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Abstract—This paper presents an automatic image segmen-
tation method for Polarimetric SAR data. It utilises the full
polarimetric information and incorporates texture by modelling
with a non-Gaussian distribution for the complex scattering
coefficients. The modelling is based upon the well known product
model, with a Gamma distributed texture parameter, leading to
the K-Wishart model for the covariance matrix. The automatic
clustering is achieved through a finite mixture model estimated
with a modified Expectation Maximisation algorithm. We include
an additional goodness-of-fit test stage that allows for splitting
and merging of clusters. This not only improves the model fit
of the clusters, but also dynamically selects the appropriate
number of clusters. The resulting image segmentation depicts the
statistically significant clusters within the image. A key feature
is that the degree of sub-sampling of the input image will affect
the detail level of the clustering, revealing only the major classes,
or a variable level of detail. Real world examples are shown to
demonstrate the technique.

Index Terms—Polarimetric Synthetic Aperture Radar, Non-
Gaussian, Statistical Modelling, Clustering.

I. INTRODUCTION

SATELLITE-BORNE Synthetic Aperture Radar (SAR) sys-
tems are well suited to environmental monitoring be-

cause of their cloud penetrating ability, day/night operation
and broad coverage. Reliable automated image classification
schemes are required because of the huge scale of earth
monitoring and the wealth of new data scenes available from
several new SAR satellite systems.

Pixel-wise analysis of SAR imagery is generally compli-
cated due to the presence of speckle and requires that statistical
modelling methods are employed. It is well known that in
some circumstances radar complex scattering coefficients are
non-Gaussian in distribution. For this reason, various non-
Gaussian models have been proposed to represent SAR data
and many of these have been extended to the polarimetric
SAR case. The multivariate K-distributions [1], [2] and G-
distributions [3] have been successful for modelling PolSAR
data and highlight the importance of non-Gaussianity. Both
these distributions are members of the so-called product model
[4], which states that, under certain conditions, the backscat-
tered signal results from the product between a Gaussian
speckle noise component and the textured terrain mean reflec-
tivity. Associated with these models are one or more so-called
non-Gaussianity parameters, which account for deviation from
Gaussian statistics.
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Fully polarimetric SAR (PolSAR) or quadruple polarisation
(quad-pol) imagery contains the full scattering matrix infor-
mation which leads to the best classification results [5]. In
addition, full polarimetric SAR images also allow for classi-
fication of pixels by dominant scattering mechanisms. Fully
polarimetric data is not always available because the wider
coverage of dual (dual-pol) or single polarisation modes are
often preferred for monitoring purposes. In this paper, we show
how non-Gaussianity and polarimetry can be incorporated
into practical, automatic and general methods to analyse SAR
image data. The methods are generic in the sense that they can
be applied to single, dual or quad-pol data, of any frequency,
in a common way.

Polarimetric classifications are commonly performed with
the Gaussian based Wishart clustering algorithm. In this study,
we use the more advanced non-Gaussian K-Wishart clustering
algorithm [6], that additionally accounts for potential tex-
tural differences in the classes. The unsupervised clustering
algorithm is based upon the expectation maximisation (EM)
algorithm [7] for finite mixture modelling, using the K-Wishart
probability density function, Eqn. (4), for the probabilities and
method of moments for class parameter updates.

In addition to the estimated class parameters, we have
automated otherwise a priori parameters for these statistical
models. The effective number of looks (ENL) is automatically
determined within the algorithm and includes a correction for
texture, by using matrix log-cumulants [8]. The appropriate
number of classes is determined by a goodness-of-fit test stage
within the EM algorithm that allows for splitting or merging
of classes. The result is an automatic image segmentation
depicting the statistically distinct classes within the image.

A further benefit is that the algorithm is not influenced
by initial conditions, as is commonly the case for clustering
algorithms, and the main tuning parameter is the confidence
level for the goodness-of-fit tests. The clustering simply starts
out with the entire image as one class and will split and merge
its way to a stable result with the goodness-of-fit tests. The
fact that the goodness-of-fit tests are dependent on the number
of samples, leads to a useful feature of performing a faster,
less detailed analysis by sub-sampling the image, that is also
less sensitive to the precision of the model fitting the data.

The automatic approach with goodness-of-fit testing was
presented at EUSAR [9], but we have implemented more
sophisticated parameter estimation with matrix log-cumulants
[8], use matrix log-cumulant goodness-of-fit tests [10] directly
on the samples, and the design has been further refined.

The resulting image segmentation, or clustering, is not a true
classification, because the clusters have not been identified,
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only separated. However, polarimetric decompositions or any,
even limited, ground truth data may be used for subsequent
automatic or assisted labelling of the found classes.

The automatic technique to find the optimum number of
classes is easily adaptable to other statistical models and all
that is required is that the probability density function and
the first few matrix log-cumulants are known. The automatic
clustering technique will be demonstrated for both simulated
data and real world examples, and for the K-Wishart, standard
Wishart and Relaxed-Wishart [11] models.

