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1. INTRODUCTION 

1.1. Structural organization of the liver: anatomical localization and 

characteristics of the major liver cell types – parenchymal cells (PCs) and 

sinusoidal endothelial cells (LSECs) 

 
The structural organization of the cellular and vascular elements of the liver is adapted 

to its special function as a key organ interposed between the digestive tract and the rest of the 

body. Representing a central metabolic processor of the body the liver functions both to  

i) produce an array of bio-molecules including for instance several coagulation 

enzymes and albumin as well as a great number of low molecular weight 

metabolites, and  

ii) take up blood borne nutrient components absorbed in the intestine and bring 

about their subsequent metabolism, storage and distribution to blood and bile. 

The uptake function also includes the removal of physiological and foreign 

waste from the blood. 

 The liver tissue is arranged in lobules; each has a central vein which carries blood to 

the hepatic veins. The lobules consist of thin cords of liver cells, separated by spaces called 

sinusoids. The sinusoids are arranged in a radial pattern around the central vein (Figure 1). 
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Figure 1. Schematic drawing of the liver sinusoids (reproduced with permission of 
Prof. Robert S McCuskey from A.W. Ham, “A Textbook of Histology”, J.B. Lippincott Co., 
Philadelphia, 1965) 

 

Sinusoidal cells consist of various cell types, usually classified in two major groups: 

the parenchymal cells (PCs) or hepatocytes and the non-parenchymal cells (NPCs). The NPCs 

consist of four cell types: liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), 

stellate cells and pit cells (also called liver associated lymphocytes or natural killer cells) 

(Figure 2).  
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. 

Figure 2. Schematic drawing of the liver sinusoidal cells (reproduced with 
permission of Dr. Grete Mørk Kindberg [1]) 

 
 

PCs are the largest cells in the liver, with a diameter of >20 μm and are polyhedral 

with eight or more surfaces; many of them are polyploid (up to octaploid) (Table 1). LSECs 

form a continuous lining of the liver sinusoids and represent a barrier between the PCs and the 

sinusoidal blood. In the early 1970s a number of electron microscopic studies by Eddie Wisse 

indicated that the LSECs were a unique cell type of the liver sinusoids [2, 3], that differ from 

other vascular endothelial cells in several aspects: (a) LSECs lack a basement membrane, (b) 

von Willebrand factor, or factor VIII related antigen (an often used immunohistochemical 

marker of vascular endothelial cells), is not expressed by LSECs. Rather, LSECs have been 

reported to synthesize procoagulant factor VIII [4], (c) the long cytoplasmic processes of 

LSECs contain abundant pores or fenestrae with a mean diameter of approximately 100 nm, 

which are arranged in so-called sieve plates and function as a barrier between particles in the 
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sinusoidal lumen and the PCs [5], (d) intracellularly, LSECs are rich in coated pits and 

vesicles and other organelles associated with endocytosis. 

 

Cell Type 
Number 

(%) 
Volume  

(%) 
Cells/g liver  

(x 106) 
Cell diameter  

(μm) 
Parenchymal cells 65 92.5 115 10-34 
Non-parenchymal 
cells 35 7.5 63 6-15 
Sinusoidal endothelial 
cells 21 3.3 38 6-11 
Kupffer cells 8.5 2.5 15 7-15 
Stellate cells 5.5 1.7 10 10-13 
Pit cells <1  <0.3 6-8 
 

Table 1. Cellular composition of rat liver (reproduced with permission of Prof. Bård 

Smedsrød [6]) 
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1.1.1. Receptor-mediated endocytosis  

 
Endocytosis is the process of vesicle formation from the plasma membrane, and in this 

process, plasma membrane-associated proteins are internalised into membrane-bound 

transport vesicles. The endocytic pathway begins at the plasma membrane and ends up in the 

lysosomes, and along this pathway cargo is either destined for recycling back to the plasma 

membrane or for degradation. As cargo passes through early and late endosomes, 

communication with the trans-Golgi network and the secretory pathway takes place. The 

secretory pathway functions to deliver secretory and transmembrane proteins and lipids from 

the ER, via the Golgi apparatus, either to intracellular compartments, to the plasma membrane 

or to the exterior of the cell. At all stages in this vesicle-mediated transport between the 

plasma membrane and various intracellular compartments, recognition, tethering and fusion 

of vesicles are essential for proper destination of the cargo. 

 
Endocytosis supports various cellular functions including nutrient uptake, waste 

removal, growth-factor signaling, and membrane homeostasis [7]. Categorically, endocytosis 

can occur by multiple mechanisms, and can be divided into phagocytosis or “cell eating” of 

large particles (> 200 nm) typically restricted to specialized cells such as macrophages and 

neutrophils [8] and pinocytosis or “cell drinking”, the uptake of fluid and solutes that occurs 

in all cells. 

 

Pinocytosis occurs by at least four basic mechanisms: 1) clathrin-dependent 

endocytosis, 2) caveolin-dependent endocytosis, 3) macropinocytosis, and 4) caveolae-, 

dynamin-, and clathrin-independent endocytosis [7]. These pathways are thought to vary 

mechanistically with respect to how the vesicles are formed, which cargo molecules are 

internalized, how entry is regulated, and to which intracellular destination the cargo is 

delivered. 
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Clathrin-mediated endocytosis is the best characterized endocytosis pathway (Figure 

3). It ensures uptake of nutrients and waste and provides a way of transferring and regulating 

signalling from the exterior to the interior of the cell through surface receptor internalization. 

Receptor-mediated uptake of macromolecules via clathrin-coated pits constitutes a selective 

concentration mechanism that largely increases the efficiency of ligand internalization, such 

that even minor components of the extracellular environment can be taken up in large 

amounts without internalization of correspondingly large amounts of extracellular fluid.  

 

 
Figure 3. The receptor-mediated endocytosis of Low Density Lipoprotein (LDL)  
LDL receptor binds LDL at the plasma membrane and the complex assembly in a coated pit. 
The internalized pit is converted into a clathrin-coated vesicle that fuses with early endosomes 
(EEs) after the removal of the clathrin coat. The LDL dissociates from its receptor in the 
acidic environment of the EEs and ends up in lysosomes, where it is degraded. Reproduced 
with permission of Garland Science/Taylor and Francis LLC from Molecular Biology of the 
Cell 5th Ed. by Alberts et al. 
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Clathrin-mediated endocytosis is used for clearance of receptor-bound hormones and 

growth factors from the cell surface, control of the number of channels and transporters, 

internalization and degradation of extracellular material by some cells [9], recycling of 

synaptic vesicles in nerve terminals and is implicated in cell invasion by a variety of 

pathogens [10].  

 
Clathrin is a vesicle coat protein involved in the assembly of membrane and cargo into 

transport vesicle at the plasma membrane [11]. Several proteins are involved in and essential 

for the formation of clathrin coated pits and vesicles and for the concentration of 

transmembrane receptors into these pits. The clathrin-mediated endocytosis starts with the 

binding of ligand to the luminal or extracellular domain of a transmembrane receptor, 

followed by concentration of receptor through interaction with the protein coat. Formation of 

an endocytic clathrin-coated vesicle is initiated by binding and oligomerisation of clathrin 

adaptor protein at the cytoplasmic surface of the plasma membrane. This leads to 

polymerization of clathrin into a lattice that pulls the plasma membrane inside [12]. 

 

Once the inward budding of the membrane is complete, interactions between the 

adaptor protein and the GTPase dynamin allow separation of the forming vesicle from the 

membrane [13]. After the pit is internalized and converted into a clathrin-coated vesicle, the 

clathrin coat is removed and the vesicle is able to fuse with target early endosomes, a process 

involving Rab5 and Early Endosome Antigen 1 (EEA1) [14]. Rab5 belongs to a superfamily 

of approximately 70 proteins that regulate many steps of membrane traffic [15] and EEA1 is a 

protein that binds phospholipid vesicles containing phosphatidylinositol 3-phosphate, which is 

necessary for endosomal trafficking [14]. Acidification of early endosomes leads to 

dissociation of most receptor-ligand complexes, and ligands destined for degradation travel 

with late endosomes to lysosomes, while receptor-enriched vesicles are recycled back to the 
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cell surface [16, 17]. The intracellular membrane trafficking system uses vesicles and  

tubulovesicular structures to deliver cargo proteins and lipids from one compartment to the 

next. Several proteins including the Rab guanosine triphosphate enzymes (GTPases) and the 

Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptors (SNAREs) are 

involved in recognition, docking and fusion of donor and acceptor compartments to ensure 

proper transport and delivery of cargo molecules [18].  

 

1.1.2. Endocytic receptors on liver sinusoidal endothelial cells (LSECs) and 

parenchymal cells (PCs) 
 

1.1.2.1. Liver sinusoidal endothelial cells (LSECs)   

 
Eddie Wisse [3] was the first to present convincing evidence that the liver sinusoidal 

endothelial cell (LSEC) is a distinct cell type clearly different than the Kupffer cell and other 

sinusoidal liver cells. Moreover, Wisse’s findings gave the first hint that these cells are active 

in endocytosis of blood plasma proteins [3]. At that time it was believed by most scholars that 

the cellular blood clearance system or the reticuloendothelial system (RES) was identical to 

the macrophages, or mononuclear phagocyte system (MPS). Wisse’s suggestion that the 

LSECs endocytose plasma proteins was therefore not acted much upon. It was not until the 

beginning of the 1980’s that scientists found the first evidence that the LSECs play an 

important role in the clearance of blood borne physiological macromolecular waste products 

[19, 20]. During the subsequent years several studies showed that the LSEC exhibits an 

unsurpassed blood clearance capacity [9]. In fact, an array of soluble waste colloids and 

macromolecules were shown to be removed by the LSECs and not by the KCs. Based on this 

solid body of evidence it was proposed by the end of the 1990’s that the existing paradigm of 

“RES ≡ MPS” be shifted to “RES ≡ MPS + LSECs [9]. In spite of this, current text books in 

pathology and immunology still stick to the old incorrect paradigm of “RES ≡ MPS”. 
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Moreover, most of the scientific literature published today still reveals that the old paradigm 

prevails. This is unfortunate, because it obscures interpretations of clearance studies. The 

novel paradigm holds that the LSECs are responsible for the clearance of blood borne colloids 

and soluble macromolecules (<200 nm), while KCs eliminate circulating particulate material 

(>200 nm).  

