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Introduction

The purpose of this work is to analyze in detail a speci�c second-order
magnetic property, namely the leading-order interaction between a molecule
and an external magnetic �eld, commonly named the magnetizability of a
molecule. The reason why we are interested in studying this property is be-
cause the expression obtained using the standard multipole approach is origin
dependent when an external frequency-dependent magnetic �eld is applied[1].
This result appears surprising given that, when considering an external static
magnetic �eld, the magnetizability should be an observable quantity and its
expression is actually origin-independent, so we would expect to have an
origin independent expression also in the frequency-dependent case. In par-
ticular, I will focus on discussing the frequency-dependent magnetizability in
a relativistic framework.
Several approaches have been used to analyse molecular properties in rela-
tivistic and non-relativistic frameworks. I will describe the most important
ones and then reduce the analysis to the multipole theory that so far has
been the most successful way to study molecular properties for closed-shell
molecules.
I will start by giving an overview of electrodynamics and by explaining the
theoretical aspects that lead us to consider a particular form of the Hamilto-
nian, a crucial point in the de�nition of molecular properties. The di�erences
between the relativistic and the non-relativistic framework will also be un-
derlined, in order to identify the best way to treat the invariance problem.
Particular attention will be paid to the gauge issue. It is well known from
electrodynamics that the presence of a magnetic �eld involve a non-unique
de�nition of the vector and scalar potentials, and therefore a freedom in the
choice of gauge. In the literature, several gauges have been used[2], but here
I will focus on the multipole gauge[3],[4] in the derivation of the expressions
of molecular properties. I will also analyze the problem of gauge origin with
respect to the problem of origin dependence of an observable, and discuss
the di�erent aspects of each issue.
A wide analysis of the origin-dependence of the magnetizability within the
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non-relativistic framework will be done, including a review of the results
obtained by Van Vleck[5], and Raab and de Lange[6] regarding the origin
independence of the magnetizability in the static and frequency-dependent
case, respectively. Special emphasis will be given to the works of the lat-
ter, discussing their proposal of an origin-independent expression for the
frequency-dependent magnetizability.
The magnetizability will also be discussed within a relativistic framework,
where its expression looks di�erent from the non-relativistic one, given the
absence of second-order terms in the vector potential in the relativistic Hamil-
tonian. The relativistic formulation of the description of the magnetizability
may prove a very good starting point, considering that the Maxwell equa-
tions are fully relativistic.
Extending the discussion to the macroscopic electrodynamics, we will observe
that the multipole description leads to origin-dependent expressions of the
material constants, written as linear combinations of polarizabilities of vari-
ous multipole orders. Despite this, the macroscopic Maxwell equations do not
de�ne the response �elds uniquely, therefore it will be possible transform the
�elds leaving the Maxwell equations unchanged; in this way I will obtain, by
construction, origin-independent expressions of the material constants[7],[8].
Origin-independent expressions of the material constants will be discussed,
trying to extend the same analysis to the microscopic case and to understand
why multipole theory does not give physical acceptable results, but it is nec-
essary transform the response �elds.
Finally, I will introduce other possible approaches to study the problem of
origin dependence of the magnetizability, and I will consider calculation of
static and dynamic second-order magnetic response.
Before discussing each of these di�erent points in detail, I would like to point
out a possible misunderstanding about the terminology used. The second-
order magnetic response of a system is usually named magnetizability. Non-
relativistic static expression of the magnetizability is the sum of two contribu-
tions, paramagnetic and diamagnetic, coming from the linear and quadratic
term in the vector potential of the non-relativistic Hamiltonian. The relativis-
tic Hamiltonian has no quadratic term in the vector potential, therefore the
expression of the static magnetizability has only the paramagnetic term[9].
When the frequency-dependent case is considered, the magnetizability turns
out to be an origin-dependent quantity, thus it cannot be an observable
anymore. An origin-independent expression has been obtained as a sum of
di�erent polarizabilities, in such a way that the frequency-dependent mag-
netizability does not contain only the paramagnetic and diamagnetic terms
anymore. In view of this, it will be more appropriate to call the frequency-
dependent magnetizability a second-order magnetic response instead, and
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leave the name magnetizability to the expression formed by the paramag-
netic and diamagnetic terms only. From now I will use this terminology.
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Chapter 1

Electromagnetism and the gauge

invariance

The complete theory that describes the interactions of molecules with
external �elds is given by QED, where both the molecules and the �elds are
quantized. However, it is common use a semi-classical approach and consider
continuous �elds, whose dynamics is de�ned by the Maxwell equations[2]:

(1.1) ∇ ·B = 0

(1.2) ∇∧E +
∂B

∂t
= 0

(1.3) ∇ ·E =
ρ

ε0

(1.4) ∇∧B − µ0ε0
∂E

∂t
= µ0j

Thus we have a system of six coupled �rst-order di�erential equations for the
components of the �elds E and B. The �rst two equations are known as the
homogeneous Maxwell equations, while the last two as the inhomogeneous
Maxwell equations, where in the right-hand side we can recognize the charge
density ρ and the current density j. Here, I am considering the microscopic
Maxwell equations in the SI units, where ε0 is the permittivity and µ0 is the
permeability of the free space; these two constants are related by: ε0µ0 = 1

c2
.

Using the inhomogeneous equations and taking the divergence of Ampere's
law (1.4), an important relation can be derived, namely the continuity equa-
tion:

(1.5) ∇ · j +
∂ρ

∂t
= 0
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which de�ne the conservation of the charges in a system, and extend the
validity of Ampere's law to the case of time-dependent �elds, suggesting the
existence of electromagnetic waves. The Maxwell equations form the basis of
all electromagnetic phenomena, and when combined with the Lorentz force
and Newton's second law of motion they provide a complete description of
the classical interaction between charged particles and electromagnetic �elds.
A generalization to the macroscopic case of the microscopic Maxwell equa-
tions, taking in account the nature of the materials, can be done, and will be
considered later in this work.
In the description of electromagnetic �elds, a central role is played by the
scalar potential φ and by the vector potential A, in terms of which the
Maxwell equations are usually rewritten. In fact, exploiting Helmholtz theorem[10],
it is possible de�ne the magnetic �elds as:

(1.6) B = ∇∧A

and the electric �eld as:

(1.7) E = −∇φ − ∂A

∂t

Inserting these de�nitions into the inhomogeneous Maxwell equations, we
can see that the scalar and the vector potential, respectively, satisfy the
second-order di�erential equations:

(1.8) ∇2φ+
∂

∂t
(∇ ·A) = − ρ

ε0

(1.9) ∇2A− µ0ε0
∂2A

∂t2
−∇(∇ ·A+ µ0ε0

∂φ

∂t
) = −µ0j

which have the form of wave equations, and thus indicates the existence of
electromagnetic waves.
Introducing the electromagnetic potentials is fundamental in the description
of electrodynamics, despite the fact they are not uniquely de�ned until an
explicit choice of gauge is made. In fact, by de�nition of B in terms of the
vector potential, we could freely add toA the gradient of some scalar function
Λ, without a�ect the magnetic �eld:

(1.10) A′ = A+∇Λ

In the same way, from equation (1.7), the scalar potential can be modi�ed
adding the time derivative of a scalar function, and leaving the electric �eld
unchanged:

(1.11) φ′ = φ− ∂Λ

∂t
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The last two equations are known in the literature as gauge transformations[2],
and they leave the �elds unchanged (gauge invariance). Note that, since the
scalar and the vector potentials are related through equation (1.7), a mod-
i�cation of the scalar (vector) potential imply a modi�cation of the vector
(scalar) potential, in order to leave the electric �eld unchanged; therefore the
gauge transformations (1.10) and (1.11) have to be applied simultaneously.
The gauge freedom can be exploited to decouple the vector and the scalar
potentials in the inhomogeneous equations (1.8) and (1.9), choosing a set of
potentials that satisfy the condition:

(1.12) ∇ ·A+
1

c2

∂φ

∂t
= 0

Therefore we obtain the two wave equations:

(1.13) ∇2φ− 1

c2

∂2φ

∂t2
= − ρ

ε0

(1.14) ∇2A− 1

c2

∂2A

∂t2
= −µ0j

totally equivalent to the Maxwell equations. Equation (1.12) represents a
particular choice of gauge, known as the Lorentz gauge. More precisely it
de�nes a class of gauges, where a speci�c gauge is completely de�ned by
choosing a function Λ that satisfy the wave equation:

(1.15) ∇2Λ− 1

c2

∂2Λ

∂t2
= 0

A fundamental feature of the Maxwell equations is that they are fully relativistic[11],
therefore it comes natural to use the Lorentz gauge, given that it does not
depend on the choice of the coordinate system, and so it perfectly match
with the concepts of special relativity. Furthermore, general solutions of the
wave equations (1.13) and (1.14) are the retarded potentials, which take into
account the �nite time of propagation of the �elds predicted by the rela-
tivistic theory. In terms of the four-vector potential Aα = (A, i

c
φ) and using

covariant notation[11], we can rewrite the Lorentz gauge as ∂αAα = 0, where
∂α = (∇,− i

c
∂
∂t

).
An in�nite number of choices of gauge are possible. One of the most common
gauge that has been used in literature is the Coulomb gauge:

(1.16) ∇ ·A = 0
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The Coulomb gauge implies the separation of the static and dynamic aspects
of the source of the electromagnetic �elds, and leads to the Poisson equation
for the scalar potential:

(1.17) ∇2φ = − ρ

ε0

Solution of the Poisson equation is the instantaneous Coulomb potential given
by the charge density ρ, still the Coulomb gauge it is often used also when
no sources are present1. Furthermore, exploiting the Helmholtz theorem, this
gauge allows us to express the wave equation for the vector potential only in
terms of the transversal part of the current density. Obviously the Coulomb
gauge it is not the best choice within a relativistic framework, given that it
leads to an instantaneous scalar potential, equivalent to the results obtained
in static electromagnetism, and in contrast to the principles of special rela-
tivity.
It is worth to note that neither the Coulomb gauge nor the Lorentz gauge
completely �x the electromagnetic potentials. In particular, the Coulomb
gauge is preserved when the gauge function Λ satisfy the Laplace equation
∇2Λ = 0, whereas the Lorentz gauge is preserved when Λ satisfy the wave
equation ∇2Λ− 1

c2
∂2Λ
∂t2

= 0. In the static limit, the two gauges are equivalents.
In this work I will rather choose another gauge, which is commonly known
as the multipole gauge[3], although in the literature several names have been
used for it, e.g.Barron-Gray gauge[1]. The main idea of the multipole gauge
is to expand the vector and the scalar potentials in a power series, so that,
through equations (1.6) and (1.7), a Taylor expansion of the electric and
magnetic �elds is obtained. Considering a Taylor expansion of the external
�elds is de�nitely reasonable, in fact they are much weaker than the internal
�elds of a molecule, and their e�ects on a system are commonly studied using
perturbation theory. The multipole gauge allow us to rewrite the vector and
the scalar potentials directly in terms of the electric and magnetic �elds, and
thus de�ne their expansion as a series of multipole moments. This fact turns
out to be a fundamental feature of the multipole gauge in order to study
molecular properties, which are often de�ned through the expectation value
of multipole moments[1].
Let start considering a Taylor expansion of the scalar potential, and rewrite
it in terms of the electric �eld and of the vector potential, using the rela-

1We will see in the next section that the use of the Coulomb gauge simplify the expres-
sion of the non-relativistic Hamiltonian that describes the interaction between atoms and
electromagnetic �elds.
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tion (1.7):

φ(r, t) = φ(0, t)− Eı(0, t)ri −
1

2
[∇Eı(r, t)]rır − . . .(1.18)

− rı
∂Aı(0, t)

∂t
− 1

2
rır

∂

∂t
∇Aı(r, t)− . . .

This equation can be written as:

(1.19) φ(r, t) = φ′(r, t)− ∂Λ

∂t

where Λ is the gauge function:

(1.20) Λ =
∞∑
n=0

1

(n+ 1)!
{r ·A[n]

1...n
}r1 . . . rn

Inserting the de�nition of the gauge function in the gauge transformations
(1.10) and (1.11), the expression of the vector and of the scalar potential in
the multipole gauge can be derived as:

Aı(r, t) = εık{
1

2
B(0, t)rk +

1

3
[∇`B(r, t)]rkr`(1.21)

+
1

8
[∇m∇`B(r, t)]rkr`rm + . . . }

φ(r, t) = φ(0, t)− Eı(0, t)ri −
1

2
[∇Eı(r, t)]rır(1.22)

− 1

6
[∇k∇Eı(r, t)]rırrk + . . .

where I have used the Einstein notation that implies implicit summation over
repeated indices. Using equations (1.6) and (1.7), we obtain Taylor expan-
sions of the �elds:

(1.23) Eı(r, t) = Eı(0, t) + [∇Eı(r, t)]r +
1

2
[∇k∇Eı(r, t)]rrk + . . .

(1.24) Bı(r, t) = Bı(0, t) + [∇Bı(r, t)]r +
1

2
[∇k∇Bı(r, t)]rrk + . . .

It is worth to note that the choice ofA and φ is unique and determined by the
Maxwell equations, and the condition for the multipole gauge can be written
as: r ·A = 0. Furthermore, from equations (1.21) and (1.22), the standard
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forms of the static homogeneous electric (A = 0) and magnetic (φ = 0)
�elds are respectively recovered, considering only the �rst-order terms of the
expansions.
Important aspects of the gauge issue can be analysed within the formalism
of quantum mechanics[12]. Since the formalism of quantum mechanics is in-
variant under unitary transformations of wave functions, it is possible have
invariance to particular transformations if they can be reduced to unitary
transformations. A gauge transformation of the vector potential (1.10) imply

a transformation of the wave function[13]2:

(1.25) Ψ(A′, t) = e−ıΛ(t)Ψ(A, t)

and correspondingly of the Hamiltonian:

(1.26) H(A′, t) = e−ıΛ(t)H(A, t)eıΛ(t) − ıe−ıΛ(t)∂Λ(t)

∂t
eıΛ(t)

In this case Λ is a collection of real functions that specify the gauge trans-
formation:

(1.27) Λ(t) =
1

c

N∑
i=1

∑
α

εαλα(ri, t)

Equation (1.26) can be expanded as:

(1.28) H(A′, t) = H(A, t)− ı[Λ(t), H(A, t)] + · · ·

Using perturbation theory, the �rst-order change in the energy turns out to
be:

(1.29) E(1) = −ı < Ψ(A, t) | [Λ(t), H(A, t)] | Ψ(A, t) >

Here I have introduced the most general gauge transformation, which is not a
unitary transformation. However, considering the particular case of a unitary
transformation, it is possible to derive an important theorem. In fact, since
the energy is gauge invariant under a unitary transformation, the �rst order
perturbation in the energy E(1) vanish. Thus gauge invariance lead to the
well known hypervirial theorem[14]:

(1.30) < Ψ(A, t) | [Λ(t), H(A, t)] | Ψ(A, t) >= 0

2We are considering eigenstate Ψ of a non-relativistic Hamiltonian that describe a
molecular system in an external magnetic �eld.
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The hypervirial theorem is obviously valid for a complete set of eigenfunc-
tions, or if the set of eigenfunctions is invariant to the set of gauge transfor-
mation e−ıΛ(t), and it has been used to prove the origin-independence of the
frequency-independent magnetizability3. Furthermore, integrating by parts
equation (1.30), we have:

(1.31)

∫
dr∇ · jλα = 0 =⇒ ∇ · j = 0

so gauge invariance also imply current conservation.

