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Abstract
Polar Mesospheric Summer Echoes (PMSE) are strong coherent radar echoes
that occur in the 80 to 90 km altitude range of the mesosphere during the Arctic
summer months. These echoes are of significant interest to the space physics
community as they provide insight into changes that occur in the atmosphere.
To better understand these changes, large datasets of PMSE echoes need to
be analysed. In this study, we aimed to develop a deep learning model that
could segment PMSE signal data for analysis on larger EISCAT VHF datasets.
For the task, we employed a UNet and a UNet++ architecture and tested how
pretrained weights from other source domains perform. Next, different loss
functions were tested and last the novel object-level augmentation method
ObjectAug was employed with other image-level augmentation methods to
increase model performance and reduce potential overfitting due to a small
training dataset. The results indicate that using randomly initialized weights
was the better option for the PMSE target domain and that the use of different
loss functions only had a small impact on model performance. When using
image- and object-level augmentation the best performing model was reached.
It was also seen that there exist inconsistencies in the PMSE signal ground-
truth labels. Dividing the inconsistencies into two categories: Granular and
Coarse, it was seen that using object-level augmentation had a significantly
higher performance on the Granular labelled PMSE signal samples. Overall,
our study indicates that the best performing model can be used to segment
PMSE for larger datasets or as a supportive tool for further labelling of PMSE
signal data.
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1
Introduction
Polar Mesospheric Summer Echoes (PMSE) are radar echoes that occur in the
mesosphere during the Arctic summer months in the polar regions[10]. These
echoes are caused by the scattering of radar waves off of small ice particles that
form in the 80 to 90 km altitude range of the mesosphere[32]. The formation of
these ice particles is closely linked to the complex dynamics of the mesosphere,
which are affected by a variety of factors.

By studying PMSE, researchers can gain insights into physical and chemi-
cal processes that occur in the mesosphere, including the formation and dy-
namics of ice particles, the composition of the mesospheric atmosphere, and
the effects of solar radiation, solar cycles and other external factors on the
mesosphere[23, 13]. This information can be used to improve our understand-
ing of the atmosphere as a whole, as well as to develop better models for
predicting and mitigating the effects of atmospheric changes due to climate
change.

This thesis builds upon the work of [19, 20] which studies the separability of
PMSE regions and background -and ionospheric noise. In [19] Linear Discrim-
inant Analysis is used to pre-select regions that might contain PMSE. In [20]
a random forest machine learning model was developed with the intent to
investigate the shapes and altitude occurrences of PMSE over time for large
datasets of EISCAT observations with the aim of analysing PMSE shapes and
structures through different periods of the solar cycle. In Figure 1.1 an example
of an observation from the EISCAT dataset is displayed.

1



2 chapter 1 introduction

In this thesis, we investigate the possibility of using Fully Convolutional Net-
works (FNCs) for the task of segmenting PMSE signals from the rest of the
data.

FCN has become a dominant machine learning approach for the semantic seg-
mentation of images and has shown good results in domains such as medical
and satellite imagery. Because Deep Convolutional Networks (DCN) excels at
preserving spatial information compared to many othermachine learning meth-
ods it is well suited for learning contexts and complex patterns in images. FCNs
are also filter-based methods similar to that of the random forest model[20]
which used a set of hand-crafted static filters. In contrast, the number of filters
in FCNs is several orders of magnitudes bigger and actively changed during
training to find optimal values of the filters.

In the development of a method to segment PMSE, two FCN architectures
are used: UNet[33] and UNet++[42]. To the best of our knowledge, it is the
first attempt to employ deep learning models to segment PMSE data. To do
this, several experiments are performed with the intent to see if other source
domains i.e., natural -and medical image domains, could apply to the PMSE
image domain. Further, different loss functions are tested to see if some are
more suitable than others for the objective of segmenting PMSE signals. The
number of PMSE samples used is relatively small in a deep learning setting
which may lead to poor generalization due to over-fitting. As a countermeasure,
two different augmentation approaches are tested: image-level augmentation1
and object-level augmentation2[41].

The thesis is structured as follows: Chapter 2 outlines the theory behind the
methods used for segmenting PMSE, the metrics for evaluating the perfor-
mance of the FCNs segmentation and the theory behind the Explainable Ma-
chine Learning (XML) method used for explaining the predictions on the FCNs.
In Chapter 3 the dataset, implementation of the object-level augmentation
method, how evaluation is performed and the experimental set-up is explained.
In Chapter 4 the experiments are outlined along with the results. Chapter
5 discusses the results from Chapter 4. Finally, in Chapter 6 it is concluded
and possible future work is discussed. The source code is publicly available at
3.

1. Image-level augmentation is a technique that applies transformations to an entire image
to increase dataset diversity and improve machine learning model performance.

2. Object level augmentation refers to the process of applying transformations to individ-
ual objects within an image, such as resizing or changing their position, to increase the
variability of a dataset and enhance model accuracy.

3. https://github.com/Domben93/PMSEsegmentation

https://github.com/Domben93/PMSEsegmentation
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Figure 1.1: The figure is gotten from figure 2 in [20] and shows an example of a PMSE
signal sample used in this study. In the top image the PMSE signal image is
shown as a heatmapwhere the pixel values are given in Equivalent Electron
Density (in power of 10)/[m3]. In the bottom image, the ground-truth label
is seen where PMSE (red), ionospheric noise (yellow), background noise
(cyan) is labelled. The dark blue area are unlabelled pixels.





2
Theory
2.1 UNet architectures

In this section, two UNet architectures used for PMSE segmentation are briefly
described. First, the original UNet[33] is described and secondly, an enhanced
version of the UNet namely, UNet++[42] is described.

2.1.1 UNet

The UNet architecture[33] is a deep learning model that was originally de-
signed for biomedical image segmentation. But has since been used in many
different areas such as satellite and natural imagery. The UNet architecture(see
Figure 2.1) consists of two main parts; a contracting and an expansive path
which will be referred to as encoder and decoder, respectively.

The encoder reduces the dimensionality of the input data and is a method
of extracting important features. In the original paper[33], every contracting
layer consists of two 3x3 convolutional filters in sequence followed by a rectified
linear unit (ReLU) and a 2x2 max pooling operation that downsamples the
feature maps.

The decoder upsamples the encoder output and passes it through the same
module layers as the encoder. Finally, a 1x1 convolutional layer generates the
final output, followed by an activation layer that produces an output map. This

5



6 chapter 2 theory

Figure 2.1: UNet architecture. Illustration of the UNet architecture. X𝐸𝑛 denotes the
encoder layers and X𝐷𝑒 denotes the decoder layers. The figure is based
on Fig.1 in [16].

map assigns a probability score to each pixel, indicating its likelihood of be-
longing to different classes.

Between each encoder and decoder layer in the UNet architecture, there is a
skip connection[29]. Skip connections directly connect the output of a layer
to the input of a subsequent layer that is not necessarily adjacent, allowing
direct propagation of information between encoder and decoder layers. This
helps preserve spatial information lost in up -and down-sampling operations
and enhances feature reuse throughout the network[29].

Given the UNet architecture in Figure 2.1, the output from each node 𝑋 𝑖, 𝑗

denoted as 𝑥𝑖, 𝑗 is formulated as follows,

𝑥𝑖, 𝑗 =

{
H(𝑥𝑖−1, 𝑗 ), 𝑗 = 0
H([𝑥𝑖, 𝑗−1,U(𝑥𝑖+1, 𝑗−1)])), 𝑗 > 0

(2.1.1)

where the H(·) function denotes the sequence of a convolution operation
followed by a batch normalization layer and an activation function.U denotes
the up-sampling operation and [] denotes the concatenation of the feature
maps from the encoder layer and the up-sampled feature maps.
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2.1.2 UNet++

UNet++[42] is an evolution of the original UNet[33] architecture described
in Section 2.1.1. The encoder and decoder are similar in both architectures,
but UNet++ has a re-designed skip-pathway that changes the connectivity
between the encoder and decoder creating a nested UNet structure. This new
skip-pathway structure has dense convolution blocks that bring the seman-
tic level of the encoder feature maps closer to that of decoder feature maps
enabling a better flow of spatial information. The assumption is that the opti-
mization problem is simplified for the optimizer as the feature maps between
the encoder-decoder pathway are more semantically similar[42]. In Figure 2.2,
a representation of the UNet++ architecture is shown where the difference
between the UNet architecture in Figure 2.1 is highlighted in blue.

Given the UNet++ architecture in Figure 2.2, the output from each node 𝑋 𝑖, 𝑗

denoted as 𝑥𝑖, 𝑗 is formulated as follows,

𝑥𝑖, 𝑗 =

{
H(𝑥𝑖−1, 𝑗 ), 𝑗 = 0
H([[𝑥𝑖,𝑘 ] 𝑗−1

𝑘=0,U(𝑥𝑖+1, 𝑗−1)])), 𝑗 > 0
(2.1.2)

where 𝑥𝑖, 𝑗 denotes the output of node 𝑋 𝑖, 𝑗 . TheH(·) function is a convolution
operation followed by a batch normalization and an activation function. U(·)
denotes the up-sampling layer and where [] denotes the concatenation of the
feature maps from skip connections and the up-sampling layer.

In contrast to the UNet architecture which only has one top layer i.e., node
X0,1, the UNet++ architecture with its re-designed skip-pathway has 𝐿 − 1
i.e., X0, 𝑗 , 𝑗 ∈ [1..𝐿] where 𝐿 denotes the layer depth of the network. Each
of the top layers can easily be set to produce an output which in turn can
be used with different strategies. In the paper on UNet++[42], it is defined
two different deep supervision[25] strategies: Accurate Mode and Fast Mode.
With Accurate Mode, the output from all top layer nodes is averaged allowing
more of the information from the previous layers to contribute to the final
prediction. With Fast Mode, the UNet++model can be pruned during training.
The pruning is done by checking if the performance of the output from lower
top layers has to some extent comparable results. This way the network size
can be reduced by removing the upper top layer.
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Figure 2.2: UNet++ architecture. Illustration of the UNet++ architecture from in-
put to output. X𝐸𝑛 denotes the encoder layers, X𝐷𝑒 denotes the decoder
layers and X𝐷 denotes the dense layers. The figure is based the Fig.1 in
[16].

2.2 Evaluation Metrics

To evaluate the performance of the semantic segmentation models two metrics
are used: Jaccard Index and Dice-Sørensen Coefficient. In this section, the two
metrics are briefly discussed.

2.2.1 Jaccard Index

The Jaccard index[39], often also referred to as Intersection over Union (IoU) or
Jaccard similarity coefficient is a metric that is commonly used as a performance
measure in semantic segmentation. The Jaccard index is a similarity measure
between two sets denoted as 𝐴 and 𝐵 and is formulated as follows,

𝐽 (𝐴, 𝐵) = | 𝐴 ∩ 𝐵 |
| 𝐴 ∪ 𝐵 | (2.2.1)

for binary data, Equation 2.2.1 it can be rewritten as,

𝐽 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(2.2.2)

Where TP denotes True Positive, FP denotes False Positive and FN denotes False
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Negative. The Jaccard Index does not include the True Negatives (TNs) in the
equation, meaning that it does not account for backgrounds that are classified
correctly and thus focuses on the foreground. The value of the Jaccard index
is given in the range 0 to 1 where a value of 0 indicates that there is no overlap
between the two sets and a value of 1 corresponds to perfect overlap between
the two sets 𝐴 and 𝐵.

2.2.2 Dice-Sørensen coefficient

Dice-Sørensen coefficient(DSC)[8], commonly refereed to as Dice Coefficient
or F1 score, is a measure of similarity between two sets denoted as 𝐴 and 𝐵. It
is a widely used and well-established measure of segmentation accuracy. DSC
is formulated as follows,

𝐷𝑆𝐶 (𝐴, 𝐵) = 2 | 𝐴 ∩ 𝐵 |
| 𝐴 | + | 𝐵 | (2.2.3)

where | 𝐴∩𝐵 | denotes the number of pixels in the intersection between set 𝐴
and 𝐵. | 𝐴 | and | 𝐵 | denote the number of pixels in sets A and B, respectively.
The DSC ranges from 0 to 1, where 1 indicates a perfect match and 0 indicates
no overlap between set 𝐴 and 𝐵.

for binary data, Equation 2.2.3 can be rewritten as,

2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(2.2.4)

The DSC is very similar to the Jaccard Index as can be seen by comparing
Equation 2.2.2 and 2.2.4. In fact, they are positively correlated but are different
in the sense that DSC gives more weight to the intersection which is useful in
cases where false negatives should be avoided.