 
Notably, animal species of all vertebrate classes contain a special population of 

scavenger endothelial cells [21]. In mammals and the 3 other land based vertebrate classes the 

LSECs carry the function of scavenger endothelial cells. However, in phylogenetically older 

vertebrates these cells are located in heart or kidney (bony fishes) or gills (cartilaginous and 

jawless fishes). In all vertebrates these cells play a pivotal homeostatic role by removing an 

array of physiological and foreign molecules from the blood [22]. To cope with the daily 

burden of grams of endocytosed material, LSECs are geared for rapid intracellular transport to 

degradation organelles [23], high capacity degradation of ligands by a large pool of active 

lysosomal enzymes, and release of degraded low molecular weight material to the 

surroundings [24].  

 
So far, three specific receptors for endocytsois have been identified and characterized 

in LSECs, i.e., the scavenger receptor (SR), the mannose/collagen receptor (MANN/COLL-R), 

and the Fcγ receptor.  

 

The scavenger receptor (SR) 

 

LSECs express a number of SRs, including SR-A (a.k.a. macrophage scavenger 

receptor) [25, 26], SR-B (SR-B1 and CD36) [27] and SR-H (Stabilin 1/FEEL-1 and Stabilin 

2/FELL-2/HARE) [26, 28-31]. The other SRs, namely SR-C (not found in mammals), SR-D 

(CD68: macrophage specific), SR-E (LOX-1), SR-F (SREC) and SR-G (SR-PSOX) are not 
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normally expressed on LSECs, but LOX-1 expression can be induced on LSEC with in vivo 

exposure to malondialdehyde-acetaldehyde-bovine serum albumin [32]. 

Despite the expression of three SR sub classes in LSEC, the main work-horse SR in 

LSEC appears to be Stabilin 2 (possibly together with Stabilin 1), based on the following: i) 

SR-A knockout mice clear SR ligands equally well as wild type mice [33-35], and cultured 

LSECs from the same knockout mice endocytose and degrade SR ligands equally well as wild 

types [36, 37]; ii) an antibody to CD36 that inhibits CD36 mediated uptake of SR ligands in 

other cells has no effect on the uptake of SR ligands by LSEC [38]. 

Several categories of waste substances are eliminated by LSECs via the SRs: i) N-

terminal propeptides of types I and III procollagen (PINP and PIIINP) [39], and ii) 

atherogenic molecules: oxidized LDL (oxLDL) [40] and advanced glycation end products 

(AGEs) [41]. Clearance of these substances represents an important physiological mechanism 

contributing to maintaining homeostasis, and preventing atherosclerosis. 

 
The mannose/collagen receptor (MANN/COLLA-R) 

 
The mannose receptor (MANN-R) is an endocytic protein expressed in macrophages 

[42], dendritic cells [43], LSEC [9], kidney mesanglial [44], tracheal smooth muscle [45], and 

retinal pigment epithelial cells [46]. The receptor is a 180 kDa monomeric transmembrane 

glycoprotein [47] and shows affinity for D-mannose, L-fucose and N-acetyl-D-glucosamine 

residues, and mediates endocytosis and phagocytosis of glycoproteins, glycolipids and 

particles that expose these monosaccharides in terminal positions of their carbohydrate side 

chains [42]. 

 
The MANN-R mediates receptor-mediated endocytosis of various soluble 

macromolecules, such as tissue plasminogen activator (tPA) [48], C-terminal propeptide of 
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type I procollagen [49], salivary amylase [50] and lysosomal enzymes [51-55]. Soluble 

mannose-terminated waste glycoproteins in blood circulation end up in liver, in the LSECs, 

rather than in KCs or other macrophages [9], probably due to the higher level of receptors on 

LSECs than on KCs [56].  

 
Until recently it was believed that LSECs express a separate receptor, the collagen α-

chain receptor (COLLA-R), that recognizes only denatured collagen [57]. However, research 

conducted to identify the COLLA-R expressed on rat and pig LSECs resulted in purification 

of a 180 kDa cell surface protein [58], which was identified as the MANN-R. Thus, the 

MANN-R and COLLA-R in LSECs represent differently located binding domains of the same 

receptor protein. 

 

The Fcγ receptor 

 

In humans, Fcγ receptors (FcγRs) have been classified into 3 major classes comprising 

multiple isoforms: FcγRI/CD64 (FcγRIa, FcγRib, and FcγRIc), FcγRII/CD32 (FcγRIIa, 

FcγRIIb, and FcγRIIc), and FcγRIII/CD16 (FcγRIIIa and FcγRIIIb). All these receptors except 

FcγRIIIb, which is a glycosyl phosphatidyl inositol anchored variety, are type 1 

transmembrane proteins that, despite similarities in their extracellular domains, differ by 

ligand-binding specificity, cellular distribution, and regulatory functions [59]. These receptors 

recognize the Fc domain of immunoglobulin G (IgG), and are expressed on virtually all cells 

of the immune system [60-62].  

 
The liver is the main organ for uptake of IgG-immune complexes (IgG-ICs) from the 

circulation [62, 63]. FcγR-mediated elimination of circulating IgG-ICs has generally been 

assumed to be mediated by KCs [64, 65]. However, while internalization of IgG-opsonised 

particles occurs via phagocytosis in the KCs [8], small immune complexes and soluble 
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aggregated IgG are internalized through receptor-mediated endocytosis in clathrin-coated pits 

by LSECs [62, 63, 66]. Studies using monoclonal antibodies to Fc-receptors and 

immunohistochemistry suggested that the FcγRII, and not FcγRIII is expressed in human 

LSECs [67]. By RT-PCR and Western blotting, it was demonstrated that purified rat LSECs 

express only one FcγR, the FcγRIIb2 [59]. Moreover, binding of ICs to the LSECs was 

completely blocked by the presence of the monoclonal antibody against the ligand binding 

site of FcγRIIb2 [59]. A recent study showed that an antibody (SE-1) which is specific to 

LSECs in rat does in fact recognize the antigen CD23b (FcγRIIb2) [68]. FcγRIIb2 may 

therefore be considered a biomarker for LSECs. 

 

1.1.2.2. Liver parenchymal cells (PCs) 

 

The PCs are equipped with the following major endocytosis receptors: the 

asialoglycoprotein receptor (ASPG-R), the low-density lipoprotein receptor (LDL-R), the 

low-density lipoprotein receptor-related protein (LRP) and the scavenger receptor class B type 

I (SR-BI).  

 

The asialoglycoprotein receptor (ASPG-R) 

 

The hepatic ASGP-R represents the “pioneer endocytosis receptor” as it was 

discovered and characterized already in 1974 [69]. This receptor is one of the best 

characterized model system for receptor-mediated endocytosis via the clathrin-coated pit 

pathway [69-73]. ASGP-R mediates the endocytosis and degradation of a wide variety of 

desialylated glycoproteins and neoglycoproteins that contain terminal galactose (Gal) or N-

acetylgalactosamine (Gal-NAc) residues on their N-linked carbohydrate chains [69]. The most 

commonly used test ligand is asialoorosomucoid (ASOR), which contains tri-and tetra-

antennary N-linked glycans. The ASGP-R is expressed along the entire surface of PC, 
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enriched in clathrin-coated pits, most abundantly over the sinusoidal plasma membrane 

domain, and one PC contains 1-5 x 105 binding sites [52, 74]. The affinity of the ASGP-R 

increases for mono-, di-, tri-, and tetra-antennary oligosaccharides [75]. The ligand receptor 

interaction is reversible on addition of competing Gal-exposing derivates, in the absence of 

Ca2+ and on acidification [76, 77]. Recycling of internalized ASGP-Rs back to the plasma 

membrane occurs with high efficiency [78, 79]. In isolated rat PCs, it takes about 5-7 min for 

internalized ASGP-Rs to reappear on the cell surface [80, 81]. 

 

Involvement of the ASGP-R in the clearance of coagulation proteins was also recently 

shown. Coagulation Factor VIII (FVIII) is recognized by ASGP-R as a ligand in vitro, and its 

binding is driven by the oligosaccharide structures of the FVIII B domain, which has 15 

complex-type N-linked oligosaccharide branches [82]. Studies on mice deficient in ST3Gal-

IV, an enzyme that mediates attachment of sialyl groups to terminal galactose residues, 

showed that the half-life of endogenous von Willebrand Factor (vWF) is reduced 2-fold in 

mice [83]. Enzymatic removal of sialyl groups reduces the half-life of vWF in rabbits from 

240 min to 5 min [84]. The importance of the nature of terminal carbohydrate residues is most 

strikingly illustrated by RIIIS/J-mice, a strain characterized by vWF levels that are several 

fold lower compared with other strains. This level is caused by a rapid clearance of vWF 

through ASGP-R due to a surplus of terminal N-acetylgalactosamine residues [85]. 

 

The low-density lipoprotein receptor (LDL-R) 

 

The low-density lipoprotein receptor (LDL-R) plays a critical role in the homeostatic 

control of blood cholesterol by mediating the removal of cholesterol-containing lipoprotein 

particles from circulation [86]. The most important physiological ligand for the receptor is 
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low density lipoprotein (LDL) [87, 88], which carries approximately 65% to 70% of plasma 

cholesterol in humans.  

 
The LDL-R consists of five distinct domains with individual function: 1) ligand 

binding domain at the N-terminus containing complement-type repeats involved in LDL 

binding; 2) epidermal growth factor (EGF) precursor-homology repeats that contain YWTD 

motifs responsible for ligand dissociation; 3) an O-linked sugar domain acting as a spacer; 4) 

a membrane-spanning domain for anchorage; and 5) a cytoplasmic tail (NPxY motif) 

involved in internalization of LDL particles into coated pits [89, 90] (Figure 4). 

 

Figure 4. Structure of the LDL receptor From Brown, M.S. and J.L. Goldstein, A 
receptor-mediated pathway for cholesterol homeostasis. Science, 1986. 232(4746): p. 34-47., 
Reproduced with permission of AAAS and Dr. Brown. 

 

There are eight members of the family besides LDL-R. These are: the low-density 

lipoprotein receptor-related protein (LRP), Megalin, very-low-density lipoprotein (VLDL) 

receptor, apoER2 and SorLa/LRP11, LRP1b, MEGF7, LRP5/6 (Figure 5). Each member of 

this receptor family undergoes receptor-mediated endocytosis; yet each member is expressed 
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in a number of different tissues and has a wide range of different ligands, not specific to the 

recognition of the LDL particle [91-93].  