3See chapter 3.
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Chapter 2

Lagrangians and Hamiltonians

In this chapter I will discuss the theoretical approach used to analyze the
interaction of a molecule with external �elds. I will start describing the inter-
action of a charged particle with electromagnetic �elds using the Lagrangian
formalism, and from it I will derive the relativistic and non-relativistic Hamil-
tonians for such a system. I will also derive the expressions for the current
and the charge density in both cases, and I will point out the di�erent results
coming from the possible choices of gauge. As already mentioned, my focus
will be on the multipole gauge that allows us to express the Hamiltonians as
an expansion of multipole moments1. The following discussion represents the
theoretical basis to introduce and de�ne molecular properties, and it consti-
tute the framework for all the further analysis.

2.1 The Lagrangian formalism

Let us de�ne the Lagrangian: the Lagrangian of a dynamical system is a
function that summarizes the dynamics of the system. In classical mechanics,
the Lagrangian is de�ned as the kinetic energy T of the system minus its
potential energy U : L = T−U , where U depends only on the position. Under
conditions that are given in Lagrangian mechanics, if the Lagrangian of a
system is known, then the equations of motion of the system may be obtained
by a direct substitution of it into the Euler-Lagrange equation[15]. Although
the Lagrangian formalism has been created to describe classical mechanics,
and therefore to treat continuous quantities2, the action principle that is

1In the next sections multipole moments will be discussed in details.
2Usually a classical system is described by a Lagrangian density. Integration on the

continuous variables of the system give the Lagrangian of the system.
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used to derive the Lagrange equation, is now recognized as being applicable
to quantum mechanics. Lagrangian mechanics and Noether's theorem, which
relates physical conserved quantities to continuous symmetries of a physical
system together, yield a natural formalism for �rst quantization[17].
The Lagrangian density that describe a charged particle in the presence of an
external electromagnetic �eld, using the covariant notation, has the form[18]:

(2.1) L = Lm + Lf + Lmf = −mc2γ−1 − 1

4µ0

FαβF
αβ + jαAα

where the �rst term is the Lagrangian density of a free particle, the second
is the Lagrangian density of the free �eld, and the third is the Lagrangian
of the interaction between the charged particle and the external �eld. Note
that in this equation m is the mass of the particle, γ = 1q

1− v2

c2

is the rela-

tivistic Lorentz factor, and Fαβ is the antisymmetric electromagnetic tensor.
Following a semiclassical approach, it is possible consider the external �eld
as �xed and neglect the second term in equation (2.1). This form obey the
requirement of Lorentz invariance, and under a gauge transformation the
interaction term is modi�ed as:

(2.2) L′mf = Lmf + ∂α(jαΛ)− Λ∂αjα

The �rst term gives zero upon integration due to the boundary conditions,
while the second term is zero according to the continuity equation. This
result shows that there is an intimate connection between gauge invariance
and charge conservation.
By integration, and using the de�nition of the charge density ρ(r) = qδ3(r′−
r(t))3, the Lagrangian assume the form:

(2.3) L = −mc2γ−1 + j ·A− qφ

Note that using the principle of least action and substituting this Lagrangian
in the Euler-Lagrange equation, the Maxwell equations and the Lorentz force
can be derived[19].

2.2 The relativistic Hamiltonian

A physical system is often described through its Hamiltonian. The Hamil-
tonian method di�ers from the Lagrangian method in that instead of ex-
pressing second-order di�erential constraints on an n-dimensional coordinate

3Use the de�nition of the charge density in the integration of the Lagrangian density
imply the loss of the covariant formalism.
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space (where n is the number of degrees of freedom of the system), it ex-
presses �rst-order constraints on a 2n-dimensional phase space. Generally,
the Hamiltonian formalism does not provide a more convenient way of solving
a particular problem, rather it provides deeper insights into both the general
structure of classical mechanics and its connection to quantum mechanics. It
is possible to move from the Lagrangian of a system to its Hamiltonian using
the Legendre transformation[20]. Thus, the Hamiltonian for a free particle is:

(2.4) H = c
√
m2c2 + p2

and, from equation (2.3), the Hamiltonian of a charged particle in an external
electromagnetic �eld is:

(2.5) H = c
√
m2c2 + π2 + eφ

By comparison, the latter equation, which include the electromagnetic inter-
action, can be inferred from the Hamiltonian of a free particle through the
minimal substitution[21]:

(2.6) p −→ π = p+ eA , H −→ H + eφ

where π is the mechanical momentum and p is the conjugate momentum.
Note that the minimal coupling imply a speci�c choice of the charge, in our
case I have considered the electron's charge q = −e.
So far, I have been working in a classical framework, without consider any
quantization of the physical systems. Let now consider the quantum mechan-
ical expression of the Hamiltonian. A standard approach to move from the
classical to the quantum theory is to associate to each physical observable
a linear operator. Inserting the momentum operator in equation (2.5) and

taking the square of it, we obtain the Klein-Gordon equation[22]:

(2.7) (
1

c2

∂2

∂t2
−∇2 +

m2c2

~2
)ψ = 0

The Klein-Gordon equation is the relativistic �eld equation for a scalar par-
ticle (spin=0), but it does not correctly describe the behavior of a half-spin
particle (spin=1

2
). Thus, in order to analyze an electronic system in the pres-

ence of an electromagnetic �eld, it is necessary to use the Dirac equation[23].
To simplify things, let us consider the Dirac equation for a one-electron sys-
tem, derived from the Dirac equation for a free particle4 through the minimal
substitution:

(2.8) HD = βmc2 + c(α · p) + ec(α ·A)− eφ
4HD = βmc2 + c(α · p).
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Here α and β are the 4x4 Dirac matrices de�ned as:

α =

(
0 σ2

σ2 0

)
(2.9)

β =

(
12 0
0 −12

)
(2.10)

where σ are the Pauli's matrices[27]. Note that a solution of the Dirac equa-
tion is a 4-component wave function (4-spinors), and (for a spin-one-half
particle) it is automatically a solution of the Klein-Gordon equation, though
not all solutions of the Klein-Gordon equation are solutions of the Dirac
equation.
The expectation value of the Dirac operator give the energy of the system.
Considering the terms that involve the external potentials, and the previous
de�nition of the Lagrangian, the expressions of the relativistic charge and
current density can be derived:

(2.11) Emf =< ψ| − eφ+ ec(σ ·A)|ψ >=

∫
φ(r)ρ(r)dτ −

∫
A(r) · j(r)dτ

(2.12) ρ = −eψ†ψ j = −eψ†cαψ

The Dirac equation will play a central role in my work, given that it will be
the starting point for studying the magnetizability in both the non-relativistic
and the relativistic framework.

2.3 The non-relativistic Hamiltonian

Let us now derive the non-relativistic Hamiltonian from the Dirac equa-
tion. At �rst the matrix β is replaced by the matrix β′ = β −mc2 in order
to align the energy level of the relativistic and the non-relativistic case. It is
not possible to take directly the non-relativistic limit (c → ∞) of the Dirac
equation, because it contains terms linear and quadratic in c, therefore it is
necessary to operate a change of metric. Reducing the description to only
positive-energy solutions and solving for the small components of the wave
equation, the non-relativistic limit of the Dirac equation is[16]:

(2.13) HNR =
1

2m
(σ · π)(σ · π)− eφ
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By de�nition of the mechanical momentum π and through easy manipulation
of the previous equation, the non-relativistic Hamiltonian for a free particle
and in the presence of an external electromagnetic �eld are respectively:

(2.14) HNR =
p2

2m

(2.15) HNR =
p2

2m
+

e

2m
(A · p+ p ·A) +

e

2m
(B · σ)− eφ

These equations, obtained as the non-relativistic limit of the Dirac equation,
perfectly match with the well-known Schrödinger equation[24], and show that
the spin is not a pure relativistic e�ect, but it is already present inside the
term p2. Note that the Zeeman term in the expression of the non-relativistic
Hamiltonian de�ne the interaction between an external magnetic �eld and
the spin of the electron, and it comes naturally substituting p with (σ · p)
in the �eld-free Hamiltonian. This term is usually multiplied by the gyro
electric factor ge ' 2 given by QED.
Following the same procedure for the relativistic case, the non-relativistic
expressions of the charge and current densities are:

(2.16) ρ = −eψ†NRψNR

jNR = − e

2m
{ψ†NRpψNR − ψ

T
NRpψ

∗
NR} −

e

2m
{ψ†NRAψNR}(2.17)

− e

2m
∇∧ {ψ†NRσψNR}

The latter expression requires a few manipulations and integration by parts,
in order to be written in this form. The �rst term in equation (2.17) is the
contribution given by the motion of the electrons, the second describe the
current induced by the vector potential (Larmor current), the third is a pure
transversal quantity that comes from the electron spin. A comparison with
equation (2.12) shows that the non-relativistic expression of the charge den-
sity is similar to the one obtained from the relativistic Hamiltonian, instead
a much more cumbersome expression of the current density is derived in the
non-relativistic case. Thus, it becomes natural to ask why the expression of
the non-relativistic current density is so di�erent from the relativistic one.
The analysis of this issue is important, in order to discuss a fundamental point
of electromagnetic theory: the relativistic character of the Maxwell equations.
In fact, the Maxwell equations obey to the Lorentz transformation, and are
so purely relativistic. When the non-relativistic limit of the Dirac Hamilto-
nian is discussed, a correct analysis should consider the non-relativistic limit
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of the Maxwell equations too, in order to avoid inconsistencies in the theory
and cumbersome expressions as the one given in eq. (2.17). Relevant problems
emerge when the non-relativistic limit of the Maxwell equations is considered:
the speed of light appear di�erently depending on the unit system used; the
electrostatic laws are recovered, thus no magnetic �eld (no vector potential
A) can exist, and therefore no gauge freedom. In SI units, used so far, the
speed of light is expressed by the electric permittivity ε0 and the magnetic
permeability µ0 through the relation: c = 1√

ε0µ0
. Considering either ε0 or µ0

in the non-relativistic limit of the Maxwell equation leads to the electrostatic
or to the magnetostatic, respectively. Anyway, the vector potential goes to
zero in both cases, therefore the existence of magnetic �elds could be consid-
ered as a purely relativistic e�ect. Only the instantaneous Coulomb potential
emerge in the non-relativistic limit, and no retardation e�ects appear. When
the interaction between atomic systems and external �elds is dominated by
the Coulomb potential, the non-relativistic framework is suitable and it de-
scribes some phenomena well. However, a complete analysis of a system has
to be done using the Dirac Hamiltonian, but the price to pay is the need to
consider a 4-component wave vector and a much more complex formalism.
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Chapter 3

Molecular properties and the

magnetizability in a

non-relativistic framework

In this chapter I will analyse molecular properties using a non-relativistic
approach, and in particular I will focus my attention on the magnetizability.
The problem of origin dependence of the magnetizability will be discuss in
detail, considering the di�erent cases of static and dynamic external magnetic
�elds. I will show that in the former case the expression of the magnetizability
given by multipole theory is origin independent for a complete variational
basis set, whereas in the latter case multipole theory provides an origin-
dependent expression of this property. The origin-independent expression
of the frequency-dependent magnetizability proposed by Raab and de Lange
will be derived and discussed, pointing out the weak points of their theoretical
analysis and introducing other possible approaches.

3.1 A theoretical approach to study molecular

properties

Magnetic properties can be de�ned in several ways. My analysis started
from the non-relativistic framework, paying particular attention to the mag-
netizability, and referring to the theory developed by Raab and de Lange[1],[8].
I focused my attention on this particular approach, because it turned out to
be very useful in order to describe time-dependent external perturbations,
and in particular to derive an origin-independent expression of the frequency-
dependent magnetizability. This expression has been derived by the same
(quoted) authors[6],[8]. The crucial point of their theory is the power se-
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ries expansion of the vector potential and of the scalar potential (multipole
gauge), generated by the external �elds, that leads to a multipole expansion
of the Hamiltonian, and to general expressions for the electric and magnetic
multipole moments up to the electric octopole-magnetic quadrupole order.
We will observe that the truncation at the above mentioned order will be
good enough to derive an origin-independent expression for the frequency-
dependent magnetizability.
Let us start by considering the non-relativistic Hamiltonian derived in the
previous section:

(3.1) H = H0 +H1 +H2

where

(3.2) H0 =
p2

2m
+ V ; H1 =

e

2m
(p ·A+A · p)− eφ ; H2 =

e2

2m
A2

and V is the potential energy operator in the absence of the �elds. The choice
of a certain gauge will appear very important in treating the magnetizabil-
ity, so it is wise to approach the analysis of this property starting with the
Hamiltonian just considered in equation (3.1), where no restriction to any
particular gauge is done yet. In H, the nuclear magnetic moments have not
been considered, so that all the interaction terms deriving from their presence
have been ignored. Furthermore, I have assumed to work with closed-shell
molecules, and therefore the spin-dependent part given by the interaction of
the external magnetic �eld with the intrinsic magnetic moment can be ne-
glected.
In general, quantum-mechanical expressions for the electrodynamic polar-
izability tensors are derived from the expectation value of the appropriate
multipole moment operator. Therefore, when considering time-dependent ex-
ternal perturbations, it is natural to switch to time-dependent perturbation
theory in order to derive the correct expression of the perturbed states, and
thus to calculate the multipole moment expectation values and the magnetic
properties. It is possible to apply perturbation theory and obtain the de�ni-
tions of the polarizability tensors using this approach, since I refer to weak
external perturbations1. Furthermore, taking the limit for ω = 02, these ex-
pressions recover the results that have been obtained in the static case3.

1This means that the perturbation is much weaker compared with the internal �elds
of the atoms.

2Where ω is the frequency of the applied perturbation.
3In the literature the expressions for the polarizabilities are well know and they have

been obtained following di�erent approaches, see e.g.Ref.[7].
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3.2 The multipole gauge and the polarizabili-

ties

Let us derive the expressions for the polarizabilities, starting with the
choice of a particular gauge. Note that, in the method described above, it is
common to use the Coulomb gauge:∇·A = 0 . This choice of gauge looks very
advantageous referring to the Hamiltonian H1, but it leads to complicated
expressions for the polarizability tensors, that have to be simpli�ed through
cumbersome manipulations[1]. In order to reduce the calculations and obtain
simpler de�nitions of frequency dependent properties, it is possible to use
the multipole gauge (Barron-Gray gauge). To highlight the reasons for this
speci�c choice, let us observe that we would like to work within multipole
theory4, so it would be nice to get a power expansion of the Hamiltonian,
and consequently it is necessary to look at the expansion of the electromag-
netic potentials about an origin. Following the Barron-Gray idea, since the
electromagnetic potentials are strictly related to the electromagnetic �elds5,
then a power series of the potentials should yield a Taylor expansion of the
�elds. Recalling the de�nitions of the potentials A and φ in the multipole
gauge:

Aı(r, t) = εık{
1

2
B(0, t)rk +

1

3
[∇`B(r, t)]rkr`(3.3)

+
1

8
[∇m∇`B(r, t)]rkr`rm + . . . }

φ(r, t) = φ(0, t)− Eı(0, t)ri −
1

2
[∇Eı(r, t)]rır(3.4)

− 1

6
[∇k∇Eı(r, t)]rırrk + . . .

the expressions of the �elds are obtained through the Maxwell equations.
Thus, the Taylor expansion about an origin of arbitrary time-dependent elec-
tric and magnetic �elds are:

(3.5) Eı(r, t) = Eı(0, t) + [∇Eı(r, t)]r +
1

2
[∇k∇Eı(r, t)]rrk + . . .

(3.6) Bı(r, t) = Bı(0, t) + [∇Bı(r, t)]r +
1

2
[∇k∇Bı(r, t)]rrk + . . .

4Molecular properties are generally treated within the Response Theory, starting from
the Taylor expansion of the potentials and writing multipole expansion of the Hamiltonian.