2.3 Data Augmentation

Data augmentation is a common technique used during the training of deep
learning models aiming to increase model generalization (avoid over-fitting)
and increase performance on unseen data samples[2, 41]. This can be done by
generating synthetic data from the data available and subsequently increasing
the training set size with artificial samples. The idea is that the artificial samples
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will try to fill the latent space in the vicinity of the original samples to balance
the dataset.

Several techniques can be employed in the creation of synthetic data which
varies a lot in terms of complexity. Some of the more classical and straightfor-
ward techniques are random rotation, random scaling, random crop and ran-
dom flipping (vertical or horizontal) and has been proven effective in general-
izing and improving the performance of the model[36, 34]. More complex data
generation processes, such as Generating Adversarial Networks(GANs)[12, 9],
have become increasingly popular in recent years and have seen good results in
many different domains. However, GANs often need a large and diverse amount
of training samples. For natural images1, there are often available large datasets
such as ImageNet[7] to train GANs. For other types of imagery, such as the
EISCAT data images used in this study, there is a lack of PMSE signal data
and furthermore, the PMSE signal itself has been subject to scientific research
within the space physics community which would make it difficult to verify the
precision of any trained GANs.

In this study, two categories of image augmentation are employed: Image-level
and object-level augmentation.

2.3.1 Image-level augmentation

Augmentation on the image-level is the most common and easiest implemented
form of augmentation[35]. With image-level augmentation the transform is
applied to the whole image involving transforms such as flipping, cropping,
blurring, contrast adjustment, resizing, cropping andmore. Because only image
flipping and contrast adjustment are used later in the study, the formulation of
the image-level augmentation is limited to the three methods used; Horizontal
Flipping, Vertical Flipping and Contrast Adjustment.

Horizontal and Vertical Flipping.
Horizontal and vertical flipping (reflection) are two sides of the same coin.

Horizontal flipping is the procedure of flipping the image around the y-axis. For
an image denoted as I, the horizontal flipped image denoted I𝐻 𝑓 𝑙𝑖𝑝 , is simply
described as,

1. Natural images refer to photographs or visual representations of real-world objects or
scenes, typically captured using a camera or similar device, and may exhibit variations in
lighting, viewpoint, occlusion, and other factors that reflect the complexity and diversity
of the natural environment.
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I(𝑥,𝑦) −→ I𝐻 𝑓 𝑙𝑖𝑝 (−𝑥,𝑦) (2.3.1)

and similarly for the vertical flip where the image is flipped around the x-axis
is described as,

I(𝑥,𝑦) −→ I𝑉 𝑓 𝑙𝑖𝑝 (𝑥,−𝑦) (2.3.2)

Note that in a segmentation case where a label mask is provided, the mask
needs to be transformed equally to that of the image I

Contrast Adjustment.
Contrast Adjustment[4] is the process of changing the distribution of bright-

ness levels in an image. Mathematically, contrast adjustment involves scaling
the intensity values of the image so that they span in a narrower or wider range
of values. This is done by mapping the original intensity values (typically in
the range [0, 255] for an 8-bit colour or grayscale image) to new values. Given
a scaling factor denoted as 𝑐, the contrast adjusted image denoted I𝐶𝑎𝑑 𝑗 can
be formulated as follows for a grayscale image,

I𝐶𝑎𝑑 𝑗 (𝑥,𝑦) = 𝑐 × I(𝑥,𝑦) + (1 − 𝑐) × 𝜇I (2.3.3)

where 𝜇I denotes the mean pixel value of the original image I and is given
as,

𝜇I =
1

𝑀 × 𝑁

𝑁∑︁
𝑖=0

𝑀∑︁
𝑗=0

I𝑖, 𝑗 (2.3.4)

where 𝑁 and 𝑀 denotes the height and width of image I.

Because each pixel intensity is scaled, the contrast adjusted image might con-
tain pixel values greater than that of the original image I ∈ [0..255] (given
that the data type is an 8-bit unsigned integer). Thus, the contrast adjusted
image needs to be clamped to this interval. The clamping of intensity values
is formulated as,
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I𝐶𝑎𝑑 𝑗 (𝑥,𝑦) =


255, I𝐶𝑎𝑑 𝑗 (𝑥,𝑦) > 255
0, I𝐶𝑎𝑑 𝑗 (𝑥,𝑦) < 0
I𝐶𝑎𝑑 𝑗 (𝑥,𝑦), otherwise

(2.3.5)

The contrast factor 𝑐 can be any non-negative value. Setting the contrast factor
to 1 yields the same output as the input: I𝐶𝑎𝑑 𝑗 = I. For a factor 0 < 𝑐 < 1 the
contrast of the input image is decreased and for a factor 𝑐 > 1 the contrast is
increased. For 𝑐 = 0, I𝐶𝑎𝑑 𝑗 (𝑥,𝑦) = I𝜇 .

2.3.2 Object-level Augmentation

With object-level augmentation, the transforms are applied to the individual
object that is present in the image. This is a more complex task than the image-
level augmentation and requires that the individual target objects can be sep-
arated from the background and the regions of the image where the objects
were removed must be filled in to avoid artifacts2. In this study, an object-level
augmentation method called ObjectAug[41] is employed.

ObjectAug.
ObjectAug[41] is an augmentation method that works on the object-level

to generate new samples. The method is defined by the four modules: Image
Parsing, Object Augmentation, Background inpainting and Assemble. Image
parsing separates the objects from the rest of the image using the ground-
truth label leaving the image with left-out areas. Then in parallel, the left-out
areas in the image are inpainted and various data augmentation techniques
are performed on the individual objects. Last, the objects are placed back in the
inpainted image in the assemble module. A representation of the ObjectAug
flow is shown in figure 2.3. The details of the four ObjectAug modules are
described in the succeeding paragraphs.

I: Image Parsing.
The Image parsing module separates the individual objects from the rest of

the background in the image. Given an image I𝑊,𝐻 ∈ [0..255] and the ground-
truth mask M𝑊,𝐻 ∈ 0, 1 where a value of 1 denotes the objects foreground
and 0 the background. The parsed image with the removed foreground area
denoted as Iℎ is given as follows,

2. Artifacts in images refer to visual distortions or errors that are introduced during image
acquisition, processing, or display, which can affect image quality and accuracy and may
cause misinterpretation of image content.
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Figure 2.3: Illustration of the flow of ObjectAug[41]. The Image Parsing module sep-
arates the individual objects from the mask and image. The individual
object is subjected to transformations in the Object Augmentation mod-
ule and the image with the removed object areas are inpainted in the
Background Inpainting module. The object-augmented image and mask
are then generated in the Assemble module.

Iℎ = ¬M ⊙ I (2.3.6)

where ⊙ denotes the component-wise multiplication of pixels and ¬M denotes
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the binary inverse of the ground-truth mask M.

To reduce the chance of the background inpainting being affected by object
pixels that are potentially left out from the ground-truth mask, the boundary
of the foreground objects in the ground-truth mask is padded with ones. This
is done using an all-ones kernel 𝜔𝑛×𝑛 convolved with the ground-truth mask
M giving the padded ground-truth mask denoted as M𝑘

𝑃
as follows,

M𝑃 (𝑥,𝑦) =
{
1, if M(𝑥,𝑦) ∗ 𝜔 ≥ 1
0, otherwise

(2.3.7)

The number of padded ones around the foreground boundary is given by the
kernel size i.e., a 3x3 kernel will pad the mask with ones with a range of 1
around the foreground boundary. The padding range can simply be increased
by changing the kernel filter size. For clarity, the ground-truth mask M are
zero-padded before the convolution to keep the original size M𝑊 ×𝐻 .

Using the padded ground-truth mask M𝑝 given by Equation 2.3.7, the parsed
image Iℎ is now given as,

Iℎ = ¬M𝑝 ⊙ I (2.3.8)

For further use in the Object Augmentation module, it is needed that the 𝑘

individual objects are separated from each other into individual images and
masks denoted as I𝑘 and M𝑘 , respectively. All I𝑘 and M𝑘 are then cropped
into patches around the object area reducing the computational load of the
transforms. The k-th cropped object image and mask patch is denoted as I𝑘𝑐
and M𝑘

𝑐 , respectively. As the cropped patches are to be assembled back into
the inpainted image in the last module, the crop parameters i.e., the centre
position and the width and height of the patches are stored and denoted as
𝜙𝑘 .

II: Background Inpainting.
In the Background Inpainting module, the image Iℎ is inpainted using a DNN

with partial convolution from [28]. The inpainting process is given as,

I𝑖𝑛 = Ψ(Iℎ) (2.3.9)
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where Ψ denotes the inpainting and I𝑖𝑛 denotes the resulting inpainted image.
Themodel used for inpainting the images is further described later on in Section
4.2.

III: Object Augmentation.
In the object augmentation module, each𝑘 cropped object image I𝑘𝑐 andmask

M𝑘
𝑐 is augmented separately with different transformation methods denoted

as T = [𝑓1, 𝑓2, ..., 𝑓𝑚] with the corresponding probability P = [𝑝1, 𝑝2, ..., 𝑝𝑚]
of being invoked. The process of applying augmentation on all the masks is
described as,

𝑓𝑎𝑢𝑔 (I,M | P) = 𝑓1(I,M | 𝑝1) ◦ 𝑓2(I,M | 𝑝2) ◦ ... ◦ 𝑓𝑚 (I,M | 𝑝𝑚) (2.3.10)

The defined 𝑓𝑎𝑢𝑔 object augmentation function is then applied to the cropped
object images and mask as follows,

I𝑘𝑎𝑢𝑔,M
𝑘
𝑎𝑢𝑔 = 𝑓𝑎𝑢𝑔 (I𝑘𝑐 ,M𝑘

𝑐 | P) (2.3.11)

IV: Assemble.
In this last part of the ObjectAug process, the augmented objects I𝑘𝑎𝑢𝑔 are

inserted back into the inpainted image I𝑖𝑛. First, the augmented object patches
I𝑘𝑎𝑢𝑔 and M𝑘

𝑎𝑢𝑔 is restored to its original size using the cropping parameters 𝜙𝑘

from the image parsing module keeping the object at its centre position.

I𝑘𝑢𝑛𝑐𝑟𝑜𝑝,M
𝑘
𝑢𝑛𝑐𝑟𝑜𝑝 = 𝑓𝑢𝑛𝑐𝑟𝑜𝑝 (I𝑘𝑎𝑢𝑔,M𝑘

𝑎𝑢𝑔 |𝜙𝑘 ) (2.3.12)

Before producing the final assembled image and mask, all k I𝑘𝑎𝑢𝑔 and M𝑘
𝑎𝑢𝑔 are

merged. The merging of the images is denoted by the function 𝑓𝑚𝑒𝑟𝑔𝑒 (I) and
is described as follows,

𝑓𝑚𝑒𝑟𝑔𝑒 (I) = I1 • I2 • ... • I𝑚 (2.3.13)

Finally, the assembled image denoted as I𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑑 andmask denoted asM𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑑

with the augmented objects is generated using equation 2.3.14 and 2.3.15, re-
spectively.
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I𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑑 = I𝑖𝑛 • ¬𝑓𝑚𝑒𝑟𝑔𝑒 (M𝑢𝑛𝑐𝑟𝑜𝑝) + 𝑓𝑚𝑒𝑟𝑔𝑒 (I𝑢𝑛𝑐𝑟𝑜𝑝) (2.3.14)

M𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑑 = 𝑓𝑚𝑒𝑟𝑔𝑒 (M𝑢𝑛𝑐𝑟𝑜𝑝) (2.3.15)
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2.4 Loss function

For deep learning models to learn, it needs to know the error between the
model prediction and a ground-truth. The error is often referred to as loss
and is used to update model parameters through back-propagation. Though
all loss functions returns a loss value, it can vary depending on the function
in use and often has no relevance compared to other loss functions (it is not
a metric). These different loss values come from the different ways that the
functions penalized bad or award good predictions[18, 17]. Hence, the choice
of loss function often depends on the nature of the data and can be a significant
factor when it comes to the models ability to learn fast and accurately.

