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Abstract
Onpage206 in his lost notebook,Ramanujan recorded the following enigmatic identity
for his theta function ϕ(q):

ϕ(e−7π
√
7) = 7−3/4ϕ(e−π

√
7)
{
1 + ( )2/7 + ( )2/7 + ( )2/7

}
.

We give the three missing terms. In addition, we calculate the class invariant G343 and
further special values of ϕ(e−nπ ), for n = 7, 21, 35, and 49.

Keywords Theta functions · Septic theta function identities · Ramanujan’s lost
notebook

Mathematics Subject Classification 33C05 · 05A30 · 11F32 · 11R29

1 Introduction

Ramanujan’s general theta function f (a, b) is defined by [24, p. 197], [4, p. 34]

f (a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1, (1)

which provides an alternative formulation [5, p. 3] for the classical theta functions
(θi (z, q))4i=1 in [34, pp. 462–465]. The symmetry reflected in the definition of f (a, b)
is inherited by its representation by the Jacobi triple product identity [17, pp. 176–183],
[24, p. 197], [4, p. 35], which states that
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886 Örs Rebák

f (a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞, |ab| < 1, (2)

where

(a; q)∞ :=
∞∏

k=0

(
1 − aqk

)
, |q| < 1.

In Ramanujan’s notation, the theta function ϕ(q) is defined by [24, p. 197], [4, p. 36]

ϕ(q) := f (q, q) =
∞∑

n=−∞
qn

2 =
(
−q; q2

)2

∞

(
q2; q2

)

∞ , |q| < 1, (3)

where the series and product representations are straightforward from (1) and (2),
respectively. Furthermore, we set [24, p. 197], [4, p. 37]

χ(q) :=
(
−q; q2

)

∞ , |q| < 1. (4)

If q = exp(−π
√
n), for a positive rational number n, the class invariant Gn of

Ramanujan [21], [22, pp. 23–39], [7, p. 183] and Weber [33, p. 114] is defined by

Gn := 2−1/4q−1/24χ(q). (5)

For odd n, Ramanujan’s values for Gn are listed in [7, pp. 189–199], Weber’s list is
in [33, pp. 721–726], and motivation is in [12]. The class invariants are algebraic [15,
pp. 214, 257].

A fundamental result in the theory of elliptic functions is that for a positive rational
n,

ϕ2(e−π
√
n) = 2F1

( 1
2 ,

1
2 ; 1; k2n

) = 2

π
K (kn). (6)

Here, 2F1 is the ordinary or Gaussian hypergeometric function [34, pp. 24, 281], K is
the complete elliptic integral of the first kind [34, pp. 499–500], [4, p. 102], [9], and
kn is a singular value or singular modulus [34, pp. 525–527], [12, 14, 19], [7, p. 183]
of the elliptic integral K . The singular values are algebraic [1]. Ramanujan used the
notation αn := k2n [12], [7, p. 183]. This statement is given more generally in [24,
p. 207], [4, p. 101, Entry 6]. An overview of the theory of elliptic functions can be
found in [4, p. 102], [9, 12], [7, pp. 323–324].

For a positive rational n, a positive integer d, and q = exp(−π
√
n), in the theory

of modular equations, the multiplier m of degree d is defined by

m := ϕ2(q)

ϕ2(qd)
= ϕ2(e−π

√
n)

ϕ2(e−dπ
√
n)

. (7)
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The three missing terms in Ramanujan’s… 887

The multiplier m can be defined more generally, as given in [4, p. 230], [9, 12], [7,
p. 324]. In our case, m defined in (7) is algebraic [37]. An overview of the theory of
modular equations can be found in [4, pp. 213–214], [9, 12], [7, p. 185].

It is classical [34, pp. 524–525], and it was also discovered by Ramanujan [24,
p. 207], [4, p. 103], [23, p. 248], [9], [7, p. 325], that

ϕ(e−π ) = π1/4

�
( 3
4

) = �
( 1
4

)

√
2π3/4

. (8)

For a positive rational n, Ramanujan recorded his values for ϕ(e−nπ ) in terms of
ϕ(e−π ), but in view of (8), ϕ(e−nπ ) is therefore determined explicitly. At scattered
places in his notebooks, Ramanujan recorded some values of ϕ(e−nπ ) when n is a
power of two, namely, for n = 1, 2, 4, 1/2, 1/4 [23, p. 248], [7, p. 325]; and when
n ≥ 3 is an odd integer, namely, for n = 3, 5, 7, 9, and 45 [23, pp. 284, 285, 297, 287,
312], [9], [7, pp. 327–337]. The values at powers of two are parts ofmore general results
from Ramanujan’s second notebook [24, p. 210], [4, pp. 122–123]. The evaluations
for the odd values were established by Berndt and Chan [9], [7, pp. 327–337]. They
also determined the values for n = 13, 27, and 63.

Selberg and Chowla [26] showed that for any singular value kn , the elliptic integral
K (kn) is expressible in terms of gamma functions. J. M. Borwein and Zucker [14, 37],
[13, p. 298] evaluated K (kn), for n = 1, . . . , 16. Thus, by (6), we have the value of
ϕ(e−π

√
n) in these cases. We give two theta function values, corresponding to k3 and

k7 [19, 38], respectively:

ϕ
(
e−π

√
3
)

= 31/8�3/2
( 1
3

)

22/3π
(9)

and

ϕ
(
e−π

√
7
)

=
{
�
( 1
7

)
�
( 2
7

)
�
( 4
7

)}1/2
√
2 · 71/8π =

√
2
{(

cos
(

π
7

)− cos
( 3π

7

))
B
( 1
7 ,

2
7

)}1/2

73/8
√

π
,

(10)

where B(x, y) := �(x)�(y)/�(x + y), for Re(x),Re(y)> 0, is the beta function [34,
pp. 253–256].

If we would like to calculate ϕ(e−π
√
r ) explicitly, for a positive integer r , then if r

is square-free and the corresponding values kr and K (kr ) are known, we can use (6). If
r is not square-free and the value ϕ(e−π

√
n) is known, where n is the square-free part

of r and
√
r = d

√
n, for a positive integer d, then we can calculate ϕ(e−dπ

√
n), with

appropriate modular equations of degree d, which contains the class invariants Gn

and Gd2n , with known explicit values, and the multiplierm. There are other particular
methods, as we see next, in Entry 1.1.

On page 206 in his lost notebook [25], Ramanujan recorded the following identities.
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888 Örs Rebák

Entry 1.1 (p. 206) Let

(i) ϕ(q1/7)
ϕ(q7)

= 1 + u + v + w. Then

(ii) p := uvw = 8q2(−q;q2)∞
(−q7;q14)7∞ and

(iii) ϕ8(q)

ϕ8(q7)
− (2 + 5p) ϕ4(q)

ϕ4(q7)
+ (1 − p)3 = 0. Furthermore,

(iv) u =
(

α2 p
β

)1/7
, v =

(
β2 p
γ

)1/7
, and w =

(
γ 2 p
α

)1/7
, where α, β, and γ

are the roots of the equation

(v) r(ξ) := ξ3 + 2ξ2
(
1 + 3p − ϕ4(q)

ϕ4(q7)

)
+ ξ p2(p + 4) − p4 = 0. For example,

(vi) ϕ(e−7π
√
7) = 7−3/4ϕ(e−π

√
7)
{
1 + ( )2/7 + ( )2/7 + ( )2/7

}
.

