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Abstract—The computational capability of an Echo
State Network (ESN), expressed in terms of low pre-
diction error and high short-term memory capacity,
is maximized on the so-called “edge of criticality”. In
this paper we present a novel, unsupervised approach
to identify this edge and, accordingly, we determine
hyperparameters configuration that maximize network
performance. The proposed method is independent of
the task the network is required to solve and stems
from recent theoretical results consolidating the link
between Fisher information and critical phase transi-
tions. We show how to identify optimal ESN hyper-
parameters by relying only on the Fisher information
matrix (FIM) estimated from the activations of hidden
neurons. In order to take into account the particular
input signal driving the network dynamics, we adopt
a recently proposed non-parametric FIM estimator.
Experimental results on a set of standard benchmarks
are provided and discussed, demonstrating the validity
of the proposed method.

I. Introduction

In the last years, ESNs have emerged as a powerful class
of recurrent neural networks (RNNs), achieving outstanding
result in prediction of real-valued time series [1], [2], [3].
Although ESNs are typically randomly initialized, the
network designer has access to a set of hyperparameters
to control the network behavior. For instance, the spectral
radius of the reservoir weight matrix directly affects ESN
dynamics and, therefore, its computational capability.

However, such hyperparameters are difficult to set
and with limited portability in different applications;
parameters tuning is usually accomplished through a long
trial-and-error approach [4], [5], [6], [7], [8], relying on
blackbox cross-validation techniques [9]. This limits their
use beyond field experts with domain knowledge, up to the
point of hampering the potential benefit of such methods.
Furthermore, cross-validation is a supervised method that
requires to evaluate the performance on a validation set.
This might be an issue in real-life applications, where
data are scarce and supervised information not always
available. Moreover, the model has to be re-evaluated for
each hyperparameter configuration, leading to long training
time if learning procedures are complex.

As a novel solution, in this paper we propose an unsuper-
vised method, which exploits the Fisher information matrix

(FIM) properties of a system undergoing a continuous phase
transition, for identifying an optimal ESN hyperparameter
configuration. Our approach is founded on a theoretical
result, which demonstrates that Fisher information is
maximized for systems operating at criticality [10]. We
assume that the ESN dynamics can be characterized by a
continuous phase transition and that its operating state is
controlled by the considered hyperparameter configurations.
Hence, we define the edge of criticality of an ESN as the
collection of hyperparameters that leads the system to
a state where Fisher information is maximized. Given an
input signal, the proposed method identifies a configuration
of the network where it achieves high computational
capability, disregarding of the specific task the network is
required to solve. The proposed criterion is theoretically
motivated and further highlights the existence of a possible
interplay between the field of reservoir computing, complex
systems, and critical phenomena.

II. Phase transitions and the edge of criticality

ESNs, as well as other classes of RNNs, generate complex
dynamics characterized by sharp transitions between or-
dered and chaotic regimes. Highest information processing
capabilities, in terms of memory capacity (storage of
past events) and performance on the modeling/prediction
task at hand, are usually achieved on the edge of this
transition [11]. This general behavior is in agreement with
the widely-discussed, yet still controversial, “criticality hy-
pothesis” associated with the functioning of many biological
(complex) systems [12], [13]. In fact, these systems tend
to self-organize and operate in a critical regime, being
highly responsive to external stimuli and hence capable
of generating any dynamics requested by the specific task
[12].

Determination of system configurations lying on such
edge of criticality is an important research endeavor [14],
which is addressed, for instance, through appropriate
sensitivity analyses. In this sense, Fisher information
(or FIM, in the multivariate case) [15] provides a well-
established framework. Fisher information is tightly linked
with statistical mechanics and more specifically with the



field of (continuous) phase transitions, which describe
transformations affecting the qualitative behavior of a
system. FIM components can be directly linked with the
rate of change of order parameters, which are used to
distinguish different phases of a controlled (thermodynamic)
system [10]. The mathematical relationship between Fisher
information and order parameters is useful to develop a
statistical description of continuous, second-order phase
transitions and, consequently, of any complex system
approaching and/or operating at criticalility. In the case of
continuous phase transitions, the first-order derivatives of
the order parameters are discontinuous and divergent in at
least one dimension. This implies that Fisher information
diverges at criticality for infinite-dimensional systems, while
it is maximized in the finite-size system case [10]. This fact
provides a quantitative, well-justified tool to detect the
onset of criticality.