5As a consequence of the Maxwell equations B = ∇∧A and E = −∇φ− ∂A
∂t .
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The speci�c choice of the potentials in eqs. (3.3) and (3.4) de�nes a particular
gauge, namely the multipole/Barron-Gray gauge. These potentials do not
satisfy neither the Coulomb gauge

(3.7) ∇ ·A = 0

nor the Lorentz gauge

(3.8) ∇ ·A+
1

c2

∂φ

∂t
= 0

the multipole/Barron-Gray gauge is thus a di�erent possible choice of gauge.
Inserting the potentials just de�ned in the Hamiltonians above and expressing
them in terms of E and B, it is possible to write:

H1 = qφ(t)− pıEı(t)−
1

2
qıEı(t)−

1

6
qıkEık(t)− . . .(3.9)

−mıBı −
1

2
mıBı(t)−

1

6
mıkBık(t)− . . .

H2 = −1

2
χıBı(t)B(t)−

1

2
χıkBı(t)Bk(t)(3.10)

− 1

6
χık`Bı(t)Bk`(t)− · · · −

4

27
χık`Bık(t)B`(t)− . . .

I have here introduced a convenient notation for the �elds and for the electric
and magnetic multipole moment operators, in order to easily extract the
expressions for the polarizabilities. In particular, the �elds and their gradients
have been de�ned as:

Eı(t) = Eı(0, t) , Eı(t) = [∇Eı(r, t)]O,(3.11)

Eık(t) = [∇k∇Eı(r, t)]O , . . .

Bı(t) = Bı(0, t) , Bı(t) = [∇Bı(r, t)]O,(3.12)

Bık(t) = [∇k∇Bı(r, t)]O , . . .

the electric multipole moment operators as:

(3.13) q =
∑
α

q(α) , pı =
∑
α

q(α)r(α)
ı , qı, =

∑
α

q(α)r(α)
ı r(α)

 . . .

the magnetic multipole moment operators as:

(3.14) mı =
∑
α

q(α)

2m(α)
`(α)
ı , mı =

∑
α

q(α)

3m(α)
(r(α)
 `(α)

ı + `(α)
ı r(α)

 ) , . . .
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and the diamagnetic part of the magnetizability operator6, or magnetic sus-
ceptibility, as:

(3.15) χı =
∑
α

(q(α))2

4m(α)
(r(α)
ı r(α)

 − (r(α))2δı) , . . .

where q(α) is the electronic charge, m(α) is the electronic mass, l(α) is the
angular momentum operator and the index α runs over all the electrons of
the system. I explicitly wrote down only the terms that have been of interest
in my work.
It is important to note that the above operators are Hermitian. This obser-
vation allow us to simplify several calculations, and it is a useful constraint
in order to derive an origin-independent expression for the magnetizability.
At this point we have all the assumptions needed to compute the expectation
value of the multipole moment operators in the presence of a time-dependent
external perturbation, and to derive the associated polarizabilities. Using
time-dependent perturbation theory to obtain the expressions for the per-
turbed states, the �rst-order perturbed eigenvectors are de�ned as:

(3.16) | n(t) >= e
−ıE

(0)
n t

~ | n(0) > +
∑
s6=n

cs(t)e
−ıE

(0)
s t

~ | s(0) >

where cs(t) are the �rst-order mixing coe�cients given by perturbation theory
in the form:

(3.17) cs(t) =
−ı
~

∫ t

0

dt eıωsnt < s(0) | H1 | n(0) >

| n(0) > and | s(0) > are eigenvalues of the unperturbed Hamiltonian and
ωns = En−Es

~ . Substituting in this formula the Hamiltonian H1, previously
de�ned in equation (3.9), it is possible to derive the expression for the co-
e�cients cs(t) in terms of the �elds and their derivatives, up to the electric
octopole-magnetic quadrupole order:

cs(t) =
e−ıωnst

~(ω2 − ω2
ns)
{< pi >sn [ωnsEi(t)− ıĖi(t)](3.18)

+
1

2
< qı >sn [ωnsEı(t)− ıĖı(t)]

+
1

6
< qık >sn [ωnsEık(t)− ı ˙Eık(t)] + . . .

+ < mı >sn [ωnsBi(t)− ıḂi(t)]

+
1

2
< mı >sn [ωnsBı(t)− ıḂı(t)] + . . . }

6I will discuss in detail the magnetizability operator later in this section.
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Note that the form of eq. (3.18) has been obtained using time-dependent

perturbation theory[28] and integrating by part in eq. (3.17), so that time
derivatives of the �elds, Ė and Ḃ, appear in it. To evaluate the previous
coe�cients, without loss of generality, I have considered an external electro-
magnetic perturbation represented by harmonic plane waves of the form:

(3.19) E = E0 cos(k · r − ωt) B = B0 cos(k · r − ωt)

Here k is the wave vector and ω the frequency of the external �elds. The
expectation value of a multipole moment operator Ω can be de�ned as:

< n(t) | Ω | n(t) > = < Ω(0) >nn + < Ω(1) >nn(3.20)

+ 2
∑
s 6=n

Re{cseıωnst < Ω(0) >ns}

where the unperturbed part Ω(0) and the perturbed part Ω(1) of the operator
have been separated. The latter contribution is derived from the action of the
external magnetic �eld for a magnetic moment. Thus, the total electric and
magnetic multipole moments up to the electric octopole-magnetic quadrupole
order are de�ned as:

< n(t) | pı | n(t) > = p(0)
ı + αıE(t) +

1

ω
α′ıĖ(t)(3.21)

+
1

2
aıkEk(t) +

1

2ω
a′ıkĖı(t)

+
1

6
bıklEkl(t) +

1

6ω
b′ıkl ˙Ekl(t) + . . .

+GıB(t) +
1

ω
G′ıḂ(t)

+
1

2
H ′ıkBk(t) +

1

2ω
H ′ıkḂk(t) + . . .

< n(t) | qı | n(t) > = q(0)
ı + aıkEk(t) +

1

ω
a′ıkĖk(t)(3.22)

+
1

2
dıklEkl(t) +

1

2ω
d′ıklĖkl(t) + . . .

+ LıkBk(t) +
1

ω
L′ıkḂk(t) + . . .

(3.23) < n(t) | qık | n(t) >= q
(0)
ık + bıklEl(t) +

1

ω
b′ıklĖk(t) + . . .
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< n(t) | mı | n(t) > = m(0)
ı + GıE(t) +

1

ω
G′ıĖ(t)(3.24)

+
1

2
LıkEk(t) +

1

2ω
L′ıkĖk(t) + . . .

+ χıB(t) +
1

ω
χ′ıḂ(t) + . . .

(3.25) < n(t) | mı | n(t) >= m(0)
ı + HıkEk(t) +

1

ω
H′ıkĖk(t) + . . .

In these formulas several multipole polarizabilities have been de�ned. For
a charge distribution originating in an external time-dependent electromag-
netic �eld, their expressions are[1]:

(3.26) αı =
2

~
∑
s

ωsnZsnRe{< pı >ns< p >sn} = αı

(3.27) α′ı = −2

~
∑
s

ωZsnIm{< pı >ns< p >sn} = −α′ı

(3.28) aık =
2

~
∑
s

ωsnZsnRe{< pı >ns< qk >sn} = akı

(3.29) a′ık = −2

~
∑
s

ωZsnIm{< pı >ns< qk >sn} = −a′kı

(3.30) Gı =
2

~
∑
s

ωsnZsnRe{< pı >ns< m >sn} = Gı

(3.31) G′ı = −2

~
∑
s

ωZsnIm{< pı >ns< m >sn} = −Gı

(3.32) bıkl =
2

~
∑
s

ωsnZsnRe{< pı >ns< qkl >sn} = bklı

(3.33) b′ıkl = −2

~
∑
s

ωZsnIm{< pı >ns< qkl >sn} = −b′klı
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(3.34) dıkl =
2

~
∑
s

ωsnZsnRe{< qı >ns< qkl >sn} = dklı

(3.35) d′ıkl = −2

~
∑
s

ωZsnIm{< qı >ns< qkl >sn} = −d′klı

(3.36) Hık =
2

~
∑
s

ωsnZsnRe{< pı >ns< mk > sn} = Hkı

(3.37) H ′ık = −2

~
∑
s

ωZsnIm{< pı >ns< mk >sn} = −H′kı

(3.38) Lık =
2

~
∑
s

ωsnZsnRe{< qı >ns< mk >sn} = Lık = Lkı

(3.39) L′ık = −2

~
∑
s

ωZsnIm{< qı >ns< mk >sn} = L′ık = −L′kı

χı =
2

~
∑
s

ωsnZsnRe{< mı >ns< m >sn}(3.40)

+
N∑
α=1

(q(α))2

4m(α)
〈r(α)
ı r(α)

 − (r(α))2δı〉nn = χı

(3.41) χ′ık = −2

~
∑
s

ωZsnIm{< mı >ns< m > sn} = −χ′ı

where

(3.42) Zsn = (ω2
sn − ω2)−1

Considering the polarizability expressions just obtained, let us analyze their
properties taking in account the Hermiticity of the multipole moment op-
erators. At �rst it is possible to recognize how the static results could be
recovered taking the limit for ω → 0; in particular, the imaginary terms
vanish, con�rming the fact that they describe the induction of a multipole
moment given by the time derivatives of the �elds. Furthermore, it is useful
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to classify the polarizabilities with respect to their multipole order and to
their symmetries. Referring to the latter property, two kind of symmetries can
be recognized: intrinsic symmetries, manifestly gathered from their explicit
expressions, and symmetries depending on the geometric and time-reversal
nature of the properties. The former kind of symmetries, such as aık = aık
or bıkl = bılk = bıkl etc. are directly obtained using symmetry permutations
of the multipole operators and the quantum mechanical expressions, whereas
the second kind of symmetries have to be treated in more detail. Considering
group theory, and doing some geometrical observations about the behavior
of a tensor under inversion of axis and rotations, a generic tensor can be
classi�ed as polar, axial or isotropic. By de�nition, a second-rank Cartesian
tensor Tı satisfy the relations[31]:

(3.43) T ′ı = lırlsTrs

(3.44) T ′ı = ±lırlsTrs

for polar and axial tensors respectively, where the plus and minus sign ap-
plies for a proper or improper transformation, respectively. Here lır is named
the direction cosine, and it speci�es the relative orientation of two sets of
Cartesian axis. It follows that a vector is simply a one-rank tensor, polar or
axial according to whether it changes sign or not with respect to the inversion
of the axis. A tensor is moreover called isotropic, if each of its components
retain the same values under an arbitrary rotation of the axis.
Time symmetry is obtained by de�ning a time reversed-operator T as T =
UK, where K is the complex conjugation operator and U is a unitary oper-
ator, and applying it to a general operator Ω, so that Ω′ = TΩT−1. Thus a
tensor is said to be time-even if Ω′ = Ω, or time-odd if Ω′ = −Ω.
Spatial-time symmetries are a wide topic that has been treated in details
elsewhere Ref.([26],[27],[28]), so it would be possible to extend this analysis
and go through several details. However, for my purpose it is su�cient to
consider the results achieved by this theory and use them in order to classify
the polarizability tensors, and simplify calculations and expressions.
Going back to the polarizability expressions, the quantity Zsn = (ω2

sn−ω2)−1

appeared in these equations. It is trivial to note that this quantity goes
to in�nity at resonance, namely when the frequency of the external �eld ω
equals the frequency ωsn, corresponding to the transition energies between
the electronic levels s and n. Obviously, this is an unphysical result, so it
is necessary rede�ne the expression for Zsn as Zsn = f + ıg, where f and
g are the dispersion and absorption line shape functions. In this way Zsn is
a complex function, with poles corresponding to the transition energies and
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with dependencies from ω, ωsn and Γsn, where Γsn is the damping factor and
it is related to the electronic transition sn and to the width of the absorp-
tion (or resonance) curve[31],[1]. In this thesis the discussion is restricted to
the case where the frequency of the external �eld ω assumes values far from
the transition frequency ωsn, e.g.optical frequencies, so that the expression
Zsn = (ω2

sn − ω2)−1 will never be zero. In a completely general case, a more
precise de�nition has to be used.

3.3 The origin-dependence of molecular prop-

erties

Multipole moments are origin dependent, since they are de�ned with re-
spect to an expansion point. Operating a shift of the origin of the coordinates
in the de�nitions of multipole moments, it is possible to see how their expres-
sions give rise to an additional term due to the displacement of the reference
system. The most trivial example is the electric dipole moment pı. Giving a
shifting vector d, let consider the displacement of the position operator:

(3.45) r′ = r − d

that when substituted into the de�nition of the electric dipole moment

pı =
∑
α

q(α)r(α)
ı

leads to:

(3.46) p′ı = pı − dı
∑
α

q(α) = pı + ∆pı

where ∆pı is the displacement term. Following the same procedure, it is
possible to obtain the displacement terms that appear for all the electric
and magnetic moment operators. Since molecular properties are obtained as
expectation value of the moment operators, the polarizability tensors have
to be origin dependent as well. Knowing how to calculate the displacement
terms, it is easy to rede�ne all the expressions of the polarizabilities, showing
that an additional term given by the shift of the origin appears:

(3.47) < Ω′ >nn=< Ω >nn + < ∆Ω >nn

Explicit expressions of the displacement terms < ∆Ω >nn for the di�erent
polarizability tensors are:

(3.48) ∆αı = 0
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(3.49) ∆α′ı = 0

(3.50) ∆aık = −djαık − dkαı

(3.51) ∆a′ık = −djα′ık − dkα′ı

(3.52) ∆Gı = −1

2
ωεkldkα

′
ıl

(3.53) ∆G′ı =
1

2
ωεkldkαıl

(3.54) ∆bıkl = −daıkl − dkaıl − dlaık + ddkαıl + ddlαık + dkdlαı

(3.55) ∆b′ıkl = −da′ıkl − dka′ıl − dla′ık + ddkα
′
ıl + ddlα

′
ık + dkdlα

′
ı

∆dıkl = −dıakl − daıkl − dkalı − dlakı(3.56)

+ dıdkαl + dıdlαk + ddkαıl + ddlαık

∆d′ıkl = −dıa′kl − da′ıkl − dkalı′ − dla′kı(3.57)

+ dıdkα
′
l + dıdlα

′
k + ddkα

′
ıl + ddlα

′
ık

(3.58) ∆Hık = −2dkGı +
2

3
δkdlGıl −

1

3
ωεlmdl(a

′
ıkm − 2dkα

′
ım)

(3.59) ∆Hık = −2dkGı +
2

3
δkdlG

′
ıl +

1

3
ωεlmdl(aıkm − 2dkαım)

(3.60) ∆Lık = −dıGk − dGık +
1

2
ωεklmdl(a

′
mı + dıα

′
m + dα

′
ım)

(3.61) ∆Lık = −dıG′k − dG′ık +
1

2
ωεklmdl(amı − dıαm − dαım)

(3.62) ∆χı =
1

2
ω(εıkldkG

′
l + εkldkG

′
lı) +

1

4
ω2εıklεmndkdmαln

(3.63) ∆χ′ı = −1

2
ω(εıkldkGl − εkldkGlı) +

1

4
ω2εıklεmndkdmα

′
ln
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3.4 Remarks

Let me brie�y recapitulate what I have discussed so far.
Electric and magnetic moment operators were de�ned and their expecta-
tion values were calculated in the framework of time-dependent perturbation
theory, in the presence of an external time-dependent electromagnetic �eld.
The expressions for the moment operators in terms of molecular properties,
namely polarizabilities, have been derived and discussed.
Observing the formulas above, eqs. (3.48)-(3.63), surprising unphysical re-
sults showed up. In fact the displacement terms calculated for the molecular
properties are not zero, and since molecular properties are observable quanti-
ties their expressions should not be origin dependent. More precisely, the po-
larizabilities themselves are not origin dependent, but some of the expressions
derived above have an explicit dependence on the origin. In particular, we
can see how the polarizabilities corresponding to the electric dipole-electric
dipole order are origin independent, eqs. (3.48) and (3.49), whereas the rest of
the displacement terms ∆ are not zero. These displacements are expressed in
terms of other polarizabilities (αı,Gı etc.), which are themselves frequency-
dependent.
Noting that we are treating observable quantities, it becomes necessary to
rede�ne the expressions for molecular properties as linear combination of the
polarizabilities of the same higher multipole order, in order to derive origin-
independent de�nitions for them. This means consider contributions that
appear at the same order in the multipole expansions of the vector and of
the scalar potentials given in eqs. (3.3) and (3.4). Following this procedure,
the intrinsic symmetry degree of freedom is lowered, reducing the number of
the polarizabilities included in each expression.
The idea to consider linear combinations of polarizabilities has been formu-
lated by Raab and de Lange and used by the same authors to obtain an
origin-independent expression of the frequency-dependent magnetizability.
For this reason my discussion often make use of their procedures and nota-
tion.

