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ABSTRACT 

We here report on a study carried out to determine the early clearance kinetics, and organ, 

cell(s) and receptor(s) responsible for the clearance of full length TFPI purified from BHK 

cells (TFPIBHK). Following intravenous administration, 125I-TFPIBHK was cleared with a 

biphasic elimination curve, and with a significantly slower t1/2α compared to recombinant 

human TFPI from E.Coli (TFPIE.Coli) (1.95±0.10 versus 1.42±0.07 min, respectively, 

p<0.001). Studies on organ and cell distribution revealed that liver parenchymal cells (PCs) 

were responsible for 96% of the uptake of TFPIBHK and 81% of TFPIE.Coli, whereas the non-

parenchymal cells (NPCs) were responsible for 4% and 19%, respectively. Pre-administration 

of excessive amounts of unlabeled TFPIBHK prolonged blood clearance of 125I-TFPIBHK. 

Unlabelled TFPIBHK inhibited endocytosis of 125I-TFPIBHK in PCs in vitro, whereas blocking 

of LDL-receptor related protein-1 (LRP-1) by receptor-associated protein (RAP) affected 

neither blood clearance nor endocytosis of 125I-TFPIBHK in PCs. In addition, TFPIBHK was also 

found in the kidneys and this could be reduced in the presence of RAP. Asialoorosomucoid 

(ASOR), a potent inhibitor of the asialoglycoprotein receptor (ASGP-R), prolonged the 

circulatory survival of 125I-m-TFPI by 1.5-fold (p<0.001). In vitro, ASOR and other ASGP-R 

antagonists significantly inhibited endocytosis of 125I- TFPIBHK in PCs. Moreover, unlabelled 

TFPIBHK markedly decreased endocytosis of 125I-asialofetuin. In conclusion, our findings 

suggest that ASGP-R mediated endocytosis in the liver is involved in the clearance of 

TFPIBHK.  
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INTRODUCTION 

 
Tissue factor pathway inhibitor (TFPI) is an endogenous serine protease inhibitor of tissue 

factor (TF)-induced blood coagulation [1] which exerts its function by neutralizing the 

catalytic activity of factor Xa (FXa), and by feedback inhibition of the factor VIIa-TF 

complex in the presence of FXa [2, 3]. The translated amino acid sequence from the human 

TFPI cDNA clone consists of 276 amino acids with 18 cysteines, and two potential N-linked 

glycosylation sites and one O-glycosylation site, with a predicted MW of 32 kDa [4] and an 

actual MW estimated from SDS PAGE of about 42 kDa due to glycosylations [5].  

 

The use of selective pharmacological inhibitors has become an indispensable tool in 

experimental haemostasis and thrombosis research, in which recombinant TFPI (rTFPI) may 

be a beneficial therapeutic agent as a natural anticoagulant to attenuate pathological clotting 

activation [6, 7]. Half-life extension is desirable when designing recombinant therapeutic 

proteins. So far, two major types of rTFPI were purified and used in animal studies and 

human clinical trials. The non-glycosylated form of rTFPI, produced by E.Coli (TFPIE.Coli), 

has been shown to be rapidly cleared from the circulation with a plasma half-life of less than 1 

minute in rats [8]. In vivo and in vitro studies implicate LRP-1 in degradation and clearance 

of TFPIE.Coli [9, 10] and haparan sulfate proteoglycans (HSPGs) have been identified as the 

receptors in a second receptor system that is involved in the in vivo clearance of TFPIE.Coli [9, 

11]. 

 

Mammalian cells have become the dominant system for the production of recombinant 

proteins for clinical applications because of their capacity for proper protein folding, assembly 

and post-translational modifications. Thus, the quality and efficacy of a protein can be 

superior when expressed in mammalian cells versus other hosts such as bacteria, plants and 
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yeast [12]. Recombinant glycosylated TFPI has been purified from several mammalian cell 

lines. rTFPI expressed in mouse C127 (TFPIC127) fibroblasts has been shown to have a 

different route of elimination compared to TFPIE.Coli [13]. This type of TFPI had substantially 

prolonged survival in the circulation and simultaneous administration of RAP did not affect 

the survival of TFPIC127 in the circulation. Furthermore, excessive amounts of unlabeled 

TFPIC127 did not affect binding and degradation of 125I-labeled TFPIE.Coli in HepG2 cells [13]. 

Anatomical distribution studies showed that while TFPIE.Coli is mainly found in the liver of 

rats [8], TFPIC127 and rTFPI expressed in human SK hepatoma cells (TFPISK) are found both 

in liver and in kidneys of rabbits [14]. 