 
Figure 5. Structural organization of mammalian receptors of the low-density lipoprotein 
(LDL) receptor family (modified with permission of Nykjaer and Moestrup [91, 94]) 
 

Low-density lipoprotein receptor – related protein (LRP) 

 

The low density lipoprotein receptor-related protein (LRP) is one of the largest 

member of the family (600 kDa). LRP is a multifunctional endocytic scavenger receptor 

expressed in a number of different cell types, mostly in hepatocytes, macrophages, 

trophoblasts, neurons, activated astrocytes and fibroblasts, pneumocytes and smooth muscle 

cells [95-97]. Mature LRP contains two subunits, a 515 kDa extracellular domain (α-chain), 

noncovalently attached to a 85 kDa intracellular and transmembrane domain (β-chain), which 

are produced by proteolytic cleavage from a single polypeptide precursor of 600 kDa in the 

trans-Golgi network [95, 98, 99].  
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Due to its high expression in the liver, LRP mediates the cellular uptake of lipoprotein 

particles containing apoE and lipoprotein lipase [100-102]. It cooperates with LDL receptor in 

the removal of cholesterol containing remnant lipoproteins from the circulation; thus acting as 

a chylomicron remnant receptor [100, 101, 103]. Despite lipoprotein recognition, it has a wide 

range of other ligands from urokinase-type plasminogen activators (uPA), amyloid precursor 

protein (APP), tissue factor pathway inhibitor (TFPI), protease/inhibitor complexes, toxins, 

viruses and activated α2-macroglobulin [93, 99, 104-107]. All these ligands deviate both in 

structure and function and, characteristically, do not cross-compete for binding to LRP [108]. 

The major ligand-binding sites within LRP are contained in clusters II and IV (Figure 5) and 

most ligands bind equally well to both clusters, suggesting a functional duplication within 

LRP [109].  

 
LRP gene depletion in mice has demonstrated a failure of LRP -/- embryos to develop 

after implantation. Thus, LRP seems to be important during foetal development, and 

mutations within the LRP gene can induce embryonic death within 10 days. [99]. In addition, 

LRP has been associated with the progression of Alzheimer’s disease [110-112].  

 

The Scavenger Receptor Class B type I (SR-BI) 

 

SR-BI is a cell surface glycoprotein of 82 kDa [113] consisting of a horseshoe-like 

large extracellular loop, short N- and C-terminal cytoplasmic domains, adjacent N- and C-

terminal transmembrane domains, and the bulk of the protein in a heavily N-glycosylated, 

disulfide-containing extracellular domain [114]. 

  
SR-BI is highly expressed in organs with critical roles in cholesterol metabolism (liver) 

and steroidogenesis (adrenal, ovary, testis) [114-116]. SR-BI has binding specificity for high-

density lipoprotein (HDL) and mediates selective uptake of lipids from HDL without 
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endocytic uptake of the lipoprotein itself [115, 117]. Besides HDL, SR-BI binds a wide array 

of ligands, including anionic phospholipids [118], advanced glycation end products (AGE) 

[119], apoptotic cells [120], oxidized LDL (oxLDL), maleylated BSA, apoB-containing 

lipoproteins, including LDL and VLDL [121], apoE, an important ligand for VLDL removal 

from the circulation [122] and native and modified lipoproteins [115, 123-125].  
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1.2. Tissue factor pathway inhibitor (TFPI)  

 

1.2.1. History 
 
TFPI is an endogenous anticoagulant protein, a serine protease inhibitor, and the only 

known regulator of the TF-dependent pathway of blood coagulation. It is known to play an 

important role in the control of thrombogenesis at both cellular and plasmatic sites. 

Experiments performed early in the second half of the last century demonstrated the presence 

of an endogenous inhibitor of TF-induced coagulation activation [126-128]. Subsequently, 

Hjort (1957) reported that convertin, now known as TF-FVIIa catalytic activity, was inhibited 

by a component present in serum [129]. He described the calcium dependence and 

reversibility of the inhibition by calcium chelators, and suggested from indirect methods, that 

the inhibitor to convertin was calcium dependent, and named the inhibitor anticonvertin. The 

nature of this inhibition remained obscure until 25 years later, when Dahl et al. published a 

chromogenic substrate assay system, for the determination of the inhibitor [130]. They 

demonstrated that anti-convertin activity was present in two high molecular weight peaks, 

identified by gel filtration of plasma. Then Sanders et al. reported the remarkable finding that 

inhibition of TF-FVIIa requires the presence of FX [131], and it was quickly shown that FXa 

rather than FX was responsible for the inhibition of TF-FVIIa. The inhibitor was isolated in 

1987 by two independent groups [132, 133], and was cloned and characterized in 1988 by 

Wun et al. [134]. 

 
The name of the inhibitor varied during the years [anithromboplastin, anticonvertin, 

the factor VIIa/tissue factor inhibitor, tissue factor inhibitor, extrinsic pathway inhibitor (EPI) 

and lipoprotein-associated coagulation inhibitor (LACI)], until a consensus meeting of the 

Scientific and Standardization Committee of the International Society of Thrombosis and 

Haemostasis in 1991 agreed on the name “Tissue Factor Pathway Inhibitor” (TFPI). 
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1.2.2. Molecular structure 
 

The translated product of the human TFPI mRNA is a 304 amino acid protein. The 

removal of a classical 28 residue signal peptide yields the mature 276 amino acid TFPI [134]. 

TFPI contains 3 Kunitz-type domains arranged in tandem, each containing 3 disulphide bonds. 

There is a nonuniform charge distribution within the TFPI molecule. The amino-terminal 

contains several negatively charged acidic residues. The carboxy-terminal sequence includes 

15 positively charged basic amino acids (Figure 6). The predicted molecular weight of the 

polypeptide backbone of TFPI is 32 kDa, and due to posttranslational modifications, the 

mature secreted protein size can increase to about 43 kDa [134]. TFPI is N-linked 

glycosylated at Asn117 and Asn167. O-linked carbohydrate attachment occurs at Ser174 and 

Thr175 [135].  

 
Figure 6. Primary amino acid sequence of mature TFPI Exon boundaries are numbered in 
roman numerals. N-linked glycosylation sites at Asn117 and Asn167 (black squares). O-
linked glycosylation sites at Ser174 and Thr175 (gray circles). The Kunitz domains (K1, K2, 
K3) contain 3 disulphide bonds each. Black arrows indicate the P1 residues. P1 in K1 
interacts with FVIIa in the TF-FVIIa complex. P1 in K2 interacts with FXa. The predicted P1 
in K3 has no described inhibitory role. (Reproduced with permission of Dr. James Crawley 
[136]) 
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The TFPI mRNA found in the endothelium and various cell types exists as a 4 kb and 

1.4 kb species [137, 138]. The difference between the two mRNA sizes has been attributed to 

the presence of 2.6 kb additional, not translated sequences in the 4 kb band. The TFPI gene 

resides on the long arm of chromosome 2, at region 2q31-2q32.1, and contains nine exons, 

which are separated by eight introns [134]. Although the nucleotide sequence of the promoter 

region, containing several binding sites for transcription factors, has been determined, it 

remains to be established how endothelial cells specifically synthesize TFPI, and how the 

expression is regulated. Recently both the TGF-b-like response elements and GATA 

sequences have been reported [139-141]. The GATA-sequences act as cis-regulatory elements 

in the expression of several genes, and appear to be active in the expression of genes in the 

endothelium and haematopoietic cells [142, 143]. GATA-motifs in TFPI-gene may bind 

GATA-2 transcription factor, also expressed in the endothelium and thereby regulate TFPI 

gene expression [141, 144].   

 
To date, no patients with TFPI-deficiency have been reported, perhaps because 

homozygous TFPI deficiency is likely to be lethal. This is supported by observations of 

embryonic death, from unregulated consumptive coagulopathy in mice embryos, with TFPI 

gene disruption [145]. Additionally, a few polymorphism sites in the TFPI-gene have been 

reported in the normal population, and in patients with acute coronary syndrome, as well as 

with arterial and venous thrombosis [146-148], but do not seem to play a significant 

pathophysiological role in either arterial or venous thrombosis [149]. 

 
Plasma TFPI-levels vary across species [150]. The homology of rabbit and rat TFPI to 

human TFPI is about 60% [151, 152], whereas the homology of monkey TFPI to human TFPI 

is about 94% [153]. The differences between rabbit and rat TFPI, and those of humans or 
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monkeys, may be due to differences in the amino acid sequences, or post-transitional 

modification of TFPI. 

 
TFPIα is a soluble form of TFPI. It is a 43 kDa glycoprotein, and consists of a highly 

negative acidic N-terminal region, followed by three tandem Kunitz-type inhibitory domains, 

and a highly positive C-terminal region. Studies of cultured endothelial cells and human 

placenta have demonstrated that TFPI associates with the cell surface through a 

glycosylphoaphatidyinositol (GPI)-anchor in a manner that is not dependent on 

glycosaminoglycans (GAGs) or altered by heparin. TFPIα is not directly bound to the GPI-

anchor; instead it appears to bind to a GPI-anchored protein, a protein that appears to be 

necessary for the proper trafficking of TFPI to the cell surface [154-156]. Site-directed 

mutagenesis experiments indicate that domain 1 (K1) of TFPI binds to FVII and domain 2 

(K2) binds to FXa, respectively [157]. The precise function of the third Kunitz-type domain is 

not fully understood. It appears that it has no inhibitory activity, but is probably involved in 

the association with lipoproteins [158], and is mandatory for the anticoagulant function of 

TFPI in TF-induced coagulation in vitro [159, 160]. The region between residues 181 and 242, 

including the third Kunitz domain, contains a heparin binding site, but whether this site is 

important for TFPI-function or -physiology is not known [161]. The heparin-induced 

enhancement of TFPIs FXa-inhibition has been shown to become gradually greater, as more 

of the C-terminal portion is intact [162]. Truncated forms of TFPI, lacking most of their C-

terminal domains, exhibit reduced affinity for vascular wall proteoglycans [163]. Whether or 

not the N-terminal acidic region of TFPI plays a role in physiological inhibition of TF-

induced coagulation remains to be determined. Posttranslational modifications in the TFPI-

molecule include O-linked glycosylation at Ser174 and Thr175, as well as three potential sites 

for N-linked glycosylation: Asn117, Asn167 and Asn228 [157, 164, 165]. The extent of N-

linked glycosylation in human plasma TFPI appears to be less than that of TFPIHepG2 or 
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TFPICHO; N-linked glycosylation is linked only at Asn117 and Asn167 [135, 166]. Although 

these posttranslational modifications do not seem to function directly in the inhibitory 

function of TFPI, they may influence its cell binding properties and plasma clearance, 

possible through their interactions with the basic carboxy-terminal. Recombinant bacterial 

TFPI (TFPIE.Coli), lacking post-translational modifications, may show functional differences to 

TFPI, that is endogenously synthesized or released from endothelium [167]. TFPIE.Coli does 

not interact with cell surface in the same manner as endogenously expressed TFPIα [168]. 