This paper proceeds to describes the product model and
texture in section II, details the K-Wishart, Wishart and
Relaxed-Wishart models and the required matrix log-cumulant
theory in section III, and explains the various stages of the
automatic algorithm in section IV. Results are shown in section
V, followed by the discussion in VI and conclusions in VII.

II. TEXTURE AND THE PRODUCT MODEL

The full complex scattering matrix of a polarimetric SAR
using linear polarisations includes the four combinations of
horizontal and vertical polarisation for both the transmitted
and received signals. These four channels, HH, HV, VH and
VV, are together referred to as quad-pol data, and contain
the complete vector information of the scattered signal with
respect to the satellite antenna system. These four complex
scattering coefficients can be represented as a 4-dimensional
complex vector, s, and correspond to the single-look complex
(SLC) data format.

Non-Gaussian distributed scattering coefficients have been
observed for highly textured target regions imaged with high
resolution. Many authors have noted better model fits to
class histograms with non-Gaussian models [1], [3], [12],
and although there are several specific functional descriptions,
they are all based upon the well known product model. The
product model (explained in [4]) presumes that the observed
variation in SAR backscatter is composed of two independent
components, one describing natural variation in the mean
reflectivity, called texture, and another for Gaussian speckle.
For the semi-symmetric, zero-mean case used to describe radar
backscatter from natural terrain, the product model may be
written as

s =
√
t Σ

1
2 n, (1)

where the scale parameter t is a strictly positive scalar ran-
dom variable, normalised such that its mean t̄ = 1, Σ is
the polarimetric covariance matrix, and n is a standardised,
complex multivariate Gaussian variable with zero mean and
identity covariance matrix, i.e. n ∼ N C(0, I). The statistical
distribution of t governs the resulting non-Gaussianity of the
product model. The general interpretation is that the product
model describes texture modulated Gaussian speckle. The
texture term is introduced here with a square root because
the variable t models the variance of the signal rather than its
amplitude.

Since the measured scattering coefficients have a mean value
of zero, we have to evaluate the second order statistics in
the covariance matrix to estimate scattering properties. The

statistical modelling is therefore carried through to multi-
look complex (MLC) covariance matrix data. Taking the
mathematics through the sample covariance matrix expression
is, in general, intractable, but suitable non-Gaussian based
models were found by applying the texture product model
directly to the covariance matrix data:

C = t W/L, (2)

where W is complex Wishart distributed [13] with L looks
and Σ mean covariance matrix.

A constant texture term would describe purely Gaussian
vector data and Wishart covariance data and is observed only
for very homogeneous and smooth areas in real SAR images.
The presence of texture increases the variation beyond that of
homogenous areas and produces non-Gaussian distributions
for the scattering coefficients and non-Gaussian based, or
generalised Wishart models for the covariance matrices [6].
Among the alternative non-Gaussian models, we choose the
K-Distribution for the complex scattering coefficients, and the
K-Wishart for the covariance matrix, because they appear to be
very good models in many situations and they are quite well
known. We shall only investigate multi-looked, MLC, data
analysis here, since even SLC vector estimation is essentially
performed through the covariance matrix of the vectors.

III. THE MODEL DISTRIBUTIONS

A. Finite Mixture Modelling

Our main objective is to segment the image pixels into sep-
arate clusters based upon the K-Wishart model. The statistical
model for clustering the images assumes that the probability
density function (PDF) for the whole data-set can be described
by a finite mixture model,

fC(C) =

m∑

j=1

πjfj(C) (3)

where πj are the class priors such that
∑m
j=1 πj = 1 and

the fj(C) are the individual class model PDFs. All priors
and model parameters are estimated with the iterative EM
algorithm [7]. Our modifications to the EM algorithm will
be explained in Sec. IV, but the basic model expressions and
log-cumulant theory will be stated here.

B. Model PDFs

The K-Wishart probability density function, with L degrees
of freedom, shape (non-Gaussianity) parameter α, and mean
covariance matrix Σ, is given by

fC(C;L,α,Σ) =

2|C|L−d
I(L, d)Γ(α)|Σ|L (Lα)

α+Ld
2
(
tr(Σ−1C)

)α−Ld
2

×Kα−Ld
(

2
√
Lαtr(Σ−1C)

)
(4)

and denoted C ∼ KW(L,α,Σ). Here, tr(·) denotes the trace
operation, |·| the determinant, Γ(·) as the standard Γ-function, d
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is the vector dimension, Km(x) is a modified Bessel function
of the second kind with order m and

I(L, d) = π
d(d−1)

2

d−1∏

i=0

Γ(L− i) (5)

is a normalisation constant.
We have given the PDF with three parameters as

KW (L,α,Σ), but we sometimes separate Σ into the mean
backscatter intensity, µ, and a normalised internal covariance
structure matrix, Γ, such that µ = |Σ| 1d and |Γ| = 1. µ can
then be considered a mean brightness parameter and the rela-
tive polarimetry is contained in Γ. Therefore, KW (L,α, µ,Γ)
is simply an alternative description that we have used previ-
ously in [6].

