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Abstract

Objectives Machine learning (ML) for medical imaging is emerging for several organs and image modalities. Our objec-

tives were to provide clinicians with an overview of this field by answering the following questions: (1) How is ML applied

in liver computed tomography (CT) imaging? (2) How well do ML systems perform in liver CT imaging? (3) What are the

clinical applications of ML in liver CT imaging?

Methods A systematic review was carried out according to the guidelines from the PRISMA-P statement. The search string

focused on studies containing content relating to artificial intelligence, liver, and computed tomography.

Results One hundred ninety-one studies were included in the study. ML was applied to CT liver imaging by image analysis

without clinicians’ intervention in majority of studies while in newer studies the fusion of ML method with clinical inter-

vention have been identified. Several were documented to perform very accurately on reliable but small data. Most models

identified were deep learning-based, mainly using convolutional neural networks. Potentially many clinical applications of

ML to CT liver imaging have been identified through our review including liver and its lesion segmentation and classifica-

tion, segmentation of vascular structure inside the liver, fibrosis and cirrhosis staging, metastasis prediction, and evaluation

of chemotherapy.

Conclusion Several studies attempted to provide transparent result of the model. To make the model convenient for a clini-

cal application, prospective clinical validation studies are in urgent call. Computer scientists and engineers should seek to

cooperate with health professionals to ensure this.

Key Points

e ML shows great potential for CT liver image tasks such as pixel-wise segmentation and classification of liver and liver
lesions, fibrosis staging, metastasis prediction, and retrieval of relevant liver lesions from similar cases of other patients.

e Despite presenting the result is not standardized, many studies have attempted to provide transparent results to interpret
the machine learning method performance in the literature.

e Prospective studies are in urgent call for clinical validation of ML method, preferably carried out by cooperation between
clinicians and computer scientists.
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Abbreviations
3D RA U-Net

A

ACM

AHC Blocks
ANN

ASM

BPSO
CDNN

CEDCNN
CENet
CNN

CRF

CT
DBN-DNN
DCT

DL

DLA

DLO
DResU-Net
DRL

ELM
FCMC
FCN
FCNN
GAN

GDL

GLC U-Net

GTL
GWO
HCC
HCC
HDCNN

k-NN
ML
MOGA
MPNet
MRF
MSCA
MW-U-Net
PCA
PNN
PP
R-CNN

RES-U-Net
RFC

RL

RPN
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3D hybrid residual attention U-shaped
neural network

Article

Auto-context model

Attention hybrid connection blocks
Artificial neural network

Active shape model

Binary particle swarm optimization
Convolutional—deconvolutional neural
network

Cascade encoder-decoder CNN
Contour embedded neural network
Convolutional neural network
Conditional random field
Computed tomography

Deep belief network-deep neural network
Discrete cosine transforms

Deep learning

Deep learning algorithm

Dice loss

Deep residual U-net

Deep reinforcement learning
Extreme learning machine

Fuzzy C-means clustering

Fully convolutional neural network
Fully convolutional neural network
Generative adversarial network
Generalized dice loss

Global and local contexts composition
U-shaped neural network
Generalized Teverskry loss

Grey wolf optimization
Hepatocellular carcinom
Hepatocellular carcinoma
Hybridized fully convolutional neural
network

k-nearest neighbor

Machine learning

Multi objective genetic algorithm
Message passing neural network
Markov random field

Mean-shift clustering algorithm
Modality weighted U-net

Principal component analysis
Probabilistic neural network
Proceeding paper from conference
Region based convolutional neural
network

Residual U-net

Random forest classifier
Reinforcement learning

Region proposal network

SSD Single-shot multibox detector
SSD Support vector machine
TDP Three-dimensional dual path multiscale

convolutional neural network
TL Teverskry loss

U-NET U-shaped neural network (referes to the
model architecture)

U-RES-Net U-shaped residual neural network

VGG 16 Visual Geometry group 16 (Personal
name of model named after a research
group)

VOE Volume overlap error

Introduction

For several tasks related to medical imaging, ML is
emerging as a new reliable tool due to its high perfor-
mance and a superior capacity to build complex mod-
els for making predictions [1]. More than 220 medical
devices using ML have been approved in the USA and
Europe [2]. This development has increased steadily since
2014. Today, ML software can be considered a medical
device [3].

Computer tomography (CT) imaging plays an essential
role in diagnostics and post-treatment follow-up in liver
diseases [4]. Applying ML-based tools to CT images has
shown promising results [5]. It has been tested theoreti-
cally for tasks including identification and segmentation
of the liver, lesions, blood vessels, and bile ducts in the
liver [6], quantification of liver tissue characteristics [7],
evaluation of cancer treatment, and prediction of liver dis-
ease [8, 9].

A recently published systematic review and meta-analy-
sis demonstrated the diagnostic accuracy of deep learning
(DL) in ophthalmology, respiratory medicine, and breast
surgery [10]. In addition, a limited literature review has
been published in the subfield of ML applied to liver imag-
ing [11-13]. However, the performance and clinical appli-
cability of ML in liver imaging are not comprehensively
addressed in the literature.

A search in PROSPERO—a database of prospectively
registered systematic reviews in health and social care
[14]—did not reveal any forthcoming publication in this
rapidly developing field. We, therefore, conducted a sys-
tematic review from a clinical perspective.