The cellular binding of TFPIE.Coli is of relatively low affinity, and appears to involve an 

interaction with surface glycosaminoglycans [163, 167].  

 
TFPIβ is an alternatively spliced form of TFPI, in which the Kunitz-3 domain and the 

C-terminal region of TFPIα are replaced with an alternatively spliced C-terminal region, that 

signals direct attachment of a GPI-anchor [169, 170]. Based on protein mass, TFPIβ is 

considerably smaller than TFPIα, suggesting a difference in post-translational modifications, 

i.e. TFPIβ containing O-linked carbohydrate with considerably greater sialic acid content than 

TFPIα [169]. Although TFPIβ accounts for only 20% of total surface TFPI, it is responsible 

for most of the FXa-dependent anti TF-FVIIa-activity, suggesting a potential alternative role 

for cell-surface TFPIα [169]. The binding of TFPIα to its cellular receptor appears to interfere 

with its interaction with TF-FVIIa, perhaps because of steric effects or by limiting the 

movement of TFPIα at the membrane surface. Piro and Broze suggested another role of cell-

surface TFPIα than just the inhibition of TF-FVIIa. They speculated that the binding of 

endogenously expressed TFPIα, but not TFPIE.Coli, may affect protease-activated receptors 

(PARs) signalling [169]. When TFPIE.Coli was used to attempt inhibition of excessive TF 

expression on vascular endothelial cells, coagulation was more efficiently blocked than cell-
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signaling. Therefore, although TF procoagulant function may be blocked by TFPIE.Coli , TF 

signaling function may continue [171].  

 

Truncated forms of TFPI also exist in the circulation. They lack most of the carboxy-

terminal and often also most of the K3 [172], and so also exhibit reduced inhibitory effects, 

and a lower affinity for GAGs. Although it is not known how the truncated forms are 

generated physiologically, in vitro data have demonstrated that TFPI is cleaved into degraded 

forms by various proteases that TFPI might encounter physiologically. These include 

thrombin, plasmin, neutrophil elastase, and certain matrix metalloproteinases [173, 174]. 

 

1.2.3. Mode of action 
 

TFPI exerts its function by neutralizing the catalytic activity of FXa, and by feedback 

inhibition of the FVIIa-TF-complex, in the presence of FXa [175, 176]. In the first step, TFPI 

inhibits FXa in a 1:1 stoichimetric complex by binding at or close to the active site serine of 

FXa. This binding is reversible and does not require calcium ions. Heparin moderately 

enhances the inhibition of FXa by TFPI through a template mechanism in which the 

simultaneous binding of FXa and TFPI to the same heparin molecule increases their 

interaction [161, 177]. In the second step, TFPI associated with FXa inhibits the TF-FVIIa- 

complex in a stoichiometric complex which is calcium ion dependent. This leads to the 

formation of the stable quaternary complex TFPI-FXa-TF-FVIIa (Figure 7) which does not 

possess catalytic activity on FX and FIX. Experiments in a model system surprisingly showed 

that protein S enhances the inhibition of TF/FVIIa-catalyzed FX-activation by TFPI [178]. 

This observation provides an important role for protein S in the down regulation of 

coagulation, and suggests that the increased risk of venous thrombosis associated with protein 
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S deficiency may, in part, be explained by an impaired down-regulation of the extrinsic 

coagulation pathway by TFPI at low protein S concentrations.  

 
Figure 7. Mechanism for regulation of coagulation by TFPI 

 
However, the requirement of FXa for the inhibition of TF-FVIIa by TFPI is not 

absolute, and very high concentrations of TFPI may inhibit the activation of FIXa by TF-

FVIIa in the absence of FXa. This FXa-independent inhibition by TFPI is of questionable 

physiological relevance, but could be important when TFPI is used as a therapeutic agent, and 

when plasma levels of TFPI reach 10 to 50-fold that of normal plasma concentrations [179].  

 
In addition to its direct function as an endothelial-bound anticoagulant, surface bound 

TFPI may also have an indirect anticoagulant impact, by regulating the clearance of FXa and 

FVIIa from the circulation via cellular internalisation and degradation [180]. 
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1.2.4. Synthesis and intravascular distribution 
 

TFPI is distributed in three pools in vivo; 80-85% is associated with vascular 

endothelial cells (EC); localized to the cell surface, the Golgi apparatus, and to the endocytic 

compartment [181]. In plasma, 10% circulates primarily in association with lipoproteins and a 

small amount in free form, and 3-5% is present within circulating/resting platelets [182, 183] 

(Figure 8).  

 
TFPI secreted by endothelial cells circulates in plasma as a concentration of about 2.5 

nmol/l [184, 185] but fluctuates temporally in humans because of their natural circadian 

rhythms [186, 187]. Plasma levels of total TFPI are increased 1.5-to 3-fold after 

administration of heparin [188]. 

 
The major site of TFPI production is in endothelial cells, which constitutively express 

the protein under normal physiological conditions [137], where it is thought to contribute, in 

part, towards maintaining lumen in an antithrombotic state. In immunohistochemical analysis 

of normal human tissues TFPI was found to be restricted to the micro vascular endothelium 

and megakaryocytes [189]. The expression of TFPI-gene by endothelium of different organs 

appears to vary, perhaps based on the physiologic demands of the tissue [190]. The human 

lung and heart appear to express the highest quantities of TFPI mRNA [190]. These findings 

are corroborated by studies in mouse [90]. Small amounts of TFPI are also expressed by 

monocytes [191], within platelets [192], macrophages [189], lung fibroblasts and vascular 

smooth muscle cells [137], laryngeal squamous epithelial cells [193], astrocytes [190], 

cardiomyocytes and mesanglial cells fibroblasts [194]. In addition, TFPI has been detected in 

macrophages and T cells in atherosclerotic lesions [195]. Importantly, cells that do not 

synthesize TFPI in the adult under physiological conditions are normal hepatocytes, 

erythrocytes, neutrophils and lymphocytes [137, 196]. In the human foetus, TFPI is expressed 
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in the endothelium, liver, as well as in epithelium of the lung, kidney and intestine [197]. 

Further, TFPI is abundantly expressed in placental syncytiotrophoblasts and cytotrophoblasts, 

where it helps maintain the blood in a fluid state [197].  

 
 

Figure 8. Distribution of TFPI in vivo  

 
TFPI expression can be modulated in several cell types in response to various 

inflammatory stimuli. Shear stress applied to human endothelial cells is reported to increase 

the expression of TFPI twofold [198]. In addition, thrombin may release cellular TFPI from 

the vascular endothelium and contribute to an increase in endothelial surface TFPI [199]. 

Upregulators of TFPI expression in vitro that might be of physiological significance include 

endotoxin, interleukin (IL)-1, tumor necrosis factor (TNF)-α, platelet-derived growth factor, 

heparin, basic fibroblast growth factor, and elevated shear stress [144, 200-202]. However, 

endotoxin only slightly upregulates TFPI expression in normal human monocytes and in a 
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monocytoid cell line U937 [203, 204]. The exposure of different cell types to such agonists or 

conditions may represent a physiological mechanism by which local anticoagulant activity is 

upregulated in response to a given challenge.   

 

1.2.5. Elimination and degradation 
 
It was previously assumed that TFPI secreted from ECs became reattached to 

sulphated proteoglycans at the cell surface glycocalyx through electrostatic bounds between 

the positively charged C-terminus of TFPI and the negatively charged sulphate group in 

GAGs. Heparin was simply thought to displace TFPI from binding site on the EC surface and 

release it into the blood stream in the form of heparin-TFPI complexes. However, heparin 

treatment of cultured endothelial cells induces a significant release of TFPI in the medium 

without affecting its surface concentration [163, 201, 205]. This result suggests that TFPI is 

released from intracellular stores in response to heparin, rather than from the cell surface, or 

displaced from the membrane surface followed by a very rapid replacement of cell surface 

TFPI from intracellular stores [201].  

 
Recently, more pieces of evidence have been gathered to point out a possibly more 

important role for the endogenous cell-associated TFPI than of the circulating form of the 

inhibitor in maintaining the anticoagulant properties of the endothelium. Studies in cultured 

endothelial cells have reported that endothelium-associated TFPI was bound to GPI 

membrane anchors and could be released by phospholipase treatment [170]. Furthermore, 

GPI-anchored TFPI is located in glycospingolipid-rich domains, in caveolae [154, 156] and 

mediates the formation and translocation of TF-FVIIa-FXa complexes in activated endothelial 

cells [154]. Thus, it is possible that the endothelium plays a key role in regulation of 

coagulation by TFPI. 
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A separate clearance system is responsible for the removal of TFPI from the 

circulation. The primary organs involved in TFPI clearance are the liver and kidneys [206]. 

Pharmacokinetic studies showed that recombinant TFPIE.Coli has a biphasic and rapid 

clearance from the circulation with a plasma half-life of approximately 2 minutes in rabbits 

[206] and less than 1 minute in rats [207]. These characteristics of TFPIE.Coli clearance are 

reminiscent of other ligands whose cellular uptake and degradation are mediated by the LRP. 

LRP is particularly abundant in liver, brain and placenta [208], and a closely related receptor, 

glycoprotein 330 (gp330) that binds many of the same ligands is located in the kidney [209].  