The structure of the product model, log-cumulants and
the relation between the standard Wishart and the K-Wishart
makes it very easy to adapt the algorithm to be an automatic
clustering for the standard Wishart model. In fact, it is as
simple as fixing the shape parameter, α, to infinity instead of
estimating it, since the standard Wishart is an asymptotic case
of the K-Wishart model. This forces the K-Wishart probability
density function to be evaluated by the standard Wishart
PDF for the probabilities and the log-cumulants revert to the
Wishart portion only. Of course, the standard Wishart does not
benefit from the flexibility of the K-Wishart and it is expected
that more classes will be needed to fit any textured regions in
the data.

The Wishart PDF, with L degrees of freedom and mean
covariance matrix Σ, is given by

fC(C;L,Σ) =
LLd|C|L−d
I(L, d)|Σ|L exp

(
−Ltr(Σ−1C)

)
(6)

which we denote as C ∼W(L,Σ). As mentioned, the Wishart
model is a limiting case of the K-Wishart, such that

lim
α→∞

KW(L,α,Σ) = W(L,Σ) (7)

Another simple adaption, is to again fix α to infinity, but
allow the individual clusters to have their own independent
ENL estimates. This leads to the Relaxed-Wishart model [11]
which allows for a moderate degree of texture and with very
simple numerical evaluations. It uses the same PDF as the
Wishart, but each class can have a different number of looks.
We will show examples from both of these options as well as
the K-Wishart.

C. Matrix log-cumulants

The matrix log-cumulant expressions for the K-Wishart
model are given in [8] as:

κ1 =ln |Σ|+ψ(0)
d (L)−d ln(L)+dψ(0)(α)−d ln(α) (8)

κν =ψν−1d (L)+dνψν−1(α) , ν > 1 (9)

where ψ(ν)
d (·) is the multivariate polygamma function, defined

as

ψ
(ν)
d (L) =

d−1∑

i=0

ψ(ν)(L− i) (10)

and ψ(ν)(·) is the ordinary polygamma function.
The standard Wishart model simply removes the texture

dependent part and reduces to

κ1 =ln |Σ|+ψ(0)
d (L)−d ln(L) (11)

κν =ψν−1d (L) , ν > 1 (12)

D. Matrix log-cumulant Goodness-of-fit test

The goodness-of-fit testing of order p described in [10]
utilises multiple sample matrix log-cumulants as a vector
〈κ〉 = [〈κ1〉, 〈κ2〉, . . . , 〈κp〉]T and compares them to the
population matrix log-cumulants (as a vector κ) defined by
the model parameters and expressions (8) and (9). The test
statistic for n samples is

Qp = n(〈κ〉 − κ)TK−1(〈κ〉 − κ) (13)

which has been shown to be asymptotically χ2 distributed with
p degrees of freedom. We shall be using tests of order 4 using
the first four matrix log-cumulants and require population
matrix log-cumulants up to order 8 to determine the log-
cumulant covariance matrix K,

K=




κ2 κ3 κ4 κ5
κ3 κ4 + 2κ22 κ5 + 6κ2κ3 K24

κ4 κ5 + 6κ2κ3 K33 K34

κ5 K42 K43 K44


 (14)

where

K24 = K42 = κ6 + 8κ2κ4 + 6κ23 , (15)

K33 = κ6 + 9κ2κ4 + 9κ23 + 6κ32 , (16)
K34 = K43 = κ7 + 12κ2κ5 + 30κ3κ4

+ 36κ22κ3 ,
(17)

K44 = κ8 + 16κ2κ6 + 48κ3κ5 + 34κ24

+ 72κ22κ4 + 144κ2κ
2
3 + 24κ42 .

(18)

The sample matrix log-cumulants are determined from the
sample matrix log-moments

〈µν〉 =
1

n

n∑

i=1

(log |Ci|)ν (19)

through the following moment to cumulant equations

κ1 = µ1 , (20)

κ2 = µ2 − µ2
1 , (21)

κ3 = µ3 − 3µ1µ2 + 2µ3
1 , (22)

κ4 = µ4 − 4µ1µ3 − 3µ2
2 + 12µ2

1µ2 − 6µ4
1 , (23)

The asymptotic distribution may not be accurate for small
sample sizes and we therefore use the Monte-Carlo approach
(also described in [10]) to evaluate the test p-value for sample
sizes smaller than 300 pixels, although it is much slower to
compute.
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IV. AUTOMATED ANALYSIS

A. Expectation Maximisation based algorithm

Our modifications to the standard EM algorithm are that
we use method of multiple log-cumulants for class parame-
ter updates and include and extra split/merge stage through
goodness-of-fit testing. The basic idea has been summarised
into table I, where we point out a brief comment or which
estimation method is used for each parameter, while more
details follow in this section.