We remark that (i)–(v) hold for |q| < 1, with q �= 0 in (iv). If q = 0, then
u = v = w = 0. Parts (i)–(v) were proved by Son [27], [2, pp. 180–194], [28,
pp. 198–200],

Part (i) is recorded in Ramanujan’s second notebook [24, p. 239], [4, p. 303] as
well, in the form of

ϕ
(
q1/7

)
− ϕ(q7) = 2q1/7 f (q5, q9) + 2q4/7 f (q3, q11) + 2q9/7 f (q, q13),

from where the values of u, v, and w can be determined [27], [2, p. 181], [28, p. 198]
as

u := 2q1/7
f (q5, q9)

ϕ(q7)
, v := 2q4/7

f (q3, q11)

ϕ(q7)
, w := 2q9/7

f (q, q13)

ϕ(q7)
,

(11)

since they are not clearly defined in (iv). For (i) to hold, we could give u, v, and w in
any arbitrary order, but throughout the paper, we use the definitions in (11).

In (vi), Ramanujan gave an enigmatic identity, as a fragmentary example, where
on the right-hand side there are three missing terms. Note that Ramanujan used the
exponent 2/7, instead of 1/7, as he should have according to (iv). It turns out that
this is correct, so it is likely that Ramanujan knew something about the structure of
the terms. Ramanujan wrote 73/4 instead of 7−3/4 on the right-hand side. We have
corrected this.

Berndt [8], Son [28], and Andrews and Berndt [2, p. 181] leave the problem of the
three missing terms open. They wonder why Ramanujan did not record the terms in
(vi). We cannot answer this question, but Ramanujan gave us the procedure in (i)–(v)
that helps us to find them. The equations in Entry 1.1(i)–(v) can be interpreted as the
following:

(i) Our aim is to find the values of u, v, and w for a given |q| < 1.
(ii) Calculate p.
(iii) Solve the quadratic equation for ϕ4(q)/ϕ4(q7) and choose the correct root.
(v) By solving the cubic equation r(ξ) = 0, find α, β, and γ .
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The three missing terms in Ramanujan’s… 889

(iv) By using α, β, and γ in the correct order, construct u, v, and w.

Beforewe take these steps, we give some preliminaries in Sects. 2 and 3. Ramanujan
gave us no hints on which is the correct choice for ϕ4(q)/ϕ4(q7) in (iii), and how to
find the correct order of the roots of r in (v). Possibly, he stopped after solving (v),
since the exponents 2/7 on the right-hand side of (vi) become apparent after one finds
a proper representation for the roots of r , but before their correct order is determined.
This part needs most of our preparation; thus we give lemmas on the correct order of
α, β, and γ in Sect. 3. Our main result is in Sect. 4, where we give the three missing
terms of (vi). In Sect. 5, we give a closed-form expression for the class invariant G343.
In Sect. 6, we calculate the special values of ϕ(e−nπ ), for n = 7, 21, and 35, and the
value of ϕ(e−7π

√
3). In Sect. 7, we conclude our article with the value of ϕ(e−49π ),

given as a second example of Ramanujan’s type for (i).

2 Preliminaries

We recall the transformation formula for ϕ(e−π
√
n).

Lemma 2.1 If n is a positive rational number, then

ϕ(e−π/
√
n) = n1/4ϕ(e−π

√
n).

Proof The transformation formula forϕ(q) states that [24, p. 199], [4, p. 43] if a, b > 0
with ab = π , then

√
aϕ
(
e−a2

)
= √

bϕ
(
e−b2

)
.

The lemma is the special case for a2 = π/
√
n. ��

Ramanujan gave some properties of Gn . We need the following.

Lemma 2.2 If n is a positive rational number, then Gn = G1/n.

Proof See Ramanujan’s paper [21], [22, pp. 23–39] or Yi’s thesis [35, pp. 18–19]. ��
Our next lemma helps us to find p in Entry 1.1(ii). It gives a connection between

p and Gn .

Lemma 2.3 If q = exp(−π
√
n), for a positive rational number n, then

p = 2
√
2Gn

G7
49n

.

Proof From Entry 1.1(ii), (4), and (5), we have

p = 8q2(−q; q2)∞
(−q7; q14)7∞

= 8q2χ(q)

χ7(q7)
= 2

√
2Gn

G7
49n

.
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��

The Chebyshev polynomial Un of the second kind [20, pp. 3–4] is defined for
|cos θ | ≤ 1 by

Un(cos θ) := sin((n + 1)θ)

sin θ
, n = 0, 1, . . . . (12)

The polynomial Un satisfies the recurrence relation U0(x) = 1,U1(x) = 2x ,

Un(x) = 2xUn−1(x) −Un−2(x), n = 2, 3, . . . ,

which extends the definition to all complex values x . Thus, Un is a polynomial of
degree n, with real, distinct roots, which are symmetric about zero. The first few cases
are listed in [16, p. 994].

Lemma 2.4 The roots of Un are

xk = cos
kπ

n + 1
, k = 1, . . . , n.

Proof This follows directly from the definition (12). ��

3 The order of the roots

In Entry 31 of Chapter 16 of Ramanujan’s second notebook [24, p. 200], [4, pp. 48–
49], the following general theorem is stated. Let Uk = ak(k+1)/2bk(k−1)/2 and Vk =
ak(k−1)/2bk(k+1)/2 for each nonnegative integer k. Then, for a positive integer n,

f (U1,V1) =
n−1∑

k=0

Uk f

(Un+k

Uk
,
Vn−k

Uk

)
, |ab| < 1, ab �= 0. (13)

For a positive integer n, and |q| < 1, q �= 0, let

uk := qk
2/n f

(
qn+2k, qn−2k

)
=

∞∑

m=−∞
q(k−mn)2/n, k = 0, . . . , n − 1, (14)

where the series representation is obtained by (1). Note by (3) that u0 = ϕ(qn). By
setting (a, b) = (q1/n, q1/n) into (13), we obtain

ϕ(q1/n) =
n−1∑

k=0

uk .
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The three missing terms in Ramanujan’s… 891

We consider f (a, b) = a f (a−1, a2b), for |ab| < 1 and a �= 0, which is followed by
Entry 18(i),(iv) in [24, p. 197], [4, pp. 34–35]. Because of this, we have uk = un−k,

for k = 1, . . . , n − 1. Since u0 is nonzero, for each odd integer n,

ϕ(q1/n)

u0
= 1 +

(n−1)/2∑

k=1

2uk
u0

.

For n = 7, we arrive at Entry 1.1(i), and for u, v, and w, defined in (11), we have

u = 2u1
u0

, v = 2u2
u0

, and w = 2u3
u0

. (15)

For finding the threemissing terms, it is enough to handle u, v, andw for 0 < q < 1,
in which case these values are real. Thus in this section, we state our lemmas under
this condition.

First, we would like to show that for 0 < q < 1, the values uk defined in (14) are
in descending order, for k = 0, . . . , 	n/2
, where 	n/2
 is the largest integer r , such
that r ≤ n/2. For this purpose, we now overview some classical results.

