

Three striped
trumpeter

Cloning, sequencing, expression in response to
ectoparasite Chondracanthus goldsmidi

Covello et al.
(2009)

Brown trout Ovulatory mechanism Crespo et al. (2010)

Brown trout Ovulation Crespo et al. (2015)

European sea
bass

Oral vaccine adjuvant Galindo-Villegas
et al. (2013)

Rainbow trout Phylogeny, expression, bioactivity Hong et al. (2013)

Zebrafish,
medaka

Genomic location, expression Kinoshita et al.
(2014)

Tongue sole Expression, antibacterial and antiviral defense Li and Zhang
(2016)

Review Regulator in adipose tissue Liu et al. (2015)

Meagre Discovery, distribution, expression Milne et al. (2017)

Atlantic bluefin
tuna

Characterization, expression Pleic et al. (2014)

Atlantic bluefin
tuna

Expression, role in acute and chronic parasitic
infection

Pleic et al. (2015)

Rainbow trout Expression of immune genes post-endocytosis of
nanostructured tnfa

Puente-Marin et al.
(2019a)

Gilthead sea
bream, zebrafish

Activator of endothelial cells Roca et al. (2008)

Turbot Immunohistochemical distribution Ronza et al. (2015)

Turbot Immune response to Enteromyxum scopthalmi
(Myxozoan)

Ronza et al. (2015)

Review TNF and TNF superfamilies Wiens and Glenney
(2011)

Large yellow
croaker

Characterization, response to bacterial infection Xie et al. (2008)

Grass carp Characterization, immune challenge in vitro and
in vivo

Zhang et al. (2012)
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2.9.5.1 c3
c3 is the central complement component and has been isolated, purified, and characterized
in many teleost species. Recently, four c3 isoforms were purified from the Nile tilapia
(Oreochromis niloticus) serum and were shown to possess an intrachain thioester bond. All
named c3-1, c3-2, c3-3, and c3-4 showed the two-chain polypeptide structure typical of c3
(Abdel-Salam et al. 2014). Forn-Cuni et al. confirmed the presence of three c3 genes and in
addition identified five more c3 genes in the zebrafish (D. rerio) genome (Forn-Cuni et al.
2014). Maternal immunization of female zebrafish with formalin-killed A. hydrophila
caused a significant increase in c3 and factor b contents in the mother, a corresponding
rise in the offspring, and induced a remarkable increase in the hemolytic activities in both
the mother and offspring (Wang et al. 2009). The dojo loach (Misgurnus anguillicaudatus)
is one of the most commercially cultured fish species in Eastern Asian countries including
China, Japan, and Korea. Three isoforms of c3 were discovered in M. anguillicaudatus
named c3-1, c3-2, and c3-3, respectively. The expression of c3–1 and c3–3 was mainly
detected in liver followed by spleen and gonad. The mRNA levels were upregulated in the
gill, skin, liver, and spleen after bath infection with A. hydrophila (Xu et al. 2018b).
Furthermore, the complete nucleotide sequence of c3 from two Antarctic teleosts
Trematomus bernacchii (two isoforms) and Chionodraco hamatus (a single isoform) was
determined (Melillo et al. 2015).

Rainbow trout c3a and c5a receptors were cloned and functionally characterized. Both
anaphylatoxin receptors were expressed at considerable levels by B cells. Treatment by
lipopolysaccharide led to a significant upregulation of both receptors, suggesting that B
cells play a role in the development of an inflammatory response (Li et al. 2007).

2.9.5.2 Classical Pathway
The classical complement pathway involves c1, c2, and c4. The first complement
component (c1) is activated by recognition of antigen-bound immunoglobulins, and
proteolytically activates c4 and c2 into c4b and c2a, respectively. Rock bream
(Oplegnathus fasciatus) is one of the most economically important marine fish species in
South Korea, which geographically distribute in the coastal water, especially in coral beds
of the Pacific and Indian Ocean. Rock bream complement components c1r and c1s were
characterized, and homology analysis showed 73.4% and 58% amino acid identity with
orthologs of Pundamilia nyererei of Lake Victoria and the Japanese rice fish, Oryzias
latipes, respectively. c1r was highest expressed in blood and c1s in the liver. The transcrip-
tion of both components was found to be upregulated in response to pathogenic bacteria E.
tarda and S. iniae and virus (rock bream iridovirus) (Godahewa et al. 2015).