 

Human recombinant full length TFPI expressed in baby hamster kidney cells (BHK) 

(TFPIBHK) was used in this study. This type of TFPI was first purified in 1990 [15]. The 

molecular properties were comparable with that observed for rTFPI synthesized by HepG2 

and HeLa cells, and the authors suggested that this type of TFPI could be used as adjunct 

therapy in the treatment of some thrombotic diseases. Pharmacokinetics studies in rabbits 

showed that TFPIBHK is cleared with a t1/2β of 16.8 min [16]. In the present study we aimed to 

carry out a more detailed PK study during the first phase of clearance, to identify the organ(s) 

involved in removal of TFPIBHK from the circulation and to determine the hepatocellular site 

of uptake, as well as to identify the main cell (s) and their receptor(s) involved in the 

clearance. 
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MATERIALS AND METHODS 

Animals 

Male albino rats, Sprague-Dawley (mean body weight 200-250 g), purchased from Scanbur 

BK, AB (Sollentuna, Sweden) were kept under controlled animal conditions, and fed a 

standard chow (Scanbur BK, Nittedal, Norway) ad libitum. For in vivo experiments, 

anesthesia was induced with 4% Isofluran (Abbott Scandinavia AB, Solna, Sweden) and 

maintained at 2.1%. For in vitro studies, rats were anesthetized by subcutaneous injection of a 

mixture of 0.4 mg/kg Domitor (Orion Pharma, Espoo, Finland) and 60 mg/kg Ketalar (Pfizer 

AS, Lysaker, Norway). All experimental protocols were approved by the Norwegian Animal 

Research Authority in accordance with the Norwegian Animal Experimental and Scientific 

Purposes Act of 1986. 

 

Materials: 

Human recombinant full length TFPI, 42 kDa, isolated from Baby Hamster Kidney cell line 

(BHK) (TFPIBHK) [15] was from Novo Nordisk (Måløv, Denmark). Human recombinant full 

length TFPI, 35 kDa, isolated from E.Coli (TFPIE.Coli) was obtained from American 

Diagnostica Inc (Greenwich, CT, USA). Receptor associated protein (RAP) purified from 

E.Coli strain BL21(DE3) (Invitrogen, Taastrup, Denmark) was from Novo Nordisk (Måløv, 

Denmark). Carrier free Na125I was from Perkin-Elmer Norge AS (Oslo, Norway), and 1,3,4,6-

tetrachloro-3α, 6α-diphenylglycoluril (Iodogen) was from Pierce Chemical Co. (Rockford, IL, 

USA). Collagenase P was from Worthington Biochemical Corporation (Lakewood, NJ, USA). 

Human serum albumin (HSA) was from Octapharma (Ziegelbrucke, Switzerland). Culture 

media D-MEM/F-12 and RPMI 1640 supplemented with 50 U/ml penicillin and 50 μg/ml 

streptomycin were from Gibco BRL (Roskilde, Denmark). Fluorescein isothiocyanate (FITC), 

Protamine, Glycine, Asialofetuin, type II from fetal calf serum, Galactose and Ovalbumin 
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were from Sigma Co (St. Louis, MO, USA). Phosphotungstic acid (PTA) was from Merck 

(Darmstadt, Germany). Bovine serum albumin, fraction 5 (BSA) was from ICN Bichemicals 

Inc., (CA, USA). Sephadex G-25 columns (PD-10) and Percoll were from Amersham Biotech 

(Uppsala, Sweden). Asialoorosomucoid (ASOR) was prepared via enzymatic hydrolysis of 

orosomucoid (Sigma Aldrich Inc., St. Louis, MO, USA) following the manufacturer’s 

instructions. ASOR was characterized by isoelectric focusing analysis using Novex® IEF gels 

from Invitrogen Life Technologies (Carlsbad, CA, USA) [17]. Asialo-FVIIa was prepared by 

desialylation of FVIIa (Novo Nordisk, Måløv, Denmark) using neuraminidase according to 

the manufacturer’s protocol (New England Biolabs, Inc., UK). Formaldehyde treated serum 

albumin (FSA) was prepared as described [18].  

 

Radiolabeling 

Macromolecular ligands (TFPIE.Coli and TFPIBHK) in PBS were labelled with carrier-free 

Na125I in a direct reaction employing iodogen as oxidizing agent [19]. The ligands and 

activated 125I were allowed to react for 30 min and the reaction was stopped by the addition of 

Na2S2O5 and excess amount of KI. Radiolabeled ligands and free iodine were separated by gel 

filtration on a PD-10 column equilibrated with 1% HSA in PBS. Fractions of 0.5 ml were 

collected with PBS as eluting buffer. Radioactivity was measured using a gamma-counter 

(Cobra II, Packard, New York, NT, USA). The resulting specific radioactivities were between 

3.2 – 4.4 x 107cpm/μg. To prevent escape of marker isotope from the site of uptake, TFPIBHK 

was labelled with FITC [20]. Unbound FITC was removed by gel filtration on a PD-10 

column.  

 

Blood Clearance and Anatomical Distribution  

Blood clearance and anatomical distribution of i.v. administered 125I-TFPI was determined as 

described [21]. Briefly, 125I- TFPIE.Coli and 125I- TFPIBHK (0.60 μg/kg in 0.25 ml physiological 
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saline) were injected in the tail vein. Specificity of blood clearance of TFPIBHK was 

investigated by injecting 125I- TFPIBHK alone (0.60 μg/kg; 0.5 nM) or 1 min after injection of 

RAP (50 mg/kg); or 200 fold molar excess of unlabelled TFPIBHK, or Protamine (40 mg/kg) 

and 200 fold molar excess of unlabelled TFPIBHK, or ASOR (15mg/kg). Blood samples (25 

μl) were collected from the tip of the tail and mixed with 0.5 ml water and 0.75 ml of 20% 

TCA, 0.5% PTA to precipitate undegraded protein and high molecular weight peptides. 