Our objective is to provide a first principle method
based on the notion of critical phase transition. Such
a method can be used to determine in an unsupervised
way the configurations that bring ESNs on the edge of
criticality. This concept is illustrated in Fig. 1. The control
parameters influencing the system behavior are, in our
case, identified with ESN hyperparameters. By providing
a connection between statistical mechanics and ESNs, we
demonstrate that the same approach adopted to identify
continuous phase transitions in control parameter space
can be used to detect the onset of criticality in ESNs, where
the computation capabilities are maximized for a large set
of practical tasks.

To the best of our knowledge, approaches based on
FIM are missing in the ESN literature. As such, the
proposed method constitutes a novel contribution in the
field. Furthermore, we believe that the interplay between
concepts typically used in complex systems and RNNs
would provide several new insights, which could lead to
theoretical advances and disclose new applications in both
research fields.

III. Echo state networks

An ESN is characterized by a reservoir, a large recurrent
layer of non-linear units with randomly generated weights,
which acts as a kernel mapping inputs to a high-dimensional
space [16]. A linear, memory-less readout, is then trained
with a regularized least-square optimization to solve a
specific task. The state-update and the output of an ESN
are, respectively, ruled by

h[k] =ψ(Wr
rh[k − 1] + Wr

i x[k] + Wr
oy[k − 1]),

y[k] =Wo
i x[k] + Wo

rh[k].
(1)

The reservoir contains Nr neurons, whose activation func-
tion ψ(·) is typically implemented as a hyperbolic tangent.
At time instant k, the network is driven by the input signal
x[k] ∈ R

Ni , it produces output y[k] ∈ R
No and its state

is represented by h[k] ∈ R
Nr . The weight matrices Wr

r ∈
R

Nr×Nr (reservoir connections), Wr
i ∈ R

Ni×Nr (input-
to-reservoir connections), and Wr

o ∈ R
No×Nr (output-to-

reservoir feedback) are usually initialized with random
values drawn from a uniform distribution in [−1, 1]. Wo

i

and Wo
r, instead, are optimized for the task at hand. A

visual representation of the ESN architecture is reported
in Fig. 2

The behavior of the network can be controlled by tuning
a set of scalar hyperparameters. Usually, one considers
θIS , the scaling of the input weights Wr

i , affecting the
non-linearity introduced by the neurons; θSR, the spectral
radius of Wr

r, which influences both stability and compu-
tational capability of the network by shifting the transfer
function poles [17]; θRC , which determines the sparsity of
connectivity in Wr

r, i.e., the number of weights set to 0;
θF B , which affects Wo

r, that is, the importance of output
feedback connections. In this study, we set θF B = 0 with
a consequent simplification of ESN state-update (1).

Asymptotic stability is guaranteed by the so-called echo
state property, which requires the reservoir to exhibit a
fading memory of past inputs [18]. In practice, the degree
of stability is often assessed by analyzing the Maximal
Local Lyapunov Exponent (MLLE), computed from the
Jacobian of the reservoir, which is easily derivable from
Eq. 1. The MLLE approximates the separation rate in
phase space of trajectories having very similar initial states
[2]. In autonomous systems, MLLE ¡ 0 indicates stability,
while MLLE ¿ 0 is characteristic of chaotic systems. The
transition point, MLLE = 0, provides thus a criterion
for detecting the onset of criticality in dynamic systems.
Another indicator used to predict network performance is
the minimal singular value of the Jacobian (shortened as
mSVJ), which provides accurate information regarding
the ESN dynamics. The collection of hyperparameter
configurations that maximize mSVJ generates a dynamical
system that is far from singularity, it has many degrees
of freedom, a good excitability, and separates well the
input signals in phase space [19]. These indicators have
been used in the literature to define unsupervised methods
for tuning hyperparameters and we consider them as
a comparative baseline in the experimental section to
evaluate the proposed criterion based on FIM.