The third Jacobi theta function θ3(z, q) is defined by [34, pp. 463–464]

θ3(z, q) :=
∞∑

n=−∞
qn

2
e2niz, z ∈ C, |q| < 1, (16)

or equivalently, θ3(z | τ) is defined by

θ3(z | τ) :=
∞∑

n=−∞
eπ iτn2+2niz, z ∈ C, Im τ > 0. (17)

With q = eπ iτ , (16) and (17) are equal, and |q| < 1 if and only if Im τ > 0. We use
both notations, depending on whether we would like to indicate the dependence on
q or τ . Using the identity e2niz + e−2niz = 2 cos(2nz), we can rewrite (16) as [34,
pp. 463–464]

θ3(z, q) = 1 + 2
∞∑

n=1

qn
2
cos 2nz, z ∈ C, |q| < 1. (18)

A straightforward calculation shows the connection between the third Jacobi theta
function and Ramanujan’s general theta function. From (16) and (1), we find that [4,
p. 3]

θ3(z, q) = f
(
qe2i z, qe−2i z

)
, z ∈ C, |q| < 1, (19)
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and from (17) and (1), we have

θ3(z | τ) = f
(
eπ iτ+2i z, eπ iτ−2i z

)
, z ∈ C, Im τ > 0. (20)

In the following lemma, we show a monotonicity property of the third Jacobi theta
function.

Lemma 3.1 If m is an integer and 0 < q < 1, then

(i) if z ∈ [mπ,mπ + (π/2)], then θ3(z, q) is strictly monotonically decreasing in z,
and

(ii) if z ∈ [mπ − (π/2),mπ ], then θ3(z, q) is strictly monotonically increasing in z.

Proof Since θ3(z, q) has period π in z [34, p. 463], it is enough to show that the
statement is true for m = 0. Because θ3(z, q) is an even function of z [34, p. 464], it
is enough to show one of the two cases.

To prove (i), we consider θ3(z, q) for z ∈ [0, π/2] and 0 < q < 1. The zeros of
θ3(z, q) are of the form of z = (k + (1/2))π + (� + (1/2))πτ , where Im τ > 0,
for all integer values of k and � [34, pp. 465–466], therefore it has no zeros for
z ∈ [0, π/2]. Since the series for θ3(z, q) in (16) is a series of analytic functions,
uniformly convergent in any bounded domain of values of z [34, p. 463], θ3(z, q) is
therefore a continuous function. Furthermore, from (16) or (18), θ3(z, q) is a real-
valued function, for that θ3(0, q) = ∑∞

n=−∞ qn
2

> 0, thus by the contrapositive of
the intermediate value theorem, we find that θ3(z, q) is positive for z ∈ [0, π/2].

From (19) and from the Jacobi triple product identity (2), we find that [34, p. 469]

θ3(z, q) = f
(
qe2i z, qe−2i z

)
=
(
−qe2i z; q2

)

∞

(
−qe−2i z; q2

)

∞

(
q2; q2

)

∞

=
∞∏

n=1

(
1 − q2n

) (
1 + 2q2n−1 cos 2z + q4n−2

)
. (21)

Since the resulting series converges uniformly [34, pp. 471, 479], wemay differentiate
the logarithm of (21) with respect to z. Denoting the first partial derivative of θ3(z, q)

with respect to z by θ ′
3(z, q), and taking the logarithmic derivative of (21), we find

that [34, p. 489]

θ ′
3(z, q)

θ3(z, q)
= −4

∞∑

n=1

q2n−1 sin 2z

1 + 2q2n−1 cos 2z + q4n−2 . (22)

Now, note that the denominator of the summand on the right-hand side of (22) is
positive, since

−1 + q4n−2

2q2n−1 = −1

2

(
q2n−1 + 1

q2n−1

)
< −1 ≤ cos 2z, n = 1, 2, . . . .

Thus, the sign of the sum is depending only on the sign of sin 2z. Since θ3(z, q) > 0,
and since sin 2z = 0 for z ∈ {0, π/2} and sin 2z > 0 for z ∈ (0, π/2), we find that
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The three missing terms in Ramanujan’s… 893

θ ′
3(z, q) = 0 for z ∈ {0, π/2} and θ ′

3(z, q) < 0 for z ∈ (0, π/2). Since θ3(z, q)

is continuous for z ∈ [0, π/2], we conclude that θ3(z, q) is strictly monotonically
decreasing for z ∈ [0, π/2]. ��

Now, we prove the needed monotonicity property of the values uk defined in (14).

Lemma 3.2 If n is a nonnegative integer and 0 < q < 1, then uk is positive and
strictly monotonically decreasing for k = 0, . . . , n/2, when n is even, and for k =
0, . . . , (n − 1)/2, when n is odd.

Proof Let n and q be fixed with the given conditions. From (14), we deduce that uk
is positive. To prove the monotonicity, we rewrite uk in terms of the third Jacobi theta
function. From (14), (1), (17), and (20), we find that

uk = qk
2/n f

(
qn+2k, qn−2k

)
= qk

2/n f
(
eπ iτ+2i zk , eπ iτ−2i zk

)
= qk

2/nθ3(zk | τ),

(23)

where here and in the rest of the proof k = 0, . . . , 	n/2
,

zk = −ik log q, and τ = − in log q

π
= iC−1, with C := π

n |log q| > 0. (24)

Since log q < 0, we have Im τ > 0. Note that τ is independent of k, and that eπ iτ =
e−π/C = qn .

Now, we apply Jacobi’s imaginary transformation formula [34, pp. 474–476], [6,
pp. 140–141]

θ3(zk | τ) = (−iτ)−1/2 exp

(
z2k

π iτ

)
θ3(zk/τ | −1/τ), (25)

where by (24),

(−iτ)−1/2 = √
C (26)

and

exp

(
z2k

π iτ

)
= q−k2/n . (27)

From (23)–(27), we find that

uk = qk
2/nθ3(zk | τ) = √

C · θ3(zk/τ | −1/τ) = √
C · θ3(zk/τ, e

−π i/τ ),

where C is some positive value independent of k,

zk
τ

= kπ

n
, and − 1

τ
= iC .
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Since e−π i/τ = e−πC ∈ (0, 1) and (zk/τ) = (kπ/n) is a strictly monotonically
increasing sequence in [0, π/2], applying Lemma 3.1(i) withm = 0, we complete the
proof. ��

The following lemma is a corollary of Lemma 3.2 for u, v, and w defined in (11).

Lemma 3.3 For 0 < q < 1,

(i) 2 > u > v > w > 0,
(ii) 0 < p < 8.

Proof To prove (i), we represent u, v, and w as in (15), and we use Lemma 3.2 with
n = 7. Part (ii) follows from (i) with p = uvw, as it is defined in Entry 1.1(ii). ��
We need the following two statements on the values of u, v, and w defined in (11).

Lemma 3.4 For |q| < 1,

(i) u3v + v3w + w3u = 2

(
ϕ4(q)

ϕ4(q7)
− 3p − 1

)
and

(ii) u7 + v7 + w7 = ϕ8(q)

ϕ8(q7)
− 7(p − 2) ϕ4(q)

ϕ4(q7)
+ 7p2 − 49p − 15.

Proof See Son’s article [27] or the Andrews–Berndt book [2, pp. 185–186, 194].

Next, we give the correct root of Entry 1.1(iii) for ϕ4(q)/ϕ4(q7), when 0 < q < 1.

Lemma 3.5 For 0 < q < 1,

ϕ4(q)

ϕ4(q7)
= 1 + 5p

2
+ 1

2

√
(2 + 5p)2 − 4(1 − p)3.

Proof From Lemma 3.3(i), we know that u, v, w > 0, thus by Lemma 3.4(i) we have

ϕ4(q)

ϕ4(q7)
≥ 1 + 3p.

By solvingEntry 1.1(iii) forϕ4(q)/ϕ4(q7), wefind that only the given solution satisfies
this. ��
The cubic polynomial r defined in Entry 1.1(v) has the following property.