Radioactivity in the supernatant after centrifugation (acid-soluble radioactivity) was taken as 

degraded TFPI. Radioactivity in blood 0.5 min after injection was defined as 100%, and the 

percentage of radioactivity remaining in the circulation was calculated.  

 

Anatomical distribution was assessed 10 min, 20 min, 1h, 2h and 4h after i.v. administration 

of 125I- TFPIE.Coli or 125I- TFPIBHK. The abdomen was cut open and the organs were washed 

free of blood by systemic perfusion through the heart with physiological saline. The following 

organs were analyzed for radioactivity: liver, spleen, kidneys, stomach, intestines, urine, 

lungs, heart, eyes, brain, tail, muscle, thymus, testicles and blood. Total blood volume of each 

rat was calculated according to Waynforth and Flecknell [22]. 

 

Fluorescence Microscopy 

At 15 min following i.v. administration of 30 μg/kg FITC- TFPIBHK in 0.5 ml physiological 

saline, liver and kidneys were dissected out, fixed in 4% formaldehyde, prepared and 

sectioned for fluorescence microscopy. Sections were examined with an Axiophot 

photomicroscope (Carl Zeiss, Oberkochen, Germany). Photomicrographs were taken with a 

Nikon DS 5MC digital camera. 
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Hepatocellular Distribution  

The distribution of radiolabelled ligands in different liver cell populations was assessed 15 

min following i.v administration of 125I- TFPIE.Coli and 125I- TFPIBHK (2.5 μg/kg) by 

quantifying the amount of radioactivity per million cells of parenchymal cells (PCs) and non-

parenchymal cells (NPCs). NPC fraction consists mainly of liver sinusoidal endothelial cells 

(LSECs) and Kupffer cells (KCs) and is essentially devoid of PCs, red blood cells, stellate 

cells and debris. Cell numbers were assessed by visual counting in a phase contrast 

microscope. The uptake per cell was calculated based on the fact that the ratio between KCs, 

LSECs and PCs in rat liver is 1:2.5:7.7 [23]. The method for determining the hepatocellular 

distribution of different ligands has previously been used by us and others [21, 24, 25]. 

 

Isolation and Cultivation of Liver Cells  

The method for preparation of pure cultures of functionally intact PCs, LSECs and KCs from 

a single rat liver has been described elsewhere [26]. Briefly, the liver was perfused with 

collagenase, and the resulting single cell suspension was subjected to velocity and density 

centrifugations to produce PCs and NPCs. The PCs were centrifuged at 50 x g and the 

resulted pellet washed 5 times with D-MEM/F-12. The cells were resuspended in D-MEM/F-

12 containing 1% HSA. 0.4 x 106 PCs were seeded on 2 cm2 diameter culture dishes from 

Becton Dickinson Labware (Le Pont de Claix, France) coated with 0.1% collagen in PBS and 

incubated in humidified air with 5% CO2 at 37°C for 4 to 6 h to allow cell attachment.  

 

Endocytosis Studies 

Unattached PCs were removed by washing with PBS immediately prior to each endocytosis 

experiment. Fresh D-MEM/F-12 with 1% HSA and 0.5 nM 125I- TFPIBHK alone or together 

with excess amounts of unlabelled potentially inhibitory agents such as TFPIBHK (500-fold), 

RAP, ASOR, asialofetuin, asialo-FVIIa, ovalbumin (100 μg/ml) or galactose (50 mM). To 
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assess the impact of heparan sulfate proteoglycans (HSPGs) on 125I- TFPIBHK binding and 

degradation, the cells were preincubated for 5 min with protamine (100 μg/ml) [9], before 

addition of the 125I- TFPIBHK. Binding studies were carried out for 2 h at 4°C to avoid 

internalization of the ligand. Endocytosis studies were carried out for 2 h at 37°C. 

Endocytosis studies were terminated by transferring the cell media (200 μl) along with one 

wash of PBS (500 μl) to empty tubes and mixed with cold 20% TCA, 0.5% PTA (750 μl). 

Ligand degradation was determined by measuring the amount of labeled acid soluble 

radioactivity after centrifugation. Cell-associated ligand was quantified by measuring the 

radioactivity in the washed cells solubilized in 1% SDS. The functionality of the PCs and 

their endocytic receptors LRP-1 and ASGP-R were tested with 125I-RAP and 125I-ASOR or 

125I-asialofetuin, respectively.  

 

Opossum kidney cells (OK) (passages 39-44), which are considered representative of renal 

proximal tubules [27, 28] were routinely cultured in plastic flasks (25 cm2) using culturing 

medium DMEM/F-12 supplemented with 10 % FBS, 50 U/ml penicillin and 50 μg/ml 

streptomycin. At confluence the cells were washed twice in PBS and detached by adding 1 ml 

0.5 % trypsin/EDTA for 10min. The cells were thereafter seeded (25.000 cells/cm2) in 24-

well plates (Costar, Acton, MA, USA). Fresh medium was added every 48 h. Endocytosis was 

performed by incubating the OK cells for 1h at 37°C with D-MEM/F-12 medium, 1% HSA 

containing 1 nM 125I- TFPIBHK alone or in the presence of 500 nM RAP. The amount of 125I- 

TFPIBHK bound to the cells was measured after washing the cells with a solution of 0.1 