 
Both in vivo and in vitro studies have demonstrated that LRP in liver mediates the 

cellular degradation of TFPIE.Coli. Furthermore, in vitro studies in HepG2 cells have shown 

that receptor-associated protein (RAP), an inhibitor of all the ligand interactions with LRP, 

inhibits degradation of TFPIE.Coli [167, 210]. The initial hepatic cell surface binding in this 

cell culture requires the carboxy-terminus of TFPI, and is inhibited by clinically achievable 

levels of heparin [207]. Thus, it was initially proposed that LRP-mediated clearance of 

TFPIE.Coli involves a two-step process, in which TFPI first binds to heparan sulphate 

proteoglycans (HSPGs) on the liver endothelial surface, before its transfer to LRP and 

subsequent internalization. However, later studies demonstrated that receptor-mediated 

endocytosis of TFPIE.Coli by LRP occurred independently of HSPGs [211]. More recently, it 

was shown that recombinant human full-length TFPI expressed in mouse C127 cells 

(TFPIC127, glycosylated) had substantially prolonged survival in the circulation and an 

apparently different route of elimination independent of LRP [167]. Although it has never 

been demonstrated whether glycosylation of the molecule could explain the difference 

between the two TFPI species, it must be considered that data from clearance studies using 

bacterially expressed TFPI (non-glycosylated) may not reflect precisely the normal 

physiological clearance of endogenous TFPI. 
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1.3 . Heparin 

 

1.3.1. History 
 

Heparin was first discovered in 1916 by Jay McLean. He was investigating 

procoagulant preparations when he isolated fat soluble phosphatides from heart and liver 

tissues that inhibited blood coagulation. This type of fat soluble anticoagulant present in the 

liver was termed heparin in 1918. In the beginning, heparin was isolated from dog liver but 

was scarce, causing toxic side reactions and extremely expensive. It was not until the early 

1930s that Connaught Medical Research Laboratories (Toronto, Canada) developed a method 

for making available a purified, plentiful and inexpensive supply safe for human use. Instead 

of using dog liver as a source they changed to beef liver, and later to beef lungs and intestines 

[212]. 

 
The first human trials began in May 1935, which soon involved hundreds of complex 

surgical cases where Connaught’s heparin played an essential role. By 1937 it was clear that 

Connaught’s heparin was easily available, safe and effective blood anticoagulant, and by the 

early 1940s it was available both for experimental and clinical use. Its routine application to 

medical procedures did not occur however until after the Second World War. 

 

1.3.2. Structure 
 

Heparin is a naturally occurring polysaccharide produced in the granules of mast cells 

that are closely associated with the immune response. Thus, the ability of heparin to regulate 

the major activities of the complement cascade is an area of active interest [213].  

 

The biosynthesis of heparin includes formation in ER/Golgi of a polypeptide core 

containing characteristic extended ser-gly sequences. Following substitution of these serine 
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residues with gal-gal-xyl sequences the polysaccharide chain is built by adding alternating D-

glucuronic acid and N-acetyl-D-glucosamine units. The resulting highly sulphated 

polysaccharide chains are converted to heparin through a series of modification reactions 

[214-216]. 

 

Heparin is normally polydisperse, with a molecular weight within 3-30 kDa, and an 

average molecular weight of about 15 kDa. Heparin has the highest negative charge density of 

any known biological macromolecule. This is the result of its high content of negatively 

charged sulfo- and carboxyl-groups [216]. The main repeating structure of heparin is a 

disaccharide of alternating N- and 6-O-sulfated alfa-D-glucosamine and 2-O-sulfated alfa-L-

iduronic acid (90%) [217], with a minor proportion of N-acetyl glucosamine and beta-D-

glucuronic acid (10%). Determination of the structural motif in heparin with high affinity for 

antithrombin came from Petitou et al. 2003 [218] (Figure 9). 

 
Figure 9. Structure of heparin  
A) The main repeating unit of heparin. B) the pentasaccharide in heparin, which is the 
minimal structure with high affinity for antithrombin. (Reproduced with permission of the 
American Physiological Society [219]) 
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1.3.3. Mode of action as an anticoagulant 

 
Heparin exerts its anticoagulant effects by accelerating the interaction between the 

enzyme inhibitor antithrombin (AT) and various serine proteases, such as thrombin, FX and 

FIXa [220, 221]. Binding of heparin to AT causes a conformational change that results in its 

active site being exposed. The activated AT then inactivates thrombin and other proteases 

involved in blood clotting, among them factor Xa. Thus, heparin inhibits blood coagulation by 

binding to AT, thereby promoting inactivation of the protease factors of the coagulation 

cascade mechanism. In the absence of heparin, the reactions between AT and coagulation 

proteases are slow. With optimal amounts of heparin present, these reactions can be 

accelerated up to 2000-fold, thereby efficiently preventing the formation of fibrin in blood 

[222]. The reason for heparin’s desirability as an anticoagulant is its safety, rapid onset of 

activity, and reversibility [223]. For controlling heparin therapy and in assay techniques, 

several other inorganic and organic substances have been reported to have antagonistic 

properties to heparin, such as protamine, clupein, polylysine, lysozyme, polybrene, toluidine 

blue, fuchsin, and tryptophan [223]. 

 

1.3.4. Pharmacology 
 

Heparin and low molecular weight (LMW) heparins are the most commonly used 

clinical anticoagulants. The main clinical use of heparin is in acute coronary syndrome, e.g. 

myocardial infarction, vascular and cardiac surgery, atrial fibrillation, deep-vein thrombosis 

and pulmonary embolism.  

 
Heparin is involved in a rising number of other physiological and pathological 

processes, such as tumor cell metastasis and immune cell migration and inflammation [224-

228]. For instance, heparin is able of attenuating the neurotoxic and proinflammatory activity 
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of amyloid-beta protein, which is implicated in the pathogenesis of the Alzheimer disease 

because of its neurotoxicity and ability to trigger local inflammation [224]. This suggests that 

heparin could represent a new strategy to reduce the progressive neurodegeneration in the 

Alzheimer disease. Furthermore, peripheral treatment with the low molecular weight 

Enoxaparin has been shown to reduce plaques and beta-amyloid accumulation in a mouse 

model of the Alzheimer disease, which offers promise as a tool for slowing the progression of 

the disease [225].  

 

1.3.5. Elimination 
 

Because heparin is a widely prescribed drug, it is very important to understand its 

clearance mechanisms. Heparin clearance involves a combination of rapid saturable and much 

slower clearance kinetics [229-231]. The elimination of heparin from blood can follow three 

potential pathways. The first pathway is attachment to the vascular endothelium [232]. This 

binding was assumed to contribute significantly to the rapid phase of the UFH clearance. This 

assumption was supported by experimental studies on vascular endothelial cells in vitro, 

showing binding to saturable and specific binding sites at the endothelial surface. However, 

the capacity for internalization of heparin was reported to be very low in these cells [233-

235]. The second pathway is by uptake and metabolism by cells of the RES. Studies in 

hepatectomized dogs [236] and patients with liver cirrhosis [237] showed increased 

circulatory half life of intravenously administered UFH in the circulation, indicating that the 

liver plays a crucial role in UFH removal. Both in humans [238] and in animal models [239, 

240], the plasma half-life of heparin increased with dose. Whole body autoradiography of rats 

injected with tritiumlabeled heparin showed that the ligand was retained by the organs 

belonging to the RES, with the largest uptake in the liver [241]. However, little is known 

about the cells involved in the clearance of UFH from the circulation. The first evidence was 
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published in 1939 by Asplund et al. [242], when they observed heparin in the “sternzelln” of 

the liver sinusoids of rabbits, rats, and guinea pigs, but not in liver parenchymal cells (PCs) 

following injection of single and repeated doses of heparin. More than 40 years later, Hiebert 

observed that repeated administration of heparin into normal and atherosclerotic rabbits was 

succeeded by heavy accumulation of the polysaccharide in Kupffer cells (KCs) and in 

endothelial-like cells lining the liver sinusoid [243]. Most studies on distribution of heparin in 

liver performed in vitro using fractionated heparin report that the KCs and the PCs represent 

the main cellular site of uptake [244-247]. A specific binding and uptake via scavenger-like 

receptors in KCs and PCs has been suggested [246, 248]. The third pathway of heparin 

elimination involves the kidney, either via direct excretion into the urine, or by involvement 

of cellular clearance implicating a metabolic process. LMWH binds to the endothelial cells 

much less than UFH and is therefore more dependent on the renal, non-saturable elimination 

process than UFH [249]. It was shown that in nephrectomised rabbits, about 40% of UFH and 

70% of the LMWH was eliminated by the kidney and that the elimination in case of the 

LMWH was due to urinary excretion [250]. In the same study RES was blocked by dextran 

sulphate, a ligand for the SR, which resulted in a prolonged half-life for UFH but not for 

LMWH. 

 

1.4. Heparin and TFPI 
 
Numerous proteins of physiological and pathophysiological importance interact with 

heparin [216]. These interactions lead to an interest in using heparin in roles outside its 

normal application as an anticoagulant/antithrombotic agent, and offer a large number of 

potential therapeutic applications for heparin.  

 
In 1963, Nordøy [251] reported that polybrene completely neutralized the 

anticoagulant effect of heparin added to plasma ex vivo, whereas polybrene was unable to 
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abolish the anticoagulant effect in plasma collected from persons receiving heparin. This 

phenomenon was referred to as the post-heparin effect, and later attributed to TFPI [252]. 

TFPI and heparin are known to exert synergistic inhibitory effects on TF-induced coagulation 

in vitro [104, 253], and TFPI may account for as much as 30-50% of the prolongation in a 

diluted prothrombin time assay, caused by a bolus administration of heparin [252].  

 

Although both UFH and LMWH are known to upregulate the synthesis and release of 

TFPI in endothelial cells in vitro [201, 205], prolonged administration of UFH, but not 

LMWH, is known to cause partial depletion of both plasma-free TFPI and heparin-releasable-

TFPI in vivo [254, 255]. The reason for this discrepancy is unknown. Only trace amounts of 

endogenous TFPI is excreted into the urine in a native, non-degraded form under 

physiological conditions in humans [256], suggesting passive leakage rather than active 

excretion in the kidneys. Prolonged UFH treatment has been shown to decrease excretion of 

TFPI into the urine in humans, most probably by abrogating renal leakage due to formation of 

large molecular weight UFH-TFPI complexes in the circulation [256]. Furthermore, in vivo 

studies have shown that LMWH prolonged the β half-life clearance of TFPIBHK in rabbits 

[257], and both LMWH and UFH inhibited binding of TFPIE.Coli to rat hepatoma MH1C1 cells 

in vitro [207]. TFPIE.Coli was shown to bind to the endothelial cell surface proteoglycans or 

glycosaminoglycans [207], but inhibition of this interaction with protamine promoted 

increased TFPIE.Coli degradation by LRP-positive cells (rat hepatoma MH1C1 cells and mouse 

embryonic fibroblasts heterozygous PEA10 cells), most probably by increasing the 

availability of TFPI for receptor-mediated endocytosis [211]. Thus, it remains a puzzle to 

understand the physiology and pharmacology beyond the apparent paradox of depleted 

intravascular stores, increased endothelial synthesis and inhibited elimination of TFPI by 

UFH. 
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2. AIMS OF THE STUDY 

 
2.1. To carry out a more detailed pharmacokinetics study during the first phase of clearance, 

to identify the organ(s) involved in removal of recombinant human TFPI purified from 

BHK cells (TFPIBHK) from the circulation, and to determine the hepatocellular site of 

uptake, as well as to identify the main cell (s) and their receptor(s) involved in the 

clearance. 

