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Abstract
Small	 rodents	 are	 prevalent	 and	 functionally	 important	 across	 the	world's	 biomes,	
making	their	monitoring	salient	for	ecosystem	management,	conservation,	forestry,	
and	agriculture.	There	is	a	growing	need	for	cost-	effective	and	noninvasive	methods	
for	large-	scale,	intensive	sampling.	Fecal	pellet	counts	readily	provide	relative	abun-
dance	indices,	and	given	suitable	analytical	methods,	feces	could	also	allow	for	the	
determination	of	multiple	ecological	and	physiological	variables,	including	community	
composition.	In	this	context,	we	developed	calibration	models	for	rodent	taxonomic	
determination	using	fecal	near-	infrared	reflectance	spectroscopy	(fNIRS).	Our	results	
demonstrate	fNIRS	as	an	accurate	and	robust	method	for	predicting	genus	and	spe-
cies	identity	of	five	coexisting	subarctic	microtine	rodent	species.	We	show	that	sam-
ple	exposure	to	weathering	increases	the	method's	accuracy,	indicating	its	suitability	
for	samples	collected	from	the	field.	Diet	was	not	a	major	determinant	of	species	pre-
diction	accuracy	in	our	samples,	as	diet	exhibited	large	variation	and	overlap	between	
species.	 fNIRS	could	also	be	applied	across	regions,	as	calibration	models	 including	
samples	from	two	regions	provided	a	good	prediction	accuracy	for	both	regions.	We	
show	fNIRS	as	a	fast	and	cost-	efficient	high-	throughput	method	for	rodent	taxonomic	
determination,	with	the	potential	for	cross-	regional	calibrations	and	the	use	on	field-	
collected	samples.	 Importantly,	appeal	 lies	 in	the	versatility	of	fNIRS.	In	addition	to	
rodent	population	censuses,	fNIRS	can	provide	information	on	demography,	fecal	nu-
trients,	stress	hormones,	and	even	disease.	Given	the	development	of	such	calibration	
models,	 fNIRS	analytics	could	complement	novel	genetic	methods	and	greatly	sup-
port	ecosystem-		and	interaction-	based	approaches	to	monitoring.
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1  |  INTRODUC TION

Small	rodents	are	prevalent	in	ecosystems	across	the	globe,	with	many	
species	acting	as	ecosystem	engineers	(Dickman,	1999)	or	keystone	
species	(Ims	&	Fuglei,	2005);	with	numerous	rare	species	of	high	con-
servation	value	(Green	et	al.,	2013)	and	many	invasive	populations	
with	profound	effects	on	ecosystem	 functioning	 (Dickman,	1999).	
Monitoring	and	research	of	small	 rodents	 is	 thus	a	globally	salient	
enterprise	for	ecosystem	management,	conservation,	forestry,	and	
agriculture.	Yet,	obtaining	population-		or	community-	level	data	on	
small	rodents	is	often	challenging,	as	these	small	and	cryptic	animals	
are	elusive	(Green	et	al.,	2013)	and	cost-	effective	methods	for	large-	
scale	sampling	of	their	multispecies	communities	are	largely	missing	
(Engeman	&	Whisson,	2006;	Heisler	et	al.,	2016).	Estimation	of	small	
rodent	community	composition,	population	size,	and	density	relies	
on	a	variety	of	trapping,	sampling,	and	indexing	efforts,	for	example,	
pitfalls,	 live-	,	 snap-	,	 hair-	,	 or	 camera	 traps	and	 systematic	 inciden-
tal	observations	(Engeman	&	Whisson,	2006;	Fauteux	et	al.,	2018; 
Soininen,	Jensvoll,	et	al.,	2015),	or	on	counts	of	burrows,	runways,	
winter	 nests,	 owl	 pellet	 contents,	 and	 feces	 (Green	 et	 al.,	 2013; 
Heisler	et	al.,	2016).	Trapping	methods,	while	providing	actual	esti-
mates	on	species	identity,	abundance,	and	key	demographic	parame-
ters,	are	laborsome	(Engeman	&	Whisson,	2006;	Villette	et	al.,	2016)	
and	often	inadequate	for	high-	intensity	sampling	with	large	spatial	
or	temporal	coverage	(Heisler	et	al.,	2016;	Villette	et	al.,	2016).

Multitude	 of	wildlife	 censuses	 rely	 on	 feces	 counts	 (Campbell	
et	 al.,	 2004;	 Green	 et	 al.,	 2013;	 Karels	 et	 al.,	 2004;	 Kohn	 &	
Wayne,	1997),	 as	 feces	 are	 a	 noninvasive	 source	 of	 readily	 avail-
able	 samples.	 Acquiring	 feces	 does	 not	 require	 being	 in	 contact	
with	 the	 animal,	 thus	 decreasing	 the	 risk	 of	 infections	 and	 animal	
stress,	 and	 feces	 can	provide	 information	 from	seasons	and	 times	
when	researchers	are	not	present	(Kohn	&	Wayne,	1997;	Whisson	
et	al.,	2005).	Feces	are	organic	material	whose	structural	and	chem-
ical	properties	are	determined	by	the	mechanical,	biochemical,	and	
microbiological	processing	of	 ingested	biomass	 throughout	 the	di-
gestive	pathway.	Feces—	and	the	chemical	and	genetic	 information	
they	store—	could	therefore	allow	for	the	determination	of	diverse	
ecological	and	physiological	variables	 indicative	of	species	 interac-
tions	 (c.f.	Ehrich	et	al.,	2019;	Vance	et	al.,	2016),	 if	combined	with	
suitable	 molecular,	 endocrinological,	 or	 spectral	 methods	 (Galan	
et	al.,	2012;	Schwarzenberger,	2007;	Zemanova,	2021).	Indeed,	real-
izing	the	potential	of	fecal	data	for	large-	scale	ecological	monitoring	
calls	for	a	set	of	cost-	effective	high-	throughput	analytical	methods	
(Vance	et	al.,	2016;	Zemanova,	2021).	Such	methods,	if	embedded	in	
appropriate	monitoring	schemes	(Yoccoz	et	al.,	2001),	could	provide	
access	to	questions	pertinent	to	ongoing	biodiversity	shifts	and	eco-
system	changes	(Lenoir	&	Svenning,	2015;	Pecl	et	al.,	2017;	Wintle	
et	 al.,	2010).	 To	be	 feasible	 and	 applicable,	 these	methods	 should	

be	robust	and	sensitive	across	space	and	time,	utilize	easily	obtain-
able	samples,	be	quick	in	the	preprocessing	of	the	samples,	and	be	
cheap	and	fast	 (Engeman	&	Whisson,	2006;	Whisson	et	al.,	2005).	
Analytical	methods	 that	 are	 nondestructive	 for	 the	 fecal	 samples	
themselves	increase	their	utility	by	allowing	subsequent	application	
of	further	analytical	methods.	For	instance,	rapid	advances	in	non-
invasive	and	nondestructive	genetic	methods	allow	for	increasingly	
cost-	effective	taxonomic	analysis	of	feces	(Zemanova,	2021),	given	
sufficiently	preserved	genetic	material.

Alongside	 genetic	 methods,	 near-	infrared	 reflectance	 spec-
troscopy	 (NIRS)	 is	 a	 promising	 and	highly	 versatile	method	 for	 di-
verse	 ecological	 monitoring	 (Vance	 et	 al.,	 2016).	 NIRS	 is	 widely	
applied	 in	agriculture	and	petrochemical	 industry	 (Pasquini,	2003),	
with	increasing	representation	in	different	fields	of	ecology	(Aw	&	
Ballard,	2019;	Murguzur	et	al.,	2019;	Vance	et	al.,	2016;	Villamuelas	
et	 al.,	2017).	NIRS	 is	 a	 rapid	 and	 nondestructive	 spectral	 analytic	
tool	 for	 assessing	 quantitative	 and	 qualitative	 variables	 based	 on	
the	physicochemical	 information	stored	in	the	NIR	spectra,	 includ-
ing,	 for	example,	 taxonomic	or	demographic	 information	and	fecal	
chemistry,	or	even	stress	or	disease	(Vance	et	al.,	2016).	After	initial	
investment,	the	method	is	very	affordable.	Sample	preprocessing	is	
minimal,	mainly	involving	sample	material	homogenization	and	dry-
ing	(Pasquini,	2003).	The	scanning	procedure	of	a	sample	takes	only	
seconds	and	does	not	require	specialized	personnel	or	laboratories.	
Once	a	 calibration	model	 for	 the	variable	of	 interest	 (e.g.,	 species	
identity)	 is	 validated,	 scanning	 and	 analysis	 of	 any	 number	 of	 fur-
ther	samples	comes	with	no	extra	cost	of,	for	example,	reagents	or	
genetic	primers.	After	scanning,	samples	can	be	analyzed	with	other	
methods,	 and	 the	 existing	 spectra	 can	 be	 later	 analyzed	 for	 new	
variables	using	respective	calibrations.	Fecal	NIRS	(fNIRS)	has	been	
used	 to	 predict	 species	 identity,	 demographic	 parameters	 (Aw	 &	
Ballard,	2019;	Tolleson	et	al.,	2005;	Wiedower	et	al.,	2012)	and	diet	
quality	 (Foley	et	al.,	1998;	Villamuelas	et	al.,	2017)	of	 several	wild	
animals	from	large	mammals	to	insects	(Vance	et	al.,	2016).	However,	
the	use	of	fNIRS	in	wildlife	research	and	monitoring	remains	rather	
unknown	to	the	ecologist	community,	in	comparison	with	the	wide-
spread	 use	 of	 remote	 sensing	 (Kerr	 &	Ostrovsky,	2003; Pettorelli 
et	al.,	2014)	and	high-	throughput	genetic	barcoding	(Yoccoz,	2012).