3.5 The magnetizability

The treatment developed so far has been general with respect to molec-
ular properties in a time-dependent external electromagnetic �eld. However,
my goal is to discuss a speci�c second-order magnetic property, namely the
magnetizability, so let us focus our attention to it. The de�nition of the mag-
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netizability has been given in equation (3.40). Recalling that perturbation
theory has been used and thus that we are referring to the second-order en-
ergy corrections, it is worth pointing out that this expression contains two
terms, the former comes from the linear term of the vector potential in the
Hamiltonian and is known as the paramagnetic part, while the latter is given
by the quadratic term in the vector potential and is known as the diamag-
netic part. Therefore, the expression of the magnetizability is commonly split
as:

(3.64) χı = χpı + χdı

where

(3.65) χpı =
2

~
∑
s 6=n

ωsnZsnRe{< mı >ns< m >sn}

(3.66) χdı =
N∑
α=1

(q(α))2

4m(α)
〈r(α)
ı r(α)

 − (r(α))2δı〉nn

Here < mı > is the transition moment of the magnetic dipole operator,
de�ned in the non-relativistic framework when the spin contribution is ne-
glected, namely: mı = −1

2
lı = −1

2
(r ∧ p)ı = ı

2
(r ∧ ∇)ı, where p is the

linear momentum operator, which in the position representation is de�ned
as p = −ı~∇; while r is the position operator and δı is the Dirac's delta.
Note that the summation in the diamagnetic term is extended to all the
electrons in the system, while the sum in the paramagnetic term is over all
the possible energy states s. It is useful to rewrite the paramagnetic and the
diamagnetic parts in terms of the angular momentum operator l = −ı~r∧∇
and using response theory[14], to express the magnetizability in the form7:

(3.67) χp = − e2

4m2
� l; l�ω

(3.68) χd = − e2

4m2
� r ∧ l;p�ω

Then, by de�nition, the magnetizability appears as a time-even, second-rank,
symmetric, polar tensor that can be split in two terms representing the dia-
magnetic and the paramagnetic parts. Inserting a displacement of the origin

7This form of the paramagnetic and diamagnetic contributions will be used later in this
chapter.
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of the coordinates in its expressions, and recalling the displacement terms
given in eqs. (3.62) and (3.63), it is also possible to state that, in the gen-
eral case, the magnetizability is an origin-dependent quantity, since ∆χı and
∆χ′ı are not zero. In order to discuss in detail this fact, let distinguish the
case for a time-independent and for a time-dependent external perturbation.
In fact, we will observe that in the former case the magnetizability turns
out to be an origin-independent quantity, whereas in the latter case it is not
possible avoid the origin dependence of its expression.
Let us now consider the frequency-independent magnetizability.

3.5.1 Frequency-independent magnetizability

For a time-independent external magnetic �eld, the magnetizability is
origin-independent for a complete, variational basis set. This result was �rst
achieved by J.H.Van Vleck[5], and subsequently recovered in several ways us-
ing the two equivalent de�nitions of the magnetizability given above. In the
following discussion, I will show one possible method to reach this conclusion,
where the paramagnetic and the diamagnetic parts will be treated indepen-
dently; it will become clear that the origin dependence will be exactly the
same for both terms, but with opposite signs, so that the two ∆-contributions
will cancel each other. Another possible way to recover this result is described
in the Appendix A.
Let us consider the expression for the energy correction given by perturba-
tion theory to second-order. By virtue of the previous analysis, two terms
contribute to the second-order magnetic property, namely:

(3.69) Ed
(2) =

e2

2m
< 0 | A ·A | 0 >ω=0

(3.70) Ep
(2) =

e2

2m
� A · p;A · p�ω=0

In this approach, a shift of the origin of the coordinates can be interpreted
as a change of gauge. So far, no gauge choice has been made yet, so we can
freely choose a vector potential of the form:

(3.71) A =
1

2
B ∧ (r − ro)

Taking r′ = ro + d8, the vector potential becomes[29]:

(3.72) A′ = A+∇Λ =
1

2
B ∧ (r − r′)

8Where ro is the gauge origin and d the shift.
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where I have been introduced the gauge function:

(3.73) Λ = −1

2
(B ∧ d) · (r − ro)

Based on the gauge freedom, it is equivalent to choose a function Λ of this
form, instead of a shift of the origin, and recover the same results. Note that
this speci�c choice of the vector potential satisfy the Coulomb gauge, but
this is just a matter of facts and it is not relevant in my discussion, since the
same procedure can be applied with di�erent gauges.
Let us now substitute the shifted vector potential A′ in the second-order
energy correction de�ned by eqs. (3.69) and (3.70), and separately examine
the paramagnetic and the diamagnetic terms. The energy is expressed as a
function of the external static magnetic �eld and of the position operators r
and r0. Doing algebraic manipulations and keeping in mind that the second-
order energy can be written in the form:

(3.74) E(2) =
1

2
BT · χ ·B =

1

2
BT · (χp + χd) ·B

the diamagnetic term becomes:

χd′ = χd +
e2

4m
{< 0 | (r − ro · d− d(r − ro)T | 0 >(3.75)

+ < 0 | d · (r − ro)− (r − ro)dT | 0 >
− < 0 | d · d− ddT | 0 >}

At this point, it is necessary to make use of the hypervirial relation, valid for
an exact theory and in certain approximations such as the RPA (Random
Phase Approximation), when using a complete variational orbital basis set
[14]:

(3.76)
ı~
m
p = [r, H]

and of the following equalities:

[d ∧ l, r] = ı~(r · d− rdT ),(3.77)

< 0 | r · r − rrT | 0 > =
1

ı~
� r ∧ l; [r, H]�ω=0,

< 0 | [A,B] | 0 > = � A; [B,H]�ω=0

Thus, the diamagnetic term can be reformulated as:

χd′ = χd +
e2

4m2
{� d ∧ l(r − ro);p�ω=0(3.78)

+� (r − ro) ∧ l(d);p�ω=0 − � d ∧ l(d);p�ω=0}
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In the same way, using the vector potential A′ and by comparison with the
second-order energy, the paramagnetic term can be rewritten as:

χp′ = χp +
e2

4m2
{� l(r − ro); l(d)�ω=0(3.79)

+� l(d); l(r − ro)�ω=0 − � l(d); l(d)�ω=0}

Note that:

� l(d); l(r − ro)�ω=0=� l(r − ro); l(d)�ω=0

so, by exploiting the relations introduced above and by some algebraic ma-
nipulations, the paramagnetic term becomes:

χp′ = χp − e2

4m2c2
{� d ∧ l(r − ro);p�ω=0(3.80)

+� (r − ro) ∧ l(d);p�ω=0 − � d ∧ l(d);p�ω=0}

As stated before and con�rmed by the above calculations, the additional
terms given by the origin displacements vanish so that, in the presence of a
time-independent external perturbation, the magnetizability is origin inde-
pendent, for a complete, variational basis set or, alternatively, for methods
satisfying eq. (3.76).

(3.81) χp′ + χd′ = χp + χd

The demonstration performed here highlights the roles played by the gauge
choice in the analysis of the origin dependence of molecular properties. In par-
ticular, it is possible to look at the shift of the origin as a speci�c choice of
gauge, and therefore consider a special class of gauge transformations, e.g. Λ
de�ned above. To this end, it is worth to note that the multipole gauge leads
to cumbersome calculations, but at the same time to useful, general expres-
sions of molecular properties, in the presence of external perturbations. In
fact, looking at the de�nition of the magnetizability given in equation (3.40)
and to the origin displacement given in equation (3.62), both obtained using
the multipole gauge by Raab and de Lange, it is trivial to conclude that for
a time-independent perturbation, i.e. setting ω = 0, the origin-independence
is immediately recovered without any further calculations.
Before going on, I would like to point out an assumption that has been used
in the above discussion, but not explicitly expressed yet: I have only con-
sidered isotropic samples, so that no dispersion phenomena appear in the
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system. Anyway, this does not lead to any loss of generality, and the disper-
sion relations can be included in the discussion9.

3.5.2 Frequency-dependent magnetizability

Let now turn the attention to the frequency-dependent magnetizability.
As we have seen, eqs. (3.62) and (3.63) and in the previous section, in the
presence of a time-dependent magnetic �eld, the magnetizability is no longer
origin independent, not even working with a complete basis set, so the def-
inition given for this observable has to be modi�ed in order to obtain an
origin-independent expression. It has already been hinted that a suitable ap-
proach to derive origin-independent expressions for molecular properties is
to consider linear combinations of polarizabilities beyond the electric-dipole
approximation, considering terms of the same higher multipole order in the
multipole expansion of the potentials. This is exactly the idea used by Raab
and de Lange[6] to pursue an origin-independent expression of the frequency-
dependent magnetizability. Let analyze their procedure within the framework
introduced above, and using the de�nitions of the polarizabilities given in the
equations (3.26)-(3.41).
The de�nition of χ says that the magnetizability is a time even, second-rank,
symmetric, polar tensor, therefore it is necessary to look for an expression
that ful�ll these requirements. The hypothesis to restrict the analysis to non-
magnetic molecules has been done without loss of generality, there are thus
�ve polarizability tensors that contribute to the expression of the magnetiz-
ability up to the electric octopole-magnetic dipole order. Reducing the dis-
cussion to only time-even tensors, the expectation values of the �ve moment
operators are:

(3.82) < pı >nn=
1

6
bıklEkl(t) +

1

2ω
H ′ıkḂk(t)

(3.83) < qı >nn=
1

2
dıklEkl(t) +

1

ω
L′ıkḂk(t)

(3.84) < qık >nn= blıkEl

(3.85) < mı >nn=
1

2ω
L′ıkĖk(t) + χıB(t)

9Non-isotropic samples show dispersion phenomena, so it is necessary consider o�-
diagonal elements of the tensors that describe molecular properties; viceversa for isotropic
samples it is possible to consider only their trace.
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(3.86) < mı >nn= − 1

ω
H ′ıkĖk(t)

where the de�nitions given in eqs. (3.26)-(3.41) have been used. The idea to
simplify the expressions of the quoted �ve tensors has been formulated by
Raab and de Lange[6], exploiting the hypothesis to consider a non-magnetic
molecule, and reducing to real wave functions[30]. Let us investigate the prop-
erties of the tensors included in the analysis. Looking at the expectation val-
ues of the moment operators, we can see that bıkl, dıkl and χı are polar
tensors, whereas H ′ık and L

′
ık are axial tensors. Using the permutation sym-

metry of qı and qık and the Hermiticity of qık and mı, it is also possible to
deduce the intrinsic symmetries:

(3.87) bıkl = bılk = bıkl , dıkl = dıkl = dklı , L′ık = L′ık , χı = χı

At this point, most of the information needed to construct an origin-independent
expression for χı are known. Therefore, it is possible to state and remark
the conditions that this expression has to satisfy, also referring to the static
case.

a The magnetizability has to be origin independent, so that ∆χı(ω) = 0.

b The magnetizability is a time-even, second-rank, symmetric, polar ten-
sor χı = χı.

c The external �elds are weak enough, so that it is possible to work within
the perturbation theory approximation, and the magnetizability will be
linear in terms of the polarizabilities considered.

d Taking the limit for ω = 0, the expression obtained in the static case
has to be recovered.

Considering the four polarizability tensors bıkl, dıkl, H
′
ık, L

′
ık present in the

moment operators selected above, and using the Levi-Civita tensor and the
Dirac's delta tensor, it has been tried to obtain a time-even, second-rank,
polar symmetric tensor. By virtue of the previous observations, nine tensors
have to be considered[6], namely:

1. εıklH
′
kl + εklH

′
ıkl

2. εıklH
′
kl + εklH

′
kıl

3. εıklL
′
kl + εklL

′
ıkl

4. bıkk + bıkk
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5. bkkı

6. dıkk

7. δıεklmH
′
klm

8. δıbkkll

9. δıdklkl

Let us discuss in more detail the arguments that have reduced the analysis
to a restricted set of nine tensors, ignoring some others.

a' H ′kl and L
′
ıkl are axial tensors, so that given that the magnetizability

has to be a polar tensor, these tensors have to appear linearly com-
bined with the Levi-Civita tensor, satisfying the de�nitions given in
eqs. (3.43) and (3.44).

b' The linear combination εıklH
′
kl + εklH

′
klı has not been included in

the previous list, because it is equivalent to the combination of ten-
sors 1, 2 and 7. As a matter of fact, using the tensor identity Tı =
Tı + εıkεlmkTlm, this symmetric tensor becomes equal to −(εıklH

′
kl +

εklH
′
ıkl) + εıklH

′
kl + εklH

′
kıl + δıεklmH

′
klm.

c' The polarizability dıkl appears only in the expression for the electric
quadrupole moment, and it is coupled to the term Ekl(t). The symmet-
ric tensors dıkk and δıdkkll do not have to be considered, because their
trace couples to Eı(t)(ı = ), which is zero for transverse waves.

