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ABSTRACT Rapid growth in urbanization and industrialization leads to an increase in air pollution and poor
air quality. Because of its adverse effects on the natural environment and human health, it’s been declared a
‘‘silent public health emergency’’. To deal with this global challenge, accurate prediction of air pollution is
important for stakeholders to take required actions. In recent years, deep learning-based forecasting models
show promise for more effective and efficient forecasting of air quality than other approaches. In this study,
we made a comparative analysis of various deep learning-based single-step forecasting models such as long
short term memory (LSTM), gated recurrent unit (GRU), and a statistical model to predict five air pollutants
namely Nitrogen Dioxide (NO2), Ozone (O3), Sulphur Dioxide (SO2), and Particulate Matter (PM2.5, and
PM10). For empirical evaluation, we used a publicly available dataset collected in Northern Ireland, using an
air quality monitoring station situated in Belfast city centre. It measures the concentration of air pollutants.
The performance of forecasting models is evaluated based on three performance metrics: (a) root mean
square error (RMSE), (b) mean absolute error (MAE) and (c) R-squared (R2). The result shows that deep
learning models consistently achieved the least RMSE compared to the statistical models with a value of
0.59. In addition, the deep learning model is also found to have the highest R2 score of 0.856.

INDEX TERMS Air quality, machine learning, deep learning, predictive models, statistical methods.

I. INTRODUCTION
Over the past few years, air pollution has become a major
global challenge. Air pollution has a direct impact not only
on the environment but also on human health and well-being.
It has been observed that air pollution leads to increase mor-
tality and morbidity such as respiratory diseases, impaired
cognitive function, cardiovascular diseases, and cancer [1],
[2]. Each year, over 3 million deaths are recorded due to air
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pollution especially in low and middle income countries [3].
In addition, the United Nations (UN) has defined sustainable
development goals (SDG) such as 3, 7 and 11 where targets
are set for 2030 to reduce deaths, illness and the adverse
environmental effect in cities by improving air quality and
other factors [4]. Similarly, in the United Kingdom (UK), the
government has set a target to reduce 35% of air pollution by
2040 [5].

There are multiple factors involved in deteriorating air
quality such as manufacturing, industrial emissions, trans-
portation (in land, air and sea) emissions, dust, and coal
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consumption [6]. Air pollution is the introduction of harmful
materials and gases into the environment which is of great
concern to humans and other living organisms. These harmful
materials (solids, liquids or gases) are called pollutants.When
these pollutants like PM2.5 (Particulate Matter) are produced
in higher concentrations than usual, it reduces the quality of
our environment and causes serious harmful health effects
[7], [8], [9].

Education and raising public awareness relating to this
issue requires interdisciplinary approaches with profession-
als and other stakeholders. Local councils are playing their
part and have set up many air quality monitoring stations
throughout the country to monitor the concentration of air
pollutants. Data collected from such monitoring stations can
be used in the prediction of pollutants. Prediction of air
quality is important to control air pollution and to identify
areas which require solutions to overcome air pollution and
related impacts. However, how tomodel air quality accurately
is a challenge on its own and depends on available data and
modelling approaches. The main contributions of this study
include: (1) We propose a combination of meteorological
parameters such as temperature, wind speed and wind direc-
tion with lagged air quality feature which is based on the
concentration value of the previous hour for the pollutant
being predicted for the next hour. We also make use of
the datetime index by splitting it into hour, day and month
for additional features to improve prediction accuracy and
reduction of error. (2) We propose a comprehensive study
to predict the five major air pollutants and a comparison
of deep learning base models with statistical model. (3) We
provide detail architectural and parameters information for
both deep learning and statistical models, to predict each
pollutant, which can be useful in various applications in the
scope of smart cities or can provide benchmarking for more
better and accurate models.

The remainder of the paper is organized as follows: related
work is described in Section II, the considered statistical and
deep learning models with architectural details are provided
in Section III. Section IV describe the dataset. Model training
and testing is discussed in Section V. Results and discussion
are provided in Section VI and finally, we concluded the
paper in Section VII.