Glycine, pH 2.4. Internalized 125I- TFPIBHK was quantified by measuring the amount of label 

released by treating washed cultures with a solution of 1% SDS.  
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Statistics 

All data are presented as the means ± SEM unless otherwise indicated. We analyzed numeric 

data for statistical significance using Student’s unpaired t-test with Prism software 

(GraphPad). P values of less than 0.05 were considered statistically significant. Clearance 

kinetics were analyzed as described previously [20]. 
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RESULTS 

Blood clearance 

Elimination of 125I- TFPIBHK and 125I- TFPIE.Coli were determined by measuring the decay of 

radioactivity in blood samples collected over time after i.v. injection of trace amounts (0.25 

μg/kg) of radiolabeled ligands into the tail vein of rats. The kinetics of elimination followed a 

biphasic pattern for both types of TFPI (Figure 1). The clearance during the initial and rapid 

α-phase (t1/2 α) was significantly slower for TFPIBHK than for TFPIE.Coli (1.95 ± 0.10 and 1.42 

± 0.07 min, respectively (p<0.001, n=10 in each group)), but not significantly different during 

the terminal slow β-phase (t1/2 β) (25.47 ± 1.47 and 29.90 ± 3.22 min, respectively (p=0.20)). 

Measurements of acid soluble radioactivity in the blood samples, representing degradation of 

labeled ligand, revealed that 6.2 ± 1.3% of TFPIBHK and 3.8 ± 1.9% of TFPIE.Coli (p=0.01) 

were degraded about 20 min after administration. In contrast to what was found for TFPIE.Coli, 

a modest increase in degraded material of TFPIBHK continues during the observation time.  

 

 Anatomical distribution 

Organ distribution examined 10 min after injection revealed that the liver is the main organ 

for uptake of TFPIE.Coli, with 40% of the recovered radioactivity (Figure 2A), while TFPIBHK 

was found in similar amounts in liver and kidneys, with about 25% of the recovered 

radioactivity in each of the two organs (Figure 2B). The radioactivity in the primary organs of 

uptake declined over time with a concomitant accumulation in the gastrointestinal tract. Only 

trace amounts of radioactivity accumulated in the urine and other organs at any time point. 

The radioactivity recovered in the circulation decreased gradually over time from 32 ± 1% at 

10 min to 7 ± 1% at 4 h after 125I- TFPIE.Coli administration (p for trend <0.001), and from 41 

± 5% at 10 min to 16 ± 4% at 4 h after 125I- TFPIBHK administration (p for trend <0.001).   
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Fluorescence microscopy 

Fluorescence microscopy of random liver and kidney sections fixed 15 min after 

administration of FITC- TFPIBHK revealed accumulation of fluorescence in both organs 

(Figure 3), similar to observations from the anatomical distribution study. In the liver, 

fluorescence was observed both in the parenchymal cells (mainly in the pericentral areas) 

(Figure 3A) and in the non-parenchymal cells represented by the cells lining the liver 

sinusoids (in periportal areas) (Figure 3B). In kidneys, the fluorescence was observed in the 

outer cortex, mainly in cells of the proximal convoluted tubules (Figure 3C) and minor 

amounts in glomeruli (Figure 3D). 

 

Hepatocellular distribution 

The observation that TFPI was taken up by the liver prompted us to investigate the 

distribution of radiolabelled ligands in the different cell populations. The liver cells were 

isolated 15 min after injection of 125I- TFPIBHK and 125I- TFPIE.Coli, and the radioactivity was 

measured in parenchymal cells and non-parenchymal cells. The distribution revealed that PCs 

were responsible for the main uptake of both types of TFPI (Table 1). Based on the relative 

distribution of the cells in intact liver, it could be calculated that the total cell population of 

PCs were responsible for 96% ± 2% of the uptake of TFPIBHK and 81% ± 12% of TFPIE.Coli, 

whereas the NPCs were responsible for 4% ± 2% and 19% ± 12%, respectively. 

 

Specificity of blood clearance 

In order to determine the specificity of the clearance of 125I- TFPIBHK in vivo, rats were 

injected i.v. with 125I- TFPIBHK (0.60 μg/kg) with or without pre-administration of a 200-fold 

molar excess of unlabeled TFPIBHK, recombinant RAP (50 mg/kg) as competitor for the LRP-

1, ASOR (15 mg/kg) as competitor for the asialo glycoprotein receptor, or 40 mg/kg 

protamine [9] as competitor for HSPGs sites involved in binding of TFPIBHK (Table 2). Pre-
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administration of unlabelled TFPIBHK caused a marked prolongation of the α- and β-phase, 

whereas administration of RAP prior to 125I- TFPIBHK did not affect the plasma clearance of 

TFPIBHK. ASOR, a ligand with high affinity for the ASGP-R [29, 30], significantly prolonged 

the rapid α-phase by 1.5-fold (p=0.001) and had no effect on the slow β-phase of TFPIBHK 

clearance (Table 2). Pre-injection with protamine had no significant impact on the clearance 

of 125I-TFPIBHK. 