As	 with	 any	 analytical	 method,	 there	 are	 potential	 caveats	 to	
using	 fNIRS	 for	 small	 rodent	 monitoring.	 First,	 as	 feces	 are	 col-
lected	 from	 the	 field,	 they	 are	 exposed	 to	 ambient	weather.	 This	
can	 compromise	prediction	 accuracy	because	 leaching	 and	micro-
biological	processes	can	change	pellet	chemical	composition	(Jenks	
et	 al.,	1990;	Kamler	 et	 al.,	2003),	 similar	 to	 issues	 linked	with	de-
grading	 DNA.	 Second,	 variation	 between	 animal	 individuals	 may	
affect	their	fecal	composition	and	NIR	spectra	and	hence	decrease	
or	confound	prediction	accuracy	of	species.	In	particular,	diet	qual-
ity	affects	fNIR	spectra	(Stuth	et	al.,	2003;	Villamuelas	et	al.,	2017)	

T A X O N O M Y  C L A S S I F I C A T I O N
Biodiversity	ecology,	Biogeography,	Community	ecology,	Conservation	ecology,	Invasion	
ecology,	Movement	ecology,	Population	ecology,	Zoology

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9857 by U

it T
he A

rctic U
niversity O

f, W
iley O

nline L
ibrary on [30/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  3 of 18TUOMI et al.

and	may	 compromise	 prediction	 accuracy	 whenever	 considerable	
dietary	 overlap	 between	 species	 occurs.	 Especially	 for	 coexisting	
and	competing	generalist	rodent	species,	the	effect	of	diet	is	likely	
to	be	complex,	as	diets	overlap	and	are	dependent	on,	for	example,	
season	and	 forage	 item	availability	 (Soininen	et	al.,	2013).	 In	addi-
tion,	sex	and	reproductive	status	may	affect	fNIR	spectra	(Tolleson	
et	al.,	2005),	 increasing	variation	 in	the	spectral	data.	Third,	 if	fac-
tors	driving	the	species-	signal	 in	fNIR	spectra	differ	between	pop-
ulations,	 fNIRS	 calibrations	 that	 cover	only	 spatially	 limited	 target	
populations	can	yield	unreliable	results	on	samples	from	a	different	
population;	an	issue	avoided	by	genetic	methods	of	well-	preserved	
samples.	However,	recent	studies	presented	NIRS	calibrations	appli-
cable	across	species	and	geographic	regions	(Murguzur	et	al.,	2019; 
Villamuelas	et	al.,	2017),	revealing	the	potential	for	cross-	regional	or	
global	NIRS	and	fNIRS	calibrations.

Here,	we	develop	fNIRS	calibration	models	for	rodent	taxonomic	
determination	from	single	pellets	(>0.025 g	of	dry	weight).	Our	main	
hypothesis	is	that	fecal	properties	differ	between	taxa,	allowing	for	
classification	of	individuals	to	genus	and	species	based	on	their	fNIR	
spectra	(H1	and	H2).	However,	this	separation	capability	might	erode	
with	the	effect	of	exposure	(H1	vs.	H2)	due	to	leaching,	irradiation,	
and	decomposition.	Prediction	accuracy	of	 individual	samples	may	
also	be	linked	with	diet	composition	(H3),	which	we	tested	by	com-
paring	fNIRS	data	to	DNA	metabarcoding	data	of	the	same	pellets.	
Additionally,	spectra	may	display	regional	differences	between	pop-
ulations	(H4).	For	the	 latter,	we	contrast	two	subhypotheses:	H4.1	
and	H4.2	that	calibration	models	based	on	samples	from	one	region	
may	perform	poorly	with	samples	from	other	region	and	H4.3	that	
a	calibration	model	including	all	regions	successfully	classifies	inde-
pendent	 test	 individuals	 from	 all	 regions.	 Finally,	we	 demonstrate	
how	our	calibration	model	and	 the	modeling	 framework	would	be	
used	in	practice	to	predict	species	identity	of	new	fecal	samples.

2  |  MATERIAL S AND METHODS

We	outline	the	workflow	of	building	NIRS	calibrations	and	testing	
our	hypothesis	in	Figure 1.	We	detail	the	following	steps:	rodent	fecal	
sample	extraction,	sample	processing	and	experimental	treatment,	
NIRS	 scanning	 and	 spectra	 pretreatment,	 calibration	 modeling	

including	 model	 building,	 validation	 and	 testing,	 diet	 molecular	
analysis	including	DNA	metabarcoding,	bioinformatics	and	modeling	
potential	confounding	of	diet,	as	well	as	regression	modeling	of	NIRS	
calibration	model	results.	Further	details	on	molecular	methods	and	
calibration	modeling	are	provided	in	the	Supplementary	material	S1

2.1  |  Rodent data and fecal samples

We	collected	fecal	samples	from	animals	trapped	as	part	of	a	long-	
term	 rodent	 population	monitoring	 time	 series.	 The	 set	 of	 rodent	
individuals	 included	 in	 the	 calibration	 modeling	 incorporated	
substantial	 variation	 in	 environmental	 conditions	of	 their	 trapping	
site,	season,	and	year,	as	well	as	variation	in	individual	physiological	
condition	 related	 to	 reproductive	 status	 and	 age	 (Table S1a).	 The	
largest	 set	 of	 individual	 fecal	 samples	 (n =	 472)	 came	 from	West	
Finnmark,	Northern	Norway,	encompassing	two	research	areas	ca.	
55 km	 apart	 (hereafter	West	 Finnmark	 or	 “WF”)—	Joatka	 research	
area	 (JRA;	 69°45’N,	 23°55’E)	 and	 Skillefjordnes	 (Skirvinjárga;	
77°86’N,	 05°86’E).	 Small	 rodent	 guild	 at	 WF	 includes	 five	 out	
of	 seven	 small	 rodent	 species	 occurring	 throughout	 Northern	
Fennoscandia:	 Norwegian	 lemmings	 (Lemmus lemmus),	 gray-	sided	
voles	 (Myodes rufocanus),	 red	 voles	 (Myodes rutilus),	 root	 voles	
(Microtus oeconomus),	and	field	voles	 (Microtus agrestis).	JRA	has	 in	
total	77	trapping	quadrats	of	15	by	15 m,	including	snowbed,	heath,	
meadow,	and	wetland	habitats.	Trapping	was	conducted	biannually,	
during	 early	 (mid-	June)	 and	 late	 (early-	mid	 September)	 growing	
season.	Samples	were	included	from	a	full	population	cycle	between	
2010	and	2014,	with	 the	 largest	 rodent	peak	 in	40 yr	occurring	 in	
2011–	2012	(see	Ekerholm	et	al.,	2001;	Hoset	et	al.,	2014	for	details	
on	index	trapping	protocol).	As	the	number	of	M. agrestis	individuals	
from	 JRA	 was	 not	 sufficient,	 we	 supplemented	 the	 JRA	 samples	
with	 individuals	 (n =	 40)	 trapped	 in	 comparable	 heath,	 meadow,	
and	snowbed	habitats	at	Skillefjordnes	(see	Ruffino	et	al.,	2015	for	
site	 description).	We	 also	 included	 three	M. rufocanus	 individuals	
from	this	site.	Altogether,	WF	fecal	samples	included	107 L. lemmus,	
72 Myodes rufocanus,	 103 M. rutilus,	 93	Microtus oeconomus,	 and	
97 M. agrestis	(Table S1a).

Another	set	of	fecal	samples	(n =	85)	came	from	animals	trapped	
in	three	river	catchments	in	East	Finnmark—	Ifjordfjellet	(70° N,	27° E),	

F I G U R E  1 Illustration	of	the	analytical	
workflow.	Detailed	description	of	
calibration	models	is	presented	in	Table 1.
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Komagdalen	and	Vestre	Jakobselv	(70–	71° N,	28–	31° E;	hereafter	East	
Finnmark	or	“EF”).	Similarly	to	WF,	trapping	was	conducted	biannually	
in	15	by	15 m	quadrats,	but	samples	were	only	collected	in	2015.	A	total	
of	80	quadrats	are	distributed	in	heath	and	meadow	habitats.	The	EF	
samples	included	mainly	Microtus oeconomus	(n =	42)	and	Myodes rufo-
canus	(n =	38),	with	two	L. lemmus	and	one	Myodes rutilus	(Table S1a).