 
2.2.  To study the role of liver sinusoidal endothelial cells (LSECs) in the clearance of 

unfractionated heparin (UFH) 

 
2.3.  To study the mechanism of TFPI depletion during UFH treatment by investigating the 

effect of UFH in vivo and in vitro on the clearance of a recombinant full length 

glycosylated TFPI purified from baby hamster kidney cells (TFPIBHK) as compared to 

recombinant full length non-glycosylated TFPI purified from E.Coli (TFPIE.Coli)  

 
2.4.  To investigate if low density lipoprotein receptor-related protein-1 (LRP-1) is expressed 

on LSECs 
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3. SUMMARY OF THE RESULTS 
   

Paper I: Asialoglycoprotein Receptor (ASGP-R) in Liver Parenchymal 

Cells is Involved in Elimination of Recombinant Human TFPI 

We here report on a study carried out to determine the early clearance kinetics, and organ, 

cell(s) and receptor(s) responsible for the clearance of full length TFPI purified from BHK 

cells (TFPIBHK). Following intravenous administration, 125I-TFPIBHK was cleared with a 

biphasic elimination curve, and with a significantly slower t1/2α compared to recombinant 

human TFPI from E.Coli (TFPIE.Coli) (1.95±0.10 versus 1.42±0.07 min, respectively, p<0.001). 

Studies on organ and cell distribution revealed that liver parenchymal cells (PCs) were 

responsible for 96% of the uptake of TFPIBHK and 81% of TFPIE.Coli, whereas the non-

parenchymal cells (NPCs) were responsible for uptake of 4% and 19%, respectively. Pre-

administration of excessive amounts of unlabeled TFPIBHK prolonged blood clearance of 125I-

TFPIBHK. Unlabelled TFPIBHK inhibited endocytosis of 125I-TFPIBHK in PCs in vitro, whereas 

blocking of LDL-receptor related protein-1 (LRP-1) by receptor-associated protein (RAP) 

affected neither blood clearance nor endocytosis of 125I-TFPIBHK in PCs. In addition, TFPIBHK 

was also found in the kidneys and this could be reduced in the presence of RAP. 

Asialoorosomucoid (ASOR), a potent inhibitor of the asialoglycoprotein receptor (ASGP-R), 

prolonged the circulatory survival of 125I-m-TFPI by 1.5-fold (p<0.001). In vitro, ASOR and 

other ASGP-R antagonists significantly inhibited endocytosis of 125I- TFPIBHK in PCs. 

Moreover, unlabelled TFPIBHK markedly decreased endocytosis of 125I-asialofetuin. In 

conclusion, our findings suggest that ASGP-R mediated endocytosis in the liver is involved in 

the clearance of TFPIBHK.  
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Paper II: Liver Sinusoidal Endothelial Cells are the Principal Site for 

Elimination of Unfractionated Heparin from the Circulation 

The mechanism of elimination of blood borne heparin was studied. To this end 

unfractionated heparin (UFH) was tagged with FITC, which served as both a visual marker 

and a site of labeling with 125I-iodine. UFH labeled in this manner did not alter the 

anticoagulant activity or binding specificity of the glycosaminoglycan. Labeled heparin 

administered intravenously to rats (0.1 IU/kg) had a circulatory t1/2 of 1.7 min, which was 

increased to 16 min upon coinjection with unlabeled UFH (100 IU/kg). At 15 min after 

injection, 71% of recovered radioactivity was found in liver. Liver cell separation revealed the 

following relative uptake capacity, expressed per cell: liver sinusoidal endothelial cell 

(LSEC)-parenchymal cell-Kupffer cell = 15:3.6:1. Fluorescence microscopy on liver sections 

showed accumulation of FITC-UFH only in cells lining the liver sinusoids. No fluorescence 

was detected in parenchymal cells or endothelial cells lining the central vein. Fluorescence 

microscopy of cultured LSECs following binding of FITC-UFH at 4°C and chasing at 37°C, 

showed accumulation of the probe in vesicles located at the periphery of the cells after 10 min, 

with transfer to large, evenly stained vesicles in the perinuclear region after 2 h. Immunogold 

electron microscopy of LSECs to probe the presence of FITC following injection of FITC-

UFH along with BSA-gold to mark lysosomes demonstrated colocalization of the probe with 

the gold particles in the lysosomal compartment. Receptor-ligand competition experiments in 

primary cultures of LSECs indicated the presence of a specific heparin receptor, functionally 

distinct from the hyaluronan/scavenger receptor (Stabilin 2). The results suggest a major role 

for LSECs in heparin elimination. 
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Paper III: Unfractionated Heparin Promotes Elimination of Recombinant 

TFPI in a Rat Model  

Background: Tissue factor pathway inhibitor (TFPI) plays an important role for the 

anticoagulant effect of heparin. Depletion of intravascular TFPI by treatment with 

unfractionated heparin (UFH), and not by low molecular weight heparin (LMWH), has been 

suggested to explain the superiority of LMWH in treatment of both arterial and venous 

thrombosis. The present study was undertaken to investigate the impact of UFH on clearance 

kinetics, and organs and cells responsible for the clearance of recombinant human full length 

TFPI purified from baby hamster kidney cells (TFPIBHK) and from E.Coli (TFPIE.Coli).   

Methods: Male Sprague-Dawley rats were used as research animals. TFPIBHK and TFPIE.Coli 

were labelled with 125I, and used to study clearance in vivo.  

Results: Surface Plasmon Resonance (SPR) analysis revealed that both types of TFPI bound 

to UFH in vitro, but TFPIE.Coli exhibited a faster association rate and a much slow dissociation 

rate. Intravenous administration of 100 IU/kg UFH immediately prior to TFPI decreased the 

circulatory survival (t1/2α) of TFPIBHK from 1.99 ± 0.10 min to 1.17 ± 0.13 min (p<0.001) 

without affecting the fast clearance of TFPIE.Coli. Presence of UFH significantly increased the 

circulatory survival during the slow t1/2β phase of TFPIE.Coli from 27.44 ± 1.91 min to 36.88 ± 

1.87 min (p<0.05) without affecting the t1/2β of TFPIBHK. Hepatocellular distribution of 

radiolabeled ligands showed that both forms of TFPI were mainly taken up by PCs in the 

absence of UFH (≥ 90%). UFH administration switched the hepatocellular distribution of 

TFPIE.Coli from PCs towards LSECs, without affecting the distribution of TFPIBHK.   

Conclusions: Our findings revealed a specific increase in the elimination of TFPIBHK during 

UFH treatment. This observation may represent the underlying mechanism for depletion of 

endogenous TFPI in humans during UFH treatment.  
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Paper IV: Rat Liver Sinusoidal Endothelial Cells (LSECs) express 

functional Low Density Lipoprotein Receptor-Related Protein-1 (LRP-1) 

 The low density lipoprotein receptor-related protein-1 (LRP-1), a member of the LDL 

receptor family, is a large, multifunctional endocytic receptor highly expressed in liver 

parenchymal cells (PCs), neurons, activated astrocytes and fibroblasts. Receptor associated 

protein (RAP), the antagonist for all known ligands to members of the LDL receptor family, 

was used in this study as a tool to investigate whether liver sinusoidal endothelial cells 

(LSECs) express LRP-1, and, if so, to what extent they contribute to the clearance of 

exogenously administered RAP. We found that 125I-RAP was rapidly cleared from the 

circulation with the liver as the principal site of elimination. Liver cell separation following 

administration of radiolabeled-RAP showed accumulation mainly in parenchymal cells (PCs) 

(91%) and the rest in liver sinusoidal endothelial cells (LSECs) (8%). Studies in vitro showed 

that RAP endocytosis is specific and is followed by degradation. Excess amounts of unlabeled 

ligands to known endocytosis receptors in LSECs had no inhibitory effect on uptake of RAP, 

suggesting the involvement of a yet unknown receptor in these cells. Immunofluorescence 

assay using a monoclonal antibody to LRP-1 showed positive staining in LSECs. Ligand blot 

analyses using total cell proteins and 125I-RAP followed by mass spectrometry further 

confirmed and identified LRP-1 in LSECs. Conclusion: An important implication of the 

expression of LRP-1 in LSECs is that these cells may contribute together with the 

parenchymal cells to the rapid removal of blood borne ligands for LRP-1, including 

proatherogenic ligands, thus preventing the development of atherosclerosis.  
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4. GENERAL DISCUSSION 

 
4. 1. Methodological Considerations 
 
4.1.1. Animal Models and Drug Clearance 

Cell and tissue cultures, often suggested as an “alternative” to using animals, have 

been used in biomedical research for many years. But results obtained using such isolated 

systems may not reflect physiological processes in the intact body. To better understand the 

elimination mechanisms of different substances and drugs (Heparin and TFPI in the present 

study), the experiments must be conducted in vivo, under normal physiological conditions.  

 
Several approaches are available to monitor the fate and distribution of exogenous 

ligands in the intact organism. The vast majority of the in vivo clearance studies are conducted 

using radiolabeled ligands, in which tissue distribution is usually reported as radioactivity 

accumulated in a particular organ at various times after administration [48, 57, 258-260]. In 

addition, the radioactivity in blood samples collected for a certain length period is used for 

calculating the decay in blood clearance. Iodogen was used in our studies for labelling of 

proteins with 125I. Iodogen is an oxidizing agent that gives higher iodine incorporation than 

the other commonly used oxidizing reagents, chloramine-T and lactoperoxidase [261]. It can 

be used for a wide range of proteins and peptides, can permit iodine incorporation with 

minimal oxidation damage, and can produce tracers stable for up to 3 months [262].  