 

Endocytosis in primary cultures of PCs  

Endocytosis of both forms of TFPI was monitored in primary cultures of PCs isolated from 

rat liver. The cells were incubated with 0.5 nM 125I- TFPIE.Coli (Figure 4A) or 125I- TFPIBHK 

(Figure 4B), and radioactivity associated with the cells or with degradation products in the 

medium were measured at various time periods. The endocytosis increased almost linearly 

over time for both ligands and accounted for 65 ± 13 fmol/106 PCs of added 125I- TFPIE.Coli 

and 44 ± 4 fmol/106 PCs of added 125I- TFPIBHK after 4 h of incubation. Degradation products 

were detected after 30 min of incubation, and 31 ± 10 fmol/106 PCs and 23 ± 2 fmol/106 PCs 

of 125I- TFPIE.Coli and 25I- TFPIBHK, respectively, were degraded after 4 h of incubation.     

 

To determine the role of HSPGs in cellular binding and degradation of 125I- TFPIBHK in 

primary cultures of PCs, the cells were pretreated with 100µg/ml protamine, a concentration 

previously shown to inhibit 90% of 125I- TFPIE.Coli binding to MH1C1 cells [9]. Protamine only 

caused a modest, but not significant increase in cellular binding of TFPIBHK (11 ± 5%) 

without affecting cellular degradation (Figure 5).  

 

To investigate the specificity of TFPIBHK endocytosis in PCs, 500-fold molar excess of 

unlabelled TFPIBHK was added together with 0.5 nM 125I- TFPIBHK and incubated for 2 h at 

4°C to assess cellular binding, or at 37°C to assess endocytosis. Excessive amounts of 
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unlabeled TFPIBHK inhibited total endocytosis by 81 ± 1% (p<0.001), and cellular degradation 

by 91 ± 3% (p<0.001) (Figure 5), suggesting that the uptake of TFPIBHK in PCs is receptor 

mediated. Furthermore, cross-competitive binding studies with radiolabeled TFPIBHK and 

TFPIE.Coli (0.5 nM) and excess amounts of unlabeled TFPIE.Coli and TFPIBHK (100- and 500-

fold molar), respectively caused no reciprocal inhibition of cellular binding and endocytosis 

(data not shown). Excess amounts of RAP had no significant affect on cell-association or 

degradation of TFPIBHK (Figure 5).  

 

The prolonged circulatory survival of TFPIBHK observed after pre-administration of ASOR, 

encouraged us to further investigate cellular binding and endocytosis of TFPIBHK by ASPGP-

R in primary cultures of PCs in vitro. Thus, we incubated PCs with trace amounts of 125I- 

TFPIBHK in the presence or absence of high concentration of unlabelled ligands known to bind 

to the ASGP-R (Figure 6A). ASOR, asialofetuin and asialo-FVIIa had a marked impact on 

TFPIBHK endocytosis, inhibiting both the cell-association and degradation by more than 87% 

(p<0.001). Galactose and ovalbumin inhibited also significantly the endocytosis of TFPIBHK, 

but to a lesser extent than the previous three ligands; by 63 ± 1%, (p<0.001) and by 22 ± 3%, 

(p=0.01), respectively. In addition, excess amounts of unlabelled TFPIBHK inhibited the 

endocytosis of 125I-asialofetuin by 90 ± 6% (p<0.001) (Figure 6B). 

 

Accumulation in kidneys 

The observation that i.v. administered TFPIBHK accumulated in the kidneys encouraged us to 

investigate the uptake of TFPIBHK in vitro on cultures of kidneys cells. To this end, we used a 

kidney proximal tubule cell line from opossum (OK cells). Here we found that excess 

amounts of unlabelled RAP had a significant inhibition on both binding and internalization of 

125I- TFPIBHK in OK cells (Table 3). 
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DISCUSSION 

The present study was carried out to determine the early clearance kinetics, and organ, cell(s) 

and receptor(s) responsible for the clearance of full length TFPI purified from BHK cells 

(TFPIBHK). We found that TFPIBHK followed biphasic pattern of elimination, similar to the 

kinetics of TFPI of bacterial origin (TFPIE.Coli). However, the clearance during the α-phase 

was significantly slower for TFPIBHK as compared to TFPIE.Coli. Distribution of radiolabeled-

ligand after i.v. administration revealed a rapid accumulation of radioactivity in the 

parenchymal cells (PCs) in the liver, with subsequent accumulation of radioactivity in the 

gastrointestinal tract over time, indicating that PCs are the principal site for uptake of both 

forms of TFPI. When 125I- TFPIBHK was administered along with excess amounts of 

unlabelled TFPIBHK i.v. or to cultured PCs, delayed blood clearance or reduced uptake in 

cultured cells were observed, suggesting a receptor-mediated mechanism of uptake. Studies in 

vivo to identify candidate receptors for uptake of TFPIBHK revealed that ASOR, a potent 

inhibitor of the ASGP-R, prolonged the circulatory survival of 125I- TFPIBHK. This finding 

along with the in vitro results showing that several ligands for the ASGP-R markedly 

inhibited endocytosis of TFPIBHK in PCs, strongly suggested that ASGP-R is responsible for 

the PC-mediated clearance of recombinant TFPIBHK.  