Coming back to the original idea of deriving an origin-independent expression
of the magnetizability considering linear combinations of polarizabilities of
the same higher multipole order, and taking into account all the previous
statements, it is natural to write[7]:

χı(ω) = χı(0) + a1(εıklH
′
kl + εklH

′
ıkl)(3.88)

+ a2(εıklH
′
kl + εklH

′
kıl) + a3(εıklL

′
kl + εklL

′
ıkl)

+ a4(bıkk + bıkk) + a5bkkı + a6dıkk

+ a7δıεklmH
′
klm + a8δıbkkll + a9δıdklkl

There are thus nine polarizability-independent coe�cients aı that have to
be calculated in order to get the general expression for the magnetizability.
The procedure to compute these coe�cients is straightforward, but quite
cumbersome. At �rst, let us consider a displacement d of the origin of the
coordinates, exactly in the same way as done before. All the origin shifts for
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each polarizability term have been already introduced in eqs. (3.48)-(3.63).
Imposing the origin-independence given in condition a, a linear combination
of nine terms that should be equal to zero is obtained, namely:

0 = ∆χı(0) + a1(εıkl∆H
′
kl + εkl∆H

′
ıkl)(3.89)

+ a2(εıkl∆H
′
kl + εkl∆H

′
kıl) + a3(εıkl∆L

′
kl + εkl∆L

′
ıkl)

+ a4(∆bıkk + ∆bıkk) + a5∆bkkı + a6∆dıkk

+ a7δıεklm∆H ′klm + a8δı∆bkkll + a9δı∆dklkl

Now it is necessary to insert the explicit expressions for all the displace-
ments. In this way, using the symmetry properties listed above, it is possible
to collect terms in such a manner that we get a linear combination of nine
independent quantities, where each of their coe�cients is a function of aı.
From the de�nition of linear independence, nine equations for the ai coe�-
cients are derived, and each coe�cient can be computed. The calculus give
the following results:

a1 = a3 = −a7 = −1

2
ω , a2 = a5 = 0,(3.90)

a4 = −a8 =
1

6
ω2 , a6 = −1

4
ω2 , a9 =

1

8
ω2

Therefore, the origin-independent expression for the frequency-dependent
magnetizability is:

χı(ω) = χı(0)− 1

2
ω{εıkl(H ′kl + L′kl)(3.91)

+ εkl(H
′
ıkl + L′ıkl)− ω[

1

3
(bıkk + bıkk)−

1

2
dıkk]

− δı[εklmH ′klm − ω(
1

3
bkkll −

1

4
dklkl)]}

Observing the �nal result, it is clear that this expression satis�es the require-
ments (a)-(d), and in particular that the static limit is immediately recovered
when ω is set to 0. Furthermore, it is possible to note that modifying the
starting set of tensors, (1.)-(9.), the previous construction fail, and it is no
longer possible to obtain an acceptable expression that satisfy all the previ-
ous requirements; the set of tensors should therefore be carefully chosen. By
virtue of the intrinsic symmetry, the magnetizability has at most six indepen-
dent components, which can be further reduced considering the symmetry of
the speci�c molecule analysed.
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3.6 Discussion of Raab and de Lange expres-

sion of the magnetizability

The process used by Raab and de Lange is suitable, but it looks quite
arti�cial, and it gives no information about the quantum-mechanical origin of
their �nal result. In fact, no modi�cation of the non-relativistic Hamiltonian
has been done, and their origin-independent expression does not come nat-
urally from the multipole approach, but it has been built collecting several
polarizabilities, in order to get an origin-independent expression. As already
mentioned in the introduction, I would not call their result with the name
magnetizability, given that it does not include only the diamagnetic and the
paramagnetic contributions; so I would rather consider it as a second-order
magnetic property, di�erent from the magnetizability. This is an important
point to discuss, because we do not actually know what is observable or not.
I would expect that the frequency-dependent magnetizability is a measurable
quantity, as in the static case, but it could be that it is not, so we would be
able to measure a second-order magnetic property not only described by the
paramagnetic and the diamagnetic contributions. From this point of view, the
idea of Raab and de Lange has to be taken into account, considering that
other physical quantities, e.g. optical rotation, have been de�ned as a sum of
several contributions given by di�erent polarizabilities[31]. Furthermore, in
chapter 5, we will see how the two quoted authors have obtained a similar
expression in the macroscopic case for the inverse permeability, through a
much more rigid theoretical approach.
Note that, in the Raab and de Lange derivation, the hypothesis that the
magnetizability has to be symmetric is only valid assuming Kleinmann sym-
metry, which is not in general true for frequency-dependent properties.
In conclusion, the work of Raab and de Lange does not completely resolve
the issue of origin-dependence of the magnetizability, so I would like to in-
vestigate it in more details. The idea is to look for an origin-independent
expression of the frequency-dependent magnetizability in the relativistic do-
main, and study its non-relativistic limit.

3.7 The role of the spin

Before concluding this chapter, where an origin-independent expression
of the frequency-dependent magnetizability in the limit of a complete varia-
tional basis set has been derived, I would like to brie�y treat the role played
by the spin in this framework. The hypothesis done at the beginning was to
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consider closed-shell molecules, so that the expectation value of the spin op-
erator is zero, and therefore there are no spin contributions to the molecular
properties. Now let us be more general, considering also the spin-dependent
part of the Hamiltonian. To this end, it is necessary to include an additional
term in the Hamiltonian, namely:

(3.92)
∑
α

q(α)

2m(α)
g(α)S(α) · [∇(α) ∧A(r(α), t)]

where S is the spin operator. Using the expression of the vector potential
given in equation (3.3), in the multipole gauge, the general de�nition of the
magnetic moment operators has to be modi�ed as:

mık...z =
∑
α

n
q(α)

4m(α)
[r(α)
 r

(α)
k . . . r(α)

z (
2

n+ 1
l(α)
ı + g(α)S(α)

ı )(3.93)

+ (
2

n+ 1
l(α)
ı + g(α)S(α)

ı )r(α)
 r

(α)
k . . . r(α)

z ]

where n is the order of the multipole moments. Considering the magnetic
dipole and the quadrupole moment operators, the inclusion of the spin inter-
actions leads to the expressions:

(3.94) mı =
∑
α

q(α)

2m(α)
(l(α)
ı + g(α)S(α)

ı )

(3.95) mı =
∑
α

q(α)

2m(α)
[r(α)
 (

2

3
l(α)
ı + g(α)S(α)

ı ) + (
2

3
l(α)
ı + g(α)S(α)

ı )r(α)
 ]

Operating a shift of the origin, it can be shown that the expression of the
magnetic dipole has no di�erences with respect to the spinless case, viceversa
in the expression of the magnetic quadrupole moment appear an additional
term explicitly dependent on the spin operator. Therefore, the expressions of
the tensors Hık and H

′
ık are modi�ed, since they are the only polarizabilities

that depend from the matrix elements of the magnetic quadrupole moment.
However, the spinless de�nitions of the multipole moment operators used
to derive a frequency-independent expression of the magnetizability are still
valid and reliable, in the hypothesis to work with closed-shell, and so it is
simpler to neglect the spin terms.
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Chapter 4

Magnetizability in a relativistic

framework

In this chapter I will derive and discuss the magnetizability in the rela-
tivistic framework, pointing out the di�erences with the non-relativistic ap-
proach considered so far.
Let start looking at the interaction of a single particle with an external elec-
tromagnetic �eld, described by the Dirac Hamiltonian:

(4.1) HD = βmc2 + c(α · p) + ec(α ·A)− eφ

Comparing this expression with the non-relativistic Hamiltonian used in the
previous chapter, we can recognize that no quadratic term in the vector po-
tential appear in the relativistic Hamiltonian, whereas the non-relativistic
Hamiltonian include both linear and quadratic terms in A. Thus, when the
second-order perturbation in the energy is computed using perturbation the-
ory, only one term in the vector potential will contribute, namely:

(4.2) E(2) =
∑
n6=0

< 0 | ec(α ·A) | n >< n | ec(α ·A) | 0 >
E0 − En

where | n > is a 4-component wave function. Referring to the previous anal-
ysis, it is possible to state that the diamagnetic term does not appear in the
relativistic case, and therefore the expression of the magnetizability contains
only the contribution given by the paramagnetic term. However, the diamag-
netic term can be recovered in the non-relativistic limit, using perturbation
theory and including positronic states[9].
It is important to note that the magnetic moments are di�erently de�ned
in the relativistic and in the non-relativistic domain. A standard way to de-
rive the expressions for the magnetic moments is to insert the expansions
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of the vector and of the scalar potentials (1.21)-(1.22), given by the multi-
pole gauge, in the corresponding Hamiltonians (2.8) and (2.15), in order to
have the Hamiltonians written in terms of electric and magnetic multipoles.
Thus, the non-relativistic magnetic moments, in the most general way, can
be de�ned as:

m
[n]
j1,...,jn−1

= − e

2m
(

n

n+ 1
){(rj1 . . . rjn−1)l + l(rj1 . . . rjn−1)}(4.3)

− e

2m
(

n

n+ 1
)(rj1 . . . rjn−1)(r ∧ eA)

− e

2m
(

n

n+ 1
){(rj1 . . . rjn−1)(r · σ)∇

+∇(σ · r)(rj1 . . . rjn−1)}

+
e

2m
(

n

n+ 1
)σ{(rj1 . . . rjn−1)(r · ∇)

+ (∇ · r)(rj1 . . . rjn−1)}

In particular, the magnetic dipole and the magnetic quadrupole moments
are:

(4.4) m[1] = − e

2m
(l + σ)− e2

4m
(r ∧A)

(4.5) m
[2]
k = − e

2m
[rk(

2

3
l+σ) + (

2

3
l+σ)rk] +

e

3m
(σ · r)k −

e

3m
rk(r ∧ eA)

Note that the expressions of the magnetic moments derived in the non-
relativistic framework are cumbersome, given the presence of spin-dependent
terms. Viceversa, much more simple de�nitions of the magnetic moments are
obtained in the relativistic case:

(4.6) m[n]
1,...,n−1

= −ec( n

n+ 1
)r1 . . . rn−1(r ∧α)

and so the relativistic magnetic dipole and quadrupole moments are:

(4.7) m[1]
ı = −1

2
ec(r ∧α)ı =

1

2
(r ∧ j)ı

(4.8) m[2]
ı = −2

3
ecrı(r ∧α) =

2

3
rı(r ∧ j)

where α is the Dirac matrix and j is the relativistic current density, intro-
duced in section 2.2, in terms of which it is possible to de�ne the magnetic
moments.
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Looking at the relativistic expressions of the Hamiltonian and of the magnetic
moments, it appears convenient work at the relativistic level, if not for the
fact that transition moments are calculated in terms of 4-component spinors,
which are eigenvectors of the Dirac Hamiltonian, and so the formalism turns
out to be pretty cumbersome.
It is useful to study the magnetizability in the relativistic framework writing
its expression in the form:

(4.9) χı =� mı;ml �ω=� 1

2
(r ∧ cα)ı;

1

2
(r ∧ cα)l �ω

where response theory and the Heisenberg relation − ı~
m

[r, H] = cα have been
used.
In order to analyze the origin-dependence of the magnetizability, let us apply
a shift d of the position operator r, as previously done in Chapter 3: r′ = r−
d. Thus, after a displacement of the origin of the coordinates, the expression
for the magnetizability shows three additional terms:

χ′ı = � 1

2
(r ∧ cα)ı;

1

2
(r ∧ cα)l �ω(4.10)

− i

2
~ωεıkd � rk;

1

2
(r × cα)l �ω

− i

2
~ωεlkd �

1

2
(r × cα)i ; rk �ω

− 1

4
εıkεlmnddm~2ω2 � rk; rn �ω

Note that the displacement obtained here is analogues to the expression
derived in the non-relativistic framework, eq. (3.62), where two linear and
one quadratic term in d appear. This is not surprising, since the diamagnetic
part of the magnetizability is always frequency-independent, and it does not
show up in the relativistic framework1.
I emphasize that an important di�erence between the relativistic and the non-
relativistic case to keep in mind is the de�nition of the magnetic moments.

4.1 Frequency-independent magnetizability

Let consider the case of an external, homogeneous, static magnetic �eld.
Looking at the expression for the magnetizability after the displacement
(4.10), it is clear that for ω = 0, the three additional terms go to zero,

1As mentioned before, it is possible to recover the diamagnetic term in the non-
relativistic limit, using perturbation theory and including positronic states.
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therefore the magnetizability is an origin-independent quantity when a static
magnetic �eld is considered, as it has been obtained in the non-relativistic
framework.
Note, that here it is not possible to apply the procedure introduced by Van
Vleck to demonstrate the origin independence of the magnetizability. In fact,
as already underlined, the relativistic Hamiltonian contains only the linear
term in the vector potential, so the expression for the magnetizability has
only the paramagnetic term in it, and therefore no mutual cancellation be-
tween the paramagnetic and the diamagnetic terms can occur. Furthermore,
it is not possible to rewrite the relativistic magnetic moments in terms of the
angular momentum, and so reduce the paramagnetic and the diamagnetic
contributions to the same form, since the di�erent de�nitions of the mag-
netic moments in the two frameworks. Thus, multipole theory provides the
best framework to infer the origin independence of the static magnetizability.
Despite the di�erences just mentioned between the relativistic and the non-
relativistic case, it is possible to generally state that the magnetizability is an
origin-independent quantity when an external static magnetic �eld is applied.

4.2 Frequency-dependent magnetizability

The origin dependence of the frequency-dependent magnetizability in the
non-relativistic case has been discussed in detail in Chapter 3, and an origin-
independent expression has been obtained following the idea of Raab and
de Lange (3.91). As already mentioned, I do not consider this quantity as
the magnetizability, but more generally as a second-order magnetic property,
given that it is a collection of several terms, and it does not include only the
magnetic dipole-magnetic dipole contribution.
Now I will focus my analysis on the relativistic expression for the magneti-
zability eq. (4.9), with particular attention to the additional terms obtained
after a displacement of the origin of the coordinates, eq. (4.10). Let us dis-
cuss in detail these displacement terms. The linear terms in d have the same
form, except for the indices:

− i
2
~ωεıkd � rk;

1

2
(r × cα)l �ω(4.11)

− i

2
~ωεlkd �

1

2
(r × cα)i ; rk �ω

Not all of these indices are dumb indices (following Einstein's summation
rule), therefore it is not possible to sum the two contributions, but it is nec-
essary to consider them separately. Note that the response function is given
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by the electric dipole operator together with the magnetic dipole operator.
According to the de�nition of the polarizabilities given in chapter 3, it is pos-
sible to claim that the linear terms in the displacement are proportional to
the Gı tensor. The quadratic term in d contains the electric dipole-electric
dipole contribution, thus it can be considered proportional to the polariz-
ability tensor αı. A comparison with the displacement terms obtained in
section 3.3 shows that the same additional terms appear in both relativistic
and non-relativistic cases. Again, we have to keep in mind that the magnetic
dipole moments have di�erent de�nitions in the two frameworks.
In order to obtain an origin-independent expression of the magnetizability,
the additional terms that occur after a shift of the origin have to be zero, or
have to be cancelled introducing other identical polarizabilities with opposite
sign.
I have considered several symmetric con�gurations of a molecule, discussing
the possibility that for a speci�c symmetry the Gı-tensors and the αı-tensor
could have been zero. It is possible to infer that no speci�c symmetry leave
both tensors equal to zero. Even considering a simple spherical symmetry,
it is well known that the Gı-tensors go to zero, but not the polarizability

αı
[31]. Thus, the symmetry of a molecule do not help to solve the problem

of the origin dependence of the magnetizability.