2.4.1 Binary Cross-Entropy

Binary Cross Entropy(BCE) is a binary version of Cross Entropy[40]. Cross
Entropy is commonly used in classification and segmentation models and is a
measure of the difference between probability distributions Y and Ŷ where Y
denotes the network prediction and Ŷ denotes the ground-truth. The binary
cross entropy is given as follows,

L𝐵𝐶𝐸 (Y, Ŷ) = −(Y𝑙𝑜𝑔(Ŷ)) + (1 − Y)𝑙𝑜𝑔(1 − Ŷ) (2.4.1)

2.4.2 Dice Loss

Dice loss[38] is a loss function that is based on the Dice-Sørensen Coefficient
(see Section 2.2.2) and is defined as L𝐷𝑖𝑐𝑒 = 1−𝐷𝑆𝐶 where DSC is calculated
using Equation 2.2.3. Note that for dice loss to be differentiable the normalized
logits predictions are used rather than the thresholded predictions that is used
with DSC. Taking the normalized logits prediction denoted as𝑌 and the ground-
truth denoted as Ŷ the loss is given as follows,

L𝐷𝑖𝑐𝑒 (Y, Ŷ) = 1 − 2 | 𝑌 ∩ 𝑌 |
| 𝑌 | + | 𝑌 |

(2.4.2)

2.4.3 Focal Loss

Focal Loss[27] is a variant of Binary Cross-Entropy that focuses more on the
difficult samples. This is particularly helpful in cases where there is a class or
category imbalance. Focal Loss is derived from cross-entropy as,
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𝐶𝐸 (Y, Ŷ) =
{
−𝑙𝑜𝑔(Y), if Ŷ = 1
−𝑙𝑜𝑔(1 − Y), otherwise

(2.4.3)

where 𝑦 ∈ {0, 1} defines the ground truth and 𝑝 ∈ [0, 1] is the estimated prob-
abilities from the model output. For more convenient notation, Focal Loss[27]
defines the estimated probability of a class as Y𝑡 ,

Y𝑡 =

{
Y, 𝑖 𝑓 Ŷ = 1
1 − Y, otherwise

(2.4.4)

as such, cross-entropy can be rewritten as,

𝐶𝐸 (Y, Ŷ) = 𝐶𝐸 (Y𝑡 ) = −𝑙𝑜𝑔(Y𝑡 ) (2.4.5)

In Focal Loss, a modulating factor (1− Y𝑡 )𝛾 is added to the cross-entropy. This
factor down-weight the easy samples such that the hard samples are given more
weight to the final loss. For a 𝛾 = 0 the Focal Loss is equal to cross-entropy. In
addition to the modulating factor the authors of the original paper[27] use a
weighting factor 𝛼𝑡 ∈ [0, 1]. The weighting factor can either be treated as a
hyperparameter that is tuned or could be set inversely proportional to the class
frequency. The final Focal Loss is expressed as follows,

L𝐹𝑜𝑐𝑎𝑙 = −𝛼𝑡 (1 − Y𝑡 )𝛾𝑙𝑜𝑔(Y𝑡 ) (2.4.6)

2.4.4 Boundary Loss

The idea behind boundary losses is to penalize the model for incorrect predic-
tions along the boundaries between the prediction and the ground-truth.

Here, the boundary loss from [21] is formulated. The term boundary loss is
often used as a description of a type of loss function i.e., similarly to how
Binary Cross-Entropy loss and Dice loss are referred to as distribution based
and regional based loss, respectively. However, in further parts of this paper the
term boundary loss will be referred to as the loss from [21] which is formulated
as follows.

Given an image I : Ω ⊂ Z2,3 −→ [0..255] and a ground-truth g : Ω −→ {0, 1}
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where Ω denoted the spatial domain. A pixel𝑝 belongs to the foreground region
(target) 𝐺 ⊂ Ω if 𝑔(𝑝) = 1 and 𝑔(𝑝) = 0 otherwise. 𝑠𝜃 : Ω −→ [0, 1] denotes
the sigmoid probability output of being foreground or not. Let 𝑆𝜃 = {𝑝 ∈ Ω |
𝑠𝜃 (𝑝) = 𝛿} be the segmentation region given for some threshold 𝛿 .

The boundary loss defines a method to build a distance loss 𝐷𝑖𝑠𝑡 (𝜕𝐺, 𝜕𝑆𝜃 ) that
uses space contours in the spatial domain Ω, where 𝜕𝐺 denotes the boundary
of the ground-truth region G and 𝜕𝑆𝜃 denotes the boundary of the segmented
region given by the network output.

Further, boundary loss is inspired by curve evaluation methods[5] which re-
quires a measure for evaluating boundary changes. Here, a non-symmetric 𝐿2
distance on the space shapes is used that gives a measure on the change be-
tween the boundaries 𝜕𝐺 and 𝜕𝑆𝜃 i.e., the change between the ground truth
boundary and thresholded output boundary, which is defined as follows,

𝐷𝑖𝑠𝑡 (𝜕𝐺, 𝜕𝑆𝜃 ) =
∫
𝜕𝐺

∥ 𝑦𝜕𝑆 (𝑝) − 𝑝 ∥2 𝑑𝑝 (2.4.7)

where ∥ · ∥ denotes the 𝐿2 norm, 𝑝 ∈ Ω is a point on the boundary 𝜕𝐺 and
𝑦𝜕𝑆 (𝑝) denotes the corresponding point on boundary 𝜕𝑆 perpendicular to 𝜕𝐺

at point 𝑝. Equation 2.4.7 directly uses points on the contour 𝜕𝑆 which cannot
be used directly as a loss for 𝜕𝑆 = 𝜕𝑆𝜃 . Instead, boundary loss approximates
Equation 2.4.7 by using an integral approach[6]. In Figure 2.4, an illustration
of the differential (Equation 2.4.7) and integral (Equation 2.4.8) approach is
shown. By using the integral approach, the need for local differential compu-
tation for the contour points is circumvented and instead represents boundary
changes as a regional integral as follows,

𝐷𝑖𝑠𝑡 (𝜕𝐺, 𝜕𝑆) ≈ 2
∫
Δ𝑆

𝐷𝐺 (𝑞)𝑑𝑞 (2.4.8)

where Δ𝑆 denotes the region between the two contours. 𝐷𝐺 : Ω −→ R+

denotes the distance map with respect to the ground-truth boundary 𝜕𝐺 . The
distance 𝐷𝐺 (𝑞) for any point 𝑞 ∈ Ω is calculated by taking the closest contour
point 𝑧𝜕𝐺 (𝑞) = 𝑝 on the ground-truth boundary 𝜕𝐺 (𝑝) such that 𝐷𝐺 (𝑞) =∥
𝑞−𝑧𝜕𝐺 (𝑞) ∥. For further information about how Equation 2.4.8 is approximated
see the original paper[21].

The final boundary loss that approximates boundary distance 𝐷𝑖𝑠𝑡 (𝜕𝐺, 𝜕𝑆𝜃 ) is
defined as,
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L𝐵 (𝜃 ) =
∫
Ω
𝜙𝐺 (𝑞)𝑠𝜃 (𝑞)𝑑𝑞 (2.4.9)

where 𝜙𝐺 : Ω −→ R denotes the level set function of the boundary 𝜕𝐺 where
for a point 𝑞 ∈ 𝐺 , 𝜙𝐺 (𝑞) = −𝐷𝐺 (𝑞) and 𝜙𝐺 (𝑞) = 𝐷𝐺 (𝑞) otherwise. 𝑠𝜃 (𝑞)
denotes the sigmoid activated network outputs. The level set function 𝜙𝐺 (𝑞)
encodes the distance from all 𝑞 points to the boundary 𝜕𝐺 and is pre-computed
directly from the ground-truth 𝐺 as illustrated in Figure 2.5.

Figure 2.4: Differential (left) and integral (right) approach for measuring boundary
change. The illustration is based on Figure 2 in the original boundary loss
paper[21].

Figure 2.5: Illustration of pre-computed level set function 𝜙𝐺 (right image) from
ground-truth 𝐺 (left image).
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2.4.5 Combination Loss

Combination loss functions are constructed by combining two or more loss
functions. The idea is that different loss functions capture different aspects of
the desired behaviour of the model. Put in other words, with combination loss
the model is set to learn multiple objectives. This can make the model more
robust to different types of noise and variations in the training data as they
account for multiple aspects of the data. The main drawback of using multiple
loss functions is the increased complexity that is brings in terms of hyper-
parameters. In addition to finding hyper parameters for the loss functions, the
weighting between how much each loss function contributes to the final loss is
also a factor that affects the training process.

In the coming sections, two combination losses used in later parts of this study
are briefly discussed.

Dice-BCE Loss

A type of combination loss that was used with the original UNet++[42] is the
combination between Dice loss and Binary Cross Entropy. This combination
loss is described as,

L𝐷𝑖𝑐𝑒+𝐵𝐶𝐸 (𝑌,𝑌 ) =
1
𝑁

𝑁∑︁
𝑖=1

(1
2
· 𝑌𝑖 · 𝑙𝑜𝑔𝑌𝑖 +

2 · 𝑌𝑖 · 𝑌𝑖
𝑌𝑖 · 𝑌𝑖

)
(2.4.10)

where 𝑁 is the batch size and 𝑌𝑖 and 𝑌𝑖 is the predicted probabilities and
ground truth, respectively. From Equation 2.4.10 it can be seen that the binary
cross-entropy is down-weighted by a factor of 0.5. In further parts of this study,
the loss will be referred to as L𝐷𝑖𝑐𝑒 + L𝐵𝐶𝐸 .

Dice-Boundary Loss

Another type of combination loss is the Dice Boundary Loss, which combines
Dice Loss [38](see Section 2.4.2) and Boundary Loss[21] (see Section 2.4.4).
The boundary loss was suggested as a method for mitigating issues related to
regional losses (such as Dice Loss) in cases of highly unbalanced segmentation.
Because most regional losses penalize all points within a region equally regard-
less of the distance from the boundary it can be difficult for regional losses to fit
the predictions to the ground-truth regions, particularly for small regions[21].
As such, the boundary loss combined with the regional loss to accommodate
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for this potential problem. The combination of dice loss and boundary loss is
given as the sum of the two losses and will be referred to as L𝐷𝑖𝑐𝑒 + L𝐵 in
further parts of this study.

In the boundary loss paper[21] three different weighting strategies of the re-
gional and the boundary loss are proposed defining the weighting parameter
denoted as𝛼 . The first strategy is named constantwhich simply involves setting
the parameter to a constant 𝛼 = 𝑛 where the total loss is given as follows,

L𝐷𝑖𝑐𝑒 + 𝛼L𝐵 (2.4.11)

the second strategy named increasing involves setting 𝑎𝑙𝑝ℎ𝑎 > 0 in Equation
2.4.11 to a low value initially and increase it every 𝑖 iterations. With this strategy,
the dice loss will remain constant while the contribution of the boundary loss
increases.

The third strategy is called rebalance and is formulated as,

(1 − 𝛼)L𝐷𝑖𝑐𝑒 + 𝛼L𝐵 (2.4.12)

Similarly to the increase strategy, the boundary loss is weighted harder every 𝑖
iteration. But in contrast to the increase strategy, the rebalance down weights
the dice loss contribution by a factor of (1−𝛼). Note that if 𝛼 = 0 −→ L𝐷𝑖𝑐𝑒 =

0, removing the contribution of the dice loss completely. In the boundary loss
paper[21] it is stated that the co-occurrence of a regional loss with the boundary
loss is important because cases of empty foreground in the ground-truth and
very low predicted values, the gradients can become very low and thus the
solution is close to local minimum or saddle point.

2.5 Layer-wise Relevance Propagation

Layer-wise Relevance Propagation(LRP)[30] is a method used to understand
and interpret decisions made by deep learning models. LRP uses gradients
from backwards propagation to identify the contribution of each input feature
to the final decision made by the model. Hence, it is possible to identify which
input features that are of high and low relevance for the final predictions made
by the network.

LRP is most commonly used for classification tasks with networks such as



2.5 layer-wise relevance propagation 23

ResNet[14] andVGG16[36] where the relevance of the output is back-propagated
through the layers of the network until the input layer is reached. LRP assigns
a relevance score to each pixel of the input image which indicates how much
it contributed to the final output. An illustration of the flow of LRP is shown
in Figure 2.6 which shows the UNet[33] architecture from Section 2.1.1 where
the forward pass of the input is shown in black and the backwards propagation
of the prediction is shown in red.