Lemma 3.6 For 0 < q < 1, r has three distinct positive roots.

Proof We recall that if a cubic polynomial with real coefficients has a positive dis-
criminant, then it has three distinct real roots. For |q| < 1, depending on the value of
ϕ4(q)/ϕ4(q7) from Entry 1.1(iii), r has one of the following two possible discrimi-
nants:


± = p5
(
p3 + 104p2 + 608p + 512 ± (8p3/2 + 160

√
p)
√
4p2 + 13p + 32

)
.
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The three missing terms in Ramanujan’s… 895

From Lemma 3.5, we know that for 0 < q < 1, the discriminant of r is 
−. It follows
by elementary algebra that


+
− = p10(p − 8)6.

It is clear that for p > 0, we have 
+ > 0, and for p > 0 and p �= 8, we have
p10(p − 8)6 > 0. Since by Lemma 3.3(ii) if 0 < q < 1, then 0 < p < 8; thus we
find that 
− > 0.

From Lemma 3.3 we know that if 0 < q < 1, then p > 0 and u, v, w > 0. Thus,
from the construction in Entry 1.1(iv) it follows that the roots of r are positive. ��

The next lemma helps to choose the correct order of the roots of r in the case of
0 < q < 1.

Lemma 3.7 For 0 < q < 1, suppose that the roots of r are given in order (α, β, γ )

such that they satisfy the following two conditions:

(i) α2 p
β

+ β2 p
γ

+ γ 2 p
α

= ϕ8(q)

ϕ8(q7)
− 7(p − 2) ϕ4(q)

ϕ4(q7)
+ 7p2 − 49p − 15 and

(ii) α2

β
>

β2

γ
>

γ 2

α
.

Then

u =
(

α2 p

β

)1/7
, v =

(
β2 p

γ

)1/7
, and w =

(
γ 2 p

α

)1/7
.

Condition (i) guarantees the correct order of α, β, and γ in Entry 1.1(iv), so that
Entry 1.1(i) holds. Condition (ii) provides the correct order of u, v, andw, so that (11)
holds.

Proof First, for each possible order of α, β, and γ , consider the set of possible val-
ues of u, v, and w given in Entry 1.1(iv). For (α, β, γ ), (β, γ, α), (γ, α, β) and for
(γ, β, α), (β, α, γ ), (α, γ, β), we have

{(
α2 p

β

)1/7
,

(
β2 p

γ

)1/7
,

(
γ 2 p

α

)1/7}
and

{(
γ 2 p

β

)1/7
,

(
β2 p

α

)1/7
,

(
α2 p

γ

)1/7}
,

respectively. Thus, it is enough to consider the order (α, β, γ ) and its reverse (γ, β, α).
By Lemma 3.4(ii), we know that for at least one of these two sets it is true that the
sum of their seventh powers fulfills the condition in (i). We show that exactly one of
the two sets fulfills it. Suppose that

α2 p

β
+ β2 p

γ
+ γ 2 p

α
= γ 2 p

β
+ β2 p

α
+ α2 p

γ
.
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After rearrangement, we find that

p(α − β)(α − γ )(β − γ )(α + β + γ )

αβγ
= 0,

but this is contradiction, since p is positive by Lemma 3.3(ii) and α, β, and γ are
distinct, positive numbers by Lemma 3.6.

Since p is positive by Lemma 3.3(ii), the condition (ii) guarantees that u > v > w,
which holds by Lemma 3.3(i). ��
Lastly, we need the following trigonometric identity.

Lemma 3.8 We have

(
cos π

7

2 cos2 2π
7

)2

+
(

cos 2π
7

2 cos2 3π
7

)2

+
(

cos 3π
7

2 cos2 π
7

)2

= 41.

Proof Let θ := π/7, and let

a := cos θ = − cos 6θ = − cos 8θ,

b := cos 2θ = − cos 5θ = cos 12θ,

c := cos 3θ = − cos 4θ = − cos 10θ = − cos 18θ.

By using power-reduction [16, p. 32] and product-to-sum [16, p. 29] identities, we
derive that

(
a

2b2

)2
+
(

b

2c2

)2
+
(

c

2a2

)2
= a6c4 + b6a4 + c6b4

4(abc)4

= 1

1024(abc)4
{
(10 + 15b − 6c − a)(3 − 4a + b)

+ (10 − 15c − 6a + b)(3 + 4b − c)

+ (10 − 15a + 6b − c)(3 − 4c − a)
}

= 1

1024(abc)4
{
90 + 116(b − c − a) + 91(ca − ab − bc) + 19(a2 + b2 + c2)

}

= 1

1024(abc)4

{
90 + 116(b − c − a) + 91

(
1
2 (b − c) − 1

2 (a + c) − 1
2 (a − b)

)

+ 19
(
1
2 (1 + b) + 1

2 (1 − c) + 1
2 (1 − a)

)}

= 433(b − c − a) + 237

2048(abc)4
.

Since we know [3] that b − c − a = −1/2 and abc = 1/8, the proof is complete. ��
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4 The threemissing terms

We complete Ramanujan’s enigmatic septic theta function identity Entry 1.1(vi).

Theorem 4.1 We have

ϕ
(
e−7π

√
7
)

= 7−3/4ϕ
(
e−π

√
7
)

×
⎧
⎨

⎩
1 +

(
cos π

7

2 cos2 2π
7

)2/7

+
(

cos 2π
7

2 cos2 3π
7

)2/7

+
(

cos 3π
7

2 cos2 π
7

)2/7
⎫
⎬

⎭
.

Proof We use the results in Entry 1.1(i)–(v) with q = exp(−π/
√
7). First, by using

Lemma 2.1, we rewrite Entry 1.1(i) as

ϕ
(
e−7π

√
7
)

= 7−3/4ϕ
(
e−π

√
7
)

{1 + u + v + w}.

With G7 given in [18, 30, 31], [7, p. 189], by Lemma 2.2, we find that G1/7 = G7 =
21/4. By Lemma 2.3 with n = 1/7, for Entry 1.1(ii) we have

p = 2
√
2G1/7

G7
7

= 2
√
2 · 21/4
27/4

= 1.

Next, we solve the equation in Entry 1.1(iii). By Lemma 3.5, or in this special case by
Lemma 2.1, we have

ϕ4(q)

ϕ4(q7)
=

ϕ4
(
e−π/

√
7
)

ϕ4
(
e−π

√
7
) = 7.

Now, we have all the coefficients of r given in Entry 1.1(v). We have to determine the
zeros of

r(ξ) = ξ3 − 6ξ2 + 5ξ − 1.