IV. Identification of the critical ESN
configurations

In the following, we describe the proposed method
based on the determinant of the FIM for identifying a
configuration of ESN hyperparameters lying on the critical
region. The details of the FIM estimation procedure are
provided in Sec. V. We take into account three important
hyperparameters that affect an ESN dynamics, namely
θ = [θIS , θSR, θRC ]

T ∈ Θ ⊂ R
3. It is worth underlying that

the continuous parameter space Θ is actually quantized
according to some user-defined resolution (although this is
not a necessary assumption for the proposed methodology).
This choice allows to disentangle the problems of defining
and finding the edge of criticality. In fact, in order to
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(a) Thermodynamic systems
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(b) Echo State Networks

Fig. 1. The approach based on FIM maximization used to identify a continuous phase transition can be adopted also to characterize the
dynamics in a ESN. In this context, the ESN hyperparameters (e.g., spectral radius and input scaling) play the same role of the control
parameters in a thermodynamic system (e.g., temperature affects the magnetization). Accordingly, in ESN hyperparameter space FIM is
maximized where the computation capability is highest. Note that the densities plotted in the two figures are not related; we report them as
an example to show the role played by FIM in the two different contexts.
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Fig. 2. Schematic depiction of an ESN. Circles represent input (x),
network state (h) and output (y), respectively. Solid squares Wo

r and
Wo

i
, are the trainable matrices of the readout, while dashed squares,

Wr
r, Wr

o, and Wr

i
, are randomly initialized matrices. The polygon

represents the non-linear transformation performed by neurons and
z-1 is the unit delay operator.

find the edge of criticality and thus objectively validate the
proposed method, in this paper the focus is on the definition
of the edge and we just implement a straightforward
grid search on the hyperparameter space. A schematic
description of the main stages of the procedure is shown
in Fig. 3.

Given an input time-series x[1], · · · ,x[K] and an initial
configuration of the hyperparameters θ0, the FIM is
estimated from the series of reservoir neuron activations
Sθi

= {h[k]}K
k=1. The edge of criticality, denoted as

K ⊂ Θ, is then determined by relying on the determinant
of F̂, the estimated FIM. FIM defines a metric tensor
for the smooth manifold of parametric PDFs embedded
in Θ and can be proved [20] that K corresponds to a
region of Θ characterized by the highest concentration of
distinguishable parametric PDFs .

Since the determinant det(F̂(θ)) is monotonically related
to such volume element and since FIM is a positive definite
matrix, K can be defined as the set of hyperparameters θ

∗

for which:

K =

{

θ
∗|θ∗ = arg max

θ∈Θ
det(F̂(θ))

}

. (2)

The pseudo-code describing the proposed procedure is
reported in Algorithm 1. The effect of the variation of the
hyperparameters θ on the resulting ESN state cannot be
expressed analytically without making further assumptions,
as the reservoir topology or the (unknown) input signal af-
fects the ESN dynamics. Therefore, we rely here on the non-
parametric FIM estimator (Sec. V) to calculate F̂(θ). Given
a hyperparameter configuration θi, F̂(θi) is estimated by
analyzing the sequence Sθi

= (h[1], ...,h[K]) of reservoir
neuron activations generated as the input (x[1], · · · ,x[K])
is processed. Additional sequences of activations Sθ̄i

are
generated by perturbing M times the current network
configuration θi with a small noise drawn from N (0, σId×d)
(see line 7). The PDF associated to the internal states of
the ESN, necessary to compute the FIM, arises from such
stochastic perturbations of state sequence. In fact, since
there is no stochasticity in the ESN state update, it would
be impossible to evaluate a distribution of the states when
the network is driven by a deterministic signal. Note that σ
is an important parameter, which controls the magnitude
of the perturbation.

To obtain a more robust estimate of the FIM, we
perform a number of independent trials by repeating the
estimation procedure T different times (see line 3). At each
repetition, a new ESN is randomly initialized. At the end,
the determinant is calculated on the resulting average FIM
(see line 16).