LRP implements a propagation procedure which is subject to a conservation
property that lets the received quantity from one layer propagate to another
in equal amount[30]. Considering two consecutive feature maps 𝑗 and 𝑘. The
propagation relevance score denoted as 𝑅𝑘 at a given point onto the lower layer
can be found using,

𝑅 𝑗 =
∑︁
𝑘

𝑧 𝑗𝑘∑
𝑗 𝑧 𝑗𝑘

𝑅𝑘 (2.5.1)

where 𝑧 𝑗𝑘 quantifies how much a point 𝑗 in the higher layer contributes to
making the points 𝑘 in the lower layer relevant.

Depending on the layer type, different rules are usually applied in the LRP. For
the case used in this study, only three rules are needed: 𝑧B-rule, LRP-𝜖 and
LRP-𝛾 .

Before explaining the mentioned rules, the Basic Rule (LRP-0)[3] that the other
rules are based on is formulated as follows,

𝑅 𝑗 =
∑︁
𝑘

𝑎 𝑗𝑤 𝑗𝑘∑
0, 𝑗 𝑎 𝑗𝑤 𝑗𝑘

𝑅𝑘 (2.5.2)

The Basic Rule follows Equation 2.5.1 where the contribution of 𝑧 𝑗𝑘 to the
higher layer is defined by the activation function denoted and weights of the
layer 𝑅𝑘 as 𝑧 𝑗𝑘 = 𝑎 𝑗𝑤 𝑗𝑘 .

Epsilon Rule (LRP-𝜖).
Applying only the Basic Rule to a network will generate a relevance output

that is equal to 𝐼𝑛𝑝𝑢𝑡 × 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 . Because gradients can be noisy and thus
give a relevance output that is hard to interpret, the Epsilon Rule[3] can be
used. By adding a small value 𝜖 ∈ R+ to the denominator in Equation 2.5.2
it is possible to reduce the contributions of small noisy values from the higher
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Figure 2.6: Illustration of LRP. The top figure illustrates the LRP flow from the input
image to the left and to the explained relevance output to the right. The
bottom figure illustration shows a more detailed view of the relevance flow
through the networks feature maps in the forward pass (black coloured
arrows) and the backwards pass (red coloured arrows) in the first two
encoder layers, respectively.

layer 𝑘 leading to improved explainability. The Epsilon Rule is formulated as
follows,

𝑅 𝑗 =
∑︁
𝑘

𝑎 𝑗𝑤 𝑗𝑘

𝜖 +∑
0, 𝑗 𝑎 𝑗𝑤 𝑗𝑘

𝑅𝑘 (2.5.3)

Gamma Rule (LRP-𝛾).
The Gamma Rule[30] is a way of favouring positive contributions in the

backwards propagation of relevance. With this approach, the weights𝑤 𝑗𝑘 from
Equation 2.5.2 is now given as (𝑤 𝑗𝑘 + 𝛾𝑤+

𝑗𝑘
) where 𝑤+

𝑗𝑘
denotes the positive

valued weights and 𝛾 ∈ R+ denotes the contribution of the positive values
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weights. The Gamma Rule is formulated as follows,

𝑅 𝑗 =
∑︁
𝑘

𝑎 𝑗 (𝑤 𝑗𝑘 + 𝛾𝑤+
𝑗𝑘
)∑

0, 𝑗 𝑎 𝑗 (𝑤 𝑗𝑘 + 𝛾𝑤+
𝑗𝑘
)𝑅𝑘 (2.5.4)

When positive contributions are prevalent, they can limit the growth of both
positive and negative relevance during the backwards propagation phase. Be-
cause the positive contributions act as a moderating force, it prevents extreme
values from dominating. As a result, more stable explanations that are easier
for humans to interpret might be generated.

ZBox Rule (𝑧B).
The ZBox Rule[31] is used for bounded inputs such as images and is formu-

lated as follows,

𝑅𝑖 =
∑︁
𝑗

𝑥𝑖𝑤𝑖 𝑗 − 𝑙𝑖𝑤
+
𝑖 𝑗 − ℎ𝑖𝑤

−
𝑖 𝑗∑

𝑖 𝑥𝑖𝑤𝑖 𝑗 − 𝑙𝑖𝑤
+
𝑖 𝑗
− ℎ𝑖𝑤

−
𝑖 𝑗

𝑅 𝑗 (2.5.5)

where 𝑥𝑖 : ∀𝑖 𝑙𝑖 ≤ 𝑥𝑖 ≤ ℎ𝑖 . Here, 𝑙𝑖 ≤ 0 and ℎ𝑖 ≥ 0 denote the smallest and
largest pixel values respectively for each image dimension.





3
Methods
3.1 Dataset

In this study, we use a dataset that comes from EISCAT VHF(Very High Fre-
quency) radar located in the vicinity of Tromsø. The data are observations of
Polar Mesospheric Summer Echoes (PMSE) that are detected during the Arctic
summer months in the altitudes of 80 to 90 km[10]. Each sample in the dataset
is from one observation that typically lasts from a few to several hours within a
75 to 95 km altitude range. The samples contain measured backscatter power
as a function of time and altitude where the time (horizontal) resolution is
approximately one minute and the altitude (vertical) resolution varies between
0.30 to 0.45 km[20]. The dataset consists of a total of 18 labelled samples and
each sample is represented as a grayscale image. The grayscale images will
be represented as heatmaps equal to that in [20] when shown throughout
the study to make it easier to distinguish between the different parts of the
samples. In the top image in Figure 3.1, one of the samples in the dataset is
shown where a pixel value refers to the Equivalent Electron Density from the
standard GUISDAP analysis[26] and where the maximum and minimum value
is given in red and blue, respectively. Details about year, month, day and time
the different samples were acquired can be found in Table A-1 in the Appendix.
For further information about the labelling process, we refer the reader to the
original paper[20].

27
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Figure 3.1: Example of a PMSE signal image with the ground-truth label below. The
altitude range varies from 75 to 95 km and the time length of the ob-
servation goes from 09:00 to 12:00 UTC. The colour scale in the image
represents Equivalent Electron Density (in power of 10)/[𝑚3]. The labels
are divided into four classes: Unlabeled(Dark Blue), PMSE(Cyan), Iono-
spheric Background(Yellow) and Background Noise(Brown).

Class Reduction.
The original dataset has four different classes, namely, PMSE, background

noise, unlabelled and ionospheric background[20] (see the bottom image in
Figure 3.1). To simplify the process of segmenting out the main class target
PMSE. The ionospheric background, background noise and unlabelled classes
are merged into one class which will be referred to as background, thus making
the objective of segmenting PMSE signals binary. This does however create a
big class imbalance in the dataset where a global ratio between the foreground
and background class is approximately 1:9, but for a single data sample, the
class imbalance ratio may be as low as 1:138.

Sample Splitting.
To be used for training and testing in deep learning, each input sample

should be of the same size. Hence, each sample is divided into square patches
that are zero-padded on each side to make 64x64 pixel samples. The samples
in the dataset have four different altitude resolutions: 22, 48, 58 and 60. The
samples with a height of 22 pixels are first rescaled to a 44x44 size using nearest
neighbour interpolation and then zero-padded to 64x64 sized samples. The
intention behind scaling up the samples with the smallest altitude resolution
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is to make them more similar to the shape of the other samples as regardless
of altitude resolution all samples are still given in the 75 to 95 km altitude
range.

Dataset Split.
The dataset is split into training, validation and test sets where each sample

is split in a stratified manner1 with the ratio 60%/20%/20%, respectively. The
training samples are additionally split such that they overlap by 30%.

Pre-Processing.
The samples, where each pixel is given as a backscatter power, are first stan-

dardized into zero mean and unit variance based on the training dataset be-
fore it is normalized into float value in the range 0 to 1. While it is strictly
not necessary, it is considered a good practice as it helps to improve train-
ing stability as features are scaled to a consistent range. In addition, it helps
the model converge faster and prevent the vanishing or exploding gradient
problem[24].

3.2 Object-level Augmentation

As a method of increasing the number of samples and diversifying the original
dataset, the ObjectAug[41] method explained in Section 2.3.2 is employed.
Before going into details about the object-level augmentation, the training
process of the inpainting DNN used to inpaint the removed areas of the image
is explained.

Inpainting DNN.
The objective of the inpainting DNN is to inpaint PMSE regions that have

been removed from the image. For this task, the inpainting DNN needs to be
trained to learn the background pattern that is present in the PMSE images.
To train the inpainting DNN, we use the PMSE dataset as explained in Section
3.1. However, to prevent any partiality in the training of the segmentation
models and the inpainting model, the dataset is mirrored. This implies that the
segmentation training set serves as the inpainting model validation set, while
the segmentation validation and test set serves as the inpainting model training
set.

The training data is generated from the original PMSE images by removing
areas for the inpainting model to fill. Meaning that the original PMSE image

1. Stratified splitting of samples: dividing the population into subgroups and taking propor-
tional random samples from each stratum to reduce sampling error.
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serves as the ground-truth comparing it to the inpainting model prediction.
Note that only the areas which are inpainted are compared to the ground-truth
when calculating the error. The areas removed from an original PMSE image
denoted as I𝑖 ∈ [0..255]𝑊,𝐻 is given by a pre-computed mask denoted as
𝑀𝑘

𝑖𝑛𝑝𝑖
∈ {0, 1}𝑊,𝐻 , where 𝑘 denotes the number of masks generated for image

𝑖 and𝑊 and𝐻 denotes the width and height of the image andmask respectively.
A mask M𝑘

𝑖𝑛𝑝𝑖
is generated by creating 𝑛 rectangular patches denoted as m𝑛

𝑝 ∈
{1}𝑤,ℎ, where 𝑤 ∈ [1..20] and ℎ ∈ [1..10] denotes the width and height
respectively and is randomly chosen for each patch. The width and height
interval is arbitrarily chosen to simulate the fact the PMSE usually have a
pattern that elongates horizontally[20]. All 𝑛 patches are inserted into the
mask M𝑘

𝑖𝑛𝑝𝑖
at randomly selected locations such that it does not overlap with

any of the PMSE signal regions defined by the ground-truth mask denoted as
M𝑃𝑀𝑆𝐸𝑖 . The reason is that we only want the inpainting model to learn the
background pattern to avoid the removed PMSE areas being inpainted with a
PMSE-like pattern. Hence, the𝑛 patches are placed such thatM𝑛

𝑝∩M𝑃𝑀𝑆𝐸𝑖 = ∅.
Note that there are no restrictions on the overlapping between the rectangular
patches allowing for more irregular shapes to be generated. An example of a
training mask for the inpainting model can be seen in the bottom image of
Figure 3.2.

The number 𝑛 of rectangular patchesM𝑛
𝑝 for each maskM𝑘

𝑖𝑛𝑝 given by Equation
3.2.1,

𝑘 =
𝑊 × 𝐻

200
(3.2.1)

where𝑊 and 𝐻 denote the width and height of the PMSE image, respectively.
By changing the number of patches as a function of image size the total amount
of area removed from each image will be somewhat similar. The constant in
the denominator is found through visual evaluation and is chosen such that the
rectangular patches are prone to overlapping each other but also avoid large
regions to be removed, something the inpainting model might struggle with as
noted in [28].

During training, a training sample I𝑖 ‘ is generated as follows,

I′𝑖 = M𝑘
𝑖𝑛𝑝𝑖

⊙ I𝑖 (3.2.2)

where M𝑘
𝑖𝑛𝑝𝑖

denotes one of the 𝑘 generated masks for PMSE image 𝑖.



3.2 object-level augmentation 31

For the training of the inpainting DNN, a UNet architecture is used with the
same depth as the model described in 2.1.1 using ResNet50[14] trained on
ImageNet[7] as the backbone. The same loss from [28] is used with the Adam
optimizer algorithm and with a learning rate of 0.0005. The model is trained
for a maximum of 10000 iterations with a mini-batch size of 32.

Figure 3.2: The figure shows an example of a mask used in training of the inpainting
model. In the top image, the PMSE signal sample is displayed with the
ground-truth label in the middle. The bottom image shows the mask used
for removing parts (black area) of the PMSE signal image. Note how the
black areas do not overlap with any PMSE signal in the ground-truth.

