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Abstract. In a plasma with a temperature gradient, the par-frame of plasma lines observation using the incoherent scat
ticle velocity distribution function deviates from the Max ter technique. Implicitly associated with the heat coniunct
wellian. A new simple analytic model for such a plasma, is a skewing of the particle velocity distribution functidrhis
the two-temperature Maxwellian is introduced, hereafter r skewing has been directly observed by satellite measursmen
ferred to as the 2 Maxwellian, and not to be mistaken for (Hundhausen, 1968) or inferred through heat flow estima-
the purely anisotropic bi-Maxwellian with parallel and per tion using incoherent scatter measurements (Blelly and Al-
pendicular temperatures for a magnetised plasma. The-velocaydé, 1994). Theoretically Cohenal. (1950) and Spitzer
ity moments of the ZF Maxwellian are presented and com- and Harm (1953) solved directly a kinetic equation. Theisol
pared with the moments from the classical transport theortion of this kinetic equation, the Spitzer function, is reged
of Spitzer. Furthermore a closed form of the dielectric re-only to velocities not larger than a few times the thermal ve-
sponse function for the 2- Maxwellian is derived. The di- locity of the electron population, introducing a disconiiy
electric response function is used to calculate the Dopplein the distribution function (Guiet al., 1998). Moreover the
frequency of the plasma lines in an incoherent scatter expekinetic equation presents the inconvenience to be nunigrica
iment. The result is compared with the Doppler frequencyunstable.
given by the heat flow approximation of the dispersion re- In this paper, it is first described the two-dimensional in-
lation. While a good qualitative agreement is seen betweetmomogeneous and anisotropid2Maxwellian. Expressions
the heat flow approximation and the exact estimation of theor the velocity moments of the 2- Maxwellian are given
dielectric response, it is shown that for accurate calmriat and compared with the moments given by the Spitzer theory.
of the Doppler frequency of the plasma lines an exact estiin the second part, a closed form for the dielectric response
mation of the dielectric response is important, especfally  function associated to this distribution function is désed.
plasma lines observation corresponding to Langmuir wavesn the third part, the dielectric response function is used i
with large wave vector and small resonance frequency. the frame of incoherent scatter plasma line. The plasma line
are a pair of spectral lines produced by scattering of a radio
wave by Langmuir waves of the ionospheric plasma. They are
Key words. Non-Maxwellian electron velocity distribution  Doppler shifted up and down with respect to the transmitted
Temperature gradient frequency by an amount that corresponds to two waves travel-
ling towards and away from the transmitter. By measuring the
Doppler frequency of these spectral lines, one would be able
1 Introduction to infer the mean Doppler velocity of the electrons by solv-
ing the dispersion relation with the dielectric responsecfu
It is interesting in several contexts to take into accouet th tion associated to the electron velocity distribution (Bau
local gradient of temperature in the velocity distributianc- et al., 1976; Showen, 1979) and in theory to estimate the
tion of particles in a plasma. Forslund (1970) and Singef 79 ionospheric field-aligned current when combined with pa-
used the theory developed by Spitzer and Harm (1953) whileameters obtained from the incoherent scatter ion line. A de
Lundinet al. (1996) used a linear combination of three Max- viation of the velocity distribution function from the Max-
wellians to simulate a velocity distribution function thrat  wellian modifies the dispersion relation and thus the esti-
produces the downward flow of a thermal componentin ordemated mean Doppler velocity of the electron population. We
to study instabilities due to heat conduction in a modeyatel apply the 27" Maxwellian to the estimation of the Doppler
inhomogeneous plasma. Kofmetral. (1993) and Guiet al. frequency of plasma lines in a plasma with temperature gra-
(1998) studied the dispersion relation for Langmuir wavesdient and compare the result with the heat flow approximation
in a plasma in the presence of a temperature gradient in thef Kofmanet al. (1993) which takes into account a tempera-
ture gradient through a corrective heat flow term. Finallg, w
discuss the results of our simulation.
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2 The 2" Maxwellian f (<0, v”) T =1800 K f (>0, v”) T,=2200 K

The 24" Maxwellian, denotedfr, , is defined as two half-
Maxwellians with temperaturé;, and7_ over the two half-
spaces where, respectively < 0 andv > 0 and a Max- 102 ‘ 162
wellian with temperaturd’ over the perpendicular velocity
spacev, . The two half-Maxwellians along are joined con-
tinuously atv; = 0 and are normalised such that the integral
over the velocity space is equal to the particle densiffhus
the 24" Maxwellian can be seen as a modified bi-Maxwellian o
with a temperature inhomogeneity along the parallel v&joci 10
v)|. The 24" Maxwellian is written