II. RELATED WORK
In recent years, machine learning (ML), particularly deep
learning (DL), models for regression problems have received
a great amount of attention to predict air pollution [10],
[11]. In [12] a light gradient boosting machine model is
proposed to process high dimensional large-scale data, col-
lected from 35 air quality monitoring stations in Beijing.
The PM2.5 concentration levels are predicted for the next
24 hours. They compared model performance with Adap-
tive boosting (Adaboost), gradient boosting decision tree
(GBDT), extreme gradient boosting (XGboost), and deep
neural network (DNN). Based on symmetric mean absolute
percentage error (SMAPE), mean square error (MSE) and

mean absolute error (MAE), the results show that their model
outperformed. Furthermore, the integration of historical data
significantly improves the performance of the model. In a
similar study [13] to predict PM2.5, the dataset was collected
by a Taiwan air quality monitoring station from 2012 to 2017.
The data was gathered from 5 major polluted cities of Taiwan
and contains meteorological data as well as air pollution
data. In pre-processing, methods like Fourier arrangement
and spline multinomial approaches are used to impute miss-
ing values in the dataset. Although data was collected on
an hourly basis, it was converted into a daily and monthly
basis to make the monthly prediction. The proposed model,
gradient boosting regression model, based on the coefficient
of determination (R2), RMSE, MSE and MAE are compared
with models like linear regression, lasso regression, random
forest regression, K-nearest neighbours regression, decision
tree regression and many others. In [14], data were collected
from various air quality monitoring stations including local
and nearby industrial areas. The PM2.5 pollutant is predicted
using a modified LSTM model and found to be better for
prediction up to 8 hours by comparing with models such as
LSTM, support vector machine-based regression (SVR) and
gradient boosted tree regression (GBTR).

A multivariant lag-FLSTM (lag-LSTM-fully connected
network) model is proposed with Bayesian optimisation to
predict PM2.5 concentration [15]. The dataset is collected
from four monitoring stations situated in Wayne county,
United States. It contains hourly air pollutants data, meteoro-
logical and temporal features over 2 years. To impute missing
values, values were replaced by values of the previous day
having same time index. The proposed model was com-
pared with other models including autoregressive integrated
moving average (ARIMA), LASSO regression, ridge regres-
sion, SVR, artificial neural network (ANN), recurrent neural
network (RNN), LSTM, Lag-FLSTM and evaluated using
RMSE, MAE and mean absolute percentage error (MAPE).
It was emphasized that combining meteorological and other
air pollutant data in the training of the model can yield
better prediction of PM2.5 concentration. In [16], authors
developed forecasting models based on DL methods such as
convolutional neural network (CNN), LSTM, CNN-LSTM,
spatiotemporal clustering and their combination. The dataset
includes hourly meteorological, air pollutant, spatial and tem-
poral data collected from 12 monitoring stations at Beijing
based on 2 years. The models performance is evaluated using
RMSE and the index of agreement for prediction over 1-6
hours. The results indicated that LSTM is found to be the
best model for multi-hour forecasting. However, there is a
relatively small difference in the performance of the LSTM
and CNN-LSTM.

In [17], a hybrid model is proposed by combining
a one dimensional (1D) CNN with bi-directional LSTM
for PM2.5 single-step and multi-step forecasting for next
48 hours. The local trends and spatial features based on hourly
collected data over 4 years are extracted using 1D-CNN and
proposed model is compared with SVR, variants of LSTM,
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CNN and RNN to achieve lowest RMSE. A ensemble empiri-
cal mode decomposition (EEMD) method is combined with a
LSTMmodel to improve PM2.5 forecasting [18]. The EEMD
method improved the performance of forecasting by introduc-
ing white noise in the target data and decomposing the time
series data into several sub-series. To predict PM2.5, data
from 74 cities of Chinawere used and predicted by combining
LSTM and GRU models [19]. The proposed model produced
better prediction in terms of RMSE by comparing with a
LSTMmodel only. A bi-directional GRUmodel, a simplified
version of LSTM without any memory gate, is used to learn
long term dependencies by combining with 1D-CNN [20].
Different combinations of features were tested and found that
model perform better based on historical data of pollutant and
meteorological parameters like temperature, dew point, wind
speed and direction. The proposedmodel achieved significant
improvement in accuracy by comparing with traditional ML
models and variants of RNN.