All	rodents	were	frozen	after	trapping,	and	information	of	trap-
ping	date	and	sampling	quadrant	was	 recorded.	We	also	 recorded	
individual	 rodent	 body	mass,	 sex,	 species	 identity,	 and	 female	 re-
productive	 status	 (visible	pregnancy).	Dataset	 included	 individuals	
of	varying	age	based	on	the	wide	body	mass	distribution	(L. lemmus 
32–	106 g,	M. rufocanus	8–	65 g,	M. rutilus	12–	36 g, M. oeconomus 22– 
90 g,	and	M. agrestis	17–	66 g).

Feces	were	carefully	sampled	 from	the	 intestine	without	dam-
aging	or	breaking	the	intestinal	tissue,	avoiding	contamination	with	
blood	or	other	compounds	that	could	affect	the	NIR	spectra.	From	
each	 individual	 from	WF,	we	 collected	 consecutive	 pellets	 in	 two	
Eppendorf	tubes,	to	form	two	parallel	samples,	while	of	EF	samples	
no	parallel	 samples	were	 taken.	All	pellets	were	dried	at	40°C	 for	
minimum	of	48 h	or	until	dry	and	stored	in	Eppendorf	tubes	in	room	
temperature.	One	parallel	WF	sample	and	all	EF	samples	were	NIR-	
scanned	without	exposure	treatment	(intestinal	samples),	while	the	
other	WF	parallel	sample	was	scanned	after	the	exposure	treatment	
(exposed	samples).

2.2  |  Exposure treatment

We	subjected	one	set	of	parallel	WF	samples	 to	ambient	weather	
conditions	 (hereafter	 “exposure	 treatment”)	 in	 Tromsø,	 Northern	

Norway,	during	autumn	2014	to	incorporate	the	effects	of	leaching	
and	bleaching	due	to	UV	radiation	on	NIR	spectra	in	the	calibration	
model.	 Only	 four	 species	 were	 included	 in	 the	 weathering	 treat-
ment,	as	Myodes rutilus	pellets	were	not	suited	for	weathering	due	
to	a	frequently	liquid	consistency	and	small	size	of	the	pellets.	We	
placed	the	pellets	on	wooden	frames	of	50x50	cm,	with	a	1	x	1 mm	
nylon	mesh	in	the	bottom.	Nylon	mesh	was	used	as	a	bottom	mate-
rial	because	 it	does	not	 release	chemicals	 to	 the	 feces	and	allows	
for	water	drainage	and	evaporation.	Each	frame	had	pellets	of	only	
one	species	to	avoid	contamination.	Each	frame	had	ca.	150	pellets.	
For	 L. lemmus	 and	Myodes rufocanus	 pellets,	we	 used	 two	 frames	
per	 species,	whereas	Microtus oeconomus	 and	M. agrestis	 had	 one	
frame	each.	Frames	were	placed	on	heath	vegetation	in	September,	
and	weather	conditions	during	the	treatment	were	variable,	includ-
ing	 rain,	 sunshine,	 frost,	 and	 temperatures	 both	 above	 and	below	
zero.	During	 6 weeks,	we	weekly	 took	 ca.	 25	 pellets	 for	 scanning	
from	each	frame.

2.3  |  NIRS scanning of the fecal pellets

We	scanned	individual	intestinal	and	exposed	samples	without	fur-
ther	sample	prepreparation.	Due	to	the	small	size,	we	used	a	custom-	
built,	 Ø4mm	 sample	 holder	 and	 pressed	 the	 pellet	 flat	 with	 an	
Ø4mm	metal	rod	in	order	to	prevent	light	from	penetrating	through	
the	sample.	A	few	samples	were	too	small	to	cover	the	whole	area,	
but	they	did	not	appear	as	outliers	during	the	modeling	process

NIR	 spectra	 were	 collected	 using	 a	 FieldSpec	 3	 (ASD	 Inc.,	
Boulder,	 Colorado,	 USA):	 each	 spectrum	 was	 recorded	 as	 reflec-
tance	 using	 monochromatic	 radiation	 at	 1.4-	nm	 intervals	 in	 the	

TA B L E  1 Summary	of	calibration	model	methodology.	Column	«	Hypothesis »	refers	to	the	tested	question.

Hypothesis Model Response variable Calibration data Test data

H1 FDA/MARS,	degree	= 2 
no.	of	models	= 2

genus	(Lemmus,	Myodes,	
Microtus);	species	(Llem,	
Mruf,	Mrut,	Moec,	Magr)

WF	intestinal	and	exposed	samplesa WF	intestinal	and	
exposed	samplesa

H2 FDA/MARS,	degree	= 3
no.	of	models	= 2

genus	(Lemmus,	Myodes,	
Microtus);	species	(Llem,	
Mruf,	Moec,	Magr)

WF	exposed	samplesa WF	exposed	samplesa

H3 FDA/MARS,	degree	= 3
no.	of	models	= 1

species	(Llem,	Mruf,	Mrut,	
Moec,	Magr)

WF	intestinal	samplesb WF	intestinal	samplesa

H4 MARS,
degree = 3
no.	of	models	= 3

Mruf, Moec H4.1a	=	WFa

H4.1b	=	EFb

H4.2	=	WF	&	EFc

H4.1a	=	100%	EF,	WFa

H4.1b	=	100%	WF,	EFb

H4.2	=	WF	&	EFc

Note:	Column	«	Model»	refers	to	the	used	model	type,	that	is,	FDA	models	applying	MARS	(FDA/MARS)	and	direct	application	of	MARS.	Degree	
indicates	1-	way	(degree	=	2)	or	2-	way	(degree	=	3)	interactions	of	model	variables.	Number	of	models	indicates	that	each	response	variable,	for	
example,	genus	or	species,	has	its	own	calibration	model.	Column	«	Response variable »	describes	the	categories	predicted	by	the	calibration	model.	
Column	«	Calibration data»	and	«	Test data	»	describe	the	datasets	used	to	calibrate	the	model	and	test	its	generalization	error.	Total	number	of	
rdMCCV	iterations	per	model	is	600,	that	is,	the	product	of	number	of	MCCV	iterations	(n =	200)	and	number	of	data	splits	(n =	3).
Abbreviations:	EF,	East	Finnmark;	Llem,	Lemmus lemmus;	Magr,	M. agrestis;	Moec,	Microtus oeconomus;	Mruf,	Myodes rufocanus;	Mrut,	M. rutilus;	WF,	
West	Finnmark.
a95%/5%,	90%/10%,	and	80%/20%	of	each	species	and	exposure	week.
b95%/5%,	90%/10%,	and	80%/20%	of	each	species.
c95%/5%,	90%/10%,	and	80%/20%	of	each	species,	exposure	week,	and	region.
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350–	1050 nm	range	and	2	nm	intervals	in	the	1050–	2500 nm	range,	
and	interpolated	to	1	nm	resolution.	We	scanned	each	sample	three	
times	by	rotating	the	sample	holder	between	scans	in	order	to	ac-
count	for	angular	effects	on	light	scattering.	We	used	the	mean	of	
the	 three	 spectra	 in	 the	 further	 analysis.	We	 used	 the	R	 package	
prospectr	 (Stevens	&	Ramirez-	Lopez,	2015)	for	spectra	preprocess-
ing,	that	 is,	applying	splice	correction	and	normalizing	the	spectra.	
The	spectral	regions	in	the	350–	399 nm	and	2451–	2500 nm	ranges	
were	removed	from	the	dataset	due	to	instrumental	noise

2.4  |  DNA- metabarcoding of rodent feces

After	 scanning,	 we	 analyzed	 a	 subset	 of	 intestinal	 WF	 samples	
(n =	 385)	 for	 diet	 species	 composition	 with	 DNA	 metabarcoding.	
All	wet	 laboratory	work	was	 performed	 by	Center	 of	 Evolutionary	
Applications,	University	of	Turku,	Finland.	We	used	a	DNA	metabar-
coding	approach	similar	to	Soininen,	Gauthier,	et	al.	(2015).	We	here	
give	a	summary	of	the	methods,	and	a	detailed	description	is	included	
in	supplementary	materials	S1	(p.	2:	Detailed	DNA-	metabarcoring	of	
rodent	feces).	DNA	was	first	extracted	and	thereafter	amplified	using	
universal	plant	primers	“g-	h”	and	“c-	h”	that	target	chloroplast	trnL	in-
tron	(Taberlet	et	al.,	1991,	2007).	Final	DNA	libraries	were	constructed	
in	the	second	PCR	(see,	e.g.,	Vesterinen	et	al.,	2018).	Resulting	DNA	
libraries	were	purified	and	size-	selected	using	an	SPRI	bead	clean-	up	
(see	Vesterinen	et	al.,	2016),	and	concentrations	were	measured	by	
Qubit	(Invitrogen;	www.invit	rogen.com)	and	finally	pooled	in	equimo-
lar	quantities.	Sequencing	was	done	on	316	v2	and	318	v2	chips	with	
Ion	PGM	(Life	Technologies,	manual	cat	nr	00009816,	Rev	C.0).