[cm_6 33]

—26

10

0
fT:l:(UvaL) = v”[cms ]
2 2 —
n_ 1 _(u UJ_) f(r=0,

e ; , >0 T

(om ¥ ez P (o + 5 ) o1 > ) :

2 2
n__1 Y) vf )
— e eXp — (57 + 535 ), v <0
(am® 0oz P (ze‘fr 207 ) Yl

whereg? = T /m is the square of the thermal velocity along 10

the perpendicular directio¥? = T./m are the square of
the mean velocities in the parallel directiaty, = (6, +
6_)/2 is the normalisation constant such that the two half-
Maxwellians are continuous af = 0 andm represents the
particle mass.

This velocity distribution function is both inhomogeneous
and anisotropic and sketches the velocity distributioresfip
cle at the particular point of space= 0 between two regions -5 0 , 5
of different temperature. Figure 1 shows th@ 2Maxwell- ylems Ly
ian between these two regions, and the two bi-Maxwellians_ . )
with hot temperaturé’, (atr > 0) and cold temperaturg. ~ F19- 1. The 24" Maxwellian with - = 1800 K andTy = 2200 K
(atr < 0). This model mimics the situation where the hot (lower plate) and the two bi-Maxwellians of the cold regiap(

. . . per left plate) and the hot regiorufper right plate) plotted as a
plasma of temperaturg, is diffusing toward the region of function of v and foru,. = 0. The perpendicular temperature of

cold plasma of temperatuife. and vice-versa. ~ the 24" Maxwellian and the two bi-Maxwellian was taken to be
The velocity moments of a species distribution function T, = 2000 K

f are expressed in the following way (Barakat and Schunk,
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andqﬁ respectively and are given by
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where the angle brackets denote the average I Nora 111 I
€L
() = [ Arw)dv @  a=0 16
where 0Ty represents the difference between the tempera-
Because of the symmetry aroungdof the 24" Maxwell-  tyres of the hot and the cold regié®, = T, — T .
lan, the DOppler Ve|OCIty¢, the heat ﬂOV\q, the heat flow for Assuming the p|asma to be an electron gas, the veloc-

parallel energy| and the heat flow for perpendicular energy ity moments of the ZF Maxwellian can be compared with
gt are parallel to the-axis and have components, g, q the velocity moments of the Spitzer distribution with elec-
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tron temperaturd;, thermal velocity denotek and Knud- u [cm s} q eV cm s
sen numbeer = 2\, VT, /T, where), is the electron mean 108 10" I L >é1010
free path. The Knudsen number represents the ratio of th
microscopic length scalg, to the macroscopic length scale 25
T./VT, (Guio et al., 1998). The velocity moments of the 8 '
Spitzer distribution are written 2
6 6
= —— 1.5
u| mee'YTfT; (17) .
3T _ lme(ﬁf +26?) — lmeuﬁ, (18) !
2 2 2 2 05
T = med? — meuﬁ, (19) '
T, = mefg, . ) (20) 00 2000 3000 1000 2000 3080
n
q = —\/—2_7T9€3(5T6T — §nTu|| + gmenuﬁ, (21)
481 Temperature [K] 0 Tt /e anctT
g = 5t orer = 3nTuy + menf,  (22) 300 0.012
16n 1 0.01
qﬁ‘ = —\/LQ_FHS(STET - nTuH - gmenuﬁ, (23) 2500
0.008
wherevyp and §p are the normalised transport coefficients
defined in Spitzer and Harm (1953). 2000 0.006
There is a formal analogy between Eqgs. (10)—(15) anc
Egs. (17)—(22). It can be pointed out how the temperature 1500 0.004
differencedT. mimics V1, which appears in the Knudsen 0.002
numberer. The temperature differendd’. can be thought / '
as a temperature gradient between the two regions of differ 109
ent temperatures, and thus the Doppler velocity can be-intel 00 %CE%) 3000 1000 TZO[E)(? 3080
e

preted as a thermal diffusion process while the heat flow cal
be seen as a thermal conductivity process (Banks, 1966). Fig. 2. The mean Doppler velocity; (upper left plate), temper-
Itis possible, for any value of the electron densityand  aturesT (lower left plate) and heat flow; (upper right plate) of
the electron temperatufg, to determine values df;. and Egs. (10)—(14)thick line) and Eqgs. (17)—(21}kin line) as a func-
T_ in order to get identical heat flow for the 27" Maxwell-  tion of the electron temperatui# and for an electron density. =
ian and the Spitzer distribution function and at the same tim 10” cm™" and an electron temperature gradi8fit: = 5Kkm™".
keeping the respective temperatufégqual. The first term Tﬂ.e 'fwer ”%hthp'ate.;hows th?]_cclzrl_respondmg Knudsen nueipoe
in the heat flowg of Egs. (14) and (21) represents the ther- (thinline) and the rati@ T /T (thick line)
mal heat flow without Doppler velocity, we therefore require
that these two terms should be equal. Moreover, if we fake
equal tof,, we just have to require that the first term of the e o ) _
parallel temperaturg of Egs. (12) and (19) should be equal. €rgyqy will remain different since the anisotropy factar =