 
Anatomical distribution of radiolabeled-ligands observed 10 min after i.v. injection of 125I-

TFPI revealed that TFPIE.Coli was cleared mainly by the liver, whereas TFPIBHK was found 

both in liver and kidneys (Figure 2). Analyses of hepatocellular distribution of radioactivity 

after injection of radiolabeled TFPIBHK and TFPIE.Coli demonstrated that PC was the principal 

cellular site of uptake in the liver (Table 1), supporting previous in vitro findings that 

hepatoma-derived cell lines (e.g. HepG2 and MH1C1 cells) take up TFPIE.Coli via receptor-

mediated endocytosis [10]. Previously, SDS-PAGE monitoring of plasma showed that 

radiolabeled TFPIE.Coli was not proteolyzed for at least 10 min after its i.v. administration [8, 
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14]. Similarly, we observed only trace amounts of degraded material in blood starting to 

appear about 20 min after the administration of TFPIE.Coli (Figure 1). In our study, subsequent 

distribution of recovered radioactivity in various organs collected over time showed a rapid 

decrease in the radioactivity in the liver, with a concomitant increase in the gastrointestinal 

tract (Figure 2). These observations suggest that exogenously administered TFPI is preferably 

taken up by the PCs in the liver, and further transported into the bile, either as intact protein or 

as degradation products, for subsequent removal via the intestine [31]. 

 
Previous studies reporting that pre-administration of RAP prolonged the beta-phase 

elimination from the circulation of TFPIE.Coli [9], and that cellular degradation of TFPIE.Coli in 

hepatoma cell-lines were significantly inhibited by RAP [10], suggest that receptor-mediated 

endocytosis via LRP-1 is the predominant mechanism for uptake and degradation of 

TFPIE.Coli. Since hepatoma-derived cell lines differ from primary cell cultures with regard to 

receptor expression and endocytic capacity [32, 33], we investigated uptake and degradation 

of TFPIE.Coli and TFPIBHK in primary cultures of freshly isolated PCs. We found that PCs bind 

and degrade both forms of TFPI, and that the endocytosis of TFPIBHK is receptor-mediated. 

Binding of TFPIBHK to PCs reached equilibrium after 2 h of incubation, similar with the 

kinetics previously observed in HUVECs and Ea.hy926 cells [34].  

 

Further investigations in our study focused on clearance and uptake mechanism of TFPIBHK. 

Interestingly, cross-competitive binding studies in vitro with radiolabeled TFPIBHK and 

TFPIE.Coli and excess amounts of unlabeled TFPIE-Coli and TFPIBHK, respectively, caused no 

reciprocal inhibition of cellular binding and endocytosis. In agreement with a previous study 

of recombinant full-length TFPI expressed in mouse C127 cells [13], no effect of RAP was 

observed in blood clearance in vivo, or on cell binding and degradation of TFPIBHK in primary 

cultures of PCs in vitro. These findings strongly suggested that TFPIE.Coli and TFPIBHK do not 
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share the same receptor for endocytosis, and that LRP-1 is not responsible for the endocytosis 

of TFPIBHK.  

 
The role of the kidneys in binding and degradation of TFPI is unclear. In agreement with 

previous studies [14], we found only trace amounts of radioactivity retained in the kidneys 

after i.v. administration of 125I- TFPIE.Coli, whereas substantial amounts of radioactivity was 

associated with the kidneys after administration of  125I- TFPIBHK (Figure 2). Our finding is in 

accordance with a previous study in rabbits, where whole body autoradiography was used to 

demonstrate distribution of radiolabelled rTFPI (purified from either mouse C127 fibroblasts 

or human SK hepatoma cells) in both liver and kidneys after i.v. administration [14]. A recent 

study has shown that only trace amounts of endogenous TFPI accumulates in the urine as 

native, non-degraded TFPI form in humans, indicating renal leakage rather than active 

excretion of TFPI into the urine [35]. Since the present study also showed trace amounts of 

125I-TFPIBHK accumulated in the urine over time, the reason behind detection of 25% of 

radioactivity in the kidneys was further investigated. Fluorescence microscpopy of kidney 

sections following in vivo administration of FITC-TFPIBHK, where the FITC adduct is trapped 

in the lysosomes of cells after endocytosis [36, 37], showed accumulation of the probe in the 

outer cortex, mainly in cells of the proximal convoluted tubules and to less extent in glomeruli 

(Figure 3). To date, no studies have investigated the potential reabsorption of TFPI in the 

kidneys. We present data supporting that the probable mechanism for detection of TFPIBHK in 

the kidney is by renal reabsorption in the proximal tubules. Opossum kidney (OK) cell is an 

established cell line resembling the proximal tubule epithelium which expresses megalin and 

cubilin, two members of the LDL receptor family [27, 28]. Using this cell line, we found that 

RAP significantly inhibited both binding and internalization of 125I- TFPIBHK. Despite a wide 

range of ligands shared by both LRP-1 and megalin, there are also ligands that are only 

recognized by either one of the receptors [38]. The fact that RAP inhibited the 125I- TFPIBHK 
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uptake in the OK cells but not in the PCs suggests that TFPIBHK may bind to megalin and/or 

cubilin in the proximal tubule cells via other specific binding sites not found on LRP-1 in the 

liver PCs. In addition, cellular degradation with subsequent reabsorption of degraded TFPIBHK 

into the circulation by cells in the proximal tubules could also occur to some extent due to the 

modest increase in degraded TFPIBHK, but not TFPIE.Coli in the circulation, as observed in our 

study. 