Object Augmentation.
The object augmentation using the ObjectAug[41] method described in Sec-

tion 2.3.2 requires some additional specifications.

The first module of the ObjectAug[41] method is the Image Parsing(see Sec-
tion 2.3.2) module where the PMSE regions defined by the ground-truth are
extracted from the image. To avoid any leftover pixels that might be unlabelled
PMSE, the ground-truth is padded with ones around the foreground PMSE
boundary.

There is need for some clarification around what is considered separate PMSE
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regions. Although some PMSE regions are separated by a suitable number of
pixels and can, to a certain degree, be interpreted as "different" PMSE regions,
it is not clear to the author of this study if PMSE regions in close vicinity of each
other are connected or not. However, given that the separation between PMSE
regions is small in many cases, a PMSE region will be considered an individual
region if there are 1 or more background pixels separating the boundaries of the
regions. This small distance between regions is selected because the number of
PMSE regions decreases drastically if the distance is set to a higher value.

For the Object Augmentation module (see Section 2.3.2), resizing and location
shifts are applied as the augmentation methods where each has a probability
of 𝑝 = 0.5 of being invoked.

For the resizing augmentation, the scaling of the PMSE region is based on a
random number denoted as 𝑛 ∈ [−3..3] where 𝑛 denotes the number of pixels
the object is scaled up or down. The reason that the objects are only scaled up or
down with a small number of pixels is to avoid PMSE regions either becoming
too big i.e., the PMSE stretches into regions of other PMSE and/or outside 80
to 90 km altitude range that the PMSE is believed to occur in[10], or too small
i.e., the PMSE region disappears or is reduced to only a few pixels.

For the location shift augmentation, the PMSE region is simply shifted horizon-
tally and/or vertically. The number of pixel points that the objects are shifted
is randomly selected in the range [−3..3] (horizontally and/or vertically). The
shifting range is limited to only a few pixels to avoid PMSE regions from over-
lapping by too much or being shifted outside of the 80 to 90 km altitude region.
It is however argued that location shifting the PMSE region by only a small
amount is sufficient in trying to get the model to learn different boundaries
between the background and PMSE regions.

In theory, several different augmentation methods such as rotation, flipping,
etc., could be used. However, using the rather conservative resizing and loca-
tion shift augmentation that was mentioned, it is believed that the PMSE is
not altered too much and is kept somewhat natural.

The object augmentation process is computationally heavy. Thus, to speed up
training, the object-augmented data used during training is pre-computed. For
each of the 18 PMSE samples in the dataset, 50 new samples are generated
giving 900 new samples. In addition to the 900 new samples, we include 180
samples of the original dataset i.e., the original dataset copied 10 times, such
that 20 percent of the total samples are non-augmented. The reason for this is
that the inpainted images will create a different background around the PMSE
than for the original samples, which might result in a model that is overfitted
to the new boundary between foreground (PMSE) and background.



3.3 evaluation 33

3.3 Evaluation

For the model quantitative performance evaluation, Intersection over Union
(IoU) and Dice-Sørensen Coefficient (DSC) are used and are averaged over all
samples. The performance is reported for both the validation and test set with
mean and standard variation from running the training process 5 times. The
best evaluation metrics from each set of experiments is underlined.

In all quantitative results the probability output denoted as 𝑃 , is thresholded
with a value of 0.5 where values above 0.5 are assigned to the foreground
(PMSE) class and values below to the background (Noise) class. The thresh-
olded output is denoted as 𝑃𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and is expressed as follows,

𝑃𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑥,𝑦) =
{
1, 𝑃 (𝑥,𝑦) ≥ 0.5
0, otherwise

,∀𝑥,𝑦 ∈ 𝑃 (3.3.1)

For all qualitative evaluations, the predictions are generated using the model
from the 5 training runs that had the best IoU performance.

The Layer-wise Relevance Propagation[30] from Section 2.5 is used to visualize
what regions of the input are considered important for the model output .i.e,
relevance. The relevance can be displayed differently and depends on different
factors such as the type of attribution method and LRP rules. For the relevance
displayed in later parts of the study, it is used a gradient attributions method
that computes the gradient and with the LRP rules; LRP-𝛾 and 𝑧B from 2.5.
The LRP is implemented using the Zennit[1]2 framework.

3.4 Experimental Set-up

In the experiments, two different UNet architectures are used; The UNet model
described in Section 2.1.1 and the UNet++ model described in Section 2.1.2.
Given that the problem of segmenting PMSE signal data is reduced to a binary
problem (See Section 3.1), sigmoid activation is used to produce the final output.
Both models are set to a layer depth of 𝐿 = 4. The number of initial feature
maps is set to 32 or 64 and will be denoted as e.g., UNet32 or UNet64 if 32 or
64 initial feature maps are used, respectively.

Both random initiated weights and pretrained weights are used during the

2. https://zennit.readthedocs.io/en/latest/

https://zennit.readthedocs.io/en/latest/
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experiments. In the latter case, the pretrained weights are only used in the
encoder layers 𝑋 𝑖,0, 𝑖 ∈ [0..𝐿] (see Figure 2.1 & 2.2). The remaining layers are
initiated using Kaiming He[15] initialization. In the random initiated case, all
layers are initiated using Kaiming He initialization.

For all experiments, the Adam optimizer algorithm[22] is employed with 𝛽1 =

0.9 and 𝛽2 = 0.999 which is suggested as a good starting point in the Adam
paper[22]. To avoid overfitting of the data, an early stopping mechanism is
used similar to that of algorithm 7.1 in [11] where the best parameters denoted
as 𝜃 ∗ are selected based on the validation set error. Depending on if the data
is augmented, the patience 𝑝 is set to a different value. For the models using
no augmentation 𝑝 = 10 and for the models using augmentation 𝑝 = 20.
For the latter case, the patience is set higher because the validation error is
more irregular during training because there are subsequently more different
samples. The models are evaluated every 10 iterations using a mini-batch size
of 8 randomly selected samples and run until the early stopping criteria are
met. The models are trained on an Nvidia RTX3070(Notebook) GPU with 8GB
of VRAM.



4
Experiments and Results
In this chapter, we outline the various experiments conducted and the corre-
sponding outcomes. Each section presents a detailed account of the experiment,
followed by both quantitative and qualitative results.

4.1 Initial Experiment

Initially, a set of experiments are conducted; One with the UNet[33](see 2.1.1)
model and one with UNet++[42](see 2.1.2) model with no augmentation.
Different variations of both models are tested as follows,

1. Random initiated weights with 32 and 64 initial feature maps.

2. Pretrained weight initiation of the encoder layers X𝑖,0, 𝑖 ∈ [0..𝐿], where
𝐿 = 4 (see figure 2.1 and 2.2). For the models with 32 initial feature
maps, a pretrained UNet model found at 1 is used as the backbone. For
the models with 64 initial feature maps, a VGG16[36] model pretrained
on ImageNet[7] is used as the backbone.

In this initial experiment, the dice loss function (see Section 2.4.2) is employed

1. https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_
unet
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for all models. To find suitable values for the learning rate and weight decay
parameters for the optimizer, a random hyperparameter search was conducted
prior to this experiment. The random hyperparameter search was run for the
different model variations outlined in 1 and 2 with random learning rate and
weight decay in the closed interval [0.01, 0.0001]. In Table 4.1, the learning
rate and weight decay are listed for each of the models run in the coming
experiments for UNet and UNet++. The selection of parameters is chosen
based on plots from the hyperparameters searches found in Figure A-1 to A-8
in the Appendix. The values are chosen based on the highest Dice-Sørensen
Coefficient (see Section 2.2.2) score in a region where the loss is reasonably
stable and where the difference between the train and validation score is not
too big i.e., the model is likely to be more generalized and not overfitted to the
training set.

Table 4.1: Learning Rate andWeight Decay values used during training of the different
models listed in Table 4.2. The values selected are based on the hyperpa-
rameter search in Figure A-1 to A-8.

Model - Initiation
Hyperparameters

Learning Rate Weight Decay

UNet32 - RandomInit 0.008 0.005

UNet32 - Pretrained 0.003 0.007

UNet64 - RandomInit 0.006 0.005

UNet64 - Pretrained 0.003 0.007

UNet++32 - RandomInit 0.005 0.005

UNet++32 - Pretrained 0.003 0.006

UNet++64 - RandomInit 0.002 0.006

UNet++64 - Pretrained 0.001 0.008

The exponential in e.g., UNet32 or UNet64, denotes the number of output feature maps
from the first encoder layer.

4.1.1 Quantitative Results

Table 4.2 displays the quantitative results from the initial experiment, demon-
strating the Intersection over Union (IoU) and Dice Similarity Coefficient (DSC)
scores for both the test and validation sets. The best results are underlined. It
is apparent from the table that there are only minor variations in performance
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among the different models. However, the best performing model, UNet++64

with randomly initialized weights, displays a slightly higher performance score.
Notably, Table 4.2 also indicates that models utilizing pre-trained weights ex-
hibit lower performance than those with randomly initialized weights, despite
employing the samemodel architecture and a different number of initial feature
maps.

Table 4.2: Quantitative performance of different UNet architectures with 32 or 64
initial feature maps. IoU and DSC are reported for the test and validation
set. The best performing model is underlined.

Model - Weight Initiation
Test Validation

IoU↑ DSC↑ IoU↑ DSC↑

UNet32 - RandomInit 0.654±0.006 0.791±0.005 0.710±0.007 0.830±0.005
UNet32 - Pretrained 0.634±0.010 0.776±0.007 0.699±0.008 0.823±0.006
UNet64 - RandomInit 0.649±0.005 0.787±0.003 0.713±0.011 0.832±0.008
UNet64 - Pretrained 0.645±0.005 0.784±0.004 0.702±0.005 0.825±0.003
UNet++32 - RandomInit 0.654±0.012 0.790±0.008 0.713±0.005 0.833±0.003
UNet++32 - Pretrained 0.632±0.027 0.774±0.021 0.692±0.030 0.817±0.021
UNet++64 - RandomInit 0.666±0.010 0.799±0.007 0.727±0.008 0.842±0.005
UNet++64 - Pretrained 0.649±0.006 0.787±0.004 0.719±0.008 0.837±0.005

The exponential in e.g., UNet32 or UNet64, denotes the number of output feature maps
from the first encoder layer.

4.1.2 Qualitative Results

To get a better view of where the models perform well and where they struggle,
a selection of samples is included in Figure 4.1 and 4.2 showing samples that
appear less and more difficult to segment accurately, respectively. In the two
figures, the original PMSE signal images are shown in the first column and the
ground truth mask in the second. The next four columns show the predictions
from the four models UNet64 - Pretrained, UNet64 - RandomInit, UNet++64 -
RandomInit and UNet++64 - Pretrained, respectively. The predictions from all
the models from the initial experiment can be found in Figure A-16 to A-19 in
the Appendix.

The accurate predictions displayed in Figure 4.1 demonstrate that all models
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Figure 4.1: Accurate Predictions. Qualitative comparison between UNet64 - Ran-
domInit, UNet64 - Pretrained, UNet++64 - RandomInit and UNet++64 -
Pretrained showing some of the test samples that the models can segment
accurately. The images and the ground-truth labels are shown in the first
and second columns, respectively.

can effectively segment PMSE regions, and the predictions are quite consistent
across the models used in this study. However, for Image 2 and 3, the models
encounter challenges in segmenting smaller PMSE regions and regions with
more irregular boundaries. In image 4, where there is only background present,
all models can predict this correctly.

The less accurate predictions in Figure 4.2 highlight two images (1 and 2)
in which the foreground is empty, yet all models predict PMSE. In Image 1,
the predictions vary slightly across models, but all models exhibit a noticeable
preference for a few high-valued pixels that are located along a vertical line
in the centre of the image. Similarly, in Image 4, all models predict PMSE in a
small region located towards the centre-left. Like Image 1, the models appear
to focus on a region of slightly higher value compared to the surrounding areas.
Interestingly, this region of interest in Image 4 bears some resemblance to other
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Figure 4.2: Less Accurate Predictions. Qualitative comparison between UNet64 -
RandomInit, UNet64 - Pretrained,UNet++64 - RandomInit andUNet++64

- Pretrained showing some of the test samples where the models have more
difficulties segmenting the PMSE regions accurately. The images and their
ground-truth label is shown in the first and second column, respectively.