In [21], various ML approaches were implemented for the
hourly PM2.5 concentration only and prediction is performed
in Beijing using meteorological, temporal and PM2.5 con-
centrations data. The dataset was based on nearby stations
and proposed a gradient-boosted regressor model. In a similar
study using the publicly available dataset for PM2.5 predic-
tion, a hybrid CNN-LSTM model is proposed and compared
with other deep learning approaches [22]. A large-scale study
is conducted by incorporating a dataset from 1,085 stations
in China and PM2.5 is predicted for the next 72 hours using
a state-of-the-art model architecture based on a transformer
model. The performance of the proposed architecture is
enhanced using a two-stage approach in which along with
spatial and temporal dependencies and a stochastic approach
is used to capture uncertainty of the air quality data [23].
A combination of graph neural networks (GNN) and GRU
model is used to predict PM2.5 for next 72 hours by incor-
porating both spatial and temporal domain knowledge [24].
In the construction of graphs, the node and edges are defined
by meteorological information for each city while geograph-
ical information is embedded into graph structures. Although
aforementioned studies mostly investigated PM2.5, in this
paper we have covered broad range of pollutants such as NO2,
O3, SO2, PM2.5, and PM10 and provided prediction model
for each pollutant.

III. TIME SERIES FORECASTING MODELS
The details about the considered forecasting models are pro-
vided in this section as follows:

A. STATISTICAL MODEL
An autoregressive integrated moving average (ARIMA) is
a classic statistical modelling approach also referred as
Box-Jenkin’s method for time series forecasting [25]. For
non-stationary time series, generally the case for air pollution
data, it requires auto regressive (AR) and moving average
(MA) terms. To make data stationary, common approaches

FIGURE 1. A simplified architecture of a RNN model.

such as differencing technique can be used on data x(t) and
order of difference (also known as lag) is defined by param-
eter d as given in (1). Here, B is a backward shift operator.
Moreover, the model to forecast xd (t) also requires identi-
fication of parameters like p and q, which defines number
of AR and MA terms, respectively, as given in (2). Here, w
are weights relating AR and MA terms and n(t) is Gaussian
noise with zero mean. The optimum values of ARIMAmodel
parameters such as p, d and q, can be found using autocor-
relation function (ACF) and partial autocorrelation function
(PACF) based on the data and its associated differences.

xd (t) = x(t) − Bdx(t) (1)

xd (t) =

p∑
i=1

wixxd (t − i) +

q∑
j=0

wjnn(t − j) (2)

B. DEEP LEARNING MODELS
The deep learning models contains recurrent neural network
(RNN), which is based on sequence or time series data and
found to provide improved performance in applications like
natural language processing and speech recognition [26],
[27]. The RNN model has memory units to capture and learn
dependencies between input and output over short or long
term. However, with the increase in the network layers and
iterations, RNN tends to forget the dependencies and suffer
with vanishing gradient problem. Fig 1 shows a simplified
architecture of RNN model with M layers and each layer is
compose of cells to process the data.

TheRNNhas vanishing gradients or long-term dependence
issue.

1) LONG SHORT TERM MEMORY
A variant of RNN known as long short-termmemory (LSTM)
solves this issues [28]. A LSTM cell is shown in Fig. 2.

In Fig. 2, each cell has its state and three gates such as
forget gate, an input gate and an output gate. Output of
forget gate f (t) decides the contribution of previous cell state
c(t − 1) to produce current cell state c(t). In addition, input
gate output i(t) decides amount of new information, which is
required to produce current cell state. Whereas, output gate
generates output h(t) based on current cell state, current input
(also known as new information) x(t) and previous hidden
state (also known as previous output or past information)
of cell h(t − 1). These gates are represented mathematically
in (3)-(8).

f (t) = σ (wfxx(t) + wfhh(t − 1) + bf ) (3)
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FIGURE 2. LSTM Cell.

FIGURE 3. GRU Cell.

i(t) = σ (wixx(t) + wihh(t − 1) + bi) (4)

c̃(t) = tanh(wc̃xx(t) + wc̃hh(t − 1) + bc̃) (5)

o(t) = σ (woxx(t) + wohh(t − 1) + bo) (6)

c(t) = f (t)c(t − 1) + i(t)c̃(t) (7)

h(t) = o(t)tanh(c(t)) (8)

where σ and tanh are the activation functions and b is the
bias for respective gates in the LSTM cell. The output of each
gate is generated by applying respective activation function
on weighted sum, for e.g. wfx is the weight for input in forget
gate, and bias.

2) GATED RECURRENT UNIT
Gated Recurrent Unit (GRU) is another variant of RNN and
a simplified version of LSTM cell with fewer parameters to
achieve faster training compare to LSTM [29]. The GRU cell
is based on two gates such as a reset gate and a update gate
as shown in Fig. 3.