Grass carp (C. idella) is susceptible to A. hydrophila infections. In the study of Dang
et al., grass carps were given intraperitoneal injections of live A. hydrophila and 4, 8,
12, 24, 48, and 72 h after RNA sequencing of spleen tissue was performed. Four to 72 h
after infection, the complement system, represented by c2, c3, c4, c5, c8a, c1q, and mbl,
was upregulated with a transitory downregulation at 12 h (Dang et al. 2016).
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Tissue of C. idella was infected with A. hydrophila. Two cDNA sequences of c4 from
the common carp (C. carpio) were isolated sharing only 32% identity of amino acid level
and having distinct binding specificities (Mutsuro et al. 2005).

2.9.5.3 Alternative Pathway
Factor B and factor D are both components of the alternative pathway of complement.
Following activation of the alternative pathway, factor B is cleaved into Ba and Bb
fragments. In rainbow trout, factor B is known to act as a c3 convertase, but the function
of the Ba fragment is unknown. The expression patterns of tongue sole (Cynoglossus
semilaevis) factor B and the biological activity of the Ba fragment were studied by Li and
Sun (2017). Expression of factor Bwas high in liver, muscle, and heart and low in intestine,
blood, and kidney. Bacterial infection (E. tarda, Pseudomonas fluorescens, and V. harveyi)
induced an expression in kidney, spleen, and liver in a time-dependent manner. For the first
time, it was found that overexpression of Ba significantly reduced bacterial dissemination
in fish tissues, indicating that Ba possesses antimicrobial activity and may inhibit bacterial
infection in fish (Li and Sun 2017).

Rock bream (Oplegnathus fasciatus) complement factor D (Cfd) was characterized and
expression was analyzed. Factor D encodes 277 amino acids for a 30 kDa polypeptide and
was most highly expressed in the liver and spleen. Transcription of factor D was
upregulated in the spleen by lipopolysaccharide, S. iniae, rock bream iridovirus, and
poly I:C (Godahewa et al. 2016). Rainbow trout liver seems not to be an important
transcription site of the genes c1q, factor B (cfb), and c7–2. The novel characterized factor
D of rainbow trout had 253 amino acids with a molecular weight of 27.2 kDa and shared a
sequence identity with its human ortholog of 45% (Kobis et al. 2015).

2.9.5.4 Lectin Pathway
The central components of the lectin pathway are MBL and MASPs. Teleost fish often
possess several genes encoding different subtypes. Kania et al. (2010) characterized three
homologs of mannan-binding lectin (named MBL H-1, MBL H-2, MBL H-3) (Gene: mbl
and variants) in the rainbow trout. They were expressed in the spleen, anterior intestine,
and liver. MBL H-1 and H-3 were also found in the vascular system. MBL H-1 had the
highest expression level in the anterior intestine followed by gill, thymus, and skin, while
the highest expression level of MBL H-2 and MBL H-3 occurred in the anterior intestine
(Kania et al. 2010).

C. semilaevis mannan-binding lectin (Mbl)-associated protein 34 (MAP34) and
Mbl-associated serine protease 1 (MASP1) are key factors involved in complement
activation through MAPs’ ability to bind to M1 and MBL. Remarkably, in contrast to a
negative regulatory role of mammalian MAP, the teleost C. semilaevis Map 34 exerts a
positive effect on the activation of the lectin pathway (Li et al. 2016).
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2.9.5.5 Terminal Pathway
c5, c6, c7, c8, and c9 are the components engaged in building the membrane attack
complex. Native c5a of rainbow trout and recombinant infectious hematopoietic necrosis
virus glycoprotein (G) fusion protein was constructed to test the adjuvant activity of
rainbow trout c5a. At four to sixteen weeks postinjection, the serum Igm antibody levels
were higher than those injected with G-protein alone, suggesting that c5a acts as molecular
adjuvant in rainbow trout (Wu et al. 2014).