The temperature®. and T are then uniquely determined ¢ /4 for the 24" Maxwellian is different from the one of

by solving the following system of equations: the Spitzer function. In the Spitzer theopy, = 3 while for
{ (¢ — y)(@2 + 2 — 2007er the 240" Maxwellian p. = oo, which clearly means that for

the heat flowsy will be equal, the heat flow of parallel en-

3 3 _ _ (24) the 24" Maxwellian, the energy is only transported along the
(=" +v°) (@+y) =0 direction of the temperature gradient.

whereT, = z?T, andT" = y?T,. (x,y) are the real solutions
of Eqgs. (24) such that > 1 andy < 1. The first equation , , i
represents the condition on the first term of the heat flow an Di€lectric response function

the second equation is the condition on the temperatures If w i i i
To calculate the dielectric response function of an unmagne

want the heat flows for parallel energ&/to be equal instead tised and non-collisional plasma, the following integrithe

(as we will require in the last section) we simply replace thepormalised velocity probability distribution needs to ta-c
right hand side term of the first equati®0d e by 126 €. culated

Figure 2 shows the parameterg, 7' andq for the 27
the two distibution funcions will be equal by shitg the () = = [ S (25)
kv—w
parallel velocityv| of the distribution functions by a Doppler
velocity of the same values as the one of the upper left platén the geometry of a wave vectér parallel to thev-axis
of Figure 2 but of opposite sign. Note however that while oriented toward the cold region and in the convention that a
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positive velocityv gives a positive Doppler frequency, the 4 Plasma lines Doppler frequency

temperatures are swapped. Then the integration oves

carried out independently and we define the one-dimensiondh an incoherent scatter plasma lines experiment, one mea-

reduced 2F Maxwellian F, by
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The integrally,, (k,w) is then written as a one-dimensional

integral function of the derivative of the reduced2Max-
wellian F,

- / SRR, (27)
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This integral has the following analytic form

Ipy (kyw) =

{ Gl ( ) * 9\\9+WC( 7 ),Rew >0 (28)
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Wi and Wy are defined for complex argumefit= z + iy
such thaty > 0 and are written
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is the classical dispersion function for a Maxwellian thai c

be found for example in Ichimaru (1992) agél = |z| +
iy sgn z. W4 is related to the function

exp(—t2/2)

Z(
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through the relation

() = 5 - €1 2:(c"). (33

Finally, Zy is written as a function of Dawson’s integradw

sures two sharp and narrow spectral lines, the down- and up-
shifted plasma lines corresponding to two Langmuir waves
(k—,w_) and(kt,w; ) travelling away from and toward the
radar. The frequency of the two plasma lines are solutions of
the following dispersion relation

kL + Wil (ke we) =0, (36)

wherew, is the electron plasma frequency.

We investigate the two solutiori&_, w_) and(ky,w; ) of
Eqg. (36) for the 2F Maxwellian and we define the Doppler
frequencyAF, as

Wy +wo
2m

The Doppler frequencyA . is then compared with the Doppler
frequency given by solving the heat flow approximation of
the dispersion relation of Kofmaat al. (1993). To derive the
heat flow approximation, the denominator of the integrand of
Eq. (25) is expanded in power serieskob /(w — k-u), then
integrated by parts, each term containing an average — de-
fined in EqQ. (9) — of a power of the velocity of the probability
distribution.