 
The liver has been shown to be the primary organ involved in clearance and 

metabolism of a large number of physiological and non-physiological circulating 

macromolecules [22, 248, 263, 264]. However, in order to obtain information about which 

cell type(s) are involved in the clearance, quantification of radioactivity can be measured in 

different liver cells separated after injection of the protein labeled with 125I-tyramine 
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cellobiose (TC) [39, 49] (paper IV) or 125I-FITC (paper II). The technique of labeling 

macromolecules with TC was introduced in 1983 by Pittman and co-workers [265] and used 

in several studies since then [49, 266-269]. The advantages of using this technique are i) that 

the proteins derivatized with this adduct are recognized as unmodified proteins by biological 

systems, ii) that the TC ligand is labeled to a high specific radioactivity, and iii) that the 125I-

TC adduct is stably trapped intralysosomally after uptake and catabolism of the protein, 

allowing quantitation of the protein at the site of uptake hours or even days after the uptake 

[265]. Protein labeling with FITC or other fluorochromes have similar advantages when care 

is taken to modify the protein minimally by keeping the molecular ratio FITC:protein at a 

minimum. Usually, the isothiocyanate portion of FITC binds to primary amino groups of 

lysine residues of the ligand to be labeled. This interaction neutralizes the positive charge of 

the amino group of the ligand. In addition, an extra negative charge is incorporated by the 

carboxy group of FITC. Thus, with a high FITC:protein ratio it is likely that the net negative 

charge of the FITC-labeled ligand increases to the extent that it is recognized by the scavenger 

receptor (SR), a receptor known for its ability to bind negatively charged molecules [270, 

271]. Since FITC is also trapped intralysosomally after internalization of FITC-conjugated 

ligands, it can be traced by fluorescence microscopy, and it may also be detected by gold-

labeled FITC-antibodies at the electron microscopic level [23] (paper I and II). 

 

4.1.2. Primary cells vs cell lines 

To obtain more detailed information about binding and uptake mechanism and 

characterize the endocytic pathway involved in the uptake of the protein of interest, in vivo 

studies must as a rule be followed up with studies in vitro with isolated cells in culture. Cell 

lines are often used in such studies, since they are often readily available and easily 

maintained. Also, a cell line may exhibit many of the characteristics of the original tissue 

from which the cell line has been derived. As an example, the HepG2 cell line has been found 
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to exhibit many characteristics of normal hepatocytes, e.g. expressing the LRP-1 [272], 

ASGP-R [273], and synthesis of serum proteins [274]. However, hepatoma-derived cell lines 

may differ from primary cell cultures with regard to receptor expression, endocytic capacity 

and protein synthesis [137, 275-277]. Regarding LSECs, some laboratories culture these cells 

under conditions that allow cell proliferation and subsequent splitting and passaging before 

the cells are used in experiments several days or even weeks after isolation [278, 279]. 

However, many phenotypic features of LSECs change gradually when they are placed in a 

culture dish, and most importantly, many of the signature functions of LSECs, e.g. scavenger 

function and fenestration, are also rapidly lost during in vitro culture [280, 281]. For these 

reasons, true primary liver cell cultures (PCs and LSECs) were used in this study each time an 

in vitro experiment was required.  

 

4.2. TFPI and heparin: Elimination and mechanisms of clearance 

“How much?”, “How often?” and “How long?” are important therapeutic questions 

when investigating a drug. To administer a drug optimally, knowledge is needed for the 

mechanism of absorption, distribution, and elimination. The present thesis aims to increase 

our understanding of how the liver contributes to the elimination of two important 

anticoagulants, namely unfractionated heparin (UFH) and tissue factor pathway inhibitor 

(TFPI).   

 
Because of the central role it plays in thrombus generation, propagation, and 

stabilization, effective inhibition of thrombin is crucial in the prevention and treatment of 

thrombotic disorders.  

 
Recombinant tissue factor pathway inhibitor (rTFPI) has been proposed to be a 

beneficial therapeutic agent as a natural anticoagulant to attenuate pathological clotting 
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activation. rTFPI purified from E.Coli (TFPIE.Coli) or from different mammalian cell lines has 

been shown in animal studies to be effective against TF-induced coagulopathy [282], to 

reduce mortality from bacterial septic shock [283, 284], and to prevent arterial thrombosis 

[179]. In humans, initial results from phase I and II studies indicated that rTFPI is well 

tolerated, with no clinical significant bleeding side effect [285]. Unfortunately, these earlier 

encouraging results could not be repeated in a phase III trial (the OPTIMIST). There was no 

survival benefit with the administration of TFPIE.Coli in humans with severe sepsis [286]. 

However, patients who did not receive concomitant heparin appeared to benefit from the 

treatment with TFPIE.Coli. As we have shown in paper III, TFPIE.Coli has a strong affinity 

binding to UFH, while TFPIBHK does not. Thus, it would be interesting to investigate the 

effect of a TFPI of mammalian origin in patients with severe sepsis. 

  
Previous studies suggest that depending on the source, rTFPI may have different 

routes of elimination. The low density lipoprotein receptor-related protein (LRP-1), a 

multifunctional endocytic receptor, has been shown to be the main receptor responsible for 

the plasma clearance [210] and degradation of TFPIE.Coli in hepatoma-derived cell lines [106]. 

In addition, it has been shown that while the majority of TFPIE.Coli binds to cell surface 

HSPGs, LRP-1 can function independently from HSPGs in the binding and degradation of 

TFPIE.Coli [211]. On the other hand, LRP-1 is not involved in the clearance of rTFPI purified 

from mouse C127 fibroblasts (TFPIC127) [167]. Notably, TFPIC127 has a prolonged survival in 

the circulation compared to TFPIE.Coli and it does not compete with TFPIE.Coli for binding or 

degradation in HepG2 cells [167]. While TFPIE.Coli was mainly found in the liver after 

intravenous injection [207] (paper I), rTFPI purified from C127 fibroblasts and human SK 

hepatoma cells was found in liver and kidneys [206].  
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In our study we used recombinant human full-length TFPI purified from baby hamster 

kidney (BHK) cell line (TFPIBHK), with the aims to i) carry out a more detailed 

pharmacokinetics study during the first phase of clearance, ii) to identify the organ(s) 

involved in removal of TFPIBHK from the circulation, iii) to determine the hepatocellular site 

of uptake, and iv) to identify the main cell (s) and their receptor(s) involved in the clearance 

(paper I). We found that TFPIBHK was cleared slower from the circulation than TFPIE.Coli, and 

while TFPIE.Coli was cleared mainly by the liver, TFPIBHK was taken up in both liver and 

kidneys. As mentioned above, rTFPI from C127 fibroblasts and human SK hepatoma cells 

also accumulated in the kidneys [206]. However, the method used in that study, namely 

whole-body autoradiography, does not give a quantitative measurement of the ligand 

distribution in different organs. Besides, an error of the assessment of the rTFPI in the kidneys 

may be induced by evaluating the distribution in the organ without removing the blood. From 

our study, we could see that even 1h after injection, there is still a lot of TFPIBHK in the 

circulation (paper I). Based on our results and previous studies, we hypothesized that the 

possible mechanism for the detection of TFPIBHK in the kidneys is by renal reabsorption in the 

proximal tubule. Using the Opossum kidney (OK) cell line, we found that RAP significantly 

inhibited both binding and internalization of 125I-TFPIBHK, effect which was not seen on liver 

PCs. The results suggest that TFPIBHK may bind to megalin or/and cubilin in kidneys, two 

members of the LDL receptor family [287, 288], but it does not bind to LRP-1 in liver. With 

the goal of finding the receptor involved in its clearance, we found that TFPIBHK was inhibited 

both in vivo and in vitro by ligands to the ASGP-R, suggesting that this receptor is, at least 

partially involved in the removal of TFPIBHK from the circulation. Recombinant human 

TFPIBHK differs from bacterial TFPIE.Coli in molecular weight (42 kDa and 35 kDa, 

respectively) due to post-translational modifications in mammalian cells involving N-linked 

glycosylation at three potential sites; Asn 117, Asn 167, Asn 228 [157, 164, 165]. The 
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mammalian cells used for synthesis of TFPIBHK in our study, the BHK cells, are known to 

have a heterogenous glycosylation pattern. However, under certain culture conditions, 

changes in the oligosaccharide chains occur, and the product secreted by these cells is 

partially desialylated [289]. The carbohydrate moiety of plasma glycoproteins is known to 

play a key role in their plasma clearance [290]. Desialylation and subsequent exposure of the 

penultimate galactose is known to increase the rate of removal of many plasma glycoproteins 

from the circulation due to recognition by the ASGP-R. The finding that the liver ASGP-R is 

involved in the clearance of TFPIBHK adds to the important scavenger function of ASPG-R in 

designing clinical treatments to provide therapeutic levels of glycoproteins in circulation.  

 
Traditional anticoagulants, such as heparin, are indirect inhibitors of thrombin. The 

main clinical use of heparin is in acute coronary syndrome, e.g. myocardial infarction, 

vascular and cardiac surgery, atrial fibrillation, deep-vein thrombosis and pulmonary 

embolism. Several studies indicated that the liver plays a key role in heparin elimination [248]. 

However, little is known about the liver cells and the mechanism involved in the clearance of 

unfractionated heparin (UFH). Most studies on distribution of heparin, performed in vitro 

using fractionated heparin, reveal that the PCs and KCs are the main cells for uptake [244-

247]. However, our in vivo experiments showed that LSECs are the principal site for binding 

and uptake of UFH from the circulation (paper II). An unknown scavenger-like receptor was 

suggested to be involved in the binding and uptake of heparin [248]. As UFH has the highest 

negative charge density of any known biological macromolecule [216], it is a likely candidate 

ligand for the SRs. This group of receptors has only one feature in common, namely the 

ability to bind negatively charged macromolecules [22]. Our finding that neither hyaluronan, 

nor AGE-BSA, that are both high affinity ligands for Stabilin 2, or anti-Stabilin 2 antibody 

could inhibit the uptake of UFH, suggested that Stabilin 2 in LSECs is not involved in the 

uptake of UFH. Contrary to our finding, Harris and Weigel suggested shortly after the 
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publication of our paper II that Stabilin 2 is the systemic clearance receptor for heparin [291].  