The E-step is the standard procedure, using the K-Wishart
expression (4) to calculate the posterior class probabilities for
each pixel. The posterior class probabilities are used as weights
for each sample for all class parameter estimates and sample
log-cumulant evaluation.

In the M-step, the K-Wishart class parameter updates in-
volve membership weighted means over the covariance matrix
data points for the class mean covariance matrix Σ, and
a new minimum distance optimisation (solved numerically)
over multiple matrix log-cumulants [8] for the texture/shape
parameter α. We found better, more stable results when
using several moments and by implementing the matrix log-
cumulants because of their superior bias and variance prop-
erties, and known multivariate Gaussian limiting distribution
derived in [8].

TABLE I
SUMMARY OF K-WISHART CLUSTERING ALGORITHM

Input: MLC matrix data {Ci}i=1:N

E-stage:
∀j=1:m membership weights Wj,i KW(Ci;ENL, αj ,Σj)

⇒ posterior weights div. sum Wj,i per sample
M-stage:
∀j=1:m ENLj MoLCs

global ENL ENL = RMS(ENLj)
∀j=1:m priors πj sum Wj,i

Σj weighted sample mean
αj MoLCs

GoF test: · Split m = m+ 1
· Merge m = m− 1
· unchanged

Exit test: converged or max.iterations
Output: · Clustered image

· Class parameter values {πj ,ENLj , αj ,Σj}j=1:m

where MoLCs means method of matrix log-cumulants and RMS is root-mean-squared.

B. ENL estimation

The K-Wishart expression (4) requires the number of looks
parameter L, where the looks are assumed to be independent.
In reality, there is some correlation between image pixels and
the actual number of correlated looks needs to be substituted
with the effective number of independent looks (ENL) to fit
the data. The ENL value may be known from the satellite
system and the degree of multi-look smoothing applied to
the image, or estimated from the data. We have incorporated
ENL estimation directly into the EM-algorithm, and include a
correction for texture. Estimates are obtained for each cluster
from the first log-cumulant expression given the estimated
cluster covariance matrix and an independent (from the log-
cumulant expression point of view) estimate for the cluster
texture parameter, obtained from the variance of trace(Σ−1C)

[6]. The new global ENL estimate is taken to be the root-mean-
squared average of each class estimate.

C. Split and Merge

At regular iteration steps, for example every tenth iteration,
we perform the goodness-of-fit testing. The testing has two
phases. First, we test how well all the existing clusters fit to
their models and if they fail the test they are split into two
clusters. It was observed that the main type of poorly fitted
clusters were those that were multi-modal and clearly made
up of two or more tighter groups, which will occur when there
are simply too few classes to cover the data space. The poorly
fitted clusters are split based upon whether trace(Σ−1Ci) is
less than or greater than d, which is the expected mean value,
and often immediately results in good clusters.

The second phase is testing for merge possibilities, and
here we have to test all possible pairs of good clusters to
see whether they are converging to the same data group. This
is a common result in mixture models when too many clusters
are involved, and several end up competing for the same data
group and have virtually identical parameters. The samples
from each pair of clusters are combined, new joint class
parameters are estimated, the combined group is goodness-
of-fit tested and if it passes the two are merged together.
Even when only testing each good pair, this can involve very
many tests for complicated images. Results have shown that
this is necessary even when initialised from below with one
cluster, because earlier stages may have over-split the image
if it had not fully stabilised before goodness-of-fit testing.
Alternatively, one may have initialised with very many clusters
and need to down-cluster towards the optimum.

D. Goodness-of-fit test stage

We have now implemented a fully matrix-variate goodness-
of-fit test that utilises the latest in methods of matrix log-
cumulants directly on the class sample covariance samples
[10], and the only tuning parameter is the test confidence
level which has a meaningful interpretation. We have used
a confidence level of 95% for the split and merge tests.
The goodness-of-fit test statistic is only asymptotically χ2

distributed and we clearly observed poor testing results for
small sample sizes. Our current testing uses the fast χ2

approximation for cluster samples sizes over 300 pixels, and
uses the much slower Monte-Carlo simulation below 300.

E. Number of classes

The goodness-of-fit criterion and the number of samples in
each class therefore determines how many classes are deemed
statistically significant within the image. Our adaptive method
is distinctly different from existing methods to determine the
number of classes as it tests each cluster’s goodness-of-fit
to the data individually, rather than globally, and within a
single clustering algorithm. In contrast, the commonly used L-
method [14] first performs many complete image clusterings
for different numbers of classes and then evaluates each
one through the total log-likelihood function to choose an
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optimum. The L-method has been applied to polarimetric
SAR analysis after performing an agglomerative hierarchical
clustering algorithm in conjunction with Wishart clustering in
[15], but the L-method choice of optimum seemed somewhat
broad and inaccurate. Our method not only finds a statistically
meaningful number of clusters, but also guarantees that the
resulting clusters are actually good fits to the models. It also
has a very appealing statistical interpretation for the choice of
the number of classes that are supported by the data itself to
the chosen confidence level.