V. Fisher information matrix and the
non-parametric estimation

Here we provide details on FIM and the approach
adopted for its estimation. To compute FIM, the analytical
form of the underlying PDF generating the data is required.
However, in many experimental settings this is often
unknown, as well as the relation between the control
parameters θ and the resulting pθ(·). Therefore, estimators
are usually adopted. These, however, struggle if the domain
of the unknown PDF is high-dimensional, such as the
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θ∗∈Θ

det(F̂(θ∗))
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Fig. 3. Schematic, high-level description of the proposed procedure.

Algorithm 1 Procedure for determining an ESN configu-
ration on the edge of criticality.
Input: ESN architecture, input x of K samples, quantized parameter

space Θ, standard deviation σ for the perturbations, number of trials
T and perturbations M .

Output: A configuration θ∗ ∈ K
1: Select an initial parameter configuration, θ0 ∈ Θ; maximum ν = 0
2: loop

3: for t = 1 to T do

4: Randomly initialize the ESN weight matrices
5: Configure ESN with θi and process input x

6: Collect the related activations Sθi
= {h[k]}K

k=1
7: for j = 1 to M do

8: Generate a perturbation vector rj ∼ N (0, σ2Id×d)
9: Randomly initialize the ESN weight matrices

10: Configure ESN with perturbed version θ̄
(j)
i

= θi + rj and
process input x

11: Collect the related activations S
θ̄

(j)
i

= {h[k]}K
k=1

12: end for

13: Define S
θ̄i

=
M
⋃

j=1

S
θ̄

(j)
i

14: Estimate the FIM F̂(t)(θi) of trial t using Sθi
and S

θ̄i
with the

non-parametric estimator introduced in Sec. V
15: end for

16: Compute the average FIM, F̂(θi), using all F̂(t)(θi), t = 1, ..., T

17: if det(F̂(θi)) > ν then

18: Update ν = det(F̂(θi)) and θ∗ = θi

19: end if

20: if Stop criterion is met (e.g. maximum number of iterations) then

21: return θ∗

22: else

23: Select a new θi ∈ Θ based on a suitable search scheme
24: end if

25: end loop

sequences of ESN states Sθi
taken into account in our case.

To address this issue, which has never be treated in the
ESN literature, we evaluate FIM with a non-parametric
estimator recently proposed in [21], which operates directly
by relying on data/observations. We choose this particular
estimator since, being based on a graph representation of
the data (minimum spanning tree), it is suitable for dealing
with high-dimensional distributions.

FIM is a symmetric positive semi-definite (PD) matrix,
whose elements are

Fij(pθ(·)) =

∫

pθ(u)
∂ ln pθ(u)

∂θi

·
∂ ln pθ(u)

∂θj

du, (3)

where pθ(·) is a parametric probability density func-
tion (PDF), which depends on d parameters θ =
[θ1, θ2, ..., θd]T ∈ Θ ⊂ R

d; Θ is the hyperparameter space.
In (3), ln pθ(·) is the log-likelihood function. To ease
notation, we denote F(pθ(·)) as F(θ). The d(d + 1)/2
distinct entries in FIM encode the sensitivity of the PDF
w.r.t. parameters θ.

The estimator adopted ([21]) is based on novel f -
divergence measure,

Dα(p, q) =
1

4α(1 − α)
·

·

∫

D

(αp(u)(1 − α)q(u))2

αp(u)(1 − α)q(u)
du − (2α− 1)2,

(4)

where α ∈ (0, 1) and p(·), q(·) are PDFs both supported on
D. Eq. 4 can be computed without estimating the PDFs
by means of the Friedman-Rafsky test. The test uses two
datasets, Sp and Sq, containing samples extracted from p(·)
and q(·), respectively. As the number of samples n = |Sp|
and m = |Sq| grows, we have

1 − C(Sp,Sq)
n+m

2nm

a.s.
−−→ Dα(p, q), (5)

being C(Sp,Sq) the outcome of Friedman-Rafsky test.
The FIM can be estimated with a proper f -divergence

measure, calculated between the parametric PDF of interest
and a perturbed version of it. By expanding Eq. 4 up to
the second order one obtains:

Dα(pθ, pθ̂
) ≃

1

2
rT F(θ)r, (6)

where θ̂ = θ +r, being r ∼ N (0, σ2Id×d) a small, normally
distributed perturbation vector. In the following, we omit
θ and we refer to the estimated FIM as F̂. By considering
Eq. 6, FIM can be approximated using the least-square
method:

F̂hvec = (RT R)−1RT vθ,

where vθ = [vθ(r1), ..., vθ(rM )]T , with vθ(ri) =
2Dα(pθ, pθ̂i

), i = 1, ...,M , and Dα(·, ·) is computed
according to Eq. 5. R is a matrix whose columns
are the M perturbations vectors ri and F̂hvec is the
half-vector representation of F̂, which is defined as
[

f̂11, . . . , f̂dd, f̂12, . . . , f̂d(d−1)

]T

.