Fork along thev-axis, I; (k, w) takes the following form

k(o) —up)®)

If(k,w) = (w—kuy)? w k"LL” ( w ku”)

k2 {(v) —uy)*) (o) —uy)"
T k) (w— kuH) +oot(ntl) (w— kuH)” 3>)

AF, = (37)

Assuming in addition thajw — kuy| > kg wherev%|| =

1) /m. and that the distribution does not deviate dramatically
from a Maxwellian, the even order moments are lumped into
the W function of Eq. (31) and the odd order moments are
truncated at the third order, which gives the heat flow approx
imation

Kq)/(m.n)
4 (w — ku||)5 )

I(kw) = — (39)

Results of the computation afF7;. using the analytic form of
Eqg. (28) and the heat flow approximation of Eq. (39) for the
2-T Maxwellian as well as using a numerical code of the di-
electric function with the Spitzer function (Gugbal. (1998))
are shown in Figure 3 for theiECAT VHF radar @24 MHz)
and in Figure 4 for the BScAT UHF radar 931 MHz). The
effect of the Doppler velocity | has been eliminated by sub-

and the exponential integrBi; Dawson’s integral can be ex- tracting from the parallel velocity, of the 21" Maxwell-
pressed as a function of the modified complex error functiorian and the Spitzer function the mean Doppler velogityof

erfc (Abramowitz and Stegun, 1972):

219 = gt (J5) - gygeol- )R
daw(§) = —igefgz (erfe(—i€)—1). (35)

Eqgs (10) and (17) respectively. The difference from the Max-
wellian when it comes to evaluat&F. is therefore only the
effect of the skewness of the velocity distribution funotio

For the VHF radar, there is a good qualitative agreement
of the Doppler frequency\ F. as a function of the electron
densityn. using: the exact expression of the dielectric re-
sponse function for the Z- Maxwellian (Eq. 28), the heat
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b since the terms in the expansion of Eq. (38) are small. As

a consequence, the effect of the skewness of the distributio
function on the Doppler frequency is, as the heat flow approx-
imation shows, to shift the Doppler frequency in the same di-
rection as the heat flow and the heat flow behaves like a mean

F =224 MHz, T=2000 K, T=2005 K, T=1995 K, lﬂ=—3e+04 nev emts
1.02— ; T

0.98~;

Doppler velocity.

For the UHF radar there is also a good qualitative agree-
ment of the behaviour of the Doppler frequendy’, as a
function of the electron density at large plasma frequency
w, between the three calculations. The three calculations of
the dielectric response function predict an increase of the

measured Doppler frequency compared to the Maxwellian
which can be rather important. At low plasma frequency, the
Doppler frequency calculated using the exact calculation o
the dielectric response function differs from the one given
by the heat flow approximation. While the heat flow approx-
imation gives a relatively constant shift in the Doppler-fre
guency compared to the Maxwellian, independent of the elec-
tron density, the exact calculations of the dielectric tiorc

for the 294" Maxwellian and the Spitzer function tend to give
smaller Doppler frequency. The discrepancy is gettingdarg
the smaller the plasma frequency is, i.e. when the condition
|w| > kv is not well fulfilled.

0.92

I I I I I I I I I I I
0. 12 14 16 18 20 2% 24 26 28 30 32
we kVe

Fig. 3. EiscAT VHF radar. The calculated Doppler frequendy.
using Eq. (28) lid line) and Eq. (39) dashed dot line), using a
numerical code (Guiat al. (1998)) to calculate Eq. (25) for the
Spitzer distributiondashed line) and for a Maxwelliandotted line).
The Doppler frequency is plotted as a function of the ratigkvz ,
the electron temperatufg is 2000 K and the Knudsen numbes i
is 2 - 10~°. The frequencyf. that corresponds ta./k6) varies This shows that the truncation done for the heat flow ap-
from about3 MHz to nearl5y9 M}%z andgcorresponds to an electron proximation has to be done very carefully and that the ap-
densityn. varying from10” to 10" cm proximation breaks for ratif|/kvr, smaller than 5-6. More-
over it is seen that even though the two distribution func-
tions considered have the same temperature and the same heat
flow for parallel energy, the dielectric response behaves-qu
X . itatively in an identical way but quantitative differencas
Un Lo ' ‘ 1 noteworthy. These differences have to be accounted tothe di

’ 5y ) ferences in higher order moments of the distribution fuorcti

FO=931 MHz, T=2000 K, T=2005 K, T=1995 K, (H=—3e+04 rgeV emits?t

[ee]

5 Conclusion

We have presented a new tool, th&Maxwellian, to model

the particle velocity distribution in a plasma with a terger

, ture gradient and have compared the properties of the veloc-
/ ity moments to the results of the classical Spitzer distiiyu