F. Initial conditions

The goodness-of-fit testing also means that the clustering
algorithm is not influenced by the choice of initial conditions,
because it can always be initialised as one single class and
will automatically split and adapt until it is a sufficiently
good fit to the data mixture model. We have not rigorously
tested the convergence of the algorithm from different starting
condition nor against other methods, but our algorithm appears
to converge to repeatable results that are influenced by the
number of samples and the confidence level of the tests.
Starting from a single cluster and testing after only partial
convergence can very quickly multiply to very many clusters
if necessary. This method must be quicker than hierarchical
methods, because we essentially only partly cluster to all the
incorrect number of classes before changing size, rather than
many full cluster solutions.

G. K-Wishart Numerical Problems

Bessel K: A serious problem with the K-Wishart model
is that the PDF in (4) requires evaluation of the modified
Bessel function of the second kind. The range of real SAR
data often eventuates in numerical infinities in the Bessel-
K function leading to many or all of the probabilities being
incalculable. The K-Wishart expression also involves power
and gamma function terms, that may also give numerical
problems for large L and α. We could improve the calculable
range for these terms by calculating the log-density function
instead, but the Bessel-K function was still a major problem
for some data values. The known asymptotic approximations
did not sufficiently extend the range or did not result in a
smooth transition to the approximation and could not be used
for clustering probabilities. We finally avoided the Bessel-
K function altogether for the troublesome data and used a
numerical evaluation of the generalised Wishart integral [6,
Eq. (11)].

The result is a multi-stage, sequential evaluation, where we
first use the Bessel K function and evaluate the logarithm of
the PDF from (4). Where that fails and α is large, i.e. α >
50(dL+1)/(d+1), we use the Relaxed-Wishart model instead,
and for small α we use numerical integration and the adaptive
Gauss-Kronrod quadrature method. If the integration fails, we
use the Relaxed-Wishart model again, even though it is not
so accurate for small α, but it will at least give finite results.
This scheme appears to be accurate enough except for very
large sample sizes, but is slow to compute if many Bessel K
results are invalid.

Where the Relaxed-Wishart model is used, the class number
of looks parameter is calculated from the texture parameter
such that the Wishart model, W (Lr,Σ), gives the same
expected variance for trace(Σ−1C) as the K-Wishart model,
KW (L,α,Σ). We therefore we use

Lr = L/

(
1 +

(d L+ 1)

α

)
(24)

and limit the value to d ≥ Lr ≥ L for valid evaluation of the
Wishart pdf.

Extreme α: Another problem occurs when the texture pa-
rameter, α, is so low that the PDF has a non-zero limit as
C approaches the null matrix. A class with such a low α
has a tendency to absorb all low intensity pixels and become
even more extreme. The K-Wishart expression can certainly
evaluate this case, and the clusters do tend to get split up
eventually, but, apart from for very low numbers of looks,
this is not really representing a likely physical situation as
shape due to backscatter variation from a single target media
is seldom so extreme. Texture may appear to be extremely
low because of mixtures of classes, but that is exactly the
type of mixed cluster that we wish to separate. Hence, in
our algorithms we have limited the texture parameter by a
minimum value.

V. RESULTS

Results will be shown for several different cases. Firstly,
we will demonstrate the overall approach with automatic
clustering results for simulated K-Wishart test-pattern images,
where class histograms will be included for each test stage
decision. Secondly, we will show results for different models
on the same test pattern to show how the more restrictive
models require more classes to account for the total data
variation. Thirdly, we will show results for real data from the
Foulum sample data-set. Here we will show the effect of sub-
sampling and the resulting number of clusters, as well as the
choice of model. Lastly, we will show clustering examples
from other data-sets to demonstrate the generality of the
algorithms.

A. Simulated examples

To validate the procedures in a clear way, we have produced
a test image with clear uniformly distributed areas that are
generated with 16-look, quad-pol K-Wishart distributed data.
The polarimetric matrix and texture parameters were taken
from a real data-set to simulate the natural range of classes
expected in real images. They come from water, forest, urban
and four agricultural fields from the Foulum data-set which
will also be a real-world example in Sec. V-B. The image
layout was designed such that each class has a boundary
to every other class to help visualise the class boundary
distinction.

Fig. 1 shows the simulated test pattern and some of the
parameter values. The number of looks is 16, and the graini-
ness due to texture is most visible in the most highly textured
classes 4 and 7. Fig. 3 shows the clustered image which
correctly found the 7 classes, after initialisation to all one class,
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# type alpha mu×103

1 water 8281 0.09
2 field A 202.8 1
3 field B 91 0.6
4 forest 39 6
5 field C 275.6 0.71
6 field D 780 0.05
7 urban 1.95 4

Fig. 1. Simulated test pattern, 16-look: enhanced Pauli RGB image with
class labels, texture and brightness values.

and with sub-sampling of 1/49. This degree of sub-sampling
resulted in between 500 and 1500 samples per class, which is
enough for the χ2 approximation and quite acceptable class
distinction.

