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Abstract. In a plasma with a temperature gradient, the par-
ticle velocity distribution function deviates from the Max-
wellian. A new simple analytic model for such a plasma,
the two-temperature Maxwellian is introduced, hereafter re-
ferred to as the 2-T Maxwellian, and not to be mistaken for
the purely anisotropic bi-Maxwellian with parallel and per-
pendicular temperatures for a magnetised plasma. The veloc-
ity moments of the 2-T Maxwellian are presented and com-
pared with the moments from the classical transport theory
of Spitzer. Furthermore a closed form of the dielectric re-
sponse function for the 2-T Maxwellian is derived. The di-
electric response function is used to calculate the Doppler
frequency of the plasma lines in an incoherent scatter exper-
iment. The result is compared with the Doppler frequency
given by the heat flow approximation of the dispersion re-
lation. While a good qualitative agreement is seen between
the heat flow approximation and the exact estimation of the
dielectric response, it is shown that for accurate calculation
of the Doppler frequency of the plasma lines an exact esti-
mation of the dielectric response is important, especiallyfor
plasma lines observation corresponding to Langmuir waves
with large wave vector and small resonance frequency.
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1 Introduction

It is interesting in several contexts to take into account the
local gradient of temperature in the velocity distributionfunc-
tion of particles in a plasma. Forslund (1970) and Singer (1977)
used the theory developed by Spitzer and Härm (1953) while
Lundinet al. (1996) used a linear combination of three Max-
wellians to simulate a velocity distribution function thatre-
produces the downward flow of a thermal component in order
to study instabilities due to heat conduction in a moderately
inhomogeneous plasma. Kofmanet al. (1993) and Guioet al.
(1998) studied the dispersion relation for Langmuir waves
in a plasma in the presence of a temperature gradient in the
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frame of plasma lines observation using the incoherent scat-
ter technique. Implicitly associated with the heat conduction
is a skewing of the particle velocity distribution function. This
skewing has been directly observed by satellite measurements
(Hundhausen, 1968) or inferred through heat flow estima-
tion using incoherent scatter measurements (Blelly and Al-
caydé, 1994). Theoretically Cohenet al. (1950) and Spitzer
and Härm (1953) solved directly a kinetic equation. The solu-
tion of this kinetic equation, the Spitzer function, is restricted
only to velocities not larger than a few times the thermal ve-
locity of the electron population, introducing a discontinuity
in the distribution function (Guioet al., 1998). Moreover the
kinetic equation presents the inconvenience to be numerically
unstable.

In this paper, it is first described the two-dimensional in-
homogeneous and anisotropic 2-T Maxwellian. Expressions
for the velocity moments of the 2-T Maxwellian are given
and compared with the moments given by the Spitzer theory.
In the second part, a closed form for the dielectric response
function associated to this distribution function is described.
In the third part, the dielectric response function is used in
the frame of incoherent scatter plasma line. The plasma lines
are a pair of spectral lines produced by scattering of a radio
wave by Langmuir waves of the ionospheric plasma. They are
Doppler shifted up and down with respect to the transmitted
frequency by an amount that corresponds to two waves travel-
ling towards and away from the transmitter. By measuring the
Doppler frequency of these spectral lines, one would be able
to infer the mean Doppler velocity of the electrons by solv-
ing the dispersion relation with the dielectric response func-
tion associated to the electron velocity distribution (Bauer
et al., 1976; Showen, 1979) and in theory to estimate the
ionospheric field-aligned current when combined with pa-
rameters obtained from the incoherent scatter ion line. A de-
viation of the velocity distribution function from the Max-
wellian modifies the dispersion relation and thus the esti-
mated mean Doppler velocity of the electron population. We
apply the 2-T Maxwellian to the estimation of the Doppler
frequency of plasma lines in a plasma with temperature gra-
dient and compare the result with the heat flow approximation
of Kofmanet al. (1993) which takes into account a tempera-
ture gradient through a corrective heat flow term. Finally, we
discuss the results of our simulation.
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2 The 2-T Maxwellian