 
Immediate binding to negatively charged heparan-sulfate proteoglycans (HSPGs) at the 

endothelial surface, most probably due to electrostatic interactions with the positively charged 

C-terminus of TFPI [8, 11, 39], has been suggested to be responsible for the rapid clearance of 

TFPIE.Coli from the circulation [9]. HSPGs have been shown to serve either as co-receptors of 

LRP-1 providing the initial binding of TFPIE.Coli to the cell surface and its subsequent 

presentation to LRP-1, or function as catabolic receptors themselves, acting independently of 

LRP-1 [9, 40]. TFPI expressed in mouse fibroblasts (TFPIC127) was recently found to be 

unable to bind to HSPGs at cell surfaces in vitro and exhibited a 10-fold increase in plasma 

half-life when injected in mice compared to TFPIE.Coli in vivo [13]. Moreover enzymatic 

breakdown of glycosaminoglycans (GAGs) chains on HUVEC and Ea⋅hy926 cells was 

previously shown not to have an effect on the binding of TFPIBHK, and the authors concluded 

that the binding-site must be different than GAGs [34]. Similarly, we found that neither 

elimination, nor cellular binding and degradation of TFPIBHK in primary cultures of PCs, were 

substantially affected by interaction with HSPGs on cell surfaces. The mechanism underlying 

abrogated interaction of TFPIBHK with the HSPGs at cell surfaces is not known, but may 

involve intra-molecular quenching of the positively charged basic amino acid residues in the 

C-terminus by interaction with highly charged anionic sulfate groups at glycosylation sites 

[13].   
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Human recombinant TFPIBHK differs from bacterial TFPIE.Coli in molecular weight (42 kDa 

and 35 kDa, respectively) due to post-translational modifications in mammalian cells 

involving N-linked glycosylation at three potential sites; Asn 117, Asn 167, Asn 228 [4, 5, 

41]. The mammalian cells used for synthesis of TFPIBHK in our study, the BHK cells, are 

known to have a heterogeneous glycosylation pattern. However, under certain culture 

conditions, changes in the oligosaccharide chains occur and the product secreted by these 

cells will be partially desialylated [42]. The carbohydrate moiety of plasma glycoproteins is 

known to play a key role in their plasma clearance [43]. Desialylation and subsequent 

exposure of the galactose is known to increase the rate of removal of many plasma 

glycoproteins from the circulation due to recognition by the asialoglycoprotein receptor 

(ASGP-R). This reduction of intravascular half-life has been found when as little as 25% of 

the sialic acid has been removed [44]. In addition, glycoproteins containing terminal sugars 

other than galactose have also been shown to be cleared more rapidly than corresponding 

sialylated proteins: the affinity of the hepatic ASGP-R is up to 60-fold greater for structures 

containing N-acetyl-galactosamine than for galactose [45].  The fact that our recombinant 

TFPIBHK is endocytosed specifically by the ASPG-R provides evidence that this type of TFPI 

carries galactose and/or N-acetyl-galactosamine in the end position of its glycan structures.  

 
In conclusion, we have demonstrated that the clearance of recombinant TFPIBHK involves 

receptor-mediated endocytosis via ASGP-R in PCs, a different mechanism than the clearance 

of TFPIE.Coli. It appears that TFPIBHK most probably is not completely sialylated.  The extent 

of sialylation of TFPI in mammalian cells remains to be investigated and strategies to 

completely glycosylate the protein would be needed to optimize pharmacokinetic properties 

and thereby potential therapeutic use.  
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Table 1. Hepatocellular distribution of of 125I-b-TFPI and 125I-m-TFPI 

At 15 min following i.v. administration of 125I-b-TFPI (white bars) and 125I-m-TFPI (gray 

bars), the liver cells were dispersed by collagenase perfusion and the amount of radioactivity 

per million cells was measured in suspension of parenchymal cells (PCs) and non parencymal 

cells (NPCs) [sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs)]. The uptake per 

cell in the total liver was calculated based on the knowledge that the ratio between KC, LSEC 

and PC in rat liver is 1:2.5:7.7 [23]. 

 

Ligand 
Radioactivity 

(% of total liver cell population) 

         PCs                      NPCs 

  
N 

 125I-b-TFPI   80.7 ± 11.9 19.3 ± 11.9 3 
 125I-m-TFPI 95.7 ± 1.7 4.3 ± 1.7 6 
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Table 2. Specificity of m-TFPI clearance in vivo 
 

125I-m-TFPI (0.5 nM) was injected alone or 1 min after administration of 200-fold molar 

excess of unlabeled mTFPI, 40 mg/kg Protamine, 50 mg/kg RAP or 15 mg/kg ASOR into a 

lateral tail vein and radioactivity was measured in blood samples over time. Radioactivity in 

blood 1 min after injection was taken as 100%. The clearance was fitted to two-phase 

exponential decay. The values are mean ± SEM. **p<0.01 compared to control (0.5 nM 125I-

m-TFPI alone). 