' function. We have seen that it is possible to parametrise the
) 2-T Maxwellian to get an equal heat flow to the Spitzer re-
sult. An analytic form of the dielectric response functi@sh
been presented for this new distribution, and has been used
to calculate the Doppler frequency of plasma lines in an in-
coherent scatter experiment. The result has been compared
to the Doppler frequency given by the heat flow approxi-
mation. It has been shown that good qualitative agreement
is obtained between the heat flow approximation of the di-
electric function and the exact calculation for low-freqog
radars also for high-frequency radars if the plasma frequen

is high. However for accurate calculations such as the ealcu
lation of the plasma line Doppler frequency, it is seen that
the exact calculation of the dielectric function is impaita
together with a good representation of the distributiorcfun
flow approximation (Eg. 39) and the numerical calculationtion, especially for high-frequency radars and at low plasm
of the dielectric response function for the Spitzer disttitn ~ frequency, i.e when the ratj@|/ k6, is smaller than 5-6.
(Guioetal. (1998))). For such large values of the phase veloc- The 24" Maxwellian is not expected to represent a true
ity vy = wy/ky,i.e.whenwy| > kivr, the three calcula-  physical model of the distribution function in the presente
tions predict a moderate increase of the observed Doppgler fr a gradient of temperature but nevertheless is a realistic to
guency compared to the Maxwellian case (less th#nHz) for investigating this type of plasma. We expect that thE 2-

! 6 65 7 75 8

3 35 4 45 5 o ?k?/
e e

Fig. 4. EiscAT UHF radar. The calculated Doppler frequengy’.
using Eq. (28) folid line) and Eq. (39) dashed dot line), using the
same numerical code to calculate Eq. (25) for the Spitzérilolis
tion (dashed line) and for a Maxwelliandotted line). The Doppler
frequency is plotted as a function of the ratio/kvz; for the same
temperaturel; and Knudsen numbesr as in Figure 3. The cor-
responding frequency, varies also from abow MHz to nearly
9 MHz which corresponds to an electron denasity varying from
10°t010° cm ™2
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Maxwellian should be useful in the qualitative study of in-

stabilities due to heat conduction in a plasma, especially i

ionospheric studies where temperature gradients arergrese
The 24" Maxwellian could also be a good investigation tool

to study the effect of an angle with the magnetic field on the
Doppler frequency in incoherent scatter plasma lines ebser
vations.

Acknowledgements. The author would like to thank P. L. Blelly and
F. Forme for their helpful discussions and comments.

References

Abramowitz, M. and I. A. Stegun. Handbook of mathematical
functions with formulas, graphs and mathematical tables. Dover
Publications, New York, 1972. ISBN 0-48661-272-4.

Banks, P. M. Charged particle temperatures and electron thermal
conductivity in the upper atmospherénn. Geophysicae, 22,
577-587, 1966.

Barakat, A. R. and R. W. Schunk transport equations for multi-
component anisotropic space plasmas: a revielasma phys.,
24, 389-418, 1982.

Bauer, P., K. D. Cole, and G. Lejeune Field-aligned electric cur-
rents and their measurement by the incoherent backscatfer t
nique. Planet. Space <ci., 24, 479-485, 1976.

Blelly, P.-L. and D. Alcaydé. Electron heat flow in the auroral iono-
sphere inferred from EISCAT-VHF observationd. Geophys.
Res., 99, 13181-13188, 1994.

Cohen, R. S., L. Spitzer, and P. McRoutly The electrical conduc-
tivity of an ionized gasPhys. Rev., 80, 230-238, 1950.

Forslund, D. W. Instabilities associated with heat conduction in the
solar wind and their consequencdsGeophys. Res., 75, 17-28,
1970.

Guio, P., J. Lilensten, W. Kofman, and N. Bjgrm. Electron ve-
locity distribution function in a plasma with temperatunedj-
ent and in the presence of suprathermal electrons: applicit
incoherent-scatter plasma lineénn. Geophysicae, 16, 1226—
1240, 1998.

Hundhausen, A. J. Direct observations of solar-wind particles.
Sace ci. Rev,, 8, 690-749, 1968.

Ichimaru, S. Satistical plasma physics: basic principles. Addison-
Wesley, Redwood City, Ca., 1992. ISBN 0-201-55490-9 (Vol.
1).

Kofman, W., J.-P. St-Maurice, and A. P. van Eyken Heat flow
effect on the plasma line frequency. Geophys. Res., 98, 6079—
6085, 1993.

Lundin, B., C. Krafft, G. Matthieussent, F. Jiricek, J. Shmilauer,
and P. Triska. Excitation of VLF quasi-electrostatic oscillations
in the ionospheric plasmann. Geophysicae, 14, 27-32, 1996.

Showen, R. L. The spectral measurement of plasma linBadio
Sci., 14, 503-508, 1979.

Singer, C. E. Microinstabilities in a moderately inhomogeneous
plasma.J. Geophys. Res., 82, 2686—-2692, 1977.

Spitzer, L. and R. Harm. Transport phenomena in a completely
ionized gasPhys. Rev,, 89, 977-981, 1953.