The actual class histogram split/merge sequence is shown in
Fig. 2, with the columns indicating the progressive test stages
and the number of rows indicates the number of clusters at that
stage. A visual display of the class goodness-of-fit is obtained
by plotting the one dimensional trace(Σ−1C) as histograms
for each class. The corresponding class density functions are
evaluated as KW (Ld, α, d) for each of the K-Wishart clusters.
The scale is normalised for each class so inter-comparison is
not directly possible, but the goodness-of-fit of each class is
readily apparent.

Notice how the single initialisation cluster is clearly a poor
fit to the model curve (in red) and that the number of clusters
actually rose to 8 before merging back to 7. The final ENL
value was estimated to be 16.17 within the algorithm, but was
much lower during the earlier mixed cluster stages.

Fig. 4 shows the result for the standard-Wishart and the
Relaxed-Wishart models on the same K-Wishart simulated test
image, also with 1/49 sub-sampling. As expected, the less
flexible distributions found more than the 7 true classes, the
standard-Wishart found 16 and the Relaxed-Wishart found 13
clusters. Note that the degree of class fragmentation coincides
very well with ordering of the non-Gaussianity parameter.
The Non-Gaussianity increases in the order: 1, 6, 5, 2, 3, 4,
and 7. In both the standard-Wishart and Relaxed-Wishart, the
most fragmented classes are 7, 4 and 3. Note also that the
moderate flexibility of the Relaxed-Wishart model managed to
cleanly cluster class 5, whereas the standard-Wishart did not.
We would also comment that the very speckled appearance
of the extra clusters and the fact that there are multiple
clusters evenly mixed within whole true class regions, but none
crossing or blending different true clusters, supports the case
that they are model mismatch. The restricted models simply
need more clusters to describe the large variability of the
highly textured classes.

B. Foulum example

The automatic segmentation will be demonstrated on a
small and reasonably simple section of the image such that
a visual validation is possible. The image is an agricultural

area from an airborne EMISAR, L-band, quad-pol SAR flight
over Foulum Denmark in 1998 (also analysed and described
in [6]).

Figure 5 shows an enhanced Pauli RGB image (top) and
the subsequent ’fine’, ’medium’ and ’coarse’ K-Wishart seg-
mentations due to different degrees of sub-sampling. The sub-
sampling was 1/4, 1/16, and 1/49, respectively.

Visual comparison with the Pauli image confirms that the
major fields are cleanly segmented and distinguished, and that
the different classes within the forest (the large whitish areas
in the Pauli) clearly match the brighter or darker regions
within the forest. Overall this gives a visually satisfactory
segmentation.

All of the three degrees of detail show the main fields within
the image. The coarsest image (bottom plot) separates the
purple and reddish fields from the centre of the Pauli image
(into the pink and yellow classes, respectively). However, it
shows a mixed field in the lower left corner as a cross between
the two (pink and yellow), and a mixed (pink and dark blue)
for the smaller dark field in the upper centre-left of the Pauli.
The Pauli colours of these fields do fall somewhere between
the other colours and it is therefore quite understandable why
they are mixed when we have so few classes. The medium
and fine detail images have clarified these cases and given
each their own class, without changing the main coarse detail
classes. The medium and fine images show other examples of
extra detail, particularly many edge classes along the tree lined
roads and near the buildings, the bright white and pink dots in
the Pauli, and in the forest. There is also a sub-class forming
in the reddish field of the Pauli, which has become a class of
its own in the fine detail image (the olive green colour within
the pink). This class seems to correspond to a richer coloured
region within the reddish class and probably corresponds to
some actual variation in moisture or vegetation growth that is
statistically distinct when given enough data points to cluster.
Also note that the pink spots within the forest (black class)
are a separate sub-class, because there are quite a few of those
pixels. These are certainly believable sub-class choices after
all the more obvious classes have been separated, however we
do not have any ground truth data to confirm what they are.
The most we can claim is that the algorithm gives a visually
pleasing clustering of the images, finding the clearly different
polarimetric regions before sub-classing the smaller details.

Fig. 6 shows the result for the standard-Wishart and the
Relaxed-Wishart models on the same K-Wishart simulated
test image, with 1/4 sub-sampling. These less flexible models
found 44 and 30 clusters, respectively, and although some
fields are still reasonably smoothly separated, the more non-
Gaussian forest area has become very many clusters. The
sub-clusters within the fields are certainly representing real
differences in the data intensities and may be useful in
some applications, but the number of clusters can become so
large as to be quite difficult to interpret. Image segmentation
applications are usually trying to simplify the description of
the image content, and hence may prefer the K-Wishart result.

In our previous work [6], we compared fixed number of
classes clustering results of the K-Wishart against the Wishart
model, but this was not a fair comparison of the two models.
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Fig. 2. Class histogram sequence, from initial single class to final 7 class automatic cluster result, sub-sampling to 1/49 samples.