PMSE regions observed in other images (e.g., Image 3), as they share similar
characteristics in terms of pixel values, size, and altitude location.

Upon closer examination of the predictions for Image 2 and 3 in Figure 4.2 and
Figure 4.1, it is evident that the models face difficulty in accurately segmenting
smaller PMSE regions. Instead, the models tend to group the many smaller
regions into larger PMSE regions.

4.1.3 Ablation Analysis of Different Loss Functions

Expanding on the findings of the initial experiment, an ablation analysis is con-
ducted to investigate how alternative loss functions compare to the Dice loss
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(L𝐷𝑖𝑐𝑒). To conduct this experiment, the UNet++64 model with randomly ini-
tialized weights, which exhibited the best performance in the initial experiment
(Section 4.1), is used as a baseline. To make a comparison, the same model
was trained using four other loss functions: Binary Cross Entropy (BCE) (see
Section 2.4.1), Focal Loss (see Section 2.4.3), Dice-BCE Loss (see Section 2.4.5),
and Dice-Boundary Loss (see Section 2.4.5), L𝐵𝐶𝐸 , L𝐹𝑜𝑐𝑎𝑙 , L𝐷𝑖𝑐𝑒 + L𝐵𝐶𝐸 and
L𝐷𝑖𝑐𝑒 + L𝐵, respectively. For L𝐹𝑜𝑐𝑎𝑙 and L𝐷𝑖𝑐𝑒 + L𝐵, some parameters must
first be specified.

• L𝐹𝑜𝑐𝑎𝑙 : 𝛾 = 2.0 is set equal to that in the original paper[27] while 𝛼 =

0.8 is chosen such that it is approximately inversely proportional to the
foreground frequency.

• L𝐷𝑖𝑐𝑒 + L𝐵: The increase and rebalance schedule strategies[21] for
setting 𝛼 is used:

– increase - 𝛼 = 0.01 initially and is increased by 0.01 every 5 itera-
tions where 𝛼 =𝑚𝑎𝑥 (𝛼, 1).

– Rebalance - 𝛼 = 0.005 initially and follows a schedule based on the
number of iterations as follows,

𝛼 =


𝛼 + 0.005, if iter < 100
𝛼 + 0.01, if 100 ≤ iter < 300
𝛼 + 0.02, otherwise

(4.1.1)

This represents a modified schedule for the parameter 𝛼 , which dif-
fers slightly from the rebalance strategy used in the original paper[21].
This modification is deemed necessary since the model encounters
difficulties when 𝛼 is increased too rapidly at the beginning. Dur-
ing the initial training phase, 𝛼 is assigned a smaller value, and its
increase rate is set higher to ensure that the loss reaches the final
phase, where L𝐷𝑖𝑐𝑒 has a very small but non-zero impact while L𝐵

significantly contributes to the final loss.

When 𝛼 is dynamically changed during training, a problem can arise where
the loss might increase, even though the IoU and DSC are improving thus
trigging the stopping criteria prematurely. Because the two losses are measures
of different objectives and at the same time are weighted dynamically, the total
loss might not follow the typical loss learning curve. As such, the IoU metric is
used instead of loss as the stopping criteria. From the learning curves in Figure
A-12 from training the model with L𝐷𝑖𝑐𝑒 +L𝐵 it can be seen for the rebalance
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strategy that the loss starts to increases slightly for the validation runs after
150 iterations while the IoU and DSC are still improving. Showing that the loss
might not be optimal as a stopping criterion for the L𝐷𝑖𝑐𝑒 + L𝐵 loss.

Quantitative Results.
Table 4.3 presents the quantitative findings, indicating that the L𝐷𝑖𝑐𝑒 +L𝐵𝐶𝑒

combination exhibits the best performance, but only marginally better than the
L𝐷𝑖𝑐𝑒 loss. While the distribution-based losses (L𝐵𝐶𝑒 and L𝐹𝑜𝑐𝑎𝑙) fall short of
the regional loss (L𝐷𝑖𝑐𝑒) in terms of performance, the combination ofL𝐷𝑖𝑐𝑒 and
L𝐵𝐶𝐸 enhances the performance slightly. Regarding the pairing of L𝐷𝑖𝑐𝑒 + L𝐵

and the two distinct𝛼 scheduling strategies, the increase strategy demonstrates
better performance. However, regardless of the scheduling strategy, the L𝐷𝑖𝑐𝑒 +
L𝐵 combination displays a performance decline relative to the top-performing
model.

Table 4.3: Quantitative performance of a random initiated UNet++64 architecture
using different loss functions. IoU and DSC are reported for the test and
validation set. The best performing model is underlined.

Loss function (L)
Test Validation

IoU↑ DSC↑ IoU↑ DSC↑

L𝐷𝑖𝑐𝑒 0.666±0.010 0.799±0.007 0.727±0.008 0.842±0.005
L𝐵𝐶𝐸 0.656±0.006 0.792±0.004 0.714±0.003 0.833±0.002
L𝐹𝑜𝑐𝑎𝑙 0.647±0.003 0.786±0.002 0.695±0.002 0.820±0.001
L𝐷𝑖𝑐𝑒 + L𝐵𝐶𝐸 0.667±0.005 0.800±0.003 0.731±0.004 0.844±0.003
L𝐷𝑖𝑐𝑒 + L𝐵 - Increase 0.662±0.013 0.797±0.010 0.722±0.011 0.838±0.007
L𝐷𝑖𝑐𝑒 + L𝐵 - Rebalance 0.650±0.011 0.788±0.008 0.703±0.012 0.825±0.008

- L𝑑𝑖𝑐𝑒 + L𝐵 is denoted with either Increase or Rebalance schedule strategy of 𝛼 .

Qualitative Results.
A visualization of the predictions made by the models trained with the dif-

ferent loss function is shown in Figure 4.3 and 4.4 for the samples that was
categorized as accurately and less accurately predicted in the initial experi-
ment, respectively. Here, the L𝐹𝑜𝑐𝑎𝑙 is not included such that the images in the
figures do not get too small. However, all the models with the different loss
functions can be seen in Figure A-20 to A-23 in the Appendix.

For the samples in Figure 4.3 and 4.4 it is shown that the predictions are quite
similar regardless of the loss function employed. However, there are someminor
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Figure 4.3: Accurate Predictions. Qualitative comparison between the different loss
functions L𝐷𝑖𝑐𝑒 , L𝐵𝐶𝐸 , L𝐷𝑖𝑐𝑒 + L𝐵𝐶𝐸 and L𝐷𝑖𝑐𝑒 + L𝐵 (Increase or Rebal-
ance scheduling) using a random initiated UNet++64 architecture. The
images and their ground truth label is shown in the first and second col-
umn, respectively.

variations between the predictions. In Figure 4.3 it is shown in image 1 that the
model using L𝐷𝑖𝑐𝑒 loss has a prediction that is more in line with the ground-
truth than for example the model using L𝐵𝐶𝐸 loss which predicts a narrower
PMSE region. The same pattern can be seen from image 2 and 3 in Figure
4.3 and 4.4. However, here the model using L𝐷𝑖𝑐𝑒 loss predicts larger PMSE
regions compared to the ground-truth and where the models using other losses
seem to be more accurate.

Discussion.
The results presented in Table 4.3 and Figures 4.3 and 4.4 indicate that the

differences in performance between using different loss functions are minimal,
both quantitatively and qualitatively. However, there is a noticeable variation
in the predictions made by the different losses, with the regional loss (L𝐷𝑖𝑐𝑒)
producing larger PMSE regions that encompass the high-valued PMSE signals,
compared to the distribution based losses (L𝐵𝐶𝐸 and L𝐹𝑜𝑐𝑎𝑙) which produce
smaller regions. Table 4.3 shows that the distribution-based losses have lower
performance than the regional-based loss, which suggests that they may be less
suitable for segmenting PMSE signals. It is possible that the limited number
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Figure 4.4: Less Accurate Predictions. Qualitative comparison between using the
different loss functions: L𝐷𝑖𝑐𝑒 , L𝐵𝐶𝐸 , L𝐷𝑖𝑐𝑒 + L𝐵𝐶𝐸 and L𝐷𝑖𝑐𝑒 + L𝐵

(Increase or Rebalance scheduling) using a random initiated UNet++64

architecture. The images and their ground truth label is shown in the first
and second column, respectively.

of training samples may introduce bias in favour of the L𝐷𝑖𝑐𝑒 loss, but the
evaluation on the validation samples (as shown in Table 4.3) indicates that
the performance differences between the models are consistent with those
observed for the test samples, suggesting that bias alone may not account for
the differences in performance.

Using a combination of L𝐷𝑖𝑐𝑒 and L𝐵𝐶𝐸 resulted in the highest IoU and DSC
scores, but the improvement compared to using only L𝐷𝑖𝑐𝑒 was minimal. The
two losses differ in the area around the high-valued PMSE that they include in
their predictions. By examining the ground-truth labels in Figures 4.3 and 4.4,
it can be seen that there are differences in how detailed the PMSE is classified,
with L𝐷𝑖𝑐𝑒 being better suited for less detailed ground-truth labels and L𝐵𝐶𝐸

being better suited for more detailed ones. Therefore, combining the two losses
may be a good compromise for predicting samples with differing levels of detail
in their labels.

Based on the original paper on boundary loss [21], one might assume that using
theL𝐷𝑖𝑐𝑒+L𝐵 loss would lead to better identification of a suitable boundary for
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the foreground PMSE. However, the visual results in Figures 4.3 and 4.4 suggest
that this may not be the case, possibly due to the difficulty of the boundary
loss in dealing with the many irregularly shaped PMSE regions in the samples.
It is however possible that fine-tuning the hyperparameters and adjusting the
scheduling of 𝛼 could address this issue to some extent.

Since the differences in performance among the various loss functions were
minimal, this study will use the loss function that demonstrated the highest
performance, namely L𝐷𝑖𝑐𝑒 + L𝐵𝐶𝐸 , in further experiments.

4.2 Applying Object- and Image-level
Augmentation

In an attempt to enhance the model’s performance, we conducted a series of ex-
periments using the ObjectAug method [41] (see Section 4.2). The UNet++64

model with randomly initialized weights and L𝐷𝑖𝑐𝑒 + L𝐵𝐶𝐸 loss is used based
on the findings from the previous section. We also examine how simple image-
level augmentation methods affect the model performance by conducting a few
experiments. First, we used each of the object augmentation techniques listed
in Section 2.3.1 individually, namely Horizontal Flip, Vertical Flip, and Con-
trast Adjustment, with a probability of 𝑝 = 0.5 for invoking the augmentation
method. For the Contrast Adjustment method, we randomly selected the ad-
justment factor 𝑐 from the range 𝑐 ∈ [0.8, 1.2]. Additionally, we performed two
experiments using combinations of these augmentation methods. The results
are shown in Table 4.4, indicating that each individual augmentation method
outperforms the baseline. While combining all individual augmentation meth-
ods produced a slight improvement over the baseline, it was lower than using
the augmentation methods separately. The last row of Table 4.4 shows that the
combination of Horizontal Flip and Contrast Adjustment, which had the high-
est performance increase of the individual augmentation methods, produced a
relatively significant performance boost.

Next, two models are trained using the ObjectAug method[41]. Along with
training a model using only ObjectAug, another model was trained using the
image-level augmentation techniques that demonstrated an increase in per-
formance in Table 4.4. The object-level augmentation methods used in Objec-
tAug are significantly different from the image-level augmentation methods,
indicating that the image-level augmentation techniques could complement
the ObjectAug method. The original paper on ObjectAug[41] demonstrated
that adding image-level methods to the object-oriented augmentation meth-
ods could improve performance.
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Table 4.4: Quantitative performance of using different image-level augmentation sep-
arately and combined. IoU and DSC are reported for the test and validation
set. The best performing model is underlined.