With an appropriate polynomial transformation, we relate r to U6 defined in (12)
or given in [16, p. 994]. Note that for ξ �= 0,

−(2ξ)6 r

(
1

(2ξ)2

)
= 64ξ6 − 80ξ4 + 24ξ2 − 1 = U6(ξ),

and r(0) = U6(0) = −1. From Lemma 2.4, we know that U6 has the roots ξk =
cos(kπ/7), for k = 1, . . . , 6, for which ξk �= 0 and |ξk | = |ξ7−k |. Thus, we find that

r

(
1

(2 cos kπ
7 )2

)

= 0, k = 1, 2, 3.
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Lastly, we determine the appropriate order of the roots α, β, and γ in Entry 1.1(iv).
The choice

(α, β, γ ) =
(

1

(2 cos 3π
7 )2

,
1

(2 cos 2π
7 )2

,
1

(2 cos π
7 )2

)

is correct, since the condition Lemma 3.7(i) holds by Lemma 3.8, and Lemma 3.7(ii)
is satisfied by the inequalities 0 < cos(3π/7) < cos(2π/7) < cos(π/7) < 1. We
arrive at

u =
(

cos 2π
7

2 cos2 3π
7

)2/7

, v =
(

cos π
7

2 cos2 2π
7

)2/7

, and w =
(

cos 3π
7

2 cos2 π
7

)2/7

,

which completes the proof. ��

By combining the value (10) and Theorem 4.1, we find the evaluation ofϕ(e−7π
√
7),

i.e.,

ϕ
(
e−7π

√
7
)

=
{
�
( 1
7

)
�
( 2
7

)
�
( 4
7

)}1/2
√
2 · 77/8π

×
⎧
⎨

⎩
1 +

(
cos π

7

2 cos2 2π
7

)2/7

+
(

cos 2π
7

2 cos2 3π
7

)2/7

+
(

cos 3π
7

2 cos2 π
7

)2/7
⎫
⎬

⎭
.

5 The class invariantG343 in closed-form

Berndt [8], Son [27], and Andrews and Berndt [2, p. 181] proposed the explicit value
of the class invariant G343 as an open problem. Actually, Watson showed in [30, 31]
that G343 = 21/4x , where x7 −7x6 −7x5 −7x4 −1 = 0. This can be proved by using
a modular equation of degree 7, given in Entry 19(ix) of Chapter 19 of Ramanujan’s
second notebook [24, p. 240], [4, p. 315], [11, Lemma 3.5], [36, Theorem 2.4].Watson
[31] solved this septic polynomial as well. Thus, we have

G343 = 21/47{b1 + b2 + b3 + c1 + c2 + c3}−1,

where

b1 =
(
b′4
1 b′2

2 b′
3

)1/7
, c1 =

(
c′4
1 c′2

2 c′
3

)1/7
,

b2 =
(
b′4
2 b′2

3 b′
1

)1/7
, c2 =

(
c′4
2 c′2

3 c′
1

)1/7
,

b3 =
(
b′4
3 b′2

1 b′
2

)1/7
, c3 =

(
c′4
3 c′2

1 c′
2

)1/7
,
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The three missing terms in Ramanujan’s… 899

and

b′
r = − 1

3 (3σr + 5τr ), c′
r = − 1

3 (7 + 4σr + 2τr ), r = 1, 2, 3,

τ1 = σ3 − σ2, τ2 = σ1 − σ3, τ3 = σ3 − σ1,

σr = 1

2
+ 3 cos

2rπ

7
, r = 1, 2, 3.

In this section, we give a closed-form expression for G343, based on our previous
results.

Theorem 5.1 We have

G343 = 21/4 p−1/7,

where

p = 1 + 10m2

s1/3
− s1/3

6
, (28)

and

s = 12m2
(
9(7 − m2) + √

3
√
27(m4 + 49) + 122m2

)
,

m = 73/2

⎧
⎨

⎩
1 +

(
cos π

7

2 cos2 2π
7

)2/7

+
(

cos 2π
7

2 cos2 3π
7

)2/7

+
(

cos 3π
7

2 cos2 π
7

)2/7
⎫
⎬

⎭

−2

.

Proof By taking q = exp(−π
√
7), the expression for m is obtained by Theorem 4.1

as

m = ϕ2(q)

ϕ2(q7)
=

ϕ2
(
e−π

√
7
)

ϕ2
(
e−7π

√
7
) .

For Entry 1.1(ii), by Lemma 2.3 with n = 7 and with G7 = 21/4 [18, 30, 31], [7,
p. 189], we find that

p = 2
√
2G7

G7
343

= 2
√
2 · 21/4
G7

343

,

fromwhich we haveG343 = 21/4 p−1/7. On the other hand, for Entry 1.1(iii), we have

m4 − (2 + 5p)m2 + (1 − p)3 = 0.

After rearrangement, the following cubic polynomial in p can be deduced:

p3 − 3p2 + (3 + 5m2)p − (m2 − 1)2 = 0.
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We solve this equation, and choose the only real root, which is given by (28). ��

6 Examples for Entry 1.1(iii)

The Borwein brothers [13, p. 145] observed first [12] that class invariants can be used
to calculate certain values of ϕ(e−nπ ). By using ideas from Berndt’s proof [4, p. 347]
of Entry 1(iii) of Chapter 20 of Ramanujan’s second notebook [24, p. 241], [4, p. 345],
one can deduce that [7, p. 330, (4.5)], [9, (3.10)]

ϕ(e−3π
√
n)

ϕ(e−π
√
n)

= 1√
3

(
1 + 2

√
2G3

9n

G9
n

)1/4
. (29)

Similarly, as in [7, p. 339, (8.11)] and [7, p. 334, (5.7)], we have

ϕ(e−5π
√
n)

ϕ(e−π
√
n)

= 1√
5

(
1 + 2G25n

G5
n

)1/2
(30)

and

ϕ(e−9π
√
n)

ϕ(e−π
√
n)

= 1

3

(
1 +

√
2G9n

G3
n

)
. (31)

There are two groups of values for ϕ(q), which can by deduced from Entry 1.1. The
first one is from Entry 1.1(iii), and the second is from Entry 1.1(i). Now, in the spirit
of Entry 1.1(iii), we give a result for ϕ(e−7π

√
n)/ϕ(e−π

√
n), which is similar to those

in (29)–(31), and then we calculate the values of ϕ(e−7π ), ϕ(e−7π
√
3), ϕ(e−21π ), and

ϕ(e−35π ).

Lemma 6.1 If n is a positive rational number, then

ϕ
(
e−7π

√
n
)

ϕ
(
e−π

√
n
) = 1√

7

(
1 + 5

√
2G49n

G7
n

+1

2

√(
2 + 10

√
2G49n

G7
n

)2
− 4

(
1 − 2

√
2G49n

G7
n

)3 )1/4
.

For

p = 2
√
2G49n

G7
n

, (32)

we define

m(p) :=
(
1 + 5p

2
+ 1

2

√
(2 + 5p)2 − 4(1 − p)3

)1/2
. (33)
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Using m(p), we can state Lemma 6.1 as

ϕ
(
e−7π

√
n
)

ϕ
(
e−π

√
n
) = m1/2(p)√

7
. (34)

Note that m(p) is a multiplier of degree 7, defined in (7), with the substitution n 
→
(49n)−1.

Proof We apply Entry 1.1(ii),(iii). For q = exp(−π/
√
49n), by Lemmas 2.3 and 2.2,

we find that p = 2
√
2G49n/G7

n . By using Lemma 3.5 with Lemma 2.1, we complete
the proof. ��

The next result is from Ramanujan’s first notebook [23, p. 297], [7, p. 328], and
proved first by Berndt and Chan [9], [7, pp. 336–337]. Our proof uses Entry 1.1(iii),
but all of these proofs depend on some of the modular equations given in Entry 19 of
Chapter 19 in Ramanujan’s second notebook [24, p. 240], [4, pp. 314–324]. The value
of ϕ(e−7π ), in terms of ϕ(e−π ) given in (8), is stated as follows.

Theorem 6.2 We have

ϕ2
(
e−7π

)

ϕ2
(
e−π
) =

√
13 + √

7 +
√
7 + 3

√
7

14
(28)1/8.