The	four	sequencing	runs	yielded	altogether	12,575,869	quality-	
controlled	 reads	 that	 could	 be	 assigned	 to	 original	 samples.	 The	
reads	were	uploaded	to	CSC	servers	 (IT	Center	for	Science,	www.
csc.fi)	 for	 trimming	 and	 further	 analysis.	Bioinformatic	 steps	were	
carried	out	following	Schmidt	et	al.	(2018)	with	several	modifications	
(p.	3–	4:	Bioinformatics).	To	summarize,	reads	were	merged,	filtered	
for	 quality,	 cut	 for	 primers,	 collapsed	 into	unique	haplotypes,	 and	
finally	 clustered	 into	 zero-	radius	 OTUs	 using	 softwares	 usearch 
(Edgar,	 2010)	 and	 cutadapt	 (Martin,	 2011).	We	 were	 able	 to	 map	
7,726,911	 reads	 (~93%	of	 the	 trimmed	 reads)	 to	 our	 original	 sam-
ples. The trnl	OTUs	were	initially	identified	to	taxa	using	the	usearch 
“sintax”	 classifier	with	 a	 database	 consisting	 of	 artic	 plant	 trnl	 se-
quences	(Willerslev	et	al.,	2014)	using	70%	probability	threshold	for	
taxonomic	assignation.	After	this,	read	counts	for	each	diet	taxon	in	
each	sample	were	transformed	to	relative	read	abundances	 (RRA),	
as	read	abundances	may	actually	be	less	misleading	than	presence/
absence	conversions	(Deagle	et	al.,	2018).

2.5  |  Calibration modeling of genus and 
species identity

After	 obtaining	 NIR	 spectra	 and	 diet	 data	 on	 individual	 samples,	
we	built	calibration	models	for	genus	and	species	identification	and	

further	used	regression,	multivariate,	and	latent	variable	modeling	in	
order	to	address	our	four	hypotheses	and	test	of	concept	(Figure 1,	
Table 1).	To	build	calibration	models,	we	applied	multivariate	adaptive	
regression	 splines	 (MARS;	 Friedman,	1991)	 both	 directly	 and	 in	 a	
flexible	 discriminant	 analysis	 framework	 (FDA;	Hastie	 et	 al.,	1994; 
see Table 1).	For	this,	we	used	R	packages	earth	 (Milborrow,	2014)	
and	mda (Hastie	 et	 al.,	2015).	We	 chose	 this	 approach	 as	 it	 deals	
well	with	high-	dimensional	input	data	and	allows	for	additive	effects	
and	 interactions	 between	 variables	 (Friedman	 &	 Roosen,	 1995)	
and	 assumes	 nonlinear	 responses	 or	 decision	 boundaries	 (Hastie	
et	 al.,	 1994).	 A	 more	 detailed	 description	 of	 the	 modeling	 and	
a	 comparison	 with	 other	 common	 chemometric	 approaches	 is	
provided	in	Supplementary	material	S1	(p.	4,	Calibration	modeling	of	
genus	and	species	identity).	We	used	R	version	3.5.1	(R	Core	Team,	
2018)	 for	 all	 statistical	 analyses	 and	 the	ggplot2	 (Wickham,	2009)	
environment	for	plotting	all	figures.

We	built	separate	calibration	models	for	genus	and	species,	and	
to	 test	each	hypothesis	 (H1-	H4,	Table 1).	Usually,	 in	a	 real-	life	ap-
plication,	only	one	model	would	be	applied	to	the	entire	calibration	
dataset,	as	shown	in	Box 1.	However,	for	the	purpose	of	rigorous	hy-
pothesis	testing,	here	we	evaluated	the	models	using	a	modified,	re-
peated	double	Monte	Carlo	cross-	validation	(Filzmoser	et	al.,	2009; 
rdMCCV;	cf.	Xu	et	al.,	2004)	with	200	iterations.	Within	each	iteration,	
we	divided	the	modeling	dataset	into	a	calibration set	dataset	used	
for	model	fitting	and	variable	selection	and	an	MCCV test set	for	an	
assessment	of	model	prediction	accuracy,	that	is,	of	the	generaliza-
tion	error	of	each	iterated	calibration	model	(Filzmoser	et	al.,	2009; 
reported as model misclassification rate and species prediction accuracy; 
Pasquini,	2003).	The	purpose	of	applying	rdMCCV	was	to	estimate	
how	model	performance	and	misclassification	rates	vary	across	sets	
of	calibration	data	(Filzmoser	et	al.,	2009)	and	to	estimate	error	rates	
for	individual	samples	(cf.	Liu	et	al.,	2008).	Furthermore,	we	repeated	
the	rdMCCV	procedure	with	95%/5%,	90%/10%,	and	80%/20%	data	
splits	between	calibration	and	test	sets.	This	increased	the	number	
of	 total	 rdMCCV	 iterations	per	model	 to	600	 (Table 1).	 To	ensure	
the	 allocation	 of	 targeted	 variability	 between	 calibration	 and	 test	
sets,	the	data	were	split	(depending	on	the	model)	as	fixed	percent-
age	 of	 each	 species;	 species	 and	 exposure	 treatment	 duration;	 or	
species,	exposure	treatment	duration,	and	region	(Table 1).	We	used	
MARS	algorithms	with	one-	way	or	 two-	way	 interactions	of	model	
variables,	that	is,	hinge	functions	of	NIR	spectra	(Table 1),	depending	
on	which	interaction	structure	provided	the	lowest	misclassification	
rate	of	test	samples	based	on	preliminary	models	with	20	iterations	
(Filzmoser	et	al.,	2009)

To	 test	 hypothesis	H1	 (Can we predict genus or species identity 
based on their fNIR spectra?),	we	built	calibration	models	using	WF	
intestinal	 and	 exposure	 sample	 spectra	 (Table 1)	 and	 constructed	
separate	models	 for	 species	 and	 genus-	level	 identification.	Model	
response	variable	had	three	levels	in	the	genus	model	and	five	levels	
in	the	species	model	(Table 1).	In	our	dataset,	the	genus	level	Lemmus 
consists	of	only	one	species.	In	spite	of	this,	we	included	the	taxon	in	
both	species	and	genus-	level	models,	to	systematically	assess	model	
predictive	 performances.	 To	 ensure	 comparability	 with	 H2	model	
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(see	below),	we	ran	an	additional	rdMCCV	calibration	model	without	
Myodes rutilus.	This	did	not	change	results	for	the	other	four	species,	
and	results	are	not	included.

To	test	hypothesis	H2	(Does feces exposure reduce prediction ac-
curacy?),	we	built	calibration	models	for	genus	and	species	 identity	
with	data	from	the	exposure	treatment	only.	Modeling	follows	the	
description	for	H1,	with	deviations	described	in	Table 1.	We	excluded	
Myodes rutilus,	as	the	species	was	omitted	from	the	exposure	treat-
ment.	We	then	tested	whether	individual	sample	prediction	accuracy	
was	explained	by	exposure	time.	For	this,	we	used	Bayesian	regres-
sion	models	on	species	identity	results	of	H1	and	H2	models	sepa-
rately	for	each	species	and	model.	As	response	variable,	we	used	the	
individual sample prediction accuracy	(hereafter	IPA).	To	calculate	this,	
we	extracted	the	results	per	each	individual	in	each	model	iteration,	
with	“0”	denoting	a	misclassification,	and	“1”	a	correct	classification.	
We	then	averaged	classification	result	across	all	iterated	model	runs.	
Prior	to	analysis,	we	transformed	the	IPA	values	as

to	avoid	zero–	one	inflated	data	(Smithson	&	Verkuilen,	2006).	As	pre-
dictor	variable,	we	used	exposure	treatment	time	(number	of	weeks	
from	0	to	6	as	a	numerical	fixed	factor).	Due	to	the	beta-	distribution	
(0 < y < 1)	 of	 IPA	 values,	 we	 fitted	 beta-	regressions	 with	 a	 logit-	link	
using	package	rstanarm	and	with	the	function's	default	weakly	infor-
mative	priors	 (Muth	et	al.,	2018).	We	fitted	the	model	using	Markov	
chain	Monte	Carlo	sampling	(MCMC)	with	4	chains	and	2000	iterations	
in	each	chain	(rstanarm	default;	Muth	et	al.,	2018).	We	checked	sam-
pling	quality	of	draws	from	the	target	posterior	distribution	for	MCMC	
via	numerical	checks	(R̂  <1.1	and	neff > 1200	for	all	model	parameters)	
and	visually	with	trace	plots,	and	we	 inspected	and	confirmed	good	
model	fits	by	visual	posterior	predictive	checking	(Muth	et	al.,	2018)	
with	package	bayesplot	(Gabry	&	Mahr,	2019).