VI. Experiments

To support our methodological developments, in this
section we discuss the results of experiments performed
on different tasks. In particular, we evaluate whether the
FIM determinant is maximized in the same regions of the
hyperparameter space Θ where ESN achieves the highest
performance. We refer with φ as the critical region K in
Θ where the FIM determinant is maximized. We compare
our results with the MLLE criterion, which identifies K
as the region where MLLE crosses zero; we denote such



region with λ. Similarly, we adopt also the criterion that
defines K as a region in Θ where mSVJ is maximum; we
denote such region as η.

The hyperparameters are selected in a discretized
space through a grid search, which considers 10 differ-
ent values for each parameter. Specifically, we search
θSR in {0.1, . . . , 1.6}, θIS in {0.15, . . . , 0.9}, and θRC in
{0.1, . . . , 0.7}, evaluating a total of 1000 configurations. As
we considered a hyperparameter space Θ with 3 dimensions,
the related edge of criticality is a 2-dimensional manifold
embedded in Θ. For each hyperparameter configuration,
in Algorithm 1 we generate M = 80 perturbations and we
perform T = 10 trials to compute the ensemble average of
the FIM. In each trial, we sample new (and independent)
input and reservoir connection weights (Wr

i and Wr
r).

The readout layer is trained by using a ridge least-square
regression, with a regularization parameter set to 0.05.
In every test we use a reservoir with Nr = 75 neurons; a
standard washout procedure is adopted [22], which discards
the first 100 states in order to get rid of the ESN transient.

We perform 4 different experiments, described in the
following. In Fig. 4, we report the critical regions in
Θ identified in each test by the three indicators based
on maximization of FIM determinant, zero-crossing of
MLLE and maximization of mSVJ; the light gray manifold
corresponds to the regions in Θ where the performance
of the network is maximized and the dark gray manifolds
represent φ, λ and η respectively. In Tab. I, we report the
numerical values of the correlation between the light gray
manifolds and the dark gray ones.

A. Memory capacity

This test quantifies the capability of ESN to remember
past sequences of an i.i.d. input. Given a time delay δ > 0,
the ESN is trained to reproduce the input x[k − δ], after
having seen the input up to time k. Memory Capacity (MC)
is measured as the squared correlation coefficient between
the desired output, which is the input signal delayed by
different δ time steps, and the observed network output
y[k]:

MC =

δmax
∑

δ=1

cov2 (x[k − δ],y[k])

var (x[k − δ]) var (y[k])
. (7)

MC is computed by training several readouts, one for each
delay δ ∈ {1, 10, . . . , 100}, while keeping fixed input and
reservoir layers.

As we can see from the 3 graphics in Figs. 4(a), the
critical regions identified by each unsupervised method
follow with a good accuracy the region in Θ where MC is
maximized. The degrees of correlation for the MC task are
described in Tab. I. Surprisingly, λ shows a very high
correlation (81%) preforming better than η (65%) for
this task. The correlation between φ and the region with
maximum MC is also very high (75%), showing that both
φ and λ can be used as reliable indicators to identify the
optimal configurations that enhance the short-term memory
capacity of the ESN.

B. Prediction accuracy

In this test, we evaluate if φ, λ and η are consistent
with the accuracy on the prediction task. We define the
prediction accuracy as γ = max{1 − NRMSE, 0}, were
NRMSE is the Normalized Root Mean Squared Error
achieved by the ESN. The prediction accuracy is evaluated
on three prediction tasks of increasing complexity. For
each of them, we set the forecast step τf > 0 equal to the
smallest time delay that guarantees input measurements
to be decorrelated, which corresponds to the first zero of
the autocorrelation function of the time-series.