Proof We apply Lemma 6.1 with n = 1. From [7, p. 189], G1 = 1, and from [21],
[22, p. 26], [7, p. 191],

G49 = 71/4 +
√
4 + √

7

2
. (35)

Using 4 + √
7 = (

√
7 + 1)2/2, from (32), we find that

p = 2
√
2G49

G7
1

= √
2

(
71/4 +

√
4 + √

7

)
= √

7 + √
2 · 71/4 + 1. (36)

We make two observations. Let a be a real number, and let

pa := (a + 1)2 + 1

2
= 1

2
(a2 + 2a + 2) = a2

2
+ a + 1. (37)

Then, straightforward algebra shows that

(2 + 5pa)
2 − 4(1 − pa)

3 = 1

4
(2a3 + 3a2 + 10a + 14)2 + a2

2
(a4 − 28), (38)
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and for a �= 0,

⎛

⎝

√

13 + a2

2
+
√

7 + 3a2

2

⎞

⎠

2

= 2a2 +
√(

8a + 28

a

)2
+ (3a2 + 28)(a4 − 28)

a2
+ 20. (39)

Now, set a := (28)1/4 = √
2 ·71/4. Comparing (36) with (37), we see that p = pa .

Furthermore, note in (38) and (39) that the terms with a factor of a4−28 vanish. Thus,
from (33)–(39), we find that

ϕ2(e−7π )

ϕ2(e−π )
= m(p)

7
= 1

7

(
1 + 5p

2
+ 1

2

√
(2 + 5p)2 − 4(1 − p)3

)1/2

= 1

7

(
1 + 5

4
(a2 + 2a + 2) + 1

4
(2a3 + 3a2 + 10a + 14)

)1/2

= 1

7

(
a

4

(
2a2 + 8a + 28

a
+ 20

))1/2

=
√
a

14

(√

13 + a2

2
+
√

7 + 3a2

2

)

=
√
13 + √

7 +
√
7 + 3

√
7

14
(28)1/8. (40)

��
The next theorems appear to be new.

Theorem 6.3 We have

ϕ2
(
e−7π

√
3
)

ϕ2
(
e−π

√
3
) = 1

42
√
3

((√
21 + 3

)
(28)1/3 + 8

√
3(28)1/6 + 4

√
21 + 6

)
.

Proof We apply Lemma 6.1 with n = 3. From [31], [7, p. 189], G3 = 21/12, and from
[21], [22, p. 28], [32], [7, p. 194],

G147 = 21/12
(
1

2
+ 1√

3

{√
7

4
− (28)1/6

})−1

.

Thus, from (32), we find that

p = 2
√
2G147

G7
3

= 2

(
1

2
+ 1√

3

{√
7

4
− (28)1/6

})−1

. (41)
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The next observation follows by elementary algebra. Let a be a real number, and
let

pa := 1

54
(a4 + 3a3 + 12a2 + 18a + 90) (42)

and

ma := 1

6
√
3

(
a

18
(a2 + 6)2 + a(a + 6) + 6

)
. (43)

Then

(2 + 5pa)
2 − 4(1 − pa)

3 = 4

(
m2

a − 1 − 5pa
2

)2
− (a6 − 756)P

306110016
, (44)

where

P = a14 + 48a12 + 72a11 + 1440a10 + 3024a9 + 27108a8 + 68040a7 + 375840a6

+843696a5 + 3005424a4 + 5762016a3

+13576896a2 + 15536448a + 5878656.

Now, set a := (756)1/6 = 21/3 · √
3 · 71/6. A straightforward calculation shows

that

(a4 + 3a3 + 12a2 + 18a + 90)

(
1

2
+ 1√

3

{√
7

4
− (28)1/6

})
= 108.

Thus, by comparing (41) with (42), we see that p = pa . Furthermore, note in (44)
that the term with a factor of a6 − 756 vanishes. Thus, from (33), (34), and (41)–(44),
with some simplification, we find that

ϕ2
(
e−7π

√
3
)

ϕ2
(
e−π

√
3
) = m(p)

7
= ma

7
= 1

42
√
3

(
a

18
(a2 + 6)2 + a(a + 6) + 6

)

= 1

42
√
3

((√
21 + 3

)
(28)1/3 + 8

√
3(28)1/6 + 4

√
21 + 6

)
.

��
By combining the value (9) and Theorem 6.3, we find the evaluation of ϕ(e−7π

√
3),

i.e.,

ϕ
(
e−7π

√
3
)

= �3/2
( 1
3

)

27/635/8
√
7π

((√
21 + 3

)
(28)1/3 + 8

√
3(28)1/6 + 4

√
21 + 6

)1/2
.

The next values are derived in terms of ϕ(e−π ) given in (8).

123



904 Örs Rebák

Theorem 6.4 We have

ϕ
(
e−21π

)

ϕ
(
e−π
) =

(
m(p)

7(6
√
3 − 9)1/2

)1/2
,

where

p = √
2
(
2 − √

3
)
√√

3 + √
7

√

2 + √
7 +

√
7 + 4

√
7

×
√√√√
√
3 + √

7 + (6
√
7)1/4

√
3 + √

7 − (6
√
7)1/4

(45)

and m(p) is given in (33).

Proof We apply Lemma 6.1 with n = 9. From [21], [22, p. 24], [7, p. 189],

G9 =
(
1 + √

3√
2

)1/3
,

and from [21], [22, p. 29], [10], [7, p. 197],

G441 =
√√

3 + √
7

2

(
2 + √

3
)1/6

√
2 + √

7 +
√
7 + 4

√
7

2

×
√√√√
√
3 + √

7 + (6
√
7)1/4

√
3 + √

7 − (6
√
7)1/4

. (46)

An elementary calculation shows that

25/3(2 + √
3)1/6

(1 + √
3)7/3

= √
2
(
2 − √

3
)
.

From (32), p = 2
√
2G441/G7

9. Using the values for G9 and G441 given above, we
deduce (45).

From [23, p. 284], [9], [7, pp. 327, 329–331],

ϕ(e−3π )

ϕ(e−π )
= 1

(6
√
3 − 9)1/4

. (47)

Combining Lemma 6.1 and (47) completes the proof. ��
Another expression for ϕ(e−21π ) can be obtained by using (29) with n = 49 and

with the values G441 from (46), and G49 from (35). Combining the result with the
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value of ϕ(e−7π ) from Theorem 6.2, after some simplification we find that

ϕ
(
e−21π

)

ϕ
(
e−π
) =

(√
13 + √

7 +
√
7 + 3

√
7

42

)1/2

(28)1/16

×
{
1 + 1

4

√
2

√
2 + √

3

((√
3 + √

7
)(

2 + √
7 +

√
7 + 4

√
7

)

×
(
22 + 8

√
7 − 1

2

(
19 + 7

√
7
)
√
2
√
7

)√
3 + √

7 + (6√7
)1/4

√
3 + √

7 − (6√7
)1/4

)3/2}1/4
.

Theorem 6.5 We have

ϕ
(
e−35π

)

ϕ
(
e−π
) =

(
m(p)

35(
√
5 − 2)

)1/2
,

where

p = 1

4

(
9 − 4

√
5
)
√√

14 + √
10

(
71/4 +

√
4 + √

7

)3/2

×
⎛

⎝

√

43 + 15
√
7 + (8 + 3

√
7)

√
10

√
7 +

√

35 + 15
√
7 + (8 + 3

√
7)

√
10

√
7

⎞

⎠

(48)

and m(p) is given in (33).