4.2.1 The role of the electric quadrupole

Origin-independent expressions of various molecular properties have been
derived as sum of di�erent polarizabilities. Important examples are optical
rotation and circular dichroism, which are described by a linear combination
of the tensors aık and Gı

[31]:

(4.12) ξ′ık = −1

c
[
1

3
ω(aı,k − a,ık) +G′ıı +G′]

I have already mentioned that the tensors aık and Gı are origin depen-
dent in the presence of a frequency-dependent electromagnetic �eld, how-
ever, their linear combination in eq. (4.12) is such that the ξ′ık resulting is
origin-independent. Since ξ′ık describe observable quantities, as optical ro-
tation and circular dichroism, its expression has to be origin-independent,
and so this requirement is ful�lled by the linear combination of the polar-
izabilities aık and Gı. Thus, it is reasonable to consider the possibility of
deriving an origin-independent expression of a molecular property as a linear
combination of di�erent polarizabilities. It is also important to note that op-
tical rotation and circular dichroism have electric dipole-magnetic dipole and
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electric dipole-electric quadrupole contributions, contained in the tensors Gı

and aık respectively.
In the light of this analysis, I have tried to obtain an origin-independent ex-
pression of the magnetizability as a linear combination of polarizabilities. By
de�nition, the magnetizability contains the magnetic dipole-magnetic dipole
contribution only, and its expression is origin dependent for a frequency-
dependent magnetic �eld. Thus, the idea is to add to the magnetic dipole-
magnetic dipole term also a magnetic dipole-electric quadrupole contribution,
exactly as it has been done for the optical rotation, in order to obtain a linear
combination of polarizabilities that give an origin-independent expression for
this second-order magnetic property2. This approach is supported by the fact
that I am working using a multipole expansion of the vector potential, there-
fore the order of the multipole moments in the expansion is such that the
magnetic dipole has to be considered together with the electric quadrupole,
given that they appear at the same order in the �elds[7].
The expression that I have been considered has the form:

(4.13) χıl =� mı +
1

2
ı~ωεıkqk;ml +

1

2
ı~ωεlmnqmn �

where in the response function I have added to the magnetic dipole also the
electric quadrupole moment qı. The electric quadrupole tensor has to be
contracted with the antisymmetric tensor εık, in order to be consistent with
the grade and the symmetries of the magnetic dipole moment. Furthermore,
eq. (4.13) contain a numerical factor, ~ and the frequency of the external
�eld ω, consistent with the optical rotation analysis and with the units.
Following a standard procedure, it is possible to operate a shift of the origin
of the coordinates, and check if the alternative expression of the second-
order magnetic property, introduced in eq. (4.13), is origin-independent. As
before, I consider a displacement d, such that the position operator in the
de�nition of the multipole moments is rede�ned as: r′ = r−d. The calculus
is simple but pretty cumbersome, and lead to an expression made of 36 terms.
4 of them are obviously the same terms resulting from the magnetic dipole-
magnetic dipole coupling, instead the other 32 are given by the couplings
of the magnetic dipole-electric quadrupole and electric quadrupole-electric
quadrupole moments. The resulting expression of the second-order magnetic

2For the reasons highlighted before, I will not call this quantity magnetizability any-
more, since now its expression has several contributions from di�erent polarizabilities.
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response, after a shift of the origin of the coordinates, is:

χ′ıl = χıl −
ı

2
~ωεlrsdr � mı; qs �(4.14)

− ı

2
~ωεıpqdp � qq;ml �

− 1

4
~2ω2εıpqεlrsdpdr � qq; qs �

+
ı

2
~ωεık � qk;ml �

+
1

4
~2ω2εıkεlrsdr � qk; qs �

+
ı

2
~ωεıkdk � q;ml �

+
1

4
~2ω2εıkεlrsdkdr � q; qs �

+
ı

2
~ωεıkd � qk;ml �

+
1

4
~2ω2εıkεlrsdjdr � qk; qs �

+
ı

2
~ωεlmn � mı; qmn �

+
1

4
~2ω2εıpqεlmndp � qq; qmn �

+
ı

2
~ωεlnmdn � mı; qm �

+
1

4
~2ω2εıpqεlmndpdn � qq; qm �

+
ı

2
~ωεlmndm � mı; qn �

+
1

4
~2ω2εıpqεlmndpdm � qq; qn �

− 1

4
~2ω2εıkεlmn � qk; qmn �

− 1

4
~2ω2εıkεlmndn � qk; qm �

− 1

4
~2ω2εıkεlmndm � qk; qn �

− 1

4
~2ω2εıkεlmndk � q; qmn �

− 1

4
~2ω2εıkεlmndkdn � q; qm �

− 1

4
~2ω2εıkεlmndkdm � q; qn �

− 1

4
~2ω2εıkεlmnd � qk; qmn �

− 1

4
~2ω2εıkεlmndjdn � qk; qm �

− 1

4
~2ω2εıkεlmndjdm � qk; qn �
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where the terms which contain only the displacement d in the response func-
tions have been omitted, given that they are obviously zero. Looking at eq.
(4.14), it is possible to note that several polarizabilities appear, namely:
G′ık, αı, aık, L

′
kl, dıkl, following the notation introduced in chapter 3. The

de�nition of the second-order magnetic property obtained here includes the
magnetic dipole-magnetic dipole contribution plus three further terms, two
given by the magnetic dipole-electric quadrupole coupling, and one given by
the electric quadrupole-electric quadrupole coupling. All the other terms are
linear or quadratic in the displacement d, therefore I would expect that they
delete each other, avoiding any dependence on the choice of the origin. An
analysis of the terms that appear in eq. (4.14) leads to the conclusion that:
include the electric quadrupole moment in the de�nition of the second-order
magnetic response do note solve the problem of origin-dependence, since its
expression is still origin-dependent when a frequency-dependent magnetic
�eld is applied. In fact, there is no possible way to change and switch the in-
dex of the tensors in eq. (4.14) in order to cancel the displacement terms, and
furthermore there is an odd number of the αı polarizability tensor, quadratic
in the displacement, that cannot be eliminated.

4.3 Remarks

No origin-independent expression of the frequency-dependent magnetiz-
ability has been found in the relativistic domain. The idea to include the elec-
tric quadrupole contribution in the de�nition of the second-order magnetic
response is de�nitely suitable, in agreement with the previous discussion and
considering the multipole expansion of the vector potential, but it does not
lead to any origin-independent expression. However, by virtue of the consid-
erations done so far, I still believe that the electric quadrupole contribution
has to be considered when we are treating magnetic properties, and that the
relativistic framework is the proper domain in which to work, in order to
have physical-acceptable results. In particular, I think that a deeper analysis
of the relativistic Hamiltonian, of the expansion of the potentials, and of the
gauge functions could lead to an origin-independent expression of the second-
order magnetic response. There are also no doubts that it is easier to work
in the relativistic domain, as long as no calculation are performed3, since the
relativistic Hamiltonian has only a linear term in the vector potential.
Note that it would be possible to consider one order higher in the multipole
expansion, thus to include the electric octopole-magnetic quadrupole contri-

3Relativistic calculation are more di�cult compared to the non-relativistic one, since
4-components wave functions have to be considered.
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bution in the de�nition of the second-order magnetic response, as done by
Raab and de Lange in the non-relativistic domain and discussed in Chap-
ter 3. However, as I have already stated, I think that the procedure used
by Raab and de Lange to obtain an origin-independent expression for the
magnetizability is quite arti�cial, and it gives no information about the
quantum-mechanical origin of their �nal result, since no modi�cation of the
non-relativistic Hamiltonian has been done, and their origin-independent ex-
pression does not come naturally from the multipole approach, but it has
been built collecting several polarizabilities. Thus, even if a similar approach
could be applied to the relativistic framework, I will not discuss it. It is im-
portant to remark that the inclusion of the electric quadrupole moment in
the de�nition of the second-order magnetic response is motivated by the fact
that it appears at the same order of the magnetic dipole in the multipole
expansion of the vector and scalar potentials, therefore neglect the electric
quadrupole contribution would not be consistent with multipole theory.
I would like to point out once more that the electromagnetic �elds are de-
scribed by the Maxwell equations, which are fully relativistic. In the next
chapter I will consider the macroscopic Maxwell equations, and referring to
the work of Raab and de Lange[8], I will derive origin-independent expressions
of the material constants. The results that I will discuss in the macroscopic
case can be considered a good starting point to obtain origin-independent
expressions of second-order magnetic properties in the microscopic case too.
In fact, no speci�c hypothesis will be done, but only the non-unique de�ni-
tion of the response �elds will be used, within a fully relativistic discussion.
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Chapter 5

Macroscopic analysis

5.1 Macroscopic Maxwell equations and response

�elds

So far, my work has been focused on the analysis of second-order magnetic
response, using a microscopic description of a physical system. The discussion
has been based on the microscopic Maxwell equations, introduced in chapter
1, and it represents a good approach, in order to treat molecular properties
for a charge distribution. However, it is possible to extend the description
to the macroscopic case, and study the multipole moments induced in bulk
matter. A standard approach consist of taking the spatial average at a cer-
tain time of the expectation values of the microscopic multipole moments,
and introducing the macroscopic multipole moment densities. The procedure
used to obtain the de�nition of the macroscopic multipole moment densities,
starting from the multipole expansion of the potentials, is well known from
the literature, e.g.[1]. Here, I would like to point out that when the average
of the vector and of the scalar potentials is performed, further terms in the
de�nition of the current and charge densities appear naturally. In fact, given
that a bulk of matter of �nite dimension is considered, surface e�ects emerge,
namely bound charge density and bound current density. These quantities
are included in the macroscopic Maxwell equations together with the aver-
aged free sources densities. Let so de�ne the macroscopic Maxwell equations
and discuss the physical quantities that appear in them, where the �elds and
the sources are averaged in space, at a �xed time:

(5.1) ∇ ·E =
1

ε0

(ρf + ρb)

(5.2) ∇∧B = µ0(Jf + Jb + ε0
∂E

∂t
)
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(5.3) ∇∧E +
∂B

∂t
= 0

(5.4) ∇ ·B = 0

ρf and Jf are the free source charge and current densities , while ρb and Jb are
the bound charge and current densities that occur when the surface e�ects
in the medium are considered. The de�nitions of ρb and Jb are obtained from
the expansion of the vector and of the scalar potentials, thus it is possible to
write their expressions in terms of multipole moments[1]:

(5.5) ∇ı(ε0Eı + Pi −
1

2
∇jQı +

1

6
∇k∇jQık + . . . ) = ρf

εık∇(
1

µ0

Bı −Mi +
1

2
∇jMı + . . . ) =(5.6)

= Jfı + ε0
∂Eı
∂t

+
∂Pi
∂t
− 1

2
∇j

∂Qı

∂t
+

1

6
∇k∇j

∂Qık

∂t
+ . . .

The macroscopic multipole moment densities are labelled with capital letters
(Pı, Qı, Mı...), and their expressions are obtained averaging the microscopic
de�nitions of the multipole moments. Inserting eqs. (5.5) and (5.6) in the
macroscopic Maxwell equations, the quantities D and H can be de�ned:

(5.7) Dı = ε0Eı + Pi −
1

2
∇jQı +

1

6
∇k∇jQık + . . .

(5.8) Hı =
1

µ0

Bı −Mi +
1

2
∇jMı + . . .

D and H are termed macroscopic response �elds. In fact, the multipole
moment densities that appear in the previous de�nitions include induced
contributions, which result from the response of the matter to the applied
�elds. Note, that the procedure used to move from the microscopic to the
macroscopic cases takes the average of the �elds and of the multipole mo-
ments, on a scale where the variation of these quantities is small compared to
the molecular dimension. Furthermore, the expansions of the response �elds
are truncated at the electric octopole-magnetic quadrupole order, so again
it is necessary to include multipole contributions of comparable magnitude,
according with the hierarchy (order) in the expansion of the vector and of
the scalar potentials.
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In terms of the response �elds, the macroscopic, inhomogeneous Maxwell
equations are:

(5.9) ∇ ·D = ρf

(5.10) ∇∧H = Jf +
∂D

∂t

5.2 Material constants

In order to apply the Maxwell equations using the formulation in terms
of free/bound charge and current and response �elds, it is necessary to spec-
ify the relations between D and E, and H and B. Finding relations be-
tween these �elds means that to solve Maxwell equations by employing the
free/bound partition of charges and currents, one needs the properties of
the materials relating the response of bound currents and bound charges to
the �elds applied to these materials. The material properties specifying the
response of bound charges and currents to the �eld are called constitutive
relations, and correspond physically to how much polarization and magneti-
zation a material acquires in the presence of electromagnetic �elds.
In the absence of magnetic or dielectric materials, the constitutive relations
are simple:

(5.11) D = ε0E ; H =
1

µ0

B

where ε0 and µ0 are the permittivity of free space and the permeability of free
space, respectively. In a linear, isotropic, non-dispersive, uniform material,
the relations are similar:

(5.12) D = εE ; H =
1

µ
B

Here ε and µ are constants depending on the material, which are called per-
mittivity and permeability of the material, respectively.
In the general case, the constitutive relations are not simple proportional-
ities. The relations can usually still be written as in eq. (5.12), but now ε
and µ are not simple constants, but rather functions that can depend on the
strength, the direction, and the frequency of the electric and magnetic �elds.
Other dependencies can occur for non-uniform or ferromagnetic materials.
According to the de�nition given in eqs. (5.7) and (5.8) of the response �elds,
up to the electric octopole-magnetic quadrupole order, we can see that the
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constitutive relations take a more complicated form. Let us now derive the
constitutive relations at this order, in terms of the macroscopic polarizabili-
ties.
In chapter 3, de�nitions of the polarizabilities have been obtained in the
microscopic case using perturbation theory. As already mentioned, these def-
initions can be extended to the macroscopic case performing a spatial average
of the multipole moments involved in them. Thus, recalling the expressions
of the multipole moments, and operating a spatial average in order to have
the multipole moment densities, it is possible write the response �eldsD and
H in terms of the macroscopic polarizabilities. In particular, considering a
speci�c case where the external �elds E and B are represented by harmonic
plane waves, eqs. (5.7) and (5.8) assume the form:

(5.13) Dı = AıE + TıB

(5.14) Hı = UıE +XıB

for the response �elds, where the second-rank tensors Aı, Tı, Uı andXı have
been introduced and they are named material constants. Their expressions
in terms of the macroscopic polarizabilities are:

Aı = ε0δı + αı − ıα′ı +
1

2
[ı(aık − akı) + a′ık + a′kı]kk(5.15)

+ [−1

6
(bıkl + bıkl) +

ı

6
(b′ıkl − b′ıkl)

− 1

4
(dıkl − ıd′ıkl)]kkkl

(5.16) Tı = Gı − ıG′ı +
1

2
[ı(Hık − Lık) +H ′ık − L′ık]kk

(5.17) Uı = −Gı − ıG′ı +
1

2
[ı(Hık − Lkı)−H ′ık + L′kı]kk

(5.18) Xı =
1

µ0

δı − χı + ıχ′ı

where the permanent multipole densities have been omitted, and k is the
wave vector present in the de�nition of the harmonic plane waves. Note that
for homogeneous mediums, the latter tensor gives no contributions to the
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Maxwell equations, and that for non-magnetic mediums, some of the contri-
butions included in the previous expressions vanish.
Here, I am restricting the analysis to non-dissipative media, however the fol-
lowing discussion can be extended and it is still valid for dissipative media1.
The material constants represent physical observables: Aı the permittivity,
Tı and Uı the magnetoelectric e�ects, and Xı the inverse permeability,
therefore they are supposed to be origin-independent quantities. Operating
a shift of the origin of the coordinates, and recalling the displacement terms
introduced in section 3.3, it is straightforward to state that the expressions
of the material constants, obtained using multipole theory up to the elec-
tric octopole-magnetic quadrupole order, are origin dependent, for both non-
magnetic and magnetic materials. In particular, the displacement terms of
the macroscopic polarizabilities that appear in the expressions of the mate-
rial constants, in the general case of a magnetic material, have been de�ned
in eqs. (3.48)-(3.63)2.
Obviously, the de�nitions of the material constants obtained using multi-
pole theory are not physically acceptable, thus it is natural look for origin-
independent expressions. One possible way to work on this issue is to exploit
the non-unicity of the response �elds and of the material constants. Let an-
alyze in detail these aspects.

5.3 Transformation theory

In chapter 1 I have been discuss the microscopic Maxwell equations and
the non-unicity of the vector and of the scalar potentials, which are com-
pletely de�ned only when a particular choice of gauge is done. A similar
situation occur considering the inhomogeneous macroscopic Maxwell equa-
tions (5.9) and (5.10), in fact, referring again to the Helmholtz's theorem[10],
a freedom in the de�nitions of the response �elds D and H can be inferred.
Clearly, the inhomogeneous macroscopic Maxwell equations have to be valid
for any possible choice of the response �elds, thus, when a transformation on
D and H is performed, it is important to consider the possible changes in
the external �elds E and B and in the constitutive relations.

1Note that, for dissipative media, all the polarizability tensors and the wave vectors in
the expressions of the material constants are complex quantities.