Grass carp (C. idella) is an economically important species, and its global production is
more than 4.5 million tons per year making it the most highly consumed freshwater fish
species in the world. A. hydrophila is the causative pathogen of intestinal hemorrhage,
which has caused great economic loss in grass carp aquaculture. Fish were intraperitoneally
injected with A. hydrophila, and the transcriptomic response was tested in the spleen. A
total of 1591 genes were upregulated, and 530 were downregulated. c1, c7, and c8b were
upregulated indicating activation of the classical pathway (Yang et al. 2016). c7 was
isolated and characterized from grass carp. The predicted amino acid sequence of c7
cDNA exhibited 55.4% and 48.3% homology with rainbow trout c7–1 and zebrafish c7,
respectively. c7 gene expression was detected in trunk kidney, liver, head kidney, skin,
spleen, heart, and intestine. Significant changes in c7 transcript expression were detected
following A. hydrophila infection, especially in head kidney and spleen (Shen et al. 2012).

Full-length c8a and c8b sequences from a cDNA library of rock bream (Oplegnathus
fasciatus) and their genomic sequences were obtained. Quantitative real-time PCR analysis
showed that both components were expressed in all examined tissues, with highest
expression in the liver. Pathogen challenge, including E. tarda, S. iniae, and rock bream
iridovirus, led to upregulation of both (Wickramaarachchi et al. 2013).

Complement component c9 is the last component that is involved in the formation of the
membrane attack complex on the surface of target cells. The full-length c9 cDNA sequence
was found in the southern catfish (Silurus meridionalis) and showed similarity with other
teleost fish. The mRNA expression was highest in the liver and observed also in the spleen,
head kidney, stomach, and intestine. Intraperitoneal injection of A. hydrophila gave
upregulation of c9 in the liver, spleen, and intestine (Fu et al. 2019).

The large yellow croaker Larimichthys crocea is one of the most important marine fish
in China and East Asian countries. Complement components c7 and c9 were characterized
by Guo et al. (2016). c7 and c9 were mainly expressed in liver, but low levels were also
constitutively expressed in most tissues. Fish challenged with Vibrio alginolyticus showed
a rapidly upregulated response in the liver and head kidney (Guo et al. 2016). Miiuy
croaker, Miichthys miiuy, belongs to the family Sciaenidae of the order Perciformes and
mainly distributes from the western Japan Sea to the East China Sea. In China, it has been
widely cultured since the late 1990s for its good taste and high nutritive and medicinal
value. A truncated c9 cDNA sequence encoding 461 amino acids was cloned and
characterized in the miiuy croaker (M. miiuy). The c9 of miiuy croaker shows the highest
amino acid identity score with fugu c9 (61%) and the lowest with zebrafish c9 (36%). The
highest levels of transcripts were detected in liver of both healthy and V. anguillarum-
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infected fish (Meng et al. 2012). Full-length c9 sequence was identified from a cDNA
library of rock bream (O. fasciatus), and its genomic sequence was obtained. Quantitative
real-time RT-PCR analysis confirmed that c9 was constitutively expressed in all the
examined tissues, with highest expression occurring in the liver. Pathogen challenge
including E. tarda, S. iniae, lipopolysaccharide endotoxin, and rock bream iridovirus led
to upregulation of c9 in liver but resulted in no change in the peripheral blood cells
(Wickramaarachchi et al. 2012). The transcriptional expression of central complement
components during the ontogeny of the common sole (Solea solea) was studied by
Ferraresso et al. (2016). The c2, c3, and fb showed a gradual increase in expression between
4 and 33 days post-hatch (dph). c4 and masp1 showed no differences in expression during
the development, while c1qb showed a very high level of expression. Terminal
components, c5, c6, c7, c8, and c9, showed an increase in expression until the onset of
metamorphosis and a second increase after metamorphosis (Ferraresso et al. 2016).