Proof We apply Lemma 6.1 with n = 25. From [21], [22, p. 26], [7, p. 190],

G25 = 1 + √
5

2
,

and from [21], [22, p. 30], [29], [7, p. 199],

G1225 = 1 + √
5

2

(
6 + √

35
)1/4
(
71/4 +

√
4 + √

7

2

)3/2

×
⎛

⎝

√
43 + 15

√
7 + (8 + 3

√
7)
√
10

√
7

8

+
√
35 + 15

√
7 + (8 + 3

√
7)
√
10

√
7

8

⎞

⎠ . (49)
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A simple calculation shows that

1

G6
25

=
(

2

1 + √
5

)6
= 9 − 4

√
5.

We use

(
6 + √

35
)1/4 =

√√
14 + √

10

2
,

as it is given by Watson [29], which also can be verified directly. From (32), p =
2
√
2G1225/G7

25. Using the values for G25 and G1225 given above, we deduce (48).
From [23, p. 285], [9], [7, pp. 327–329],

ϕ(e−5π )

ϕ(e−π )
= 1

(5
√
5 − 10)1/2

. (50)

Combining Lemma 6.1 and (50) completes the proof. ��
Another expression for ϕ(e−35π ) can be obtained by using (30) with n = 49 and

with the values G1225 from (49), and G49 from (35). Combining the result with the
value of ϕ(e−7π ) from Theorem 6.2, after some simplification we find that

ϕ(e−35π )

ϕ(e−π )
=
(√

13 + √
7 +

√
7 + 3

√
7

70

)1/2
(28)1/16

×
{
1 + 1

4

(
1 + √

5
)
√√

7 + √
5

(
16466 + 6223

√
7 − 7

2

(
2045 + 773

√
7
)
√
2
√
7

)1/4

×
(√

43 + 15
√
7 + (8 + 3

√
7
)
√
10

√
7 +

√

35 + 15
√
7 + (8 + 3

√
7
)
√
10

√
7

)}1/2
.

7 Examples for Entry 1.1(i)

Now, we review our proof for Theorem 4.1, which is in the form of Entry 1.1(i). Then,
we give the value of ϕ(e−49π ), as a second illustration of Entry 1.1(i). We use the
results from the proof of Theorem 6.2.

Let a ∈ {0, (28)1/4}. After (37), let

pa := (a + 1)2 + 1

2
= 1

2
(a2 + 2a + 2). (51)

Since the second term on the right-hand side of (38) vanishes for a ∈ {0, (28)1/4},
after (40), let

ma :=
(
1

2

(
a3 + 4a2 + 10a + 14

))1/2
. (52)
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Furthermore, let

ra(ξ) := ξ3 + 2ξ2
(
1 + 3pa − m2

a

)
+ ξ p2a(pa + 4) − p4a

= ξ3 − (a3 + a2 + 4a + 6)ξ2 + 1

8
(a2 + 2a + 2)2(a2 + 2a + 10)ξ

− 1

16
(a2 + 2a + 2)4. (53)

Comments on the proof of Theorem 4.1 Set a := 0. Using the notations of the proof
of Theorem 4.1, from (51), (52), and (53), we find that p = pa = 1, ϕ4(q)/ϕ4(q7) =
m2

a = 7, and

r(ξ) = ra(ξ) = ξ3 − 6ξ2 + 5ξ − 1.

By Lemma 2.4, we know that cos(π/7) is a root of U6. Thus, by using the power-
reduction formula [16, p. 32]

cos2
(

π

7

)
= 1

2

(
cos

(
2π

7

)
+ 1

)
,

we can factor r over Q(cos(π/7)) as

r(ξ) = (ξ − α)(ξ − β)(ξ − γ ), (54)

where

α = 2 + 2 cos

(
π

7

)
+ 2 cos

(
2π

7

)
,

β = 3 − 4 cos

(
π

7

)
+ 2 cos

(
2π

7

)
,

γ = 1 + 2 cos

(
π

7

)
− 4 cos

(
2π

7

)
.

In the same manner as in the proof of Lemma 3.8, we deduce

(α, β, γ ) =
(

1

(2 cos 3π
7 )2

,
1

(2 cos 2π
7 )2

,
1

(2 cos π
7 )2

)
,

where the order of the roots is determined by Lemmas 3.7 and 3.8. We construct u, v,

and w, and the proof is complete. ��
After these preliminaries, we derive the value of ϕ(e−49π ). The corresponding

polynomial r , and its roots are more complicated than in Ramanujan’s example in
Entry 1.1(vi). We usedMathematica for polynomial factorization and numerical eval-
uations.
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Theorem 7.1 We have

ϕ(e−49π )

ϕ(e−π )
= 1

7
(1 + u + v + w), (55)

where

u =
(

α2 p

β

)1/7
, v =

(
β2 p

γ

)1/7
, w =

(
γ 2 p

α

)1/7
,

and

p = √
7 + √

2 · 71/4 + 1,

α = 1√
7

{
2

3

(√
7 + 2

)(
5 + 3

√
2 · 71/4 − √

7
)

+ 2
(√

7 − 1
)(
1 − √

2 · 71/4 + √
7
)
cos

(
π

7

)

+ 2

3

(√
7 − 1

)(
3
√
2 · 71/4 − √

7 − 1
)
cos

(
2π

7

)}
,

β = 1√
7

{
1

9

(√
7 + 5

)(
13 + 9

√
2 · 71/4 + √

7
)

− 8 cos

(
π

7

)
+ 2
(√

7 − 1
)(
1 − √

2 · 71/4 + √
7
)
cos

(
2π

7

)}
,

γ = 1√
7

{
1

3

(√
7 + 5

)(
1 + 3

√
2 · 71/4 + √

7
)

+ 2

3

(√
7 − 1

)(
3
√
2 · 71/4 − √

7 − 1
)
cos

(
π

7

)
− 8 cos

(
2π

7

)}
.

Proof We use the results in Entry 1.1(i)–(v) with q = exp(−π/7). First, by using
Lemma 2.1, we rewrite Entry 1.1(i) as in (55).

Then, set a := (28)1/4 = √
2 · 71/4, and consider pa,ma, and ra from (51), (52),

and (53). By Lemma 2.2, and by Lemma 2.3 with n = 1/49, for Entry 1.1(ii), we
have p = 2

√
2G49/G7

1. Thus, comparing (36) with (51), we see that p = pa =
(a2/2) + a + 1. For Lemma 1.1(iii), by using Lemmas 3.5 and 2.1, we arrive at

ϕ4(q)

ϕ4(q7)
= ϕ4

(
e−π/7

)

ϕ4
(
e−π
) = 49

ϕ4
(
e−7π

)

ϕ4
(
e−π
) = m2

a = 1

2
(a3 + 4a2 + 10a + 14),

where the last equation is obtained by the comparison of (40) and (52). Thus, by
comparing Entry 1.1(v) with (53), we find that r(ξ) = ra(ξ), where we remind readers
that
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ra(ξ) = ξ3 − (a3 + a2 + 4a + 6)ξ2

+1

8
(a2 + 2a + 2)2(a2 + 2a + 10)ξ − 1

16
(a2 + 2a + 2)4.

Now, because of Lemma 2.4, following (54), we factor ra over Q(cos(π/7), a) as

ra(ξ) = (ξ − α)(ξ − β)(ξ − γ ),

where

α = 2

a2

{
a3 + a2 + 4a + 2 + (2a − a3 + 12) cos

(
π

7

)
+ (a3 − 2a − 4) cos

(
2π

7

)}
,

β = 2

a2

{
a3

2
+ a2 + 5a + 8 − 8 cos

(
π

7

)
+ (2a − a3 + 12) cos

(
2π

7

)}
,

γ = 2

a2

{
a3

2
+ a2 + 5a + 4 + (a3 − 2a − 4) cos

(
π

7

)
− 8 cos

(
2π

7

)}
.