2Again, we have to keep in mind that the results obtained in chapter 3 were derived
in the microscopic case, so the corresponding expressions for the macroscopic case are
obtained averaging the microscopic de�nitions in space.
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At �rst, let consider a transformation of the response �elds of the form:

Dı → Dı −
1

ω
εıkkH

G
k(5.19)

Hı → Hı +HG
ı

I will refer to eq. (5.20) as "gauge transformations"[7], although they are dif-
ferent from the gauge transformations previously introduced. It is convenient
to derive these transformations, considering the Fourier expansions of the
response �elds and of the current and charge free source densities. Substitut-
ing these Fourier expansions in the Fourier transform of the inhomogeneous
Maxwell equations, we are lead to the transformations:

D(k, ω)→D(k, ω)− 1

ω
k ∧HG(k, ω)(5.20)

H(k, ω)→H(k, ω) +HG(k, ω)

valid for an arbitrary choice of HG. Here k is the wave vector and ω the fre-
quency of the �elds. Considering �elds represented by harmonic plane waves,
and if HG(r, t) is a complex harmonic plane wave too, it is possible to de-
rive eq. (5.20) in terms of the �elds. Note that these gauge transformations
change the response �elds D and H , but do not alter the relative contribu-
tions of E and B to D and H . They therefore do not imply any changes in
the material constants.
An opposite situation occurs for another set of transformations, known as
"Faraday's transformations", where the response �elds are unchanged, but
the relative contributions of E and B to D and H are modi�ed, thus a
change in the material constants have to be considered in order to not alter
the response �elds. Faraday's transformations are de�ned as

Dı → Dı +DF
ı(5.21)

Hı → Hı +HF
ı

where, for any second-rank tensors ZF
ı and Y

F
ı , D

F
ı and HF

ı are:

DF
ı = ZF

ı (B −
1

ω
εmnkmEn)(5.22)

HF
ı = Y F

ı (B −
1

ω
εmnkmEn)

These transformations are based on one of the homogeneous Maxwell equa-
tions, namely Faraday's law, eq. (1.2), which for complex harmonic �elds can
be written as:

(5.23) εmnkmEn − ωB = 0
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con�rming that, by construction, Faraday's transformations do not change
the response �elds D and H . Note that the second-rank tensors ZF

ı and
Y F
ı have to satisfy speci�c requirements, in order to be consistent with the

discussion above, vide infra.

5.4 Origin-independent material constants

The idea now is to derive origin-independent expressions of the material
constants, starting from the de�nitions obtained in multipole theory, and
using the two sets of transformations just introduced. In the analysis it is
necessary and useful to �x some constraints, consistent with the fact that
the discussion is based on multipole theory. Thus, when the gauge and Fara-
day's transformations are applied, the linearity of the relations between the
response �elds D and H with the �elds E and B and the macroscopic po-
larizabilities have to be preserved3, as well as the space and time symmetries
of the polarizability tensors[31], and the order of the multipole moments in
the multipole expansions4.
The material constants, de�ned by the tensors introduced in equations (5.15)-
(5.18), possess intrinsic symmetries; in particular, considering a non-dissipative
medium, we have:

Aı = A∗ı(5.24)

Uı = −T ∗ı
Xı = X∗ı

These relations have been obtained using the Lagrangian formulation of clas-
sical �eld theory in macroscopic electromagnetism, deriving the Lagrangian
density in terms of the response �elds, and exploiting the fact that it is a
real function of these quantities and unique in terms of the external �elds E
and B[7].
Considering the linear constitutive relations in covariant form, one more sym-
metry relation for the magnetoelectric constants has been derived, known as
the Post constraint[32]:

(5.25) Tıı = Uıı

The Post constraint does not involve dielectric or purely magnetic properties,
and it will not be used further in this work.

3Recall that I have assumed harmonic plane waves for the �elds.
4The electric quadrupole has to appear together with the magnetic dipole, the electric

octopole with the magnetic quadrupole etc., as I have already mentioned before.
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Let list the constraints and the comments introduced so far, in order to derive
origin-independent expressions of the material constants, using the gauge and
Faraday's transformations:

1. The gauge transformations act on the response �elds D and H , and
therefore they change the material constants too, while Faraday's trans-
formations only modify the constitutive tensors.

2. The linear homogeneous dependence of the response �elds D and H
on the �elds E and B and on the macroscopic polarizability tensors
has to be preserved.

3. The order in the multipole expansions has to be consistent with the
results obtained in multipole theory and with the dependence on the
wave vector kı.

4. Space inversion, time reversal and intrinsic symmetries of the �elds and
of the polarizability tensors have to be maintained, also making use of
the δı and εık tensors and of the wave vector kı.

5. The material constants have to be independent of the �elds E and B.

6. The expressions for the material constants have to be origin indepen-
dent, as required for observables quantities.

Applying constraint 2 to the gauge and Faraday transformations, the re-
sponse �elds D and H still satisfy the linear constitutive relations, but
with transformed material constants (according to requirement 1). The trans-
formed material constants are de�ned as:

(5.26) Aı = AMı −
1

ω
εıklkkU

G
l +

1

ω
εklkkZ

F
ıl

(5.27) Tı = TMı −
1

ω
εıklkkX

G
l + ZF

ı

(5.28) Uı = UM
ı + UG

ı +
1

ω
εklkkY

F
ıl

(5.29) Xı = XM
ı +XG

ı + Y F
ı

where the tensors UG
ı , X

G
ı , Y

F
ı and ZF

ı have to be determined. Here the su-
perscripts M, F and G refer to the tensors given by multipole theory, gauge
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transformations and Faraday's transformations, respectively. Note that, ac-
cording to the �rst constraint and to the constitutive relations de�ned in
eqs. (5.13) and (5.14), the gauge transformations transform the constitutive
tensor AMı in UM

ı and TMı in XM
ı , whereas the Faraday's transformations

shift AMı in TMı and UM
ı in XM

ı and viceversa.
In order to completely de�ne the transformed material constants, it is nec-
essary derive the expressions for the tensors UG

ı , X
G
ı , Y

F
ı and ZF

ı . The idea
is to write down the most general expressions for them, taking linear combi-
nations of all the independent, second-rank tensors, that are constructed to
be linear and homogeneous in the macroscopic polarizabilities of a particular
multipole order. Since I would like to include contributions up to the electric
octopole-magnetic quadrupole order, as done in all the previous discussion,
a wide number of polarizability tensors may contribute to the transformed
material constants: αı, α

′
ı, Gı, G

′
ı etc., plus all the possible combinations

with the additional building blocks δı, εık and kı. Taking into account space
inversion, time reversal, intrinsic symmetries and order of the polarizability
tensors, 77 possible independent contributions have to be considered for non-
magnetic mediums, whereas there are 76 for magnetic mediums5.
In light of this analysis, it is possible write the most general expressions of
the transformed material constants as linear combinations of macroscopic
polarizabilities, where �eld-independent numerical coe�cients appear. As an
example of this approach, I am going to discuss the expression of the inverse
permeability Xı for a non-magnetic medium, since my work is focused on
second-order magnetic properties. Xı has been de�ned in eq. (5.29), where
XG
ı and Y

F
ı are:

(5.30) XG
ı = β1χı + β2εıklH

′
kl + · · ·+ β24δıdklkl

(5.31) Y F
ı = γ1χı + γ2εıklH

′
kl + · · ·+ γ24δıdklkl

The tensors included in these two equations are all time even, all the nu-
merical coe�cients βı and γı are therefore real. Exploiting the constraints
2, 4 and 6, an origin-independent expression of the inverse permeability is
obtained:

Xı = −χı +
1

2
ω{εıkl(H ′kl + L′kl)(5.32)

+ εkl(H
′
ıkl + L′ıkl)− ω[

1

3
(bıkk + bıkk)−

1

2
dıkk]

− δı[εklmH ′klm − ω(
1

3
bkkll −

1

4
dklkl)]}

5Complete lists of all the possible contributions can be found in ref.[8]. Here I will just
report the guide lines of this approach.

65



The calculus is rather cumbersome and it requires some algebra. I would like
to point out that the derivation and the �nal expression here are similar to
those discussed in section 3.4.2, where an origin-independent expression of
the frequency-dependent second-order magnetic response has been obtained.
I will discuss this fact in more detail later in this chapter.
Note that transformation theory creates an in�nite number of response �elds,
which become unique and physically acceptable only when the origin-independence
and the symmetry requirements are imposed.
In exactly the same way, it is possible to derive expressions for all the trans-
formed material constants, for both non-magnetic and magnetic mediums.
In the case of non-magnetic mediums, we have:

(5.33) Tı = − 1

2ω
εıklkkXl

(5.34) Uı =
1

2ω
εıklkkXl

Aı =
1

2
kkkl{

2

ω2
εıkmεlnχmn −

1

ω
εıkm(H ′ml − L′lm)(5.35)

− 1

ω
εkm(H ′ıml − L′ılm)− 1

3
(bıkl + bıkl) +

1

2
dıkl}

whereas for magnetic mediums:

Xı = −ıχ′ı +
ı

2
ω{εıkl(H ′kl + L′kl)(5.36)

− εkl(H ′ıkl + L′ıkl)− ω[
1

3
(b′ıkk − b′ıkk)−

1

2
dıkk]}

(5.37) Tı = − 1

2ω
εıklkkXl

(5.38) Uı =
1

2ω
εıklkkXl

Aı =
1

2
kkkl{−

2

ω2
εıkmεlnχ

′
mn +

1

ω
εıkm(Hml − Llm)(5.39)

− 1

ω
εkm(Hıml − Lılm) +

1

3
(b′ıkl − b′ıkl)−

1

2
d′ıkl}

It is possible to see how the transformed magnetoelectric tensors Tı and Uı
can be expressed in term of the transformed inverse permeability, and they
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have the same expressions in both cases.
Once more, I would like to emphasize that these expressions are origin-
independent, by construction, and therefore are suitable to describe observ-
able quantities. They also satisfy the symmetries introduced in eq. (5.24) for
non-dissipative mediums and they can be extended to dissipative mediums
too, where obviously the quoted symmetries will not be valid anymore, but
still the origin-independence will be preserved[1],[7]. Eqs. (5.33), (5.34), (5.37)
and (5.38) trivially satisfy the Post constraint: Tıı = Uıı, this is the reason
why it has not been necessary include it in the list of constraints used to
derive the transformed material constants.
It is important to note that transformation theory has been applied to
the electric octopole-magnetic quadrupole order, thus the expressions of the
transformed material constants, eqs. (5.32)-(5.39), refer to this order. Com-
plete de�nitions of the transformed polarizability densities have to take into
account also the electric dipole and the electric quadrupole-magnetic dipole
terms. The procedure to obtain these contributions is identical to the one
discussed above, actually much more simple, given that less polarizability
tensors have to be considered at lower orders.
Considering the contributions given by the vacuum, the dipole, the electric
quadrupole-magnetic dipole and the electric octopole-magnetic quadrupole,
the complete de�nitions of the transformed material constants for non-magnetic
mediums become[7],[8]:

Aı = ε0δı + αı +
1

2
kkkl{

2

ω2
εıkmεlnχmn(5.40)

− 1

ω
εıkm(H ′ml − L′lm)− 1

ω
εkm(H ′ıml − L′ılm)

− 1

3
(bıkl + bıkl) +

1

2
dıkl}

(5.41) Tı = −ı(G′ı −
1

2
ωεklaklı)−

1

2ω
εıklkkXl

(5.42) Uı = −ı(G′ı −
1

2
ωεıklakl) +

1

2ω
εıklkkXl

Xı = −χı +
1

2
ω{εıkl(H ′kl + L′kl)(5.43)

+ εkl(H
′
ıkl + L′ıkl)− ω[

1

3
(bıkk + bıkk)−

1

2
dıkk]

− δı[εklmH ′klm − ω(
1

3
bkkll −

1

4
dklkl)]}
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whereas for magnetic mediums:

Aı = ε0δı + αı − ıα′ı +
1

3
(a′ık + a′kı + a′kı)kk(5.44)

+
1

2
kkkl{−

2

ω2
εıkmεlnχ

′
mn +

1

ω
εıkm(Hml − Llm)

− 1

ω
εkm(Hıml − Lılm) +

1

3
(b′ıkl − b′ıkl)−

1

2
d′ıkl}

Tı = −ı(G′ı −
1

2
ωεklaklı) +Gı −

1

3
Gllδı(5.45)

− 1

6
ωεkla

′
klı −

1

2ω
εıklkkXl

Uı = −ı(G′ı −
1

2
ωεıklakl)−Gı +

1

3
Gllδı(5.46)

+
1

6
ωεkla

′
klı +

1

2ω
εıklkkXl

Xı =
1

µ0

δı − ıχ′ı +
ı

2
ω{εıkl(H ′kl + L′kl)(5.47)

− εkl(H ′ıkl + L′ıkl)− ω[
1

3
(b′ıkk − b′ıkk)−

1

2
dıkk]}

Again, the transformed material constants are origin-independent and satis-
�es the intrinsic symmetries by construction.

5.5 Transformed multipole moments densities

In the previous sections I have introduced the constitutive relations, eqs.
(5.13) and (5.14), that describe the relations between the response �elds D
and H and the external �elds E and B through the material constants; I
have de�ned the response �elds in terms of multipole moment densities, up to
the electric octopole-magnetic quadrupole order, using multipole theory, eqs.
(5.7) and (5.8); and I have derived the transformed material constants for
non-magnetic and magnetic mediums, eqs. (5.40)-(5.47). Considering these
expressions of the material constants, and comparing the constitutive rela-
tions with the de�nitions of the response �elds in terms of multipole moment
densities, it is possible to de�ne the transformed multipole moment densities
up to the electric octopole-magnetic quadrupole order. Here, I will not re-
port their explicit expressions, since they are cumbersome and not relevant
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in my work6, however I would like to emphasize that all the coe�cients of
the �elds E and B and their gradients that appear in the quoted expressions
are origin-independent polarizability densities. This is not surprising, given
that the material constants used in the derivation are linear combinations of
polarizabilities, origin-independent by construction.

5.6 Comments

A macroscopic analysis of molecular properties using multipole theory do
not solve the problem of the origin dependence of the observable quantities.
Thus, it has been necessary look for origin-independent expressions of the
material constants, in order to have physically acceptable results. A rele-
vant problem is to understand why multipole theory, that it is de�nitely a
good theory to treat molecular properties, do not lead to origin-independent
expressions of physical quantities, in the microscopic as well as in the macro-
scopic case. As noted in Chapter 3 when discussing the magnetizability, it is
important to recognize which quantities are actually observables or not, that
is, what we are e�ectively considering when we are doing a measurement,
and how to connect them with the results obtained in multipole theory.
Microscopic and macroscopic analysis of molecular properties, using multi-
pole theory, present several di�erences in the approaches and in the way to
solve the problem of origin dependence. In the next section I will discuss
this point in detail, considering the expression of the inverse permeability
obtained in the macroscopic case, and comparing it with the analysis of the
second-order magnetic response, previously done in the microscopic case.