To	 test	 of	 hypothesis	 H3	 (Does diet confound prediction accu-
racy?),	 we	 based	 our	 inference	 jointly	 on	 two	 different	 modeling	
strategies.	 First,	 we	 assessed	 the	 correlation	 between	 fNIR	 and	
diet	RRA	multivariate	datasets	using	Mantel	 test	with	Bray–	Curtis	
distance	 and	Procrustes	 test	 (Jackson,	1995)	 using	 package	 vegan 
(Oksanen	et	al.,	2018).	While	Mantel	test	is	widely	used,	it	may	fail	to	
account	for	the	mean–	variance	relationship	of	the	diet	data	(Warton	
et	al.,	2012);	hence,	we	used	the	Procrustes	test	in	addition.	Second,	
we	 visually	 explored	 whether	 highly	 misclassified	 individuals	
(IPA < 0.60)	displayed	deviant	diet	composition	compared	with	cor-
rectly	classified	individuals	of	the	same	species.	The	IPA	values	used	
here	were	derived	from	calibration	models	built	as	described	for	H1	
but	including	only	those	intestinal	samples	used	for	DNA	metabar-
coding	(n = 380; Table 1).	To	discern	patterns	of	intra	and	interspe-
cific	diet	similarity,	we	applied	multivariate	latent	variable	modeling	
(model-	based	unconstrained	ordination;	Warton	et	al.,	2015)	on	diet	
RRA	data.	We	fitted	the	model	using	Bayesian	Markov	Chain	Monte	
Carlo	 estimation	within	 the	HMSC	modeling	 framework	 (package	
Hmsc,	 Blanchet,	 2013;	 Ovaskainen	 et	 al.,	 2017).	 To	 estimate	 the	

(1)IPAbeta =
IPA(n − 1) + 0.5

n
.

BOX 1 Practical application of the calibration 
model

Step 1: Building the calibration model.
We	used	95%	of	exposed	WF	samples	(n =	798,	modeling	
dataset)	 to	 fit	 an	 FDA/MARS	 model	 with	 a	 two-	way	
interaction.	In	total,	66	wavelengths	were	selected	into	the	
model	 (Figure 9	 lower	panel,	 Supplementary	material	S1,	
Figure S3).
Step 2: Predicting new samples.
We	 used	 the	 calibration	model	 to	 predict	 the	 remaining	
5%	 of	 WF	 {n =	 35),	 and	 all	 EF	 samples	 to	 species.	
Misclassification	rate	of	the	WF	samples	was	zero,	that	is,	
their	 prediction	 accuracy	 was	 100%	 for	 all	 four	 species,	
Myodes rufocanus, Microtus oeconomus	 and	 Microtus 
agrestis,	and	Lemmus lemmus	(cf.	Figure 3	lower	right	panel).	
The	misclassification	 rate	 of	 EF	 samples	was	0.875,	with	
prediction	accuracies	of	13.2%	for	M. rufocanus	and	11.2%	
for	M. oeconomus.
Step 3: Visualizing the calibration model and sample 
misclassification.
First,	 we	 plotted	 the	 canonical	 discriminant	 variables	
(CA1-	3)	of	the	modeling	dataset	(Figure 7)	and	the	WF	and	
EF	test	sets	 (Figure 8).	Second,	 to	 illustrate	areas	of	high	
and	 low	sample	misclassification	rates	 in	the	discriminant	
space,	we	applied	the	rdMCCV	procedure	on	the	modeling	
dataset	and	retrieved	sample	IPA	values	to	color	the	plotted	
samples	 (Figures 7	 and	 8).	 Misclassification	 rate	 of	 the	
modeling	 data	 based	 on	 the	 rdMCCV	 calibration	models	
was	 0.056 ± 0.028.	 Across	 the	 600	 rdMCCV	 models,	 in	
total	 1961	variables	had	 importance	greater	 than	 zero	 in	
one	or	more	models	(Figure 9	upper	panel,	Figure S3).
Canonical	 discriminant	 space	 of	 the	 calibration	 model	
showed	 a	 clear	 separation	 of	 Lemmus lemmus,	 Myodes 
rufocanus	 and	Microtus	 along	 CA1	 and	 CA2	 (Figure 7a),	
whereas	 Microtus oeconomus	 and	 Microtus agrestis 
separated	along	the	thud	canonical	variable	CA3	(Figure 7b).	
Most,	 but	 not	 all,	 individuals	 with	 high	 misclassification	
rates	 (low	IPA	values)	were	 located	 in	peripheral	areas	of	
the	respective	species	clusters,	that	is,	toward	the	central	
region	of	the	plot	(Figure 7).
Figure 8	 visualizes	 how	 the	 calibration	 model	 predicted	
WF	samples	within	and	EF	samples	outside	the	modeling	
data	population,	 illustrative	of	model	 results	 for	H4.	The	
WF	test	set	samples	discriminated	within	then	respective	
species	clusters	with	high	IPA	values	of	modeling	dataset	
samples	 (Figure 8a,b)	and	were	predicted	accurately.	The	
poorly	 predicted	 EF	 test	 set	 samples	 (M. oeconomus	 and	
M. rufocanus)	positioned	both	outside	the	calibration	data	
range	 and	 close	 to	M. agrestis	 modeling	 dataset	 samples	
(Figure 8c,d	and	Figure 8e,f,	respectively).
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    |  7 of 18TUOMI et al.

model	 (latent)	 parameters,	we	 used	 two	MCMC	 chains	 each	with	
15,000	iterations	with	a	burn-	in	of	5000	and	model	default	priors	
(see	Ovaskainen	et	al.,	2017).	MCMC	sampling	quality	of	posterior	
draws	was	checked	numerically	and	was	deemed	good	(R̂  <1.1	and	
neff > 1750).	We	then	plotted	the	2D	latent	variable	plot	of	diet	com-
position	and	added	the	information	of	sample	IPA	values	in	the	plot

To	test	hypothesis	H4	(Are models generalizable between regions?),	
we	used	Microtus oeconomus	and	Myodes rufocanus	data	from	both	
WF	 and	EF,	 as	 these	were	 the	 only	 numerous	 species	 in	 EF.	 First	
(H4.1	and	H4.2),	we	built	separate	calibration	models	based	on	data	
from	either	WF	or	EF	only	and	predicted	species	identity	of	test	data	
including	both	regions	(see	Table 1).	Thereafter	(H4.3),	we	built	cal-
ibration	models	with	WF	and	EF	data	and	predicted	MCCV	test	set	
individuals	from	both	regions

Finally,	we	demonstrate	the	practical	application	of	our	calibra-
tion	 model	 and	 the	 rdMCCV	 framework.	 This	 includes	 building	 a	

calibration	model	(Step	1),	predicting	new	samples	not	seen	by	the	
calibration	model	(Step	2)	and	visualizing	the	calibration	model	pre-
dictions	and	misclassification	risk	of	WF	and	EF	samples	in	the	FDA-	
model	discriminant	space	(Step	3).	Methods	and	results	for	each	step	
are	described	in	Box 1.

3  |  RESULTS

3.1  |  H1: Prediction accuracy of genus and species 
identity

Calibration	models	for	genus	identity	resulted	in	excellent	prediction	
accuracy	and	a	low	misclassification	rate	of	0.041 ± 0.019	(mean ± sd,	
Figure 2,	upper	right	panel).	Across	all	model	 iterations,	prediction	
accuracy	for	Myodes	was	96.2% ± 3.13%,	for	Microtus	95.1% ± 3.62%	

F I G U R E  2 Predictive	ability	of	genus-	specific	fNIRS	calibrations	for	small	rodents	from	Finnmark,	Norway.	Left panels:	prediction	
accuracy	of	each	genus	(mean ± sd)	separately.	Right panels:	density	plots	of	model	misclassification	rates.	Upper row	shows	results	from	
calibration	models	used	for	H1	(i.e.,	including	all	data	from	West	Finnmark),	lower row	for	H2	(i.e.,	including	only	samples	used	to	test	
exposure	effect).	Results	are	divided	by	data	splits	(fractions)	with	200	iterations	each,	where	5%,	10%,	and	20%	of	data	were	randomly	
assigned	as	validation	data	(using	rdMCCV	framework).
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and	for	Lemmus	96.7 ± 3.47%	 (Figure 2,	upper	 left	panel).	For	spe-
cies,	the	prediction	accuracy	was	more	variable	and	with	a	misclassi-
fication	rate	of	0.129 ± 0.032	(Figure 3,	upper	right	panel).	Prediction	
accuracies	were	high	for	Myodes rufocanus	(95.4% ± 4.02%),	Myodes 
rutilus	 (91.6% ± 9.20%)	 as	well	 as	 Lemmus lemmus	 (96.1% ± 3.18%),	
but	 much	 poorer	 for	 Microtus oeconomus	 (68.8% ± 10.7%)	 and	
Microtus agrestis	(75.1% ± 9.85%;	Figure 3	upper	left	panel).