2.9.5.6 Complement Regulation
Complement activation is controlled by both fluid phase and membrane inhibitors. Factor I
regulates complement by proteolytic cleavage of components c3b and c4b. Factor H, the
main cofactor of factor I, regulates the alternative pathway by acting in the breakdown of
c3b to ic3b. Factor I (cfi) and factor H (cfh) of rainbow trout were cloned and characterized.
The deduced amino acid sequences of factor I and factor H exhibited 42% and 32% identity
with human orthologs, respectively (Anastasiou et al. 2011). The deduced amino acid
sequence of factor H from large yellow croaker (Larimichthys crocea) showed 28% and
34% identity with human and rainbow trout orthologs, respectively. The highest expression
levels were found in liver, kidney, and spleen. After injection with V. alginolyticus, the
expression levels were upregulated in all three tested tissues (Qi et al. 2018a). Black
rockfish (Sebastes schlegelii) is an important aquaculture species in the Republic of
Korea. A c1 inhibitor gene from black rockfish was cloned and characterized by Nilojan
et al. The c1 inhibitor was most highly expressed in the liver followed by the gills (Nilojan
et al. 2018) (Table 2.26).

2.9.6 Acute-phase Component

During infection, stimulation with strong danger signals or stress, the fish may respond to
produce acute-phase proteins (APPs). Especially, IL-1, IL-6, and tnfa are able to induce
acute-phase response, as observed in higher vertebrates. The most common APPs are
pentraxins such as serum amyloid A (SAA) and C-reactive protein (CRP). Dissimilar to
many mammalian species, the fish show a modest acute-phase response when it comes to
concentration of pentraxins in serum. CRP may be able to bind to (opsonize) certain
bacteria, fungi, and parasites, activate the complement system, agglutinating particles,
and may infer production of cytokines. There are two forms of SAA, one of them being
acute-phase SAA. SAA may neutralize pathogen activity, reduce tissue damage, and

76 R. A. Dalmo and J. Bøgwald



restore homeostasis. Transferrin, haptoglobin, ceruloplasmin, alpha-2-macroglobulin,
lectins, and complement component c3 are all considered to be AAPs. Most of these
have regulatory activities limiting infection and restoring the physiological balance. Sev-
eral reviews covering this topic are recommended (Roy et al. 2017; Bayne and Gerwick
2001; de Magalhaes et al. 2020; Magnadottir 2014; Nakao et al. 2011).

Table 2.26 Table of complement components found in the listed fish species

Component Teleost species References

c1, c1r, c1s Rock bream
Grass carp

Godahewa et al. (2015)
Yang et al. (2016)

c1 inhibitor Black rockfish Nilojan et al. (2018)

c3 Nile tilapia
Common sole
Zebrafish
Zebrafish
Dojo loach
Trematomus bernacchii,
Chionodraco hamatus
Grass carp

Abdel-Salam et al. (2014)
Ferraresso et al. (2016)
Forn-Cuni et al. (2014)
Wang et al. (2009)
Xu et al. (2018b)
Melillo et al. (2015)
Dang et al. (2016)

c3a receptor Rainbow trout Li et al. (2007)

c4 Common carp Mutsuro et al. (2005)

c5 Rainbow trout Wu et al. (2014)

c5a receptor Rainbow trout Li et al. (2007)

c7 Large yellow croaker
Grass carp

Guo et al. (2016)
Shen et al. (2012)

c8 Rock bream Wickramaarachchi et al. (2013)

c9 Sothern catfish
Miiuy croaker
Large yellow croaker
Rock bream

Fu et al. (2019)
Meng et al. (2012)
Guo et al. (2016)
Wickramaarachchi et al. (2012)

Factor B Rock bream
Tongue sole

Godahewa et al. (2016)
Li and Sun (2017)

Factor D Rainbow trout
Rock bream

Kobis et al. (2015)
Godahewa et al. (2016)

Factor H Rainbow trout
Large yellow croaker

Anastasiou et al. (2011)
Qi et al. (2018a)

Factor I Rainbow trout Anastasiou et al. (2011)

MBL Rainbow trout Kania et al. (2010)

MAP/MASP Tongue sole Li et al. (2016)