Model - Augmentation
Test Validation

IoU↑ DSC↑ IoU↑ DSC↑

Baseline 0.667±0.005 0.800±0.003 0.731±0.004 0.844±0.003

w/ Horizontal Flip 0.682±0.010 0.811±0.007 0.742±0.008 0.851±0.005
w/ Vertical Flip 0.672±0.006 0.804±0.004 0.739±0.009 0.849±0.006
w/ Contrast Adjust 0.683±0.005 0.811±0.003 0.742±0.002 0.851±0.001
w/ All Combined 0.669±0.007 0.801±0.005 0.741±0.008 0.851±0.006

w/ Horizontal Flip
& Contrast Adjust 0.694±0.008 0.819±0.006 0.735±0.004 0.847±0.003

The results are presented in Table 4.5. The baseline model in this table is the
same as the one used in Table 4.4, which received no augmentation. The two
models trained on the generated dataset in Table 4.5 show significant improve-
ments compared to the baseline model trained without augmentation. Looking
at Table 4.5, it is evident that incorporating image-level augmentation into Ob-
jectAug enhances performance. However, the improvement is only marginally
better than using image-level augmentation alone.

Table 4.5: Quantitative performance of using no, image-level, object-level and image
-and object-level augmentation. IoU and DSC are reported for the test and
validation set. The best performing model is underlined.

UNet++64 - RandomInit
Test Validation

IoU↑ DSC↑ IoU↑ DSC↑

No Aug 0.667±0.005 0.800±0.003 0.731±0.004 0.844±0.003

w/ Image-Aug 0.694±0.008 0.819±0.006 0.735±0.004 0.847±0.003

ObjAug 0.678±0.009 0.808±0.007 0.719±0.007 0.836±0.005

w/ Image-Aug 0.701±0.010 0.824±0.007 0.730±0.003 0.843±0.002

Quantitative results.
To visualize the performance of the models performance with the different
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augmentation techniques, the same images in that of Figure 4.1 and 4.2 are used.
The model predictions can be seen in Figure 4.5 and 4.6 where the column
names denote the type of augmentation used. Comparing the model using
no augmentation (denoted as No Aug) with the models that employed either
image- or object-level augmentation it can be seen that there are some major
differences in the predictions for some of the PMSE images. This can be seen
in image 4 in Figure 4.5 where it is shown that the models using augmentation
incorrectly predict small PMSE regions to the right in the PMSE image and
where the model that uses no augmentation predicts this correctly. For image
3 in Figure 4.6 we can see that the models that use augmentation are able to
segment the many smaller PMSE regions in an improved manner.

It is noticeable that the models using augmentation are able to predict the PMSE
images where the ground-truth label seems more detailed. This is shown in
image 2 in Figure 4.6 and image 3 in Figure 4.5 where we can see that compared
to the model using no augmentation, the predicted PMSE regions have a more
irregular boundary that is more in line with the ground-truth. From the same
images, it can also be seen that there are some variations between using image-
and object-level augmentation. With object-level augmentation, the regions
predicted are a bit narrower and seem to focus more on the high-valued part
of the PMSE regions.

The combination of image- and object-level augmentation produces predictions
that look like something in between the predictions of the image- and object-
level augmentation.
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Figure 4.5: Accurate Predictions. Qualitative comparison between using different
types of augmentation using a UNet++64 model with random initiated
weights. In the first and second column, the image and ground-truth are
shown, respectively. The third column shows the prediction of a model
trained with no augmentation. The fourth shows the prediction of a model
that used horizontal and contrast adjustment augmentation. The fifth
column shows the prediction.
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Figure 4.6: Less Accurate Predictions. Qualitative comparison between using differ-
ent types of augmentation using a UNet++64 modelwith random initiated
weights. In the first and second column, the image and ground-truth are
shown, respectively. The third column shows the prediction of a model
trained with no augmentation. The fourth shows the prediction of a model
that used horizontal and contrast adjustment augmentation. The fifth col-
umn shows the prediction.



5
Discussion
5.1 Initial Experiment

In the initial experiments, various UNet and UNet++ models were trained,
and it was observed that the models exhibited similar performance. However,
when comparing models with the same architecture and number of initial
parameters, those utilizing pretrained weights in the encoder showed worse
performance than their randomly initialized counterparts. For the UNet32 and
UNet++32 models, pretrained weights from the medical imagery domain were
used, while weights from the natural image domain were used for the UNet64
and UNet++64 models. This suggests that other source domains may not be
directly applicable to the target domain of the PMSE data through homoge-
neous domain adaptation, as the feature space of natural and medical imagery
differs from that of the PMSE samples.

Interestingly, models utilizing the VGG16[36] backbone trained on the natural
image dataset ImageNet[7] showed closer performance to randomly initialized
models than those using the backbone from the medical imagery domain. As
the backbones are trained on data from different source domains, there may be
biases towards specific features in an image. To investigate if there are signifi-
cant differences between the pretrained models in terms of what is considered
important features in the input image, a set of relevance maps were generated
using the LRP method from Section 2.5.

Figure 5.1 displays the input image and ground-truth, along with the explained

49
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Figure 5.1: The figure depicts four different models utilizing pretrained weights in the
encoder and their resulting explained relevance. The UNet32/UNet++32

models utilize pretrained weights from the medical image domain, while
the UNet64/UNet++64 models use pretrained weights from the image
domain. The first and second column display the image and ground-truth,
respectively. The relevance maps are normalized to be centred around 0.5
(black) to indicate no relevance. Full relevance is represented by a value
of 1 (white), while inverse relevance is denoted by a value of 0 (cyan).

relevance from each of the models that used pretrained weights in the encoder.
The relevance maps associated with the different pretrained models used in
this study were quite similar, as shown in Figure 5.1. Rather, the difference in
relevance appeared to be more closely linked to the type of model architecture
used. Given that the pretrained models showed worse performance than their
randomly initialized counterparts in Figure 4.2, it may be that the difference is
due to incorrect model tuning or prediction threshold, rather than biases from
other source domains reducing performance.
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5.2 Effects of Augmentation

Image-Level Augmentation Effect.
Using image-level augmentation improved model performance, as seen in

Table 4.4. This result is not surprising and is consistent with other studies[41,
2, 37] that have shown the positive effect of augmentation. However, the data
used in this study differs slightly from more common cases with natural or med-
ical images. Although the image-level augmentation used could be considered
conservative, it is argued that this is a good approach, given that PMSE regions
occur at specific altitudes and with a pattern that elongates horizontally.

Table 4.4 indicates that vertical flipping of the image shows some improvement
in performance compared to using no augmentation. However, it is also appar-
ent from the figure that excluding vertical flip augmentation from the combined
augmentation results in improved performance. This suggests that augmenta-
tion that changes the PMSE image in a highly unnatural way, such as rotating
or flipping the image so that PMSE and the background occur in improbable
locations and could lead to worse performance as the model learns patterns
and context that are different from the natural occurrence of foreground PMSE
and background noise.

Object-level Augmentation Effect.
Table 4.5 shows that using object-level augmentation resulted in worse per-

formance than using only image-level horizontal and contrast adjustment aug-
mentation. However, when the same image-level augmentation was combined
with object-level augmentation, there was a slight improvement in performance.
Although the increase in performance was marginal, the qualitative results in
Figure 4.5 and 4.6 demonstrate that the model utilizing object-level augmen-
tation (ObjAug) predicted regions differently. It appeared to be more aware of
smaller PMSE regions and able to predict irregular shapes that fit better for
some samples (further discussed in Section 5.3).

Using object-level augmentation creates a problem in which the boundary
between PMSE and the background is altered. The cause of this effect is not
fully understood, but it is believed that the inpainting of images impacts how
the models learn the boundary between background and PMSE. During the
inpainting process, a slightly larger region around the PMSE is removed to avoid
unlabelled PMSE pixels. The inpainting model then fills in this region before
replacing the PMSE at its original position. However, as illustrated in Figure
5.3, where no augmentation is applied to the PMSE regions, the inpainted
region around the PMSE can be significantly different from the original. The
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Figure 5.2: The figure displays relevance maps generated from four different models,
all utilizing a UNet++64 architecture initialized randomly. The columns
indicate the type of augmentation and loss function utilized: ObjAug repre-
sents object-level augmentation, ImAug denotes image-level augmentation,
and NoAug indicates no augmentation was employed. The first and second
column present the image and ground-truth, respectively. The relevance
maps are normalized to be centred around 0.5 (black) to indicate no rele-
vance. Full relevance is represented by a value of 1 (white), while inverse
relevance is denoted by a value of 0 (cyan).

result is that the gradient between PMSE and the inpainted background is often
increased, possibly influencing the model towards regions with large contrasts
or gradients.

Overall Effect of Augmentation.
In order to compare the effects of using and not using data augmentation,

we utilized LRP (described in Section 2.5) to determine which features in the
input image were deemed relevant by the models. We observed that the mod-
els trained with augmentation identified slightly different important features
compared to those trained without augmentation. Additionally, the relevance
maps of the models trained with augmentation had lower overall relevance
compared to those trained without augmentation, indicating a potential bias
towards certain areas of the input in the latter case.
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Figure 5.3: Illustration of the different boundary between foreground and PMSE that
the inpainted image creates compared to the original image.

Furthermore, while it is expected that the models perform better on the val-
idation set due to the stopping criteria being based on validation loss, our
evaluation (as shown in Tables 4.4 and 4.5 in Section 4.2) revealed that the
best performing models on the test set did not necessarily have the highest
score on the validation set. We also found that the difference between test and
validation performance was lower for models trained with data augmentation,
suggesting that these models may be better at generalizing to new cases.

Finally, although it is shown that augmentation helps to improve model perfor-
mance, different augmentation methods, both image- and object-level, should
be tested more rigorously in future studies for a more optimal combination of
augmentationmethods. Also, the inpaintingmodel usedwith the ObjectAug[41]
(see Section (2.3.2)) method is a part that could be improved to generate more
natural background noise in the removed PMSE regions.
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5.3 Label Inconsistency

Label inconsistency is a problem for supervised deep learning models that
may lead to inaccurate and unreliable results. As the author of this thesis is no
expert in the field of PMSE, the consistency and precision of the different PMSE
labels will not be discussed. However, there is possible to show through several
examples of PMSE images and their corresponding ground-truth that there
might be inconsistencies in the labelling. First, it is argued thatmanual labelling
of data is highly custom to human factors. Data labelled at different times and
by different persons can be a contributing factor to label inconsistency.

In the PMSE dataset, it is seen that some samples have a ground-truth that
seems to be more focused on small regions of higher value to that of its neigh-
bouring values while others include more of the lower valued region around
the high-valued regions. In Figure 5.4 an example of the mentioned difference
is shown. For ease of explanation, the mentioned difference in labels is divided
into two categories: Granular and Coarse labelled samples, respectively. It must
be noted that either one of the two categories is concluded as more consistent
than the other.

From the histograms to the left of each image and ground-truth pair it can
be seen that the Coarse labelled PMSE includes lower values than that of the
Granular labelled PMSE. In the two top samples (sample 1 & 6) the distribution
of PMSE labelled values are shown to include some minimum values i.e., an
equivalent electron density of 6. Compared to the Granular labelled PMSE
(sample 10 & 12) the distribution of PMSE labelled values shows that there are
only values around an equivalent electron density ≳ 10.

The difference in the PMSE labelled values shows that there is a possibility that
there are some inconsistencies which may confuse the model to make inaccu-
rate or to some degree unreliable results. In many of the results in Chapter
4 it was shown that many models tend to segment larger regions where the
ground-truth has more Graular labelled PMSE regions.

To further show the issue of inconsistent PMSE labelling and the effect it might
have on how models learn, the samples that are seen as Granular and Coarse
labelled are divided into two separate classes. In Figure 5.5 the IoU and DSC
metric performance of four different models are shown for the Granular and
Coarse classes. Note that all models are of the UNet++64 architecture with
random initiated weights. From the figure, it can be seen that for the two mod-
els that used no augmentation the performance on the Coarse class is slightly
higher IoU and DSC score than for the Granular class. What is also noticeable
and previously noted in Section 4.1.3 is that the model using L𝐷𝑖𝑐𝑒 had a ten-
dency to segment bigger regions than models using other loss functions such as
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the L𝐷𝑖𝑐𝑒 +L𝐵𝐶𝐸 . As seen from Figure 5.5, the model with L𝐷𝑖𝑐𝑒 has a higher
IoU and DSC for the Coarse class and is thus in line with what could be seen
from the qualitative results in Section 4.1.2.