In the first test, the ESN is trained to predict a sinusoidal

input (SIN) using a forecast step equal to 1/4 of its
period. As we can see from the graphics in Fig. 4(b), each
measure is consistent with γ, the region where prediction
performance are maximized. From Tab. I we can observe
that φ achieves the best results (58 % correlation), but also
the remaining measures have positive and similar degrees of
correlation with γ (corr(λ, γ) = 52% and corr(η, γ) = 56%,
respectively).

The input signal in the successive test is generated by the
Mackey-Glass system, described by the following differential
equation:

dx

dk
=

αx(k − τMG)

1 + x(k − τMG)10
− βx(k).

We generated a time-series using τMG = 17, α = 0.2, β =
0.1, initial condition x(0) = 1.2, 0.1 as integration step and
we trained the system to predict τf = 6 step ahead. As
we can see from Fig. 4(c) and the results in the table, for
this test both φ (71% correlation) and λ (66% correlation)
provide much better results than η (38% correlation) for
identifying the optimal configuration.

The NARMA task, originally proposed in [22], consists
in modeling the output of the following order-r system:

y[k + 1] = 0.3y[k] + 0.05y[k]·

·

(

r−1
∑

i=0

y[k − i]

)

+ 1.5x[k − r]x[k] + 0.1,
(8)

being x[k] an i.i.d. uniform noise in [0, 1]. According to the
results shown in Fig. 4(d) and Tab. I, in this case φ and η
achieve a correlation of 52% and 48% respectively. Hence,
they perform significantly better than λ for identifying the
critical region, which shows a very low correlation of 25%
with γ. Even in this case, the best results are achieved by
φ.

VII. Conclusions

Recurrent neural networks, as well as echo state networks,
are driven by inputs and hence their dynamics and related
computational capability depend on the type of the input
driving signal. With this work, we have established for the
first time a connection between the notion of continuous
phase transition, ESNs and Fisher information. Based on





TABLE I
Correlations between the regions where FIM determinant is
maximized (φ), MLLE crosses zero (λ), mSVJ is maximized (η)

and where performances are maximized (γ/MC). Each region
is unrolled into a 1-dimensional vector and we compute the

Pearson correlation between these vectors. Highest
correlations are in bold.

Task Corr (φ,γ/MC) Corr (λ,γ/MC) Corr (η,γ/MC)

MC 0.75 0.81 0.65

SIN 0.58 0.52 0.56

MG 0.71 0.66 0.38

NARMA 0.52 0.25 0.48

the particular reservoir topology and the specific applica-
tion under consideration. We have followed an ensemble
estimation approach based on a recently proposed non-
parametric FIM estimator, which, thanks to a graph-based
representation of the data, is also applicable to high-
dimensional densities. This last aspect plays a fundamental
role in our domain of application, since we analyze the
network through a multivariate sequence of reservoir neuron
activations; hence the number of dimensions is determined
by the number of reservoir neurons.

We evaluated the proposed method on benchmark tasks,
designed to assess the computational capability of an ESN.
Results are encouraging, since the FIM-based method
identifies in every test with high precision the region of
the hyperparameters space where prediction accuracy and
memory capacity are maximized. We compared our method
with established unsupervised criteria based on the sign of
the maximum local Lyapunov exponent and the minimum
singular value of the Jacobian. Our experiments provided
empirical evidence that the proposed indicator describes
well the ESN dynamics. In fact, in almost every test, the
FIM-based approach outperforms the other unsupervised
methods in identifying parameters that yield the highest
supervised performance.

We believe that our approach opens new perspectives for
analyzing the dynamics of input-driven RNNs. By linking
notions taken from statistical mechanics with RNNs, a
whole new set of studies and applications might become
possible. Future research directions will be focused on
transferring knowledge and methodologies between these
two areas of research. Further applications of the FIM-
based approach include testing the method on real-world
applications and evaluating the possibility to reduce the
dimensionality of the activations before estimating the FIM.
Finally, we stress that, in principle, the proposed method
could be used as an unsupervised criterion for training
neuron connections in the recurrent layer. This could open
interesting perspectives on the characterization of learning
procedures in RNNs.
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