3.2  |  H2: Effect of feces exposure

Calibration	models	based	on	only	exposed	samples	performed	bet-
ter	 than	calibration	models	 including	 intestinal	 samples,	 especially	
in	 predicting	 species	 identity	 (Figure 3).	 Effect	 of	 feces	 exposure	
to	 ambient	 weather	 for	 1–	6 weeks	 was	 visible	 on	 fNIR	 spectra,	
with	a	clear	decline	in	reflectance	at	700–	1400 nm	and	increase	in	

reflectance	 between	 ca.	 1500	 and	 2500 nm	 (Figure S1).	 The	 rate	
of	 change	 in	 fNIR	 spectra	 seemed	 to	decline	with	exposure	dura-
tion	for	all	species;	however,	the	Microtus oeconomus	and	M. agrestis 
spectra	 changed	 strongly	 again	 after	week	 5	 (Supplementary	ma-
terial	S1,	Figure S1).	Model	misclassification	rate	for	genus	identity	
was	0.031 ± 0.02	(Figure 2,	lower	right	panel),	while	mean	prediction	
accuracy	for	Myodes	was	96.7% ± 3.89%,	for	Microtus	95.7% ± 4.24%	
and	 for	 Lemmus	 98.3 ± 2.86%	 (Figure 2,	 lower	 left	 panel).	 Model	
misclassification	 rates	 for	 species	 calibrations	 were	 low,	 with	
0.055 ± 0.028,	and	mean	prediction	accuracies	reached	96.5 ± 3.76%	
for	Myodes rufocanus,	98.4% ± 2.79%	for	Lemmus lemmus	and	were	
as	high	as	85.4% ± 11.2%	for	Microtus oeconomus	and	91.4% ± 8.25%	
for	Microtus agrestis	(Figure 3,	lower	row).

Posterior	distributions	of	exposure	week	effects	on	IPA	values	
indicated	a	positive	effect	of	exposure	on	Microtus oeconomus	and	
M. agrestis	 prediction	 accuracy	when	 both	 intestinal	 and	 exposed	

F I G U R E  3 Predictive	ability	of	species-	specific	fNIRS	calibrations	for	small	rodents	from	Finnmark,	Norway.	Left panels:	prediction	
accuracy	of	each	species	(mean ± sd)	separately.	Right panels:	density	plots	of	model	misclassification	rates.	Upper row	shows	results	from	
calibration	models	used	for	H1	(i.e.,	including	all	data	from	West	Finnmark),	lower row	for	H2	(i.e.,	including	only	samples	used	to	test	
exposure	effect).	Results	are	divided	by	data	splits	(fractions)	with	200	iterations	each,	where	5%,	10%,	and	20%	of	data	were	randomly	
assigned	as	validation	data	(using	rdMCCV	framework).	M. rutilus	samples	were	not	included	in	exposure	treatment	and	H2	model.
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    |  9 of 18TUOMI et al.

samples	were	included	in	calibration	(H1	model).	However,	exposure	
did	not	affect	IPA	values	when	only	the	exposed	samples	we	used	in	
calibration	(H2	model).	Exposure	treatment	did	not	affect	individual	
prediction	 accuracies	 of	 other	 species	with	95%	confidence	 limits	
(Figure 4,	Table S3).

3.3  |  H3: Does diet confound prediction accuracy?

The	fNIR	spectra	were	only	weakly	correlated	to	diet,	as	indicated	
by	both	Mantel	 test	 (r =	 .153,	p < .001)	 and	Procrustes	 test	 (m12-	
squared	=	0.932,	correlation	=	0.261,	p < .001).

Latent	variable	modeling	indicated	clear	overlap	between	most	
species'	diets.	However,	Myodes rufocanus	and	M. rutilus	were	clearly	
differentiated	(Figure 5).	Most	of	the	individuals	with	low	IPA	values	
(i.e.,	individuals	that	were	often	classified	to	wrong	species)	were	lo-
cated	among	the	dense	diet	cluster	of	their	respective	species,	while	
many	 peripheral	 individuals	 in	 terms	 of	 diet	 had	 high	 IPA	 scores	
(Figure 5).

3.4  |  H4: Regional vs. cross- regional calibrations

Calibration	 models	 built	 with	 data	 from	 one	 region	 predicted	
samples	 from	 the	 same	 region	well,	 but	 samples	 from	 the	 other	

region	 poorly	 (Figure 6;	 cf.	 Box 1	 and	 Figure 8).	 WF	 calibra-
tion	 (H4.1)	 predicted	 WF	 samples	 with	 a	 misclassification	 rate	
of	 0.041 ± 0.027,	while	misclassification	 rate	 for	 EF	 samples	was	
as	 high	 as	 0.349 ± 0.071	 (Supplementary	material	 S1,	 Figure S2).	
Mean	prediction	accuracy	of	Myodes rufocanus	was	96.8% ± 3.14%	
in	WF	samples,	but	only	27.1% ± 15.6	in	EF	samples,	while	predic-
tion	 accuracy	 of	Microtus oeconomus	 samples	 from	WF	was	 high	
(94.2% ± 5.30%),	but	not	as	high	as	in	EF	samples	(99.4% ± 2.70%;	
Figure 6	upper	row).

Similar	 region-	specific	 pattern	 emerged	 with	 calibration	 mod-
els	built	on	EF	data	 (H4.2).	Misclassification	rate	was	 lower	for	EF	
(0.171 ± 0.140)	 than	 for	 WF	 samples	 (0.265 ± 0.064,	 Figure S2).	
Prediction	 accuracy	 for	 M. oeconomus	 form	 WF	 was	 especially	
poor	(47.9% ± 20.2%),	while	M. rufocanus	reached	higher	prediction	
accuracy	 (89.7% ± 12.8%;	 Figure 6	 middle	 row).	 By	 contrast,	 both	
M. oeconomus	 (84.9% ± 19.6%)	 and	 M. rufocanus	 (80.8% ± 21.4%)	
from	 EF	 test	 data	 reached	 decent	 prediction	 accuracies	 (Figure 6 
middle	row).

Calibration	model	 including	both	WF	and	EF	 samples	 (H4.3)	
predicted	test	samples	nearly	as	well	or	better	than	either	of	the	
regional	 models	 alone	 (Figure 6).	 Misclassification	 rate	 for	WF	
samples	 was	 0.041 ± 0.027,	 and	 for	 EF	 samples,	 0.104 ± 0.108	
(Figure S2).	 Mean	 prediction	 accuracy	 for	 M. rufocanus	 was	
96.7% ± 3.25%	for	WF	and	85.3% ± 18.5%	for	EF	samples	(Figure 6 
lower	 row).	 Models	 predicted	 M. oeconomus	 at	 94.6% ± 5.02%	

F I G U R E  4 Beta-	regression	posterior	
distributions	(mean ± 95%	CI)	of	exposure	
duration	(in	weeks)	effect	on	individual	
prediction	accuracy	(IPA)	of	four	species	
included	in	exposure	treatment.	Upper	
panel	shows	model	results	where	IPA	
values	are	based	on	H1	calibration,	
whereas	in	lower	panel	IPA	values	are	
based	on	H2	calibration.
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10 of 18  |     TUOMI et al.

and	93.9% ± 13.2%	in	WF	and	EF	samples,	respectively	(Figure 6 
lower	row).

4  |  DISCUSSION

Our	results	demonstrate	fNIRS	as	an	accurate	method	for	predict-
ing	vole	and	 lemming	genus	and	species	 identity	based	on	single	

fecal	pellets	 (H1	and	H2).	While	the	calibration	models	predicted	
genus	identity	extremely	well	(at	>95%	accuracy),	prediction	accu-
racy	of	species	identity	varied	more	but	was	still	good-	to-	excellent	
at	 85%–	98%.	 Exposure	 of	 samples	 to	 ambient	 weather	 resulted	
in	 the	best	 calibration	model	 performance,	 contradicting	 the	hy-
pothesized	 negative	 effect	 of	 collecting	 samples	 from	 the	 field	
(H1	vs.	H2).	Surprisingly,	we	did	not	find	support	for	diet	being	a	
major	determinant	of	species	prediction	accuracy	(H3).	Calibration	

F I G U R E  5 Comparing	variation	in	diet	composition	with	individual	sample	misclassification	rate.	Each	individual	(sample)	is	plotted	as	
a	separate	dot,	and	all	five	species	are	plotted	in	their	separate	subplots.	Spreads	of	species-	specific	diets	are	shown	by	separate	ellipses.	
Point	color	darkness	indicates	lower	IPA	value,	that	is,	higher	sample	misclassification	rate	based	on	rdMCCV	calibration	models	on	plotted	
samples.	Point	locations	are	latent	variables	of	relative	read	abundances.	Latent	variable	modeling	is	equivalent	to	unconstrained	ordination,	
that	is,	proximity	of	samples	in	two-	dimensional	space	indicates	diet	similarity,	and	distance	indicates	dissimilarity.
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    |  11 of 18TUOMI et al.

models	 including	samples	 from	two	regions	provide	good	predic-
tion	accuracy	 for	both	 regions,	 corroborating	our	 fourth	hypoth-
esis	 (H4.3).	 However,	 calibration	models	 based	 on	 samples	 from	
one	region	may	not	readily	be	applicable	to	samples	from	another	
region	 (H4.1,	H4.2).	Our	findings	are	 in	 line	with	previous	results	
of	reaching	good	prediction	accuracies	when	calibration	datasets	
are	 expanded	 in	 space	 or	 time	 (Murguzur	 et	 al.,	 2019;	 Tolleson	
et	al.,	2005).