Fig. 3. Automatic K-Wishart clustering result of simulated K-Wishart test
pattern. 7 classes correctly found, sub-sampling to 1/49 samples.

The new results shown here in Fig. 6 really show the true be-
haviour of the Wishart model, and therefore the full difference
compared to the K-Wishart model.

C. Kongsvegen glacier example

This scene is from an Envisat, C-band, dual-pol ASAR
image over Kongsvegen glacier, Svalbard in 2005 (previously
analysed in [16]). The dual-pol data was VV and VH polarisa-
tions, and so the clustering algorithm was working with 2× 2
matrix MLC images.

Figure 7 shows the results of a ’fine’ (1/4 sub-sampling)
and a ’coarse’ (1/16 sub-sampling) segmentation of the dual-
pol glacier data. The mountains have been masked out for
convenience, and again a careful comparison with the dual-pol
quasi-Pauli image (top) indicates that it has successfully found
the major brightness and polarimetric classes within the image.
More sub-sampling (less samples) results in fewer classes,
as expected, yet maintains the major clusters. The dual-pol

Fig. 4. Automatic standard-Wishart (top) and Relaxed-Wishart (bottom)
clustering results for simulated K-Wishart test pattern, sub-sampling to 1/49
samples. 16 and 13 classes found, respectively.
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Fig. 5. Enhanced Pauli RGB image (top) and Auto-Segmentation of Foulum
dataset, 18 looks, to ’fine’, ’medium’, and ’coarse’ (bottom) sub-sampling.

glacier data seems to have more trouble finding clean, solid
clusters and results in quite a bit of overlap between some
classes. However, this cluster confusion appears to be visible
in the Pauli image and is therefore part of the actual data.

D. Flevoland example

This AIRSAR, L-band, quad-pol image was taken over
Flevoland, The Netherlands, in August 1989, and has been
saved in the 3-dimensional reduced data format. The clustering
therefore worked in 3× 3 matrix space.

Figure 8 shows the results of a ’fine’ (1/25 sub-sampling)
and a ’coarse’ (1/100 sub-sampling) segmentation of the
airborne agricultural scene. Note that the mottled appearance
of most fields come through in the detailed image, but has been
partly smoothed over in the coarse image, without significant

Fig. 6. Foulum dataset, 18 looks, automatic standard-Wishart (top) and
Relaxed-Wishart (bottom) clustering results, sub-sampling to 1/4 samples. 44
and 30 classes found, respectively.

blurring of the boundaries. Visual inspection shows that the
main different coloured fields have been reasonably well
separated, and even the small bright objects (probably houses
and wind turbines) are well clustered even on the coarse
image, based on very few pixels, because they are so distinctly
different from the other pixels.

E. Sea Ice example

This scene is a CONVAIR, C-band, quad-pol image over
sea ice from Canada in March 2001.

Figure 9 shows the results of a ’fine’ (1/25 sub-sampling)
and a ’coarse’ (1/64 sub-sampling) segmentation of the air-
borne quad-pol sea ice data. Again, using the Pauli as a
visual guide, we can observe that the main classes are well
distinguished even though the image has quite complicated
structures throughout the ice fields.

VI. DISCUSSION

The examples given in the results section were selected to
show how the approach works and that it works for several
different imaging types: both different sensor configurations
and different ground terrain types. We would now like to
comment upon some of the key observations and features.

We have demonstrated that the automatic algorithm finds
the correct number of clusters and the correct ENL estimate
for simulated data. We have, of course, observed this in
many more situations than shown here. It is, however, more
difficult to discuss the correct number of clusters for real data,
but the examples shown appear to be finding an appropriate
number of classes according to our visual assessment of the
Pauli image. The statistical interpretation of the number of
clusters is appealing because the statistical confidence level
gives meaning to the threshold choice.
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Fig. 7. Quasi-Pauli (dual-pol) RGB image (top) and Auto-Segmentation of
Kongsvegen dataset, 40 looks, for high (middle) and low (bottom) sample
sizes.
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Fig. 8. Enhanced Pauli RGB image (top) and Auto-Segmentation of
Flevoland dataset, 25 looks, for high (middle) and low (bottom) sample sizes.
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Fig. 9. Enhanced Pauli RGB image (top) and Auto-Segmentation of Canadian
sea ice dataset, 20 looks, for high (middle) and low (bottom) sample sizes.

The statistics also governs the detail level effect of reducing
the sample size through sub-sampling, and again, in a statisti-
cally meaningful manner. Any finite sample from a statistical
distribution will exhibit some natural variation in estimated
parameters that will decrease with increasing sample size. The
reduction in variance allows smaller details to be detected
in large sample sizes, and conversely, the large variance for
small sample sizes makes the tests less sensitive to small
deviations. These small deviations may originate from small
sub-classes of a major class, but may also be caused by
inaccurate parameter estimation or an inexact statistical model
to describe the real world data. The ability to decide the degree
of sensitivity, on an application to application basis, by simply
sub-sampling the image is a very useful feature.