The reset gate output r(t) control the amount of previous
output of cell, h(t − 1), information to forget while output of
the update gate z(t) control the amount of previous output of
cell to remember. The output h(t) is produce by combining
gate outputs and h̃(t). These gates are represented mathemat-
ically as given in (9)-(12).

r(t) = σ (wrxx(t) + wrhh(t − 1) + br ) (9)

z(t) = σ (wzxx(t) + wzhh(t − 1) + bz) (10)

h̃(t) = tanh(wh̃r(t)h(t − 1) + wh̃xx(t) + bh̃) (11)

h(t) = h(t − 1)z(t) + (1 − z(t))h̃(t) (12)

where σ and tanh are the activation functions and b is the bias
for respective gates in the GRU cell. The output of each gate
is generated by applying the respective activation function on
weighted sum, for e.g. wrx is the weight for input in reset gate,
and bias.

IV. DATASET
The dataset used in this study is collected from air quality
in Northern Ireland, which is publicly available [30]. This
dataset includes hourly concentration level of the air quality
parameters such as Nitrogen Dioxide (NO2), Ozone (O3),
Sulphur Dioxide (SO2), and Particulate Matter (PM2.5 and
PM2.10). In addition, it contains meteorological data such as
temperature, wind speed andwind direction. This data is mea-
sured at the Belfast city centre using air quality monitoring
station between 2015 and 2020. This dataset contains over
50,000 samples.

Statistical information of meteorological data (i.e., temper-
ature, wind speed, wind direction) is provided in Table. 1.
It includes statistical information such as the total number of
samples, mean, standard deviation, minimum and maximum
value of each data. Total number of samples is found to be
above 50,000. Mean and standard deviation of all parameters
range from 5.63 to 213.19 and 2.77 to 84.87, respectively.
Minimum value of all parameters is 0 and maximum value
ranges between 24 to 360. Table. 2 provides a summary of
the statistical information of all air quality parameters. The
NO2 concentration data ranges from 1 to 203 with a mean and
standard deviation of 26.11 and 17.87, respectively. While,
lowest mean is found to be of SO2 with standard deviation of
1.6.

V. MODEL TRAINING AND TESTING
This section provides details about the data preparation,
model training, hyperparameters optimization, and testing of
the single-step forecasting models.

1) DATA PRE-PROCESSING
Generally, any dataset may contain outliers, and invalid
values, and data may need to be normalized as per fore-
casting model requirements. Outliers are extreme or odd
values that are unlike other dataset values and their presence
may affect the overall distribution of data. However, outliers
must be removed to improve the forecasting model’s perfor-
mance. Likewise, the dataset may have a missing or periodic
sequence of values known as invalid values that needs to be
removed or replaced by some estimated values before mod-
eling. Finally, normalization is performed on the dataset by
re-scaling data to fall in the predefined range. Normalisation
can help the forecasting models to perform better on the data
with a smaller scale and improve the convergence speed of the
models. The dataset used in this paper is pre-processed for
outliers using interquartile range method (IQR) and invalid
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TABLE 1. Statistics of meteorological data.

TABLE 2. Statistics of air pollutants in µg/m3.

values by removing them. In pre-processing to replace the
missing values, we are grouping data into month, day and
hour. Then, the missing values are replaced by taking an
average of the available concentration values on same month,
day and hour in all years of the dataset. This approach allows
for a greater spread of values for the missing data.

The meteorological data is considered an addition input
features for the forecasting models. Other than the features
available in the dataset, we have also created lagged feature
by taking the concentration value of the previous hour of the
pollutant being predicted and the datetime index is split into
hour, day, and month to create additional features. Therefore,
for the prediction of each pollutant, we have considered a
combination of features such as previous hour concentration,
meteorological (temperature, wind speed and wind direction)
and temporal (day, month, hour) information for next hour
prediction. The workflow for pre-processing of the dataset
is shown in Fig. 4. The input features are normalised using
Min-Max normalization as defined by (13), where xmin and
xmax are the minimum and maximum values of data x. Fig. 5
shows a sample of NO2 before and after pre- processing data.

2) MODEL PARAMETERS AND TUNING
The training of the ARIMAmodel and associated parameters
are optimised and tested to forecast air pollutants. We trained
the model for predicting all five air pollutants in the dataset.
However, for analysis purpose, only NO2 is explained as a
use case. To find optimum values of model parameters such
as p, d and q, investigation of ACF and partial autocorrelation
(PACF) is required, based on the data and its associated differ-
ences. As ARIMA works on the stationary data, we observe
ACF of actual data to find if the dataset is stationary or
non-stationary. Fig. 6 shows that the ACF of NO2 has all
positive values and gradually dropping which indicates that

FIGURE 4. Pre-processing of dataset.