Our	results	lend	strong	support	for	using	fNIRS	on	samples	ex-
posed	 to	 ambient	 conditions,	 that	 is,	 samples	 collected	 from	 the	
field,	 and	 for	 further	development	of	 fNIRS	 for	 large-	scale	 rodent	
population	monitoring,	including	cross-	regional	calibrations.	For	fu-
ture	applications,	the	biggest	appeal	lies	in	the	versatility	of	fNIRS.	
In	addition	to	small	rodent	censuses	or	community	sampling,	fNIRS	
calibrations	can	provide	information	on	demography,	fecal	nutrients,	
stress	hormones,	and	even	disease,	variables	linked	with	fitness	and	
not	all	captured	by	genetic	methods—	all	from	the	same	NIR	spectra.	
This	makes	 fNIRS	 a	 compelling	 addition	 to	 ecosystem	monitoring	
and	sampling	toolkits.

4.1  |  Diet and misclassification

Dried	feces	consist	of	ingested	diet	material,	gut	microbes	and	sloughed	
tissue,	gastric	secretions,	and	metabolized	hormones,	of	which	all	may	
carry	species-	specific	chemical	or	structural	imprints.	Of	these,	we	ex-
plicitly	addressed	the	link	between	diet	composition	and	misclassifica-
tion.	We	did	not	find	strong	evidence	of	diet	composition	explaining	
individual	sample	misclassification.	This	result	is	surprising	as	diet	qual-
ity	measures	such	as	fecal	nitrogen,	neutral	and	acid	detergent	fiber	
(NDF,	ADF),	crude	fiber,	lignin,	ether	extracts,	and	ash	are	well	predict-
able	from	fNIR	spectra	(Gil-	Jiménez	et	al.,	2015;	Steyaert	et	al.,	2012).	

If	 diet	 quality	 and	 composition	 are	 only	 loosely	 associated,	 the	 link	
between	fNIR	spectra,	species	 identity,	and	generalist	diet	composi-
tion	may	not	be	easily	detected.	Even	so,	it	is	likely	that	group-	specific	
variation	in	diet	composition	affecting	any	diet	quality	variable	would	
still	affect	misclassification	rates	(e.g.,	Tolleson	et	al.,	2005).	Further	re-
search	is	needed	to	determine	whether	and	which	diet	composition	or	
quality	variables	co-	vary	with	species	identity	to	affect	fNIRS	rodent	
species	classification.

Furthermore,	 the	 large	 sample	 size	 from	WF	may	 have	 incor-
porated	sufficiently	high	levels	of	intraspecific	dietary	variation,	to	
render	 the	effect	of	diet	on	misclassification	 rate	small,	 compared	
with	other	fecal	constituents.	With	 lower	sample	sizes,	systematic	
variation	in	diet,	for	example,	between	years	could	confound	species	
identification	as	found	by	Tolleson	et	al.	(2005).	Similarly,	systematic	
variation	 in	 species	 diet	 between	 regions	 could	 explain	 high	 rates	
of	misclassifications	between	WF	and	EF.	Species-	specific	diets	be-
tween	these	regions	may	differ	given	different	rodent	species	guild	

F I G U R E  6 H4	model	prediction	accuracy	(mean ± sd)	for	WF	
and	EF	separately.	Upper	row:	H4.1	calibration	is	based	on	WF	data	
only.	Middle	row:	H4.2	calibration	is	based	on	EF	data	only.	Lower	
row:	H4.3,	calibration	is	based	on	jointly	WF	and	EF	data.

F I G U R E  7 Canonical	discriminant	plot	of	the	calibration	model.	
Each	point	indicates	modeling	dataset	sample	position	in	the	FDA	
model's	3D	canonical	discriminant	space.	Point	shape	indicates	
species	identity,	and	point	shade	of	gray	indicates	the	individual	
sample	IPA	value	so	that	hue	darkness	denotes	increasing	
misclassification	rate.	llem,	Lemmus lemmus;	magr,	Microtus agrestis; 
moec,	Microtus oeconomus;	mruf,	Myodes rufocanus.
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12 of 18  |     TUOMI et al.

composition,	 habitat	 composition,	 and	 forage	 availability,	 which	
could	translate	to	variation	in	dietary	quality.	With	WF	calibrations,	
both M. rufocanus	and	M. oeconomus	from	EF	were	frequently	mis-
classified,	as	 they	appeared	 to	cluster	 together	with	M. agrestis—	a	
species	absent	from	Eastern	Finnmark.	It	is	possible	that	in	the	ab-
sence	of	M. agrestis,	which	competes	with	both	M. oeconomus	and	
M. rufocanus	 at	WF,	 these	 latter	 two	 species'	 dietary	niches	 in	EF	
resemble	that	of	M. agrestis	at	WF.

4.2  |  Juxtaposing misclassification with 
phylogenetic history

In	 general,	 classification	 model	 performance	 emerges	 likely	 as	
a	 complex	 product	 of	 individual	 traits	 linked	 with	 phylogenetic	
history.	 Evolutionary	 constraints	 may	 manifest	 in	 fNIR	 spectra	
through	 morphological,	 physiological,	 or	 microbiological	 differ-
ences	in	the	digestive	system,	along	with	ecological	niche	factors	
(Blomberg	 et	 al.,	2003).	 Dental	 and	 gut	morphologies	 are	 exam-
ples	of	phylogenetically	variable	traits	that	may	affect	fNIRS	spe-
cies	identification	through	differences	in	fecal	particle	size	(Clauss	
et	al.,	2015;	Sheine	&	Kay,	1977)	and	fecal	nitrogen	levels	or	fiber	

digestibility	 (Clauss	 et	 al.,	 2015;	 Lovegrove,	 2010),	 respectively	
(Foley	 et	 al.,	1998;	 Tolleson	 et	 al.,	2005	 and	 references	 therein;	
Steyaert	et	al.,	2012).

Indeed,	divergence	of	Lemmus,	Myodes,	 and	Microtus	 at	 tribal	
level	 (Buzan	 et	 al.,	 2008)	 is	 congruent	 with	 good	 performance	
of	 calibration	 models	 at	 genus	 level.	 Similarly,	Myodes rufocanus 
and	M. rutilus	which	were	well	 separated	 in	classification	models	
show	marked	phylogenetic	differentiation	within	the	genus	(Buzan	
et	al.,	2008;	Cook	et	al.,	2004;	Kohli	et	al.,	2014).	While	 the	two	
Myodes	 species'	 ecology	can	be	 similar	 in,	 for	example,	 subarctic	
birch	 forests	 (cf.	 Ehrich	 et	 al.,	 2009),	 clear	 behavioral	 niche	 dif-
ferences	may	exist	(Nations	&	Olson,	2015)	and	for	instance	their	
habitat	use	at	JRA	differs	markedly.	By	contrast,	higher	misclassi-
fication	rates	and	similarities	in	Microtus	fNIR	spectra	link	with	the	
relatively	recent	and	rapid	radiation	history	of	the	genus	(Barbosa	
et	al.,	2018).	While	M. oeconomus	is	ancestral	to	M. agrestis,	there	
is	 ongoing	 intraspecific	 divergence	within	 both	 species	 (Barbosa	
et	 al.,	 2018),	 as	 well	 as	 strong	 interspecific	 competition	 (e.g.,	
Hoset	 &	 Steen,	 2007).	 Divergence	 patterns	 in	 dental	 structure	
converge	roughly	with	these	phylogenetic	patterns,	with	Microtus 
oeconomus	 and	 M. agrestis	 displaying	 the	 smallest	 differences	
(Herrmann,	2002).

F I G U R E  8 Canonical	discriminant	plot	of	the	calibration	model,	with	predicted	locations	of	WF	and	EF	test	samples	plotted	on	top	of	
the	modeling	dataset	points	(cf.	Figure 7).	Point	shape	indicates	species	identity.	WF	and	EF	samples	are	plotted	with	large	points	with	
black	borders	and	with	fill	color	indicating	correct	or	incorrect	calibration	model	prediction.	Modeling	data	are	plotted	in	all	panels	as	small	
transparent	gray	points	as	in	Figure 7.
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    |  13 of 18TUOMI et al.

4.3  |  Identification of species and pellet exposure

Surprisingly,	misclassification	rates	of	our	samples	decreased	after	
exposure	to	ambient	weather.	This	was	mainly	due	to	higher	predic-
tion	accuracy	within	the	genus	Microtus,	when	we	excluded	intesti-
nal	samples	from	modeling.	 It	appears	that	species-	specific	signals	
in	fNIR	spectra	of	the	closely	related	M. oeconomus	and	M. agrestis 
became	more	apparent	with	exposure.	While	we	found	no	evidence	
of	reduced	prediction	accuracy	with	increasing	exposure	time,	rates	
of	visible	changes	in	spectra	varied	between	weeks	and	species.	Yet,	
it	 is	 likely	 that	exposure	 times	 longer	 than	6 weeks	will	 eventually	
lead	 to	 loss	of	 species-	specific	 signals	 as	 the	 fecal	 pellets	 decom-
pose.	Further	research	is	needed	to	determine	the	maximum	or	op-
timal	timeframe	for	successful	classification	of	field-	sampled	rodent	
feces.	How	this	compares	with	degradation	of	genetic	material	might	
indicate	the	suitability	of	genetic	vs.	spectral	analysis	for	old	fecal	
samples.