 

Ligands 
  
     t1/2α (min)                t1/2β (min) 

  
N 

0.5 nM 125I-m-TFPI 1.95 ± 0.10 25.47 ± 1.47 10 
    +200-fold molar excess m-TFPI   2.84 ± 0.05**   40.47 ± 2.00** 5 
    +50 mg/kg RAP 2.00 ± 0.27 19.85 ± 0.76 6 

    +15 mg/kg ASOR   2.96 ± 0.10** 27.84 ± 0.01 3 
    +40 mg/kg Protamine 2.03 ± 0.19 26.14 ± 1.71 4 
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Table 3. Binding of m-TFPI to kidney proximal tubule cells 
 

Monolayer cultures of OK cells were incubated with 0.5 nM 125I-m-TFPI in the presence or 

absence of 500 nM RAP. Cell surface bound and internalized m-TFPI was measured after 1h 

of incubation at 37°C as described in Materials and Methods. Results are presented as percent 

of control. 100% corresponds to about 8.51 fmol m-TFPI. 

 

  125I-m-TFPI alone + RAP p 
125I-m-TFPI bound to cell surface 83.69 ± 3.81 56.35 ± 7.33 0.04 
125I-m-TFPI internalized 15.79 ± 2.84   5.12 ± 3.94 0.02 
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FIGURE LEGENDS 
 
Figure 1 Blood clearance of radiolabeled TFPI 

125I-TFPIE.Coli and 125I-TFPIBHK (0.60 μg/kg in 0.5 mL physiological saline) were injected into 

a lateral tail vein, and blood samples (25µl) were collected in 0.5 ml water after various time 

points and immediately mixed with 0.75 ml 20% TCA, 0.5% PTA. Radioactivity in blood 0.5 

min after injection was taken as 100%. The clearance was fitted to two-phase exponential 

decay. Open symbols represent acid soluble radioactivity (degraded TFPI). Closed symbols 

represent acid-precipitable radioactivity (non-degraded TFPI). Inset shows α and β half-lives, 

describing the kinetics of the initial and terminal clearance phases. The values are mean ± 

SEM from 10 separate experiments. 

 
Figure 2 Anatomical distribution of radiolabeled TFPI 

Trace amounts of 125I-TFPIE.Coli (A) and 125I-TFPIBHK (B) (0.25 μg/kg in 0.5 mL physiological 

saline) were injected into a lateral tail vein. At different times after injection the organs were 

washed free of blood, removed and analyzed for radioactivity. The results are presented as 

percentage of total recovered radioactivity. Radioactivity of tissues and organs other than 

those shown in the figure was less than 2%. Bars are mean ± S.D. for four separate 

experiments.  

 
Figure 3 Fluorescence micrographs of liver sections (A, B) and kidneys (C, D)  

At 15 min following i.v. administration of 30 μg/kg FITC-TFPIBHK in 0.5 ml physiological 

saline, liver and kidneys were dissected out, fixed in 4% formaldehyde, prepared and 

sectioned for fluorescence microscopy. Sections were examined with an Axiophot 

photomicroscope (Carl Zeiss, Oberkochen, Germany). Photomicrographs were taken with a 

Nikon DS 5MC digital camera. In liver, the fluorescence was observed in the parenchymal 

cells (arrows) (A) and in cells lining the sinusoids (arrows) (B). In kidneys, the fluorescence 
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was observed in the outer cortex (bar) (C), mainly in the cells of the proximal convoluted 

tubules (arrows) (D). 

 
Figure 4 Kinetics of endocytosis of 125I-TFPIE.Coli (A) and 125I-TFPIBHK (B) in PCs 

125I-TFPIE.Coli and 125I-TFPIBHK (0.5 nM) were incubated with cultures of PCs in 2 cm2 

diameter dishes at 37°C, and cell-associated (■) and degraded (□) ligand were determined 

after various periods of time as described in the Materials and Methods section. Total 

endocytosis (●) is the sum of cell-associated and degraded ligand. Results are presented in 

fmol TFPI/106 PCs. Bars are means ± S.D. for four separate experiments. 

 
Figure 5 Endocytosis of 125I-TFPIBHK in cultured PCs 

Monolayer cultures of PCs were incubated with 0.5 nM 125I-TFPIBHK alone, in PCs pretreated 

with protamine (100 μg/ml), or excess amounts of unlabelled TFPIBHK (500-fold molar) or 

RAP (100 μg/ml). Cell-associated (white bars) and degraded (gray bars) ligand were 

determined after 2 h of incubation at 37°C as described in Materials and Methods. Results are 

given as percent of Control. 100% corresponds to about 35 fmol TFPIBHK. Bars are means ± 

SEM for four to eight separate experiments. 

 
Figure 6 Specificity of Endocytosis of 125I-TFPIBHK in cultured PCs 

(A) Monolayer cultures of PCs were incubated with 0.5 nM 125I-TFPIBHK in the absence or 

presence of excess amounts of unlabelled ASOR, asialofetuin, asialo-FVIIa, ovalbumin (100 

μg/ml) or Galactose (50 mM) (A). (B) Monolayer cultures of PCs were incubated with trace 

amounts of 125I-asialofetuin in the absence or presence of excess amounts of unlabelled 

TFPIBHK (100 μg/ml). Cell-associated (white bars) and degraded (gray bars) ligand were 

determined after 2 h of incubation at 37°C. Results are given as percent of Control. 100% 

corresponds to about 35 fmol TFPIBHK. Bars are means ± SD for 3 separate experiments. 
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Figure 6 
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