The 2-T Maxwellian, denotedfT� , is defined as two half-
Maxwellians with temperatureT+ andT� over the two half-
spaces where, respectivelyvk < 0 andvk � 0 and a Max-
wellian with temperatureT? over the perpendicular velocity
spacev?. The two half-Maxwellians alongvk are joined con-
tinuously atvk = 0 and are normalised such that the integral
over the velocity space is equal to the particle densityn. Thus
the 2-T Maxwellian can be seen as a modified bi-Maxwellian
with a temperature inhomogeneity along the parallel velocityvk. The 2-T Maxwellian is writtenfT�(vk; v?) =8><>: n(2�) 32 1�k�2? exp�� v2k2�2� + v2?2�2?�; vk � 0n(2�) 32 1�k�2? exp�� v2k2�2+ + v2?2�2?�; vk < 0 (1)

where�2? = T?=m is the square of the thermal velocity along
the perpendicular direction,�2� = T�=m are the square of
the mean velocities in the parallel direction,�k = (�+ +��)=2 is the normalisation constant such that the two half-
Maxwellians are continuous atvk = 0 andm represents the
particle mass.

This velocity distribution function is both inhomogeneous
and anisotropic and sketches the velocity distribution of parti-
cle at the particular point of spacer = 0 between two regions
of different temperature. Figure 1 shows the 2-T Maxwell-
ian between these two regions, and the two bi-Maxwellians
with hot temperatureT+ (at r > 0) and cold temperatureT�
(at r < 0). This model mimics the situation where the hot
plasma of temperatureT+ is diffusing toward the region of
cold plasma of temperatureT� and vice-versa.

The velocity moments of a species distribution functionf are expressed in the following way (Barakat and Schunk,
1982) nu = hvi; (2)32nT = 12mhjv � uj2i; (3)12nTk = 12mh(vk � uk)2i; (4)22nT? = 12mh(v? � u?)2i; (5)q = 12mhjv � uj2(v � u)i; (6)qk = mh(vk � uk)2(v � u)i; (7)q? = 12mh(v? � u?)2(v � u)i: (8)

where the angle brackets denote the averagehAi = Z Af(v)dv (9)

Because of the symmetry aroundvk of the 2-T Maxwell-
ian, the Doppler velocityu, the heat flowq, the heat flow for
parallel energyqk and the heat flow for perpendicular energyq? are parallel to thevk-axis and have componentsuk, qk, qkk
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Fig. 1. The 2-T Maxwellian withT� = 1800K andT+ = 2200K
(lower plate) and the two bi-Maxwellians of the cold region (up-
per left plate) and the hot region (upper right plate) plotted as a
function of vk and forv? = 0. The perpendicular temperature of
the 2-T Maxwellian and the two bi-Maxwellian was taken to beT? = 2000K
andq?k respectively and are given byuk = � 1p2� �2+� �2��k = � 1p2� 1m�k ÆT�; (10)3T2 = 12m��3++ �3�2�k + 2�2?�� 12mu2k (11)Tk = m�3++ �3�2�k �mu2k; (12)T? = m�2?; (13)qk = � np2� �2++ �2��k ÆT� � 32nTkuk � 12mnu3k; (14)qkk = � 2np2� �2++ �2��k ÆT� � 3nTkuk �mnu3k; (15)q?k = 0; (16)

whereÆT� represents the difference between the tempera-
tures of the hot and the cold regionÆT� = T+� T�.

Assuming the plasma to be an electron gas, the veloc-
ity moments of the 2-T Maxwellian can be compared with
the velocity moments of the Spitzer distribution with elec-
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tron temperatureTe, thermal velocity denoted�e and Knud-
sen number�T = 2�erTe=Te where�e is the electron mean
free path. The Knudsen number represents the ratio of the
microscopic length scale�e to the macroscopic length scaleTe=rTe (Guio et al., 1998). The velocity moments of the
Spitzer distribution are writtenuk = � 6p2� �e
T �T ; (17)3T2 = 12me(�2e + 2�2e )� 12meu2k; (18)Tk = me�2e �meu2k; (19)T? = me�2e ; (20)qk = � 40np2� �3e ÆT �T � 52nTuk + 16menu3k; (21)qkk = � 48np2� �3e ÆT �T � 3nTuk +menu3k; (22)q?k = � 16np2� �3e ÆT �T � nTuk � 13menu3k; (23)

where
T and ÆT are the normalised transport coefficients
defined in Spitzer and Härm (1953).