FIGURE 5. NO2 data sample (over 2 months) representing addition of
missing values.

FIGURE 6. ACF of NO2 data.

FIGURE 7. ACF of 1st order difference of NO2 data.

the data is non-stationary. By comparing ACF of 1st order
differencing (i.e., Fig.7) with the 2nd order differencing (i.e,
Fig.8), we can observe that the lag at 1 of 2nd order dif-
ferencing is negative, which indicates that the data may get
over differenced. Whereas, this is not the case in the ACF
of 1st order differencing and is sufficient to make the data
stationary. Thus, we found that the value of d is 1 which
defines order of differencing (d).

xnorm =
x − xmin

xmax − xmin
(13)

Similarly, the order of MA terms can be found based on
over differenced data by looking at ACF cuts off point. In our
case, 2nd order differencing indicates over differenced due to
the lag at 1 being negative and lag at 1 also shows the cut off
point, which leads to q equals to 1.

The order of AR terms is found based on the first cut
off point, where PACF at lag 1 is positive. Fig. 9 shows the
PACF of NO2 data. In our case as shown in Fig.10, lag at
1 of PACF of 1st order differencing is positive and shows the
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FIGURE 8. ACF of 2nd order difference of NO2 data.

FIGURE 9. PACF of NO2 data.

FIGURE 10. PACF of 1st order difference of NO2 data.

cuts off point, which leads to p equals to 1. Hence, we found
(1, 1, 1) as an optimum set of parameters (p, d, q) for NO2.
The detail of the optimum set of parameters for the rest of
the pollutants is given Table. 4. In summary, the optimum
parameters such as d and q are both found to be 1 for all the
pollutants. However, only the value of p is either 0 or 1 for
the respective pollutant.

The dataset is split into training, validation, and testing
sets with ratio of 70%, 20% and 10%, respectively. In each
split, the indices kept higher than previous set, which will
avoid the shuffling (i.e., inappropriate in time-series). Fig. 11
shows the workflow of deep learning training and testing with
key components. Fig. 12 shows the bounds and step size of
parameters for model hyper-parameters optimisation in terms
of cell size per layer, total number of layers and dropout
rate for both LSTM and GRU models. In DL models, input
layer pass features to model where we have considered a
maximum of 5 layers and each layer can have minimum of
5 and maximum of 30 cells. In DL models, we are optimising
number of layers in the range from 1 to 5 with a step size of
1. In case of number of cells, we are considering minimum of
5 to maximum of 30 cells by increasing with a step size of 5.

FIGURE 11. Workflow of deep learning model training and testing.

FIGURE 12. Architecture of deep learning model.

FIGURE 13. Comparison between actual and predicted data of NO2 over
a week.

TABLE 3. Summary of deep learning model parameters.

In the dropout layer, which randomly drops out number of
cells to handle over fitting, Dropout rate is also considered
as an optimisation parameter. At last, a fully connected
dense layer with Relu activation function is used. We are
using Adam optimiser during training and for the tuning
of hyperparameters, the Hyperband algorithm [31] is used
which tunes the number of units in a layer, the amount of
layers used and the learning rate of the model. Here, the
Hyperband algorithm optimise the hyperparameters by min-
imising the validation loss during model training to reduce
the training time. The summary of the parameters with archi-
tectural details of deep learning models is given in Table. 3.
After hyperparameter optimisation, the LSTM model used
the least number of layers that is 2 for SO2 and the maximum
of 4 layers for NO2. Whereas, the GRU model used the mini-
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FIGURE 14. Comparison between actual and predicted data of O3 over a
week.

FIGURE 15. Comparison between actual and predicted data of SO2 over a
week.

FIGURE 16. Comparison between actual and predicted data of
PM2.5 over a week.

mum number of layers that is 1 for PM2.5 and a maximum of
4 layers for PM10. Moreover, LSTM and GRU models used
an optimised number of cells in a range of [35 70] and [20 70]
for considered pollutants, respectively. In addition, both DL
models used optimised dropout rates with the value of 0 or
0.1 for the respective pollutant. The detail of the optimum
set of hyperparameters for all the pollutants is given in Table.
4 and these parameters can be further used to evaluate the
complexity and computational effort.

3) PERFORMANCE METRICS
In this work, the performance metrics used to evaluate the
effectiveness of the forecasting model are RMSE, R2 and
MAE as defined in (14), (15) and (16) respectively.