Comparing	models	that	include	both	intestinal	and	exposed	sam-
ples	to	models	with	exposed	samples	only	allows	for	speculation	as	
to	which	fecal	constituents	may	have	contributed	to	species	identi-
fication,	 based	 on	 constituents'	 known	 susceptibility	 to	 exposure.	
Specifically,	 species-	specific	 signals	 in	 fNIR	 spectra	 seem	 not	 to	
associate	with	volatile	or	rapidly	leaching	substances.	For	instance,	
stability	of	constituents	linked	with	dietary	quality	in	fecal	samples	
varies	strongly	under	exposure	(Jenks	et	al.,	1990;	Kamler	et	al.,	2003; 
Leite	&	Stuth,	1994;	Steyaert	et	al.,	2012).	Gut	microbiota	and	the	
fecal	metabolome	 likely	displays	phylogenetic	and	species-	specific	
variation	(Anders	et	al.,	2021;	Zierer	et	al.,	2018)	detectable	by	fNIRS	

(Santos	et	al.,	2014;	Saric	et	al.,	2008).	Fecal	steroid	metabolite	con-
centrations	of	various	large	mammal	species	decline	during	days	or	
remain	stable	for	only	up	to	a	week	(Abáigar	et	al.,	2010;	Mesa-	Cruz	
et	al.,	2014;	Parnell	et	al.,	2015).	Thus,	steroid	metabolites	may	be	
too	 short-	lived	 to	have	accounted	 for	 species	 identification	 in	our	
study.	By	contrast,	differences	 in	microbial	flora	could	translate	to	
some	exposure-	resistant	differences	in	rodent	fNIR	spectra.	For	in-
stance,	diaminopimelic	acid	(DAPA),	a	marker	of	gut	microbe-	derived	
N	in	feces	 (Karr-	Lilienthal	et	al.,	2004),	has	good	NIRS	calibrations	
(Atanassova	et	al.,	1998)	and	has	been	found	to	retain	stable	con-
centrations	in	exposed	deer	feces	(Kamler	et	al.,	2003).	In	summary,	
rodent	species	identification	is	likely	to	rest	on	a	multitude	of	fecal	
constituents,	 many	 of	 which	 link	 with	 phylogenetic	 distance	 (Ley	
et	al.,	2008;	Zierer	et	al.,	2018)	and	have	varying	resistance	to	expo-
sure	and	decay.	We	note	that	quoted	studies	on	exposure	effects	on	
fecal	dietary	quality	indicators	and	on	fecal	metabolome	cover	only	
up	to	a	few	weeks	or	days,	respectively,	providing	only	a	preliminary	
basis	for	interpretation	of	constituents	affecting	fNIRS	calibrations.

4.4  |  Toward application of fNIRS calibrations for 
rodent monitoring

Our	 results	corroborate	previous	 findings	of	breaking	past	 limita-
tions	of	 closed	 sample	populations	 (Murguzur	et	 al.,	2019),	 as	we	
show	that	increasing	the	spatial	extent	of	calibration	data	will	pro-
duce	robust	models	across	sample	populations.	However,	we	also	
caution	 for	 high	 or	 increased	 misclassification	 rates	 of	 samples	

F I G U R E  9 Comparison	of	the	calibration	model's	variable	selection	and	variable	importance	(VI)	with	the	variable	selection	across	all	
rdMCCV	models.	Wavelength	is	plotted	on	the	x-	axis.	Upper panel:	Wavelengths	with	VI > 0	across	all	rdMCCV	iterations.	Increasing	hue	
darkness	indicates	higher	frequency	of	VI > 0	for	that	wavelength	across	all	600	rdMCCV	iterations	(a	gray,	transparent	vertical	line	is	
plotted	each	time	a	wavelength	receives	a	VI	score > 0).	Plot	includes	mean	spectra	of	all	four	species	in	the	calibration	model,	to	visualize	
differences	in	spectra	with	important	wavelength	distribution.	Lower panel:	Wavelengths	with	VI > 0	in	the	calibration	model,	with	VI	score	
on	the	reversed	y-	axis.
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from	 ecological	 contexts	 outside	 the	 calibration	 range	 (Tolleson	
et	 al.,	2005;	Murguzur	 et	 al.,	2019)	 and	 advise	 occasional	 valida-
tion	 of	 few	 predicted	 samples,	 as	well	 as	 inclusion	 of	 feces	 from	
contrasting	biomes,	 seasons,	 and	populations.	New	samples	 from	
external	 populations	 may	 exhibit	 considerably	 different	 variation	
in	 constituents	 underlying	 the	 species-	specific	 signal	 compared	
with	 calibration	 samples,	making	 their	 predictive	modeling	 highly	
risky.	 This	 is	 hardly	 surprising,	 if	 the	 species-	specific	 signal	 is	 co-	
determined	by	a	complex	host	of	constituents,	some	of	which	are	
linked	 to	 community-	specific	 interactions	 (e.g.,	 diet,	 disease,	 and	
body	condition),	while	others	would	be	more	unequivocally	associ-
ated	with	phylogenetic	constraints	(gut	or	dental	morphology	and	
gut	microbiome).	Therefore,	increasing	the	variability	in	calibration	
data	should	mask	constituents	 linked	with	community-	specific	 in-
teractions	 and	 lead	 to	 the	 detection	of	wavelength	 combinations	
predictive	of	species	identity	across	populations.	While	diet,	habi-
tat	 use	 and	 gut	morphology	 of	microtine	 rodents	 show	 high	 lev-
els	of	plasticity	(Lovegrove,	2010;	Soininen	et	al.,	2013),	a	growing	
body	of	fNIRS	research	(Aw	&	Ballard,	2019;	Tolleson,	2010;	Vance	
et	al.,	2016)	suggests	that	robust	species-	specific	markers	are	also	
likely	to	exist.

Practical	 application	 of	 fNIRS	 for	 monitoring	 and	 census	 pur-
poses	 rests	 on	 good	understanding	of	model	 behavior	 and	 limita-
tions	 of	 calibration	 models.	 Notably,	 we	 found	 that	 the	 selected	
wavelengths	 varied	 considerably	 between	 model	 iterations	 (see	
Box 1),	 thus	 providing	 little	 support	 for	 any	 definite	 set	 of	wave-
lengths	being	superior	for	species	identification.	Instead,	our	mod-
eling	 framework	 provides	 a	 visual	 tool	 to	 assess	 misclassification	
risk	 of	 new	 samples	 derived	 from	 the	 calibration	 data	 population	
(Figures 7	and	8).	Samples	located	well	within	species	clusters	in	the	
discriminant	 space	are	 likely	 to	be	predicted	 correctly,	while	 sam-
ples	falling	between	the	clusters	have	a	considerably	higher	risk	of	
misclassification.	Such	samples	should	optimally	be	used	to	improve	
model	decision	boundaries	by	including	them	in	the	model	calibra-
tion.	To	control	for	interannual	variation	or	drift	in,	for	example,	diet	
in	 long-	term	monitoring,	 a	 small	 subset	of	new	samples	 should,	 at	
regular	intervals	if	possible,	undergo	an	external	verification	of	spe-
cies	identity,	and	thus	compliment	the	calibration	dataset.

In	 conclusion,	 fNIRS	 can	 facilitate	 rodent	 population	 cen-
suses	 with	 larger	 sample	 sizes,	 combining	 large	 spatial	 extent	
with	 small	 grain	 if	 combined	with	pellet-	count-	based	 abundance	
indices	 (Engeman	 &	Whisson,	 2006;	 Jareño	 et	 al.,	 2014;	 Karels	
et	al.,	2004).	The	wide	array	of	data	(e.g.,	diet,	disease,	and	stress)	
discernible	 through	 fNIRS	 suggests	 that	 developing	 monitoring	
schemes	based	on	pellet	counts	and	 fNIRS	could	meet	 the	need	
for	 ecosystem-		 and	 interaction-	based	 approaches	 to	monitoring	
(Ehrich	 et	 al.,	 2019)	 and	 for	 this	 purpose	 complement	 genetic	
methods	(Zemanova,	2021).	Further	steps	in	this	direction	involve	
increasing	the	spatial	scope	of	calibrations,	extending	the	calibra-
tion	exposure	times	to	meet	the	needs	of	field	sampling	intervals,	
as	well	as	continuous	development	of	the	calibration	model	algo-
rithm	and	outlier	detection.	Key	advantage	of	fNIRS	is	the	ability	to	
use	existing	spectral	data	to	develop	calibrations	for	any	number	

of	qualitative	and	quantitative	variables	(Foley	et	al.,	1998;	Vance	
et	 al.,	 2016),	 opening	 possibilities	 to	 link	 process	 and	 pattern	
across	 different	 levels	 of	 organization.	 For	 small	 rodents,	 fNIRS	
could	 provide	 invaluable	 data	 for	 nutritional	 ecology,	 stress	 and	
disease,	 underlying	 population	 dynamics	 and	biotic	 interactions.	
Thus,	given	 the	emergence	of	active	global	 researcher	networks	
(e.g.,	 Barrio	 et	 al.,	2016)	 and	 spectral	 libraries	 (e.g.,	 Shepherd	&	
Walsh,	2002),	we	propose	 initiatives	toward	development	of	cir-
cumpolar,	−boreal	or	global	rodent	fNIRS	calibrations.
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