There is a formal analogy between Eqs. (10)–(15) and
Eqs. (17)–(22). It can be pointed out how the temperature
differenceÆT� mimicsrTe which appears in the Knudsen
number�T . The temperature differenceÆT� can be thought
as a temperature gradient between the two regions of differ-
ent temperatures, and thus the Doppler velocity can be inter-
preted as a thermal diffusion process while the heat flow can
be seen as a thermal conductivity process (Banks, 1966).

It is possible, for any value of the electron densityne and
the electron temperatureTe, to determine values ofT+ andT� in order to get identical heat flowqk for the 2-T Maxwell-
ian and the Spitzer distribution function and at the same time
keeping the respective temperaturesT equal. The first term
in the heat flowqk of Eqs. (14) and (21) represents the ther-
mal heat flow without Doppler velocity, we therefore require
that these two terms should be equal. Moreover, if we take�?
equal to�e, we just have to require that the first term of the
parallel temperatureTk of Eqs. (12) and (19) should be equal.
The temperaturesT� andT+ are then uniquely determined
by solving the following system of equations:� (x� y)(x2 + y2) = 20ÆT �T(x3 + y3) �(x+ y) = 0 (24)

whereT+ = x2Te andT� = y2Te. (x; y) are the real solutions
of Eqs. (24) such thatx > 1 andy < 1. The first equation
represents the condition on the first term of the heat flow and
the second equation is the condition on the temperature. If we
want the heat flows for parallel energyqkk to be equal instead
(as we will require in the last section) we simply replace the
right hand side term of the first equation20ÆT �T by 12ÆT �T .

Figure 2 shows the parametersuk, T andqk for the 2-T
Maxwellian and the Spitzer distribution. The heat flowqk of
the two distribution functions will be equal by shifting the
parallel velocityvk of the distribution functions by a Doppler
velocity of the same values as the one of the upper left plate
of Figure 2 but of opposite sign. Note however that while

1000 2000 3000
0

2

4

6

8

10
x 10

4
u

||
 [cm s−1]

1000 2000 3000
0

0.5

1

1.5

2

2.5

3
x 10

10
q

||
[eV cm−2 s−1]

1000 2000 3000
1000

1500

2000

2500

3000

T [K]

Temperature [K]

1000 2000 3000
0

0.002

0.004

0.006

0.008

0.01

0.012

T
e
 [K]

δ T± / Te and ε
T
 

Fig. 2. The mean Doppler velocityuk (upper left plate), temper-
aturesT (lower left plate) and heat flowqk (upper right plate) of
Eqs. (10)–(14) (thick line) and Eqs. (17)–(21) (thin line) as a func-
tion of the electron temperatureTe and for an electron densityne =106 
m�3 and an electron temperature gradientrTe = 5Kkm�1.
The lower right plate shows the corresponding Knudsen number �T
(thin line) and the ratioÆT�=T (thick line)

the heat flowsqk will be equal, the heat flow of parallel en-

ergyqkk will remain different since the anisotropy factor�e =qkk=q?k for the 2-T Maxwellian is different from the one of
the Spitzer function. In the Spitzer theory,�e = 3 while for
the 2-T Maxwellian�e = 1, which clearly means that for
the 2-T Maxwellian, the energy is only transported along the
direction of the temperature gradient.

3 Dielectric response function

To calculate the dielectric response function of an unmagne-
tised and non-collisional plasma, the following integral of the
normalised velocity probability distribution needs to be cal-
culatedIf (k; !) = � Z k �rvf(v)k�v� ! d3v: (25)

In the geometry of a wave vectork parallel to thevk-axis
oriented toward the cold region and in the convention that a
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positive velocityvk gives a positive Doppler frequency, the
temperatures are swapped. Then the integration overv? is
carried out independently and we define the one-dimensional
reduced 2-T MaxwellianFT� byFT�(vk) =8<: 1p2� 1�k exp�� v2k2�2+�; vk � 01p2� 1�k exp�� v2k2�2��; vk < 0 (26)

The integralIfT� (k; !) is then written as a one-dimensional
integral function of the derivative of the reduced 2-T Max-
wellianF 0T�IfT� (k; !) = � Z 1�1 kF 0T�(vk)kvk� ! dvk (27)