Numerical evaluations exclude all possible orders of α, β, and γ , which do not
meet the conditions in Lemma 3.7(i),(ii). Thus, we find that (α, β, γ ) is the correct
order of the roots, and by Entry 1.1(iv), the proof is complete.

From Theorem 7.1, similarly as we have seen in Theorem 5.1, the value of G2401
can be determined. As from Theorem 6.2 in Theorem 7.1, by using Theorems 6.3, 6.4,
and 6.5, analogous results can be obtained for ϕ(e−49π

√
3), ϕ(e−147π ), and ϕ(e−245π ),

respectively. These values can be expressed by using the solutions of the corresponding
cubic polynomials, but their structure seems much more complicated.

Based on a remark at the end of Section 12 of Chapter 20 of Ramanujan’s second
notebook [24, p. 247], [4, p. 400], we believe that the septic identity in Entry 1.1 is a
special case of a much more general result. We will continue our investigation in this
direction with the description of the analogous cubic and quintic identities.
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finalized it at University of Tromsø – The Arctic University of Norway, in Tromsø, Norway. The comments
of Professors Bruce C. Berndt and Trygve Johnsen are highly appreciated.

Funding Open Access funding provided by UiT The Arctic University of Norway

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


910 Örs Rebák

References

1. Abel, N.H.: Recherches sur les fonctions elliptiques. J. Reine Angew. Math. 3, 160–190 (1828)
2. Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook. Part II. Springer, New York (2009)
3. Bankoff, L., Garfunkel, J.: The heptagonal triangle. Math. Magn. 46, 7–19 (1973)
4. Berndt, B.C.: Ramanujan’s Notebooks. Part III. Springer, New York (1991)
5. Berndt, B.C.: Ramanujan’s theory of theta-function. In: Ram Murty, M. (ed.) Theta Functions, From

the Classical to the Modern, Centre de Recherches Mathématiques Proceedings and Lecture Notes,
vol. 1, pp. 1–63. American Mathematical Society, Providence (1993)

6. Berndt, B.C.: Ramanujan’s Notebooks. Part IV. Springer-Verlag, New York (1994)
7. Berndt, B.C.: Ramanujan’s Notebooks. Part V. Springer, New York (1998)
8. Berndt, B.C.: The remaining 40% of Ramanujan’s Lost Notebook. In Number Theory and its Applica-

tions, Surikaisekikenkyuusho Kokyuuroku, No. 1060, pp. 111–118, RIMS Kyoto University, Kyoto,
(1998)

9. Berndt, B.C., Chan, H.H.: Ramanujan’s explicit values for the classical theta function. Mathematika
42(2), 278–294 (1995)

10. Berndt, B.C., Chan, H.H., Zhang, L.-C.: Ramanujan’s class invariants and cubic continued fraction.
Acta Arith. 73(1), 67–85 (1995)

11. Berndt, B.C., Chan, H.H., Zhang, L.-C.: Ramanujan’s class invariants, Kronecker’s limit formula, and
modular equations. Trans. Am. Math. Soc. 349(6), 2125–2173 (1997)

12. Berndt, B.C., Chan, H.H., Zhang, L.C.: Ramanujan’s class invariants with applications to the values
of q-continued fractions and theta functions. In: Ismail, M.E.H., Masson, D.R., Rahman, M. (eds.)
Special Functions, q-Series and Related Topics, Fields Institute Communications Series, vol. 14, pp.
37–53. American Mathematical Society, Providence (1997)

13. Borwein, J.M., Borwein, P.B.: Pi and the AGM. Wiley, New York (1987)
14. Borwein, J.M., Zucker, I.J.: Fast evaluation of the gamma function for small rational fractions using

complete elliptic integrals of the first kind. IMA J. Numer. Anal. 12(4), 519–526 (1992)
15. Cox, D.A.: Primes of the Form x2 + ny2. Wiley, New York (1989)
16. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, New

York (2007)
17. Jacobi, C.G.J.: Fundamenta nova theoriae functionum ellipticarum. Sumptibus fratrum Borntræger,

Regiomonti (1829)
18. Joubert, P.: Sur la théorie des fonctions elliptiques et son application à la théorie des nombres. Comptes

rendus 50, 907–912 (1860)
19. Joyce, G.S., Zucker, I.J.: Special values of the hypergeometric series. Math. Proc. Camb. Philos. Soc.

109(2), 257–261 (1991)
20. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC Press, Boca Raton (2003)
21. Ramanujan, S.: Modular equations and approximations to π . Quart. J. Math. 45, 350–372 (1914)
22. Ramanujan, S.: Collected Papers of Srinivasa Ramanujan. Cambridge Univ. Press, Cambridge (1927)
23. Ramanujan, S.: Notebooks of Srinivasa Ramanujan, vol. I. Tata Institute of Fundamental Research,

Bombay (1957)
24. Ramanujan, S.: Notebooks of Srinivasa Ramanujan, vol. II. Tata Institute of Fundamental Research,

Bombay (1957)
25. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988)
26. Selberg, A., Chowla, S.: On Epstein’s zeta function. J. Reine Angew. Math. 227, 86–110 (1967)
27. Son, S.H.: Septic theta function identities in Ramanujan’s Lost Notebook. Acta Arith. 98(4), 361–374

(2001)
28. Son, S.H.: Ramanujan’s symmetric theta functions in his lost notebook. In: D.Dominici, D.,Maier, R.S.

(eds.) Special Functions and Orthogonal Polynomials, American Mathematical Society, Providence,
RI. Contemp. Math. 471, 187–202. (2008)

29. Watson, G.N.: Some singular moduli (II). Quart. J. Math. 3(1), 189–212 (1932)
30. Watson, G.N.: Singular moduli (4). Acta Arith. 1(2), 284–323 (1935)
31. Watson, G.N.: Singular moduli (3). Proc. Lond. Math. Soc. 40(1), 83–142 (1936)
32. Watson, G.N.: Singular moduli (5). Proc. Lond. Math. Soc. 42(1), 377–397 (1937)
33. Weber, H.: Lehrbuch der Algebra, Dritter Band, 2nd edn. Druck und Verlag von Friedrich Vieweg und

Sohn, Braunschweig (1908)

123



The three missing terms in Ramanujan’s… 911

34. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press,
Cambridge (1950)

35. Yi., J.: The Construction and Applications of Modular Equations. PhD thesis, University of Illinois at
Urbana–Champaign, Urbana, Illinois (2001)

36. Zhang, L.-C.: Ramanujan’s class invariants, Kronecker’s limit formula and modular equations (III).
Acta Arith. 82(4), 379–392 (1997)

37. Zucker, I.J.: The evaluation in terms of �-functions of the periods of elliptic curves admitting complex
multiplication. Math. Proc. Camb. Philos. Soc. 82(1), 111–118 (1977)

38. Zucker, I.J., Joyce, G.S.: Special values of the hypergeometric series II. Math. Proc. Camb. Philos.
Soc. 131(2), 309–319 (2001)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	The three missing terms in Ramanujan's septic theta function identity
	Abstract
	1 Introduction
	2 Preliminaries
	3 The order of the roots
	4 The three missing terms
	5 The class invariant G343 in closed-form
	6 Examples for Entry 1.1(iii)
	7 Examples for Entry 1.1(i)
	Acknowledgements
	References