Ontogeny Common sole Ferraresso et al. (2016)

Bacterial infection Grass carp Dang et al. (2016)
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2.9.7 Chemokines and Their Receptors

The major function of chemokines is to guide the migration of cells. An example is
chemokine-guided migration of leukocytes to inflammatory foci. Other functions involve
immune surveillance where chemokines direct homing of leukocytes to lymphatic tissues.
Some chemokines have function in growth of new blood vessels and wound healing.
Chemokines are classified into four main subfamilies (CXC, CC, CX3C, and XC) depen-
dent on the amino acid sequences (first two cysteine amino acid residues). Most of the
chemokines bind to specific chemokine receptors on cells. Fish display numerous genes for
different chemokines and chemokine receptors, suggested due to gene duplication events.
Functional and significance studies of chemokine expression are generally not very well
examined in fish. However, exceptions exist. We list the most recent findings within
functional chemokine research. It has been shown that grass carp cxcl20b possessed
antibacterial activity by attaching to the bacterial membrane (Xiao et al. 2020). In another
study, it was shown that common carp Cxcb1 stimulated neutrophil extracellular trap
formation—which was suggested to be an antipathogenic event (Pijanowski et al. 2020).
Moreover, an ayu (Plecoglossus altivelis) CC-like chemokine was found to possess
chemotactic activity against monocytes and neutrophils in vivo and in vitro (Yu et al.
2019). Chemotactic activity of Ccl4 has been shown in the golden pompano (Trachinotus
blochii). This recombinant chemokine had also antimicrobial activity against E. tarda and
Escherichia coli (Sun et al. 2019). Furthermore, a rainbow trout CC chemokine (Ck11) also
displayed antimicrobial activity against different gram-positive and gram-negative bacteria
by attaching to and disrupting their cell membranes (Munoz-Atienza et al. 2019).

2.9.8 Antibacterial Peptides (AMPs)

AMPs are a diverse class of highly conserved molecules that are produced as a first line of
defense in all multicellular organisms, including fish. These small peptides (12–50 amino
acids) are essential components of innate immunity capable of antimicrobial activity
against a broad range of microbial pathogens (Semple and Dixon 2020; Zhang and Gallo
2016). Functionally, they can be described as either membrane disruptive AMPs, which
induce membrane permeabilization, or they can be non-membrane disruptive where they
can be internalized in cells and act on intracellular targets (Semple and Dixon 2020). In
general, fish AMPs may be categorized into five different classes based on their structure:
β-defensins, cathelicidins, hepcidins, histone-derived peptides, and piscidins (Brunner
et al. 2020). As for chemokines and TLRs, fish possess numerous genes for antimicrobial
peptides. Recently, reviews on the significance of AMPs are published (Brunner et al.
2020; Chaturvedi et al. 2020; Valero et al. 2020; Chen et al. 2020; Shabir et al. 2018).

78 R. A. Dalmo and J. Bøgwald



2.10 Conclusion and Future Research

It is clear that fish are indeed equipped with an arsenal of defense mechanisms to prevent
infection. An earlier report has used Rag knockout mutants (rag1�/� zebrafish), which
possess no serum Igm, to assess the significance of the innate immune system in compari-
son with control fish with a rag1+/� genotype. An experimental challenge experiment
revealed that the rag �/� zebrafish displayed similar protection as the controls (Tokunaga
et al. 2017). This underscores the notion that the innate immune system alone may likely be
as effective as a fully immune-equipped fish. However, immunized fish will normally
acquire higher disease resistance than naïve fish. The concept of trained innate memory
should be addressed as a trained innate immune system likely would add higher protection
level during infection. Trained innate immunity involves activation of innate defense
factors that in turn confer increased disease resistance to infection by homologous or
heterologous pathogens. Trained immunity can be transferred to offspring as training
induces heritable epigenetic changes.

The future will bring a vast more knowledge of innate immune factors through fish
genomic and transcriptomic studies, and it is likely that many more innate immune factors
will be revealed. To find their significance in the innate immune defense, these must be
functionally examined.
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