This integral has the following analytic formIfT� (k; !) =8<: 1�k��W� � !k���+ 1�k�+W
� � !k�+� ; Re! > 01�k��W
� � !k���+ 1�k�+W� � !k�+� ; Re! < 0 (28)W� andW
� are defined for complex argument� = x+ iy
such thaty � 0 and are writtenW�(�) = 1p2� Z 10 t exp(�t2=2)t+ �y dt; (29)W
�(�) = W (�)�W�(�); (30)

whereW (�) = 1p2� Z 1�1 t exp(�t2=2)t� � dt (31)

is the classical dispersion function for a Maxwellian that can
be found for example in Ichimaru (1992) and�y = jxj +iy sgnx. W� is related to the functionZ�(�) = 1p2� Z 10 exp(�t2=2)t+ � dt; (32)

through the relationW�(�) = 12 � �yZ�(�y): (33)

Finally,Z� is written as a function of Dawson’s integraldaw
and the exponential integralEi; Dawson’s integral can be ex-
pressed as a function of the modified complex error functionerf
 (Abramowitz and Stegun, 1972):Z�(�) = 1p2 daw� �p2�� 12p2� exp�� �22 �Ei��22 �(34)daw(�) = �ip�2 e��2�erf
(�i�)�1�: (35)

4 Plasma lines Doppler frequency

In an incoherent scatter plasma lines experiment, one mea-
sures two sharp and narrow spectral lines, the down- and up-
shifted plasma lines corresponding to two Langmuir waves(k�; !�) and(k+; !+) travelling away from and toward the
radar. The frequency of the two plasma lines are solutions of
the following dispersion relationk2� + !2eIf (k�; !�) = 0; (36)

where!e is the electron plasma frequency.
We investigate the two solutions(k�; !�) and(k+; !+) of

Eq. (36) for the 2-T Maxwellian and we define the Doppler
frequency�F� as�F� = !+ + !�2� (37)

The Doppler frequency�F� is then compared with the Doppler
frequency given by solving the heat flow approximation of
the dispersion relation of Kofmanet al. (1993). To derive the
heat flow approximation, the denominator of the integrand of
Eq. (25) is expanded in power series ofk�v=(!� k�u), then
integrated by parts, each term containing an average – de-
fined in Eq. (9) – of a power of the velocity of the probability
distribution.

Fork along thevk-axis,If (k; !) takes the following formIf (k; !) = � k2(!�kuk)2 1+3k2h(vk�uk)2i(!�kuk)2+4k3h(vk�uk)3i(!�kuk)3 +� � �+(n+1)knh(vk�uk)ni(!�kuk)n !
(38)

Assuming in addition thatj! � kukj � kvTk wherev2Tk =Tk=me and that the distribution does not deviate dramatically
from a Maxwellian, the even order moments are lumped into
theW function of Eq. (31) and the odd order moments are
truncated at the third order, which gives the heat flow approx-
imation~If (k; !) = 1v2TkW  ! � kukkvTk !� 4k5qkk=(men)(! � kuk)5 : (39)

Results of the computation of�F� using the analytic form of
Eq. (28) and the heat flow approximation of Eq. (39) for the
2-T Maxwellian as well as using a numerical code of the di-
electric function with the Spitzer function (Guioet al. (1998))
are shown in Figure 3 for the EISCAT VHF radar (224MHz)
and in Figure 4 for the EISCAT UHF radar (931MHz). The
effect of the Doppler velocityuk has been eliminated by sub-
tracting from the parallel velocityvk of the 2-T Maxwell-
ian and the Spitzer function the mean Doppler velocityuk of
Eqs (10) and (17) respectively. The difference from the Max-
wellian when it comes to evaluate�F� is therefore only the
effect of the skewness of the velocity distribution function.