This conclusion from these authors was surprising in light of their previous publication that 

heparin does not bind Stabilin 2 [292]. Moreover, mapping the binding sites of 8 different 

ligands within Stabilin 2, the same authors showed that the receptor specifically and 

simultaneously bind to both heparin and HA, in a non-competitive manner [293]. This 

property of one and the same receptor to bind different ligands non-competitively is also 

observed in LRP-1 and MANN/COLLA-R [58, 108]. Of note, we recently purified a major 

heparin binding protein using heparin-sepharose affinity chromatography of rat LSECs 

(unpublished data). Although we have not yet characterized this protein, its apparent MW was 

around 70 kDa, which is clearly different than the MW of the Stabilin 2 of 270 kDa [26]. This 

evidence support our conclusion that heparin uptake in LSECs is via a receptor that is clearly 

different than Stabilin 2. 

 

4.2.1. Clearance of TFPI during heparin treatment  

Heparin is known to bind a large number of plasma proteins [294]. Formation of 

heparin-protein complexes during heparin treatment may have important clinical implications 

by affecting the elimination of the proteins. Administration of heparin is known to cause 

partial depletion of both plasma free TFPI and heparin-releasable TFPI in vivo, an effect not 

seen by low molecular weight heparin (LMWH) [254, 255]. As mentioned above, the primary 

organs involved in TFPI clearance are the liver and kidneys. Urinary loss of TFPI has been 

suggested to explain the selective depletion of intravascular TFPI during continuous UFH 

treatment. However, a recent study showed that only trace amounts of native TFPI were 

detected in the urine under basal conditions and during heparin treatment, with a more 

pronounced reduction during UFH treatment [256]. It was speculated that filtration of TFPI-

heparin complexes probably depends on the molecular weight of the complexes; thereby 

explaining attenuated renal clearance of TFPI during UFH treatment. In paper III we aimed to 
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elucidate the mechanism of TFPI depletion during UFH clearance by investigating the effect 

of UFH in vivo and in vitro on the clearance of recombinant human full length glycosylated 

TFPI (TFPIBHK) as compared to recombinant full length non-glycosylated TFPI (TFPIE.Coli). 

We found that TFPIBHK binds weaker to heparin compared to TFPIE.Coli, and that intravenous 

administration of UFH immediately prior to TFPI significantly decreased the circulatory 

survival of TFPIBHK during the alpha-phase of elimination, while the circulatory survival of 

TFPIE.Coli during the beta-phase of elimination was significantly increased. Administration of 

UFH did not affect the organ distribution of TFPIBHK. Hepatocellular distribution of TFPIBHK 

was not affected by the presence of UFH, while the uptake of TFPIE.Coli was switched from 

PCs towards NPCs. Bregengaard et al. reported that the recovery of TFPIBHK after 2 min was 

increased to 46% in rabbits receiving low molecular weight heparin and TFPIBHK [257]. The 

discrepancy between the two studies could explain the selective depletion of TFPIBHK with 

UFH and not with LMWH. Interestingly, UFH administration only affected the distribution of 

TFPIE.Coli within the liver cells, and not of TFPIBHK, by switching the distribution from the 

PCs towards the non-parenchymal cells (NPCs). As shown in paper II, LSECs, the largest 

population among the non-parenchymal cells, is the principal site of UFH elimination. This 

result suggests that in the presence of heparin, the scavenger receptor on LSECs may have 

higher affinity for binding of TFPIE.Coli-UFH complexes than the HSPGs and/or LRP-1 

receptor on PCs and/or LSECs for binding of TFPIE.Coli alone.  

 
The mechanism by which heparin shorten the circulatory survival of TFPIBHK is not 

fully understood. Interestingly, the anatomical distribution and the hepatocellular distribution 

of TFPIBHK were not significantly affected by the presence of UFH. In accordance with 

previous findings in humans [256], only traces of TFPIBHK were detected in the urine of rats 

with or without pre-administration of UFH. Moreover, only slightly elevated levels of 

TFPIBHK were detected in the blood following UFH administration. These findings in addition 
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to the rapid clearance of TFPI in the presence of UFH clearly demonstrate that the mechanism 

for depletion of TFPI is not the urinary loss. Previously, we and others have shown that TFPI 

of mammalian origin, i.e. TFPIBHK and TFPIC127 bind very weakly, or even fail to bind to 

HSPGs, and that their uptake is not mediated by the LRP-1 (paper I, [167, 295]). These 

findings along with the SPR analysis showing weaker TFPIBHK-UFH interactions compared to 

TFPIE.Coli-UFH interactions suggest that the faster clearance of TFPIBHK in the presence of 

UFH is caused by an enhanced binding affinity of the TFPIBHK-UFH complexes to the yet 

unknown receptor(s) for TFPIBHK on PCs. Our findings may explain why prolonged treatment 

with UFH causes depletion of intravascular TFPI in humans. 

 

4.3. LRP-1 expression in LSECs 

Hepatocellular distribution of TFPI in paper I showed that while the majority of 

TFPIE.Coli was found in PCs, 19% was also found in NPCs. NPCs consist mainly of KCs and 

LSECs, with KCs eliminating particles (> 200 nm) from the circulation via phagocytosis, and 

LSECs removing colloids and soluble macromolecules (< 200 nm) via non-phagocytic 

receptor-mediated endocytosis [22]. Knowing that liver PCs LRP-1 is involved in the 

clearance and degradation of TFPIE.Coli
 [106, 210] we investigated whether LSECs also 

express LRP-1 (paper IV). Studies on hepatocellular distribution after intravenously injection 

of 125I-RAP showed that, while the PCs were responsible for 90% of the RAP clearance, 8% 

was also found in LSECs. However, it may be argued that the apparent 8% uptake in LSECs 

reflects uptake in contaminating PCs. To eliminate the possibility of PC contamination in the 

LSEC fraction, in vitro cultures of LSECs were prepared, where the cells were extensively 

washed free of any contaminating PCs. This can be very easily visualized by light microscopy, 

as the two types of cells have very distinct morphology and size. A significant uptake of 125I-

RAP was observed in the super pure LSECs in vitro. As RAP is known to interact also with 

other members of the LDL receptor family, and not only with LRP-1, we performed an 
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immunofluorescence assay using LRP-1 antibody. Positive staining was observed in LSECs, 

which were identified by the presence of the LSEC specific marker, Stabilin 2. Furthermore, 

ligand blot analyses using LSECs total cell protein and 125I-RAP followed by mass 

spectrometry showed the appearance of a single band, which was identified as LRP-1. The 

finding that LRP-1 is expressed in liver not only in PCs but also in LSECs, is novel, and gives 

insight into the role of these cells in the catabolism of a variety of molecules.  
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5. MAIN CONCLUSIONS  

• The clearance of intravenously administered recombinant human TFPI purified from 

BHK cells (TFPIBHK) has a significantly slower α-phase compared to TFPIE.Coli. While 

TFPIE.Coli was cleared mainly by the liver, TFPIBHK was found both in liver and 

kidneys. In the liver, TFPIBHK was found mainly in PCs, while TFPIE.Coli was found in 

PCs, as well as in NPCs. The uptake of TFPIBHK in liver is not mediated by the LRP-1, 

as with TFPIE.Coli, but by the ASGP-R. This finding has the important implication that 

any rTFPI in mammalian cell lines intended for use as a therapeutic agent in 

antithrombotic treatment must be specifically checked for its clearance by the ASGP-

R. 

 
• LSECs are the principal site for binding and uptake of unfractionated heparin (UFH). 

The receptor for endocytosis of UFH is distinct from the hyaluronan/scavenger 

receptor (Stabilin 2). Formation of heparin-protein complexes during heparin 

treatment may have important clinical implications by affecting the elimination of the 

proteins. 

 
• In contrast to TFPIE.Coli, TFPIBHK was found to bind weaker to UFH. During UFH 

treatment, TFPIBHK elimination was significantly increased without affecting the target 

organ and specific cells responsible for binding and endocytosis 

.  

• We demonstrate for the first time that the expression of functional LRP-1 in liver is 

not restricted only to PCs, it is also found in LSECs. This suggests that the 

atheroprotective activity ascribed to LRP-1 in liver is operative in both PCs and 

LSECs. In addition, LSECs may work together with the PCs in cleaning the blood 

from numerous ligands with affinity to LRP-1.  
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6. FUTURE PERSPECTIVES 

 
To improve anticoagulant treatment strategies in the future it is necessary to increase 

our knowledge about the mechanism of clearance of key molecular players. The present thesis 

focused on two major anticoagulants TFPI and heparin.  

 
TFPIBHK was shown to be mainly cleared in vivo by the liver PCs. In vitro experiments 

carried out to study the details of the uptake mechanism were obtained using cells cultured in 

the absence of plasma components. Thus, the in vitro system used here is highly simplified 

compared to the physiological in vivo situation. To make more physiologically relevant 

experimental conditions in vitro it would be necessary to include factors such as FXa and TF, 

lipoproteins and platelets to study if they would influence the uptake process of TFPIBHK.  

 
Our findings that TFPIBHK, which is glycosylated and thereby resembling endogenous 

TFPI, was eliminated faster in the presence of UFH may explain why prolonged treatment 

with UFH causes depletion of intravascular TFPI in humans. However, further studies are 

needed to understand the impact of UFH on cell binding and degradation of TFPIBHK.  

 
Further studies are warranted to elucidate the specific mechanism for binding and 

uptake of heparin in LSECs, as well as identification and characterization of the binding 

protein that seems to be specific for the heparin recognition and internalization in LSECs.  

 
Although only one band was visible in the ligand blot in paper IV, RAP is known to 

associate with most of the LDL receptor family members [296]. Thus, it would be interesting 

to look more into the physiological importance of the LRP-1 expression in LSECs by 

investigating the clearance of a more specific ligand for this receptor, such as trypsin activated 

alpha 2-macroblobulin [297] or uPA-PAI-1 complexes [298]. Another interesting study could 

be to investigate whether LRP-1 compensates for the clearance of tissue plasminogen 
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activator (tPA) in the absence of the mannose receptor (MANN-R). tPA was shown to be 

taken up both in PCs and LSECs, by the LRP-1 and the MANN-R, respectively [299]. 

Clearance of SR-ligands was shown not to be affected by the lack of MANN-R in MANN-R 

KO mice [58]. However, with tPA being a ligand for both MANN-R and LRP-1, it would be 

interesting to investigate whether the LRP-1 clearance function in LSECs would be 

upregulated to compensate for the lack of MANN-R-mediated uptake in the MANN-R KO 

mice. 
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