5.7 Inverse permeability

Let consider the expression for the inverse permeability for non-magnetic
mediums given in eq. (5.43). This expression has been obtained using mul-
tipole theory up to the electric octopole-magnetic quadrupole order, and
applying the gauge and Faraday's transformations to the constitutive re-
lations, in order to get an origin-independent de�nition of this molecular
property. In eq. (5.32) only the terms given by the electric octopole-magnetic
quadrupole order has been considered in the expression of the inverse perme-
ability, whereas in eq. (5.43) all the possible contributions to it are included,
given by the lower orders in the multipole expansion. Comparing these two

6Explicit expressions can be found in Ref.[8].
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equations, it is clear that the only di�erence between them is the term 1
µ0
δı,

namely the contribution of the vacuum. Thus, it is possible claim that, in
order to get an origin-independent expression of the inverse permeability, it
is necessary to consider contributions up to the electric octopole-magnetic
quadrupole order. In fact, if the multipole expansion is truncated at the elec-
tric quadrupole-magnetic dipole order, even acting with gauge and Faraday's
transformations, no additional polarizabilities enter in the de�nition of this
property, therefore the expression of the inverse permeability is simply:

(5.48) Xı =
1

µ0

δı − χı

which is origin dependent according with the previous analysis.
In the light of this observation, we can see the importance to consider higher
contributions in the multipole expansion, in order to have origin-independent
de�nitions of molecular properties. Actually, it would be reasonable to con-
sider neglecting some of the high-order contributions, given that they could
appear small in magnitude compared to the foremost terms, but we would
end up with unphysical results.
Let now compare the microscopic and the macroscopic analysis of magnetic
properties. Recalling the discussion of chapter 3 for the microscopic case, it
has been showed that the magnetizability is an origin-dependent quantities
when an external frequency-dependent magnetic �eld is applied. An origin-
independent expression has been derived by Raab and the Lange, and it has
been reported in eq. (3.91). A similar situation occurs in the macroscopic
case, where the magnetic property de�ned by multipole theory is origin de-
pendent, thus it has been necessary look for an origin-independent expression
for the inverse permeability, exploiting the non-unicity of the response �elds
and applying gauge and Faraday's transformations. Here, I recall the origin-
independent expressions of the quoted magnetic properties7:

χı(ω) = χı(0)− 1

2
ω{εıkl(H ′kl + L′kl) +(5.49)

+ εkl(H
′
ıkl + L′ıkl)− ω[

1

3
(bıkk + bıkk)−

1

2
dıkk] +

− δı[εklmH ′klm − ω(
1

3
bkkll −

1

4
dklkl)]}

7In the macroscopic case, I have considered the expression for non-magnetic mediums.
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Xı = −χı +
1

2
ω{εıkl(H ′kl + L′kl) +(5.50)

+ εkl(H
′
ıkl + L′ıkl)− ω[

1

3
(bıkk + bıkk)−

1

2
dıkk] +

− δı[εklmH ′klm − ω(
1

3
bkkll −

1

4
dklkl)]}

It is immediately clear that, except for the minus sign in the latter equation8,
these expressions are identical. However, the polarizabilities in these equa-
tions are di�erently de�ned in the two cases, since in the former equation
they have been derived using a microscopic approach, whereas in the latter
a spatial average of the microscopic multipole moments has been performed,
in order to have the corresponding macroscopic de�nitions. Anyway, work-
ing on the de�nition of magnetic properties provided by multipole theory,
origin-independent expressions have been derived as linear combination of
polarizabilities, and these polarizabilities appear exactly in the same linear
combination, in both the microscopic and the macroscopic cases. Thus, it
would be possible to claim that, in the presence of a frequency-dependent
magnetic �eld, origin-independent second-order magnetic properties result-
ing from the response of the system to the external perturbation are de�ned
by equations (5.49) and (5.50), in the microscopic and macroscopic cases,
respectively.
I would like to further investigate the di�erences between the microscopic and
the macroscopic analysis. I have already discussed in detail in section 3.5 the
procedure used by Raab and de Lange to derive an origin-independent ex-
pression of the second-order magnetic response, pointing out the weak point
of their work.
Let now focus the attention on the macroscopic case. Here, an origin-independent
expression for the inverse permeability, and in general of all the material con-
stants, has been derived starting from the macroscopic Maxwell equations,
and exploiting the non-unique de�nition of the response �elds. In particular,
this freedom in the de�nition of D andH suggested to introduce two sets of
transformations, namely gauge and Faraday's transformations, that preserve
the form of the macroscopic Maxwell equations, but modify the constitutive
relations and the response �elds themselves. These two sets of transforma-
tions are de�nitely suitable and consistent with the theory of electromag-
netism, and no particular hypothesis have been done, except considering a
complex harmonic form of the �elds. In order to obtain origin-independent
expressions of the material constants, a transformation theory established on

8The minus sign occur because, in the macroscopic case, the "inverse" permeability has
been considered.
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the quoted gauge and Faraday's transformation has been applied. It has been
necessary �x some constraints, vide supra, recalling that all the discussion is
based on multipole theory. Analysing in detail this list of constraints, I would
claim that all of them are mandatory and have to be satis�ed by a general
sets of transformations, in accordance with the theory of electromagnetism
and the de�nition of an observable quantity. In fact, it is natural to ask to
preserve the linearity of the constitutive relations, the order of the multipole
expansions, and the symmetries of the �elds and of the polarizability tensors.
No further assumptions have been done, except of course to impose the origin
independence of the material constants. Thus, the procedure followed in the
macroscopic case appears to have a solid theoretical foundation that I would
rather prefer to the one used in the microscopic case, where indeed suitable
assumptions have been made, but the �nal expression for the second-order
magnetic response has been derived just as a collection of polarizabilities,
and not as the result of a consistent and exhaustive theoretical work.
Another aspect that prompt me to like better the macroscopic analysis, deal
with its relativistic features9. In fact, a transformation theory has been ap-
plied, where the gauge and Faraday's transformations are based on the non-
unique de�nition of the response �elds in the Maxwell equations, which are
purely relativistic and imply the linearity of the constitutive relations and
the linear dependence of the �elds and of the polarizabilities. Furthermore,
the space inversion, time reversal and the intrinsic symmetries, imposed for
non-dissipative mediums, are consistent within a relativistic framework. In
particular, the symmetries of the material constants are achieved from a co-
variant, relativistic application of the classical �eld theory in macroscopic
electromagnetism, using the Lagrangian formulation. However, it is impor-
tant point out that the multipole expansions of the response �elds D andH
in terms of the �elds E and B are not in general covariant.
In conclusion, the origin-independent expression for the magnetic response
in the presence of an external frequency-dependent magnetic �eld obtained
in the macroscopic approach, eq. (5.50), looks reliable and derived through
a well-based relativistic theory. In contrast, the microscopic non-relativistic
discussion leads to an equivalent result, but here the analysis is de�nitely less
exhausting. Thus, I would in general consider equation (5.49) to be suitable
and correct too, but a complete relativistic theory has still to be achieved,
in order to justify this result.

9I have already mentioned in the previous sections the reasons why I prefer to treat
molecular properties in a relativistic framework.
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Chapter 6

Remarks and conclusions

Here, I will brie�y summarize the results obtained in the previous chap-
ters, and I will discuss the possible future studies that could be performed
on magnetic properties.
My work has been focused on a second-order magnetic property, namely
magnetizability. Since, in the presence of a static magnetic �eld, the magne-
tizability is an observable quantity and its expression is origin independent,
I would expect the same situation when a frequency-dependent magnetic
�eld is applied. Instead, multipole theory provides an origin-dependent ex-
pression of the frequency-dependent magnetizability, I have thus tried to
derive an origin-independent expression for this quantity. By de�nition, the
expression of the magnetizability is constituted by two terms, diamagnetic
and paramagnetic, where the latter is given by the magnetic dipole-magnetic
dipole coupling; thus an origin-independent expression that include other
multipole moment contributions has been rather named second-order mag-
netic response.
At �rst, I have analysed the magnetizability in the microscopic case and, in
order to have a wide overview on the theoretical frame where its expression
has been derived, electromagnetism, Lagrangian and Hamiltonian formalisms
have been introduced. In particular, I have discussed the gauge issue in de-
tail, since the choice of a speci�c gauge is fundamental in the analysis, and
the problem of origin dependence of molecular properties could be considered
equivalent to the problem of gauge origin in some speci�c cases. The multi-
pole gauge provides an expansion of the vector and of the scalar potentials,
and a Taylor expansion of the �elds in terms of multipole moments, so it
has been considered as the best choice of gauge, in order to study molecular
properties and in particular the magnetizability.
The microscopic analysis has been done in the non-relativistic as well as in
the relativistic framework, pointing out the di�erences between these ap-
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proaches. The Hamiltonians are clearly di�erent in the two cases, but this
fact is particularly relevant when we are treating second-order magnetic re-
sponse. In fact, the vector potential appears linear and quadratic in the
non-relativistic Hamiltonian, but only linear in the relativistic Hamiltonian,
thus in the former case the magnetizability shows two contributions, namely
the diamagnetic and the paramagnetic, whereas in the latter only the para-
magnetic contribution appears.
In the non-relativistic framework, I have showed the origin independence of
the frequency-independent magnetizability, and I have discussed the work
of Raab and de Lange, which have proposed an origin-independent expres-
sion of the second-order magnetic response, in the presence of a frequency-
dependent magnetic �eld, as a collection of nine polarizabilities. Their work is
based on a few suitable requirements that an origin-independent expression
of the frequency-dependent magnetizability should ful�ll, however it does
not look to me that their derivation rely on a well-founded quantum theory.
Thus, I have studied the magnetizability using another approach, namely
working in the relativistic framework. I believe that this framework is much
better than the non-relativistic one, given that the Maxwell equations play
a central role in the discussion, and they are fully relativistic. Furthermore,
the relativistic Hamiltonian, except for the fact that it is necessary to con-
sider 4-component wave functions, is simpler, since it contains only a linear
term in the vector potential. The relativistic expression for the second-order
magnetic response has been introduced, showing that a shift of the origin of
the coordinates produces the same displacement terms obtained in the non-
relativistic case. I thought that a possible way to cancel these displacement
terms was to include in the de�nition of second-order magnetic response the
electric-quadrupole, since the magnetic dipole and the electric quadrupole
appear at the same order in the multipole expansions of the potentials, and
other observable quantities, such as optical rotation, have origin-independent
expressions de�ned by a linear combination of the quoted contributions. Un-
fortunately, the same situation does not occur for the second-order magnetic
response, and including in its expression the electric quadrupole moment
does not solve the problem of origin dependence. Anyway, for the reasons
mentioned above, I still believe that an origin-independent expression has to
be derived within a relativistic framework. To this end, analysis of the multi-
pole gauge and of the relativistic Hamiltonian seem to show the possibility to
derive a gauge-independent interaction Hamiltonian, including terms of mag-
netic dipole-electric quadrupole order. Further discussions and work have to
be done on this promising way, in order to derive an origin-independent ex-
pression of the second-order magnetic response.
Molecular properties have been discussed also in the macroscopic case. I have
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introduced the macroscopic Maxwell equations and the constitutive relations,
where the latter de�ne the relations between the response �elds and the ex-
ternal �elds through the material constants. As well as in the microscopic
case, multipole theory lead to origin-dependent expression of the material
constants, thus to unphysical results for observable quantities. A fundamen-
tal aspect in the macroscopic description is the non-unique de�nition of the
response �elds, which suggest the introduction of sets of transformations,
namely gauge and Faraday's transformations. Fixing a few constraints that
can be inferred from the analysis of the material constants, it has been possi-
ble to apply the quoted sets of transformations to the constitutive relations,
and derive origin-independent expressions of the material constants. A fun-
damental feature of the gauge and Faraday's transformations is that they are
based on the Maxwell equations, and they are therefore fully relativistic, thus
the macroscopic analysis can be considered valid in a relativistic framework.
The transformed material constants have been obtained considering contribu-
tions up to the electric octopole-magnetic quadrupole order, for non-magnetic
and magnetic materials. Focusing on the magnetic response, namely the in-
verse permeability, it is possible to note that an origin-independent expres-
sion can be obtained only when the electric octopole-magnetic quadrupole
contributions are considered, and that the resulting transformed expression
is a linear combination of macroscopic polarizabilities, totally equivalent to
the result obtained in the microscopic case. I consider satisfactory the origin-
independent expression of the frequency-dependent magnetic response for
non-magnetic and non-dissipative mediums, given in eq. (5.50), obtained in
the macroscopic case.
Since in the microscopic case, an origin-independent expression of the second-
order magnetic response shows an equivalent linear combination of polariz-
abilities, I would consider this expression reliable too. However, I do not think
that the procedure followed to derive it is exhaustive, thus I believe it is still
necessary discuss the microscopic case in detail, using a fully relativistic ap-
proach.
The microscopic expression for the second-order, frequency-dependent mag-
netic response, derived by Raab and de Lange, has been used to perform cal-
culations by Krykunov and Autschbach[33]. In their paper, they have clearly
separated the problem of gauge-origin dependence from the problem of origin
dependence. The former can occur when both a static or a dynamic mag-
netic �eld are applied, and it is a consequence of the fact that the hypervirial
relation, valid for complete basis set, has been used to show the origin inde-
pendence of the static magnetizability. Since it is not possible use a complete
basis set to perform calculations, this problem has been solved using gauge-
including atomic orbitals (GIAO). The latter issue, widely discussed in my
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work, is a purely theoretical problem, and cannot be solved using GIAOs.
Krykunov and Autschbach have calculated both the frequency-dependent
magnetizability, that is an origin-dependent quantity, and the second-order
magnetic response, using the expression of Raab and de Lange, showing that
they converge to the same static limit. However, in the high frequency region,
their behavior can be very di�erent, since the expression of the magnetic re-
sponse involves various di�erent polarizabilities tensors.
Finally, I would like to mention the possible future studies that could be done
on second-order magnetic properties.
In the macroscopic case, I believe that the expression given in eq. (5.50) is
correct and it is based on a exhaustive theory. However, complex harmonic
�elds and the linearity of the constitutive relations have been used, thus an
extension to more general cases, including non-linear contributions, could be
achieved. Furthermore, considering harmonic plane waves, it is possible to
derive a wave equation from the inhomogeneous Maxwell equations[34], and
so express measurable quantities, as the refractive index, in terms of macro-
scopic polarizabilities, up to electric octopole-magnetic quadrupole order. In
this way we could obtain experimental values of macroscopic polarizabilities,
and compare them with calculations.
As I have already claimed, the microscopic expression for the second-order
magnetic response needs a better theoretical explanation. I believe that it will
be possible to recover the origin-independent expression for this property us-
ing a relativistic approach, and extend the analysis to more general external
magnetic perturbations, as mentioned in the macroscopic case. I would not
discard the possibility that an origin-independent expression of second-order
magnetic response could have a di�erent aspect, considering other forms of
the external �elds.
Note that several possible choices of gauge could be made, but I would still
prefer the multipole gauge, considering the good results in general achieved
for molecular properties using this choice of gauge.
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Appendix A

In this appendix I will show another possible way to demonstrate the
origin-independence of the magnetizability in the static case. Let �rst con-
sider the expression of the magnetizability given by the sum of eqs. (3.67) and
(3.68). Using the de�nition of the angular momentum operator l = −ı~r∧∇,
and operating a shift of the origin of the coordinate r′ = r − d, the param-
agnetic term can be rewritten as:

χp′ = − e2

4m2
� (r − d) ∧ p; (r − d) ∧ p�ω=0 =(6.1)

= χp +
e2

4m2
{� l;d ∧ p�ω=0 +� d ∧ p; l�ω=0 +

− � d ∧ p;d ∧ p�ω=0}

Assuming an isotropic sample, it is possible to reduce the analysis of the
magnetizability tensor by considering only its trace. Recalling the vector
relations and the property of the trace, the term quadratic in the origin
displacement takes the form:

Tr � d ∧ p;d ∧ p�ω=0 =(6.2)

= (G ·G)Tr � p;p�ω=0 − � G · p;G · p�ω=0 =

= −Tr � (G · p)G− (G ·G)p;p�ω=0 =

= −Tr � G ∧ (G ∧ p);p�ω=0

Considering the linear terms in the displacement, it is possible rewrite them
as:

(6.3) � l;d ∧ p�ω=0=� d ∧ p; l�ω=0= −m < 0 | G · r −Gr | 0 >

where the hypervirial relation and the Hermiticity of the linear terms have
been used. It is important to remind that the hypervirial relation, introduced
in eq. (3.76), is valid for an exact theory and in certain approximations, for
a complete variational orbital basis set. Thus the paramagnetic part of the
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magnetizability, after the origin displacement, can be written as:

χp′ = χp − e2

4m2
{2m < 0 | G · r −Gr | 0 > +(6.4)

+ Tr � G ∧ (G ∧ p);p�ω=0}

Acting in a similar manner on the diamagnetic part, its expression becomes:

χd′ = χd +
e2

4m2
{2m < 0 | G · r −Gr | 0 > +(6.5)

+ Tr � G ∧ (G ∧ p);p�ω=0}

It is clear that the additional terms, resulting from the shift of the origin of the
coordinates, vanish. Therefore, in the presence of a time-independent external
magnetic �eld, the expression of the magnetizability is origin-independent,
assuming a complete variational basis set.
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