RMSE =

√√√√ 1
N

N∑
i=1

(
yi − ŷi

)2 (14)

R2 = 1 −

∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

(15)

FIGURE 17. Comparison between actual and predicted data of PM10 over
a week.

FIGURE 18. Comparison of forecasting models in terms of RMSE.

MAE =
1
N

N∑
i=1

∣∣yi − ŷi
∣∣ (16)

where yi and ŷi are target output and predicted output from
forecasting model at ith sample, respectively. N is total sam-
ples available to compute metrics in testing and ȳ is mean
based on samples of target output. RMSE is a standard metric
used in supervised learning applications for measuring the
quality of predictions. It explains how far predicted value falls
from the targeted value. The lower value of RMSE represents
smaller error in the forecasting. R2 also known as coefficient
of determination is a statistical measure, that shows how
well the regression model fits the target data. In general, the
model fits the data well if R2 value is closer to 1 (means the
difference between the target and predicted values is small).

VI. RESULTS AND DISCUSSION
The results and related experimental discussion over the per-
formance of all single-step forecasting models for all the
pollutants is provided in this section. From the test data,
we are showing comparative graphs over one week for better
understanding and clarity. Fig. 13 shows one-week prediction
performance of all forecasting models over test data for NO2.
The results show that for NO2, the DL models performed
better in achieving the highest R2 score and least error in
terms of both RMSE and MAE values than the statistical
model. In both DL models, the LSTM model clearly indi-
cates better performance than GRU. Similarly, in the case
of O3, DL models scored better than the ARIMA model
on all grounds. Although, both DL models achieved similar
accuracy but GRU is having a slight edge over LSTM model
in attaining the least RMSE and MAE values. Fig. 14, 15, 16
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TABLE 4. Optimised hyperparameters of single-step forecasting models for all the pollutants.

FIGURE 19. Comparison of forecasting models in terms of R2.

FIGURE 20. Comparison of forecasting models in terms of MAE.

and 17 shows the prediction of all forecastingmodels over test
data for O3, SO2, PM2.5 and PM10 respectively. For SO2 and
PM10, ARIMA secured the highest accuracy thanDLmodels
with respect to R2 but on the other hand, attained the highest
error in terms of RMSE and MAE. In comparison to ARIMA
model, both DL models achieved similar performance for
PM10 but LSTM performed better than GRU in all respects
for SO2. In case of PM2.5, both LSTM and ARIMA achieved
over 83% accuracy in terms of R2. However, LSTM attained
least error with respect to RMSE and MAE. From the above
discussion, we can easily conclude that the DL models out-
performed the statistical model in attaining the lowest error
values in terms of both RMSE andMAE consistently for all of
the air pollutants. In addition to this, DLmodels also achieved
highest R2 score for most of the air pollutants except for the
PM10 and SO2, where ARIMA outperformed DL models.
The performance comparison of all forecasting models in

terms of RMSE, R2 and MAE is presented in Fig. 18,19 and
20 respectively.

VII. CONCLUSION
Air pollution is a global health challenge and its accurate
prediction is vital to reduce health risks and environmental
concerns. This work aims at single-step air pollution predic-
tion for most of the pollutants (e.g. NO2, O3, SO2, PM2.5,
PM10) using various forecasting approaches based onDL and
statistical models. The performance of the forecasting models
is tested using evaluation metrics such as RMSE, MAE and
R2. At the broader level, among all the forecasting models
and pollutants, LSTM achieved the lowest RMSE and MAE
of 0.591 and 0.396 respectively, in predicting SO2 time series
data, whereas the highest RMSE and MAE is found to be
9.354 and 6.065 respectively, for NO2 by ARIMA model.
In terms of R2, among all forecastingmodels, bothDLmodels
performed similar in achieving the highest score of around
86% while predicting O3. On the other end, GRU model is
the one found to be having least predictive accuracy of around
55% for SO2. Overall findings through results revealed that
among all considered forecasting models, DL models out-
perform statistical models consistently in achieving the least
error in terms of RMSE and MAE for all the pollutants and
attained better predictive accuracy in terms of R2 for most
of the pollutants. While ARIMA model could only perform
better in predicting two pollutants (i.e. SO2 and PM10) in
terms of R2 score only, however with the highest error value
of RMSE andMAE for all of the pollutants. In future, we aim
to target multi-step prediction and improve the performance
of the DL models using new feature engineering approaches
and relating optimisation of hyper-parameters of the models.
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