The two models that utilize augmentation have a significant increase for the

Figure 5.4: Analysis of different labels in the dataset. The figure shows the sample
images with the corresponding ground-truth label and a histogram show-
ing the values of the image where the ground-truth indicates PMSE (red).
The images and histograms under Coarse labelled PMSE shows two sam-
ples that are seen as more coarse labelled. The images and histograms
under Granular labelled PMSE shows two samples that are seen as more
granular labelled.
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Granular class as shown in Figure 5.5. Both models were seen to have quite
similar performance in table 4.5 but as shown in Figure 5.5 they differ when
evaluating them based on the Coarse and Granular classes. The model that only
used image-level augmentation had improved performance for both classes,
while the model with object-level augmentation could be seen to have signifi-
cantly better performance on the Granular class but worse on the Coarse class.
As discussed in Section 5.2 on the Object-level Augmentation Effect, the model
trained using object-level augmentation tended to predict smaller and more
granular regions in a better way. This is in line with the results from Figure 5.5
that shows a significant performance increase for the Granular labelled samples.
As discussed in Section 5.2, there is a difference between the foreground and
background boundary in the inpainted images compared to the original images
as seen in Figure 5.3 which might make the models trained with object-level
augmented data more aware of large gradient changes between foreground
and background which matches better from the Granular labelled PMSE.

Figure 5.5: Performance comparison between four different models using Granular
and Coarse labelled PMSE as classes. All models use the random initiated
UNet++64 architecture. The type of augmentation and loss function used
during training is listed in the legend. ObjAug denotes object-level aug-
mentation, ImAug denotes image-level augmentation and NoAug denotes
no augmentation.

5.4 PMSE Regions Surrounded By Ionospheric
Noise

In some of the samples in the dataset, there are PMSE regions that are sur-
rounded by ionospheric noise. The ionospheric noise often has a higher value
than the background noise (see Figure 3.1). It is often easier for the model to
spot PMSE surrounded by low-valued background noise. The ionospheric noise
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however usually has a value much closer to PMSE and tends to make it more
difficult for the models to segment the PMSE. An illustration of this is shown in
the top row of Figure 5.6, where a region that the models struggle with is high-
lighted by the black square. Another thing to notice in the second row of Figure
5.6 is that when the high-valued PMSE regions are removed and inpainted the
difficult region is segmented in a better way by the models. It could be the case
that the models are biased toward PMSE with higher values as compared to
PMSE with lower values with respect to the ionospheric background. This is
something that could be investigated in future studies.

Figure 5.6: The figure shows the difficulties that the models have with predicting the
highlighted area (black square). The first and second column shows the
image and ground-truth, respectively. And the third and fourth column
shows the prediction of the models trained without and with random
erasing, respectively. The image in the first row shows the original PMSE
sample and the second row shows the same image is shown but where all
PMSE regions except one are removed.

To reduce the problem of poorly segmented PMSE regions surrounded by iono-
spheric noise, it could be possible that using the object-level augmentation and
removing some PMSE regions at random could alleviate this problem. As such,
we conduct a small experiment where we randomly erase PMSE regions. For the
experiment, we use the random initiated UNet++64 architecture with image-
and object-level augmentation that was seen to have the best performance from
the experiments in Section 4.2 and Table 4.5. PMSE regions are erased with a
probability of = 0.5. To compensate for the number of lost PMSE regions due
to the random erasing, we increase the number of pre-computed augmented
samples by 50% compared to the model that does not use erasing.

The results are shown in table 5.1 and as it can be seen the model performance
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is lower on the test set when using random erasing. However, when looking at
the second row in Figure 5.7, the new model is slightly better at segmenting
out the weak PMSE region when the other PMSE regions are removed. Also, it
can be seen that the model using random erasing is less interested in the noise
generated by the inpainting model. However, from the original sample in the
first row in Figure 5.7, where none of the regions is removed, it can be seen that
random erasing does not contribute to any significant improvement.

Table 5.1: Quantitative performance of using object-level augmentation with andwith-
out random erasing of PMSE regions. IoU and DSC are reported for the test
and validation set. The best performing model is underlined.

Erasing
Test Validation

IoU↑ DSC↑ IoU↑ DSC↑

✗ 0.701±0.010 0.824±0.007 0.730±0.003 0.843±0.002

✓ 0.686±0.007 0.813±0.005 0.748±0.003 0.856±0.002

Figure 5.7: The figure shows the effect that erasing PMSE has on model prediction.
The first and second column shows the image and ground-truth, respec-
tively. And the third and fourth column shows the prediction of the models
trained without and with random erasing, respectively. The image in the
first row shows the original PMSE sample and the second row shows the
same image is shown but where all PMSE regions except one are removed.
The region of interest is highlighted in the black square.
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5.5 Different Altitude Resolution

The resolution of the samples in the dataset varies, with consistent time res-
olution but significant variation in altitude resolution, ranging from 22 to 60
pixels. All samples are limited to a 75 to 95 km altitude region. The reason for
the variation is not fully understood, but it is thought to be related to the use
of different sample codes (manda or arcd), except the two samples with an
altitude resolution of 22, which both use the arcd sample code. Samples with
altitude resolutions of 48 typically use the manda sample code, as do those
with resolutions of 58 and 60, although it is possible that different altitude reso-
lutions using the same sample code may be linked to the year of observation. In
Table A-1, samples 1 to 10 have an altitude resolution of 48 (excluding samples
2 and 3, which use the arcd sample code), samples 11 to 14 have a resolution
of 60, and samples 15 to 18 have a resolution of 58, illustrating the difference
between altitude resolution and years of observation.

The impact of the different altitude resolutions on models is not well under-
stood. When the data is divided into classes based on altitude resolution, mod-
els appear to perform better on samples with lower altitude resolution, such
as 22 and 48. However, because of the small sample size, it is unclear whether
this accurately reflects the true nature of the problem, particularly given that
the complexity of the test set samples may vary.

The variation in altitude over different years of EISCAT data is an important
issue that should be addressed in future research.





6
Conclusion
The goal of this study was to implement a deep learning model that could
segment PMSE signal from EISCAT VHF radar data to be used in further anal-
ysis and research of changes in the 75 to 95 km altitude range of the meso-
sphere.

For the objective of segmenting the PMSE signals, a UNet and UNet++ archi-
tecture was used. A set of experiments was conducted to find optimal network
sizes, initial weight settings and loss functions. Further, different augmenta-
tion methods were tested to address the potential problem with few PMSE
signal samples and improve model predictions. In the evaluation of the models
quantitative performance, the metrics IoU and DSC were reported.

From the results it was found that random initiated weights were best suited for
the segmentation task, outperforming the use of pre-trained encoder weights
from other source domains. Further, it was shown that the choice of loss func-
tions had only a small impact on the performance metrics although it could be
shown from the qualitative results that the use of different loss functions had
some impact on how the model segmented different PMSE regions. Through ap-
plying both image- and object-level augmentation the best model performance
was reached but only slightly better than when only using image-level augmen-
tation. Through the use of LPR it was seen that although some models perform
better on the evaluation metrics, the regions of relevance to the models were
quite similar. Indicating that the models, regardless of architecture variations,
can spot the most important features of the PMSE signal images.
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Further, it was noted that there exist inconsistencies in the labelling of the
PMSE signals. By dividing the inconsistencies into two categories: Coarse and
granular, it could be seen that the models using object-level augmentation
had a significantly better performance on the granular labelled PMSE signal
images. Also, it was seen that the PMSE signal dataset consisted of samples
with different altitude resolutions that can affect the training process.

For future studies, the model can be used over a larger EISCAT VHF radar
dataset to investigate changes in the altitude range of 75 to 95 km in the
mesosphere. Also, the difference between PMSE signal labelling and PMSE
signal altitude resolution could be investigated.
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Appendix

Figure A-1: Hyperparameter search for learning rate and weight decay using dice loss
with UNet32 architecture with randomly initiated weights.
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Figure A-2: Hyperparameter search for learning rate and weight decay using dice loss
with UNet32 architecture with pretrained encoder.
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Figure A-3: Hyperparameter search for learning rate and weight decay using dice loss
with UNet64 architecture with pretrained encoder.
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Figure A-4: Hyperparameter search for learning rate and weight decay using dice loss
with UNet64 architecture with pretrained encoder.
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Figure A-5: Hyperparameter search for learning rate and weight decay using dice loss
with UNet++32 architecture with randomly initiated weights.
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Figure A-6: Hyperparameter search for learning rate and weight decay using dice loss
with UNet++32 architecture with pretrained encoder.
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Figure A-7: Hyperparameter search for learning rate and weight decay using dice loss
with UNet++64 architecture with randomly initiated weights.
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Figure A-8: Hyperparameter search for learning rate and weight decay using dice loss
with UNet++64 architecture with pretrained encoder.
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Figure A-9: Learning curves for UNet models trained in the initial experiment in Sec-
tion 4.1 and Table 4.2.
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Figure A-10: Learning curves for UNet++ models trained in the initial experiment in
Section 4.1 and Table 4.2.
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Figure A-11: Learning curves from the experiment on using different loss functions
in Section 4.1.3 and Table 4.3.
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Figure A-12: Learning curves from the experiment on using different loss functions
in Section 4.1.3 and Table 4.3.
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Figure A-13: Learning curves from the experiment on using different image-level aug-
mentation methods in Section 4.2 and Table 4.4.
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Figure A-14: Learning curves from the experiment on using different image-level aug-
mentation methods in Section 4.2 and Table 4.4.

Figure A-15: Learning curves from the experiment on using the ObectAug method in
Section 4.2 and Table 4.5.
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Figure A-16: Initial experiment Unet. Accurate Predictions.
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Figure A-17: Initial experiment Unet. Less accurate predictions.
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Figure A-18: Initial experiment Unet++. Accurate Predictions.
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Figure A-19: Initial experiment Unet++. Less accurate predictions.
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Figure A-20: Easy Samples. Qualitative comparison between the different loss func-
tions L𝐷𝑖𝑐𝑒 , L𝐵𝐶𝐸 and L𝐹𝑜𝑐𝑎𝑙 using a random initiated UNet++64 ar-
chitecture. The images and their ground truth label is shown in the first
and second column, respectively.
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Figure A-21: Easy Samples. Qualitative comparison between the different loss func-
tions L𝐷𝑖𝑐𝑒 + L𝐵𝐶𝐸 and L𝐷𝑖𝑐𝑒 + L𝐵 - Increase -and Rebalance using a
random initiated UNet++64 architecture. The images and their ground
truth label is shown in the first and second column, respectively.
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Figure A-22: Difficult Samples. Qualitative comparison between the different loss
functions L𝐷𝑖𝑐𝑒 , L𝐵𝐶𝐸 and L𝐹𝑜𝑐𝑎𝑙 using a random initiated UNet++64

architecture. The images and their ground truth label is shown in the
first and second column, respectively.
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Figure A-23: Difficult Samples. Qualitative comparison between the different loss
functions L𝐷𝑖𝑐𝑒 +L𝐵𝐶𝐸 andL𝐷𝑖𝑐𝑒 +L𝐵 - Increase -and Rebalance using a
random initiated UNet++64 architecture. The images and their ground
truth label is shown in the first and second column, respectively.
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Sample Number Dates Start Time in UTC End Time in UTC

(1..18) (d/m/yyyy) (hh:mm:ss) (hh:mm:ss)

1 30 June 2008 07:59:38 12:07:30

2 02 July 2008 10:24:30 11:59:02

3 10 June 2009 09:03:42 11:56:09

4 14 July 2009 08:19:33 11:33:15

5 16 July 2009 08:47:30 10:06:26

6 17 July 2009 07:49:44 11:59:30

7 30 July 2009 12:15:29 15:59:08

8 07 July 2010 00:00:30 21:59:27

9 08 July 2010 09:00:42 12:59:03

10 09 July 2010 09:00:24 12:59:09

11 01 June 2011 08:34:31 10:02:07

12 08 June 2011 07:23:50 13:01:07

13 09 June 2011 08:01:45 12:59:26

14 01 July 2014 09:00:36 13:00:24

15 10 August 2015 09:14:40 16:12:28

16 12 August 2015 20:04:40 23:59:28

17 13 August 2015 00:00:28 01:59:26

18 20 August 2015 00:00:28 01:59:26

Table A-1: The table lists the observation dates (day, month, year) of the samples
used in this study. The observation time is given in UTC with the format
Hours:Minutes: Seconds.
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