The comparison to the standard Wishart model results
highlights the flexibility of the K-Wishart model to incorporate
more intensity variation than the standard Wishart model. Note
that this increased intensity variation will still be for a common
polarimetric matrix parameter, under the model assumptions.
If these brighter or darker pixels had significantly different
polarimetry, then they would have been split into extra classes.
This means that the extra classes that the standard Wishart
model finds, are most likely just brightness variation, and still
represent the same polarimetric media and thereby the same
thematic class. The class histograms of the final K-Wishart
clusters were also observed to be generally good, smooth and
continuous fits to the data,which strengthens the choice of the
non-Gaussian modelling.

We are aware of applications where seeing this extra in-
formation of brightness level may be useful, for example in
physical parameter estimation, but we would suggest that a
clustering algorithm is then not the most suitable approach to
take. For physical parameter inversion, we would suggest a
local modelling approach and then interpret the local model
parameter values directly, rather than clustering to global class
mean representatives. It may still be useful to consider non-
Gaussian modelling for this case, as it is additional information
on top of the polarimetric matrix values [2].

The ENL estimation appears to be quite robust, even though
it starts out with very low values in the early, mixed cluster
situations. Once the splitting has obtained nearly all good
clusters, then the estimate converges to believable values for
the systems and level of multi-looking in question. It is quite
important for the goodness-of-fit testing that the ENL estimate
is not too low for the least textured classes, as the ENL limits
how narrow the PDF can fit to the data. Since we observed
that even after correcting for α, the ENL estimate from mixed,
multi-modal clusters was still too low, we have used the root-
mean-squared average to emphasise the higher values and
reduce the influence of this bias in the global estimate. The
algorithm always obtained quite precise results for a range of
simulated data-sets.

We did observe an occasional problem of cyclically splitting
and re-merging the same clusters over and over again, due to
some small parameter drift during the intervening iterations.
This seems to occur most often for very complicated images,
where either there is a continuous mixing transition between
classes (and therefore a lot of overlap with neighbouring
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transition classes), or where the K-Wishart model (or its
approximated numerical evaluation) may not adequately de-
scribe the actual data cluster variation. We have therefore
incorporated a ramping confidence level to help break such
cyclic behaviour, where the split-confidence level is ramped
from 95% to 99.999% and the merge is ramped from 95%
to 85% over several test stages. This progressive reduction
of the sensitivity of the tests breaks the cyclic stale-mate
situations and appears to give acceptable results. The ramping
only starts after several split merge stages to allow the main
classes to be divided, and continues for several tests after the
ramp stops to stabilise the clustering. This does not appear to
affect other, cleaner, situations where the algorithm converge
to stable clusters.

VII. CONCLUSIONS

We have demonstrated an automatic segmentation method
that incorporates both polarimetry and non-Gaussian analysis
and demonstrated good results for both simulated and several
real-world data-sets. We have used the non-Gaussian based
K-Wishart distribution in a mixture model algorithm for the
multi-look covariance matrix data, and have also compared
to the standard Wishart and the Relaxed-Wishart models. The
automatic techniques are readily adaptable to other models and
only requires the probability density function and the first few
matrix log-cumulants.

The main new work presented here is the addition of a
goodness-of-fit test stage that allows for splitting and merging
of clusters. This not only improves the fit of the model to
the data, but also results in automatically determining the
number of clusters. The goodness-of-fit tests can be readily
visualised with the class histograms and seems appropriate
by visual inspection. The algorithm requires no initialisation,
and determines the number of statistically distinct clusters
supported by the actual data-set.

The dependence on sample sizes to statistically supporting
the number of classes is expected and desirable, since it gives
the opportunity to do either ’fine’ or ’coarse’ analyses and
potentially save processing time. We have presented examples
of both coarse and fine segmentations for several images and
observe that the main clusters are identified even with coarse
sub-sampling, and that the more samples given, the more small
details are identified.

The standard Wishart algorithm, is more restrictive in inten-
sity variation and results in many more clusters begin detected.
The Relaxed-Wishart algorithm, with a variable number of
looks parameter, can only adapt to a moderate degree of texture
and its results are intermediate between the Wishart and K-
Wishart models.

The K-Wishart probability density function expression is
numerically troublesome due to the modified bessel function
term, and although we have implemented methods to overcome
this, they are slow to compute and we feel that the effect of
the approximations is evident for large sample size clustering.
We would like to investigate other equally flexible models that
are numerically better behaved.

We shall continue to investigate the class drifting that occurs
in some situations to determine its cause. One suspicion is

that some classes that are too small to be supported on their
own are skewing the parameter estimation for their nearest
supported cluster. It may be practical to introduce a broad
’residual’ class whose prior probability is limited to some
small fraction of the total pixels to absorb these outlying but
influential pixels. Another possibility is that the sample mean
estimator for the covariance matrix is not suitable to the more
logarithmic scaling of radar data, and we shall investigate
if log-cumulant type methods can be used to improve the
covariance matrix parameter estimation.
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