For the VHF radar, there is a good qualitative agreement
of the Doppler frequency�F� as a function of the electron
densityne using: the exact expression of the dielectric re-
sponse function for the 2-T Maxwellian (Eq. 28), the heat
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Fig. 3. EISCAT VHF radar. The calculated Doppler frequency�F�
using Eq. (28) (solid line) and Eq. (39) (dashed dot line), using a
numerical code (Guioet al. (1998)) to calculate Eq. (25) for the
Spitzer distribution (dashed line) and for a Maxwellian (dotted line).
The Doppler frequency is plotted as a function of the ratio!e=kvTk ,
the electron temperatureTe is 2000K and the Knudsen number�T
is 2 � 10�3. The frequencyfe that corresponds to!e=k�k varies
from about3MHz to nearly9MHz and corresponds to an electron
densityne varying from105 to 106 
m�3
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Fig. 4. EISCAT UHF radar. The calculated Doppler frequency�F�
using Eq. (28) (solid line) and Eq. (39) (dashed dot line), using the
same numerical code to calculate Eq. (25) for the Spitzer distribu-
tion (dashed line) and for a Maxwellian (dotted line). The Doppler
frequency is plotted as a function of the ratio!e=kvTk for the same
temperatureTe and Knudsen number�T as in Figure 3. The cor-
responding frequencyfe varies also from about3MHz to nearly9MHz which corresponds to an electron densityne varying from105 to 106 
m�3
flow approximation (Eq. 39) and the numerical calculation
of the dielectric response function for the Spitzer distribution
(Guioet al. (1998))). For such large values of the phase veloc-
ity v� = !�=k�, i.e. whenj!�j � k�vTk , the three calcula-
tions predict a moderate increase of the observed Doppler fre-
quency compared to the Maxwellian case (less than100Hz)

since the terms in the expansion of Eq. (38) are small. As
a consequence, the effect of the skewness of the distribution
function on the Doppler frequency is, as the heat flow approx-
imation shows, to shift the Doppler frequency in the same di-
rection as the heat flow and the heat flow behaves like a mean
Doppler velocity.

For the UHF radar there is also a good qualitative agree-
ment of the behaviour of the Doppler frequency�F� as a
function of the electron density at large plasma frequency!e between the three calculations. The three calculations of
the dielectric response function predict an increase of the
measured Doppler frequency compared to the Maxwellian
which can be rather important. At low plasma frequency, the
Doppler frequency calculated using the exact calculation of
the dielectric response function differs from the one given
by the heat flow approximation. While the heat flow approx-
imation gives a relatively constant shift in the Doppler fre-
quency compared to the Maxwellian, independent of the elec-
tron density, the exact calculations of the dielectric function
for the 2-T Maxwellian and the Spitzer function tend to give
smaller Doppler frequency. The discrepancy is getting larger
the smaller the plasma frequency is, i.e. when the conditionj!j � kvTk is not well fulfilled.

This shows that the truncation done for the heat flow ap-
proximation has to be done very carefully and that the ap-
proximation breaks for ratioj!j=kvTk smaller than 5–6. More-
over it is seen that even though the two distribution func-
tions considered have the same temperature and the same heat
flow for parallel energy, the dielectric response behaves qual-
itatively in an identical way but quantitative differencesare
noteworthy. These differences have to be accounted to the dif-
ferences in higher order moments of the distribution function.

5 Conclusion

We have presented a new tool, the 2-T Maxwellian, to model
the particle velocity distribution in a plasma with a tempera-
ture gradient and have compared the properties of the veloc-
ity moments to the results of the classical Spitzer distribution
function. We have seen that it is possible to parametrise the
2-T Maxwellian to get an equal heat flow to the Spitzer re-
sult. An analytic form of the dielectric response function has
been presented for this new distribution, and has been used
to calculate the Doppler frequency of plasma lines in an in-
coherent scatter experiment. The result has been compared
to the Doppler frequency given by the heat flow approxi-
mation. It has been shown that good qualitative agreement
is obtained between the heat flow approximation of the di-
electric function and the exact calculation for low-frequency
radars also for high-frequency radars if the plasma frequency
is high. However for accurate calculations such as the calcu-
lation of the plasma line Doppler frequency, it is seen that
the exact calculation of the dielectric function is important
together with a good representation of the distribution func-
tion, especially for high-frequency radars and at low plasma
frequency, i.e when the ratioj!j=k�e is smaller than 5–6.

The 2-T Maxwellian is not expected to represent a true
physical model of the distribution function in the presenceof
a gradient of temperature but nevertheless is a realistic tool
for investigating this type of plasma. We expect that the 2-T
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Maxwellian should be useful in the qualitative study of in-
stabilities due to heat conduction in a plasma, especially in
ionospheric studies where temperature gradients are present.
The 2-T Maxwellian could also be a good investigation tool
to study the effect of an angle with the magnetic field on the
Doppler frequency in incoherent scatter plasma lines obser-
vations.
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