This review aims to answer the following questions: (1)
How is ML applied in CT liver imaging? (2) How well do
ML systems perform in liver CT imaging? (3) What are the
clinical applications of ML in liver CT imaging?

Some important part of this article is given in the elec-
tronic supplementary material due to length of the article.
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Methods

This systematic review was conducted in accordance with the
guidelines for the ‘“Preferred Reporting Items for Systematic
Reviews and Meta-Analyses” extension for diagnostic accuracy
studies statement [15]. A selection and retrieval of studies
from the literature was done in accordance with Cochrane
handbook for systematic review [16]. A search was conducted
in Medline, EMBASE, and Web of Science and included
studies published between January 1, 2011, and October 31,
2021. The search string consisted of exploded MeSH-terms,
Emtree-terms, and free text to find all studies containing the
terms “Artificial intelligence” AND “Computed tomography”
AND “liver” (or containing all possible synonyms of all three)
in the title, abstract, or keywords. The exact search string was
given in the electronic supplementary material.

When considering study quality, we identified character-
istics as important given in the electronic supplementary
material. The suggested list is comprehensive, and studies
might be quite informative with minimal risk of bias, with-
out meeting all requirements [17]. Yet, if a study followed
only few of the characteristics, it was not considered well-
documented for clinical use.

Results

The search was conducted in two phases, one in October
2020 and one in October 2021. There were 191 studies
included for review. The selection process is illustrated in
the PRISMA flow diagram in Fig. 1 [18]. The selected stud-
ies are summarized in Table 1 and details given in the elec-
tronic supplementary material.

We encountered studies with 19 different aims. To make
comparison and discussion more feasible, we divided these
studies into five groups according to study aim: (1) liver
segmentation; (2) lesion segmentation; (3) lesion detection;
(4) classification of liver or liver lesions; (5) miscellaneous/
other. Aims are illustrated in electronic supplementary mate-
rial. There is some overlap in the groups due to several stud-
ies having multiple aims. Detailed characteristics of included
studies are given in supplementary tables.

Liver segmentation

The aim of liver segmentation was the primary or secondary
study aim in eighty-four of the included studies. Of those,
fifty-one are journal articles [20, 24, 29-35, 38—41, 43-47,
49, 55-58, 62, 63, 65, 68, 70-79, 81, 84-87, 89, 91, 93-95,
97, 98, 196, 197], and 33 are proceeding papers [19, 21-23,
25,26, 36,37,42,48, 51, 53, 54, 59-61, 64, 66, 67, 69, 80,
82, 83, 88, 90, 92, 96, 99, 100, 103, 198]. The liver seg-
mentation was done from the CT as a whole liver, not the

clinical segmentation, e.g., Couinaud segments of the liver.
Overall, this group of studies has contributed considerably
with technically sound methods and experimented with vari-
ous subdomains of ML, especially DL.

The quality of many recent studies has improved using
external validation method to provide better generalizability.
Though comparing directly with human experts is preferred,
only eleven studies were found to do so.

The study group gives insinuation of obtaining labeled
medical data which is challenging, as two-thirds of studies
used datasets open for public use for training or testing their
ML model. The dataset from LiTS 2017, which was the most
frequently used, included 131 patients in their test set [199].

The attempt of transparency in reporting models’ per-
formance was seen in many studies, though out of eighty-
seven studies, only 11 reported their results with confidence
interval or standard error; thus, further analyses of the result
were not feasible in the group.

DICE score was used in most studies in this group to
describe the model’s ability to predict which pixel contains
the liver. The highest DICE reported was a score of 0.9851
[41], and the lowest score was 0.75 [94]. Other measures to
describe the model’s performance were scattered, including
AUC-ROC and accuracy (Table 2). Dong et al also reported
a DICE of 0.92 and an accuracy of 0.9722 from their study,
and the AUC of 0.96. References of studies in the group are
in Table 3.

Lesion segmentation

This group of studies performed segmentation of liver
lesions from CT images with ML. The model’s goal was
the highest possible truthfulness of segmented lesions com-
pared to ground truth. Sixty studies had lesion segmentation
as a primary or secondary study aim. Thirty-six are journal
articles [24, 29, 31, 32, 38, 46, 47, 55, 56, 62, 72,78, 84, 91,
93,94,97,98, 102, 111, 115, 117, 118, 122, 124, 125, 130,
133-135, 137, 138, 140, 201], and twenty-four [22, 37, 42,
64, 65, 68, 82, 88,92, 96, 99, 103, 108, 121, 124, 126-129,
131, 132, 136, 139, 200] are proceedings papers.

Several models have shown remarkable segmenting abil-
ity for predicted lesions larger than 2 cm in diameter, while
almost every model is still struggling to segment lesion size
less than 1 cm in diameter. However, this is comparable with
clinicians in the clinical setting. Another limitation for the
model to predict the lesion was quality of CT images. Sev-
eral more recent studies used voxel-wise (3D pixels) clas-
sification. This could use more available information and
give output in 3D to improve performance.

Validation of the model with external validation and ML
to humans is improving for this group, and twenty-six stud-
ies have used external validation. Only six studies have com-
pared their model with human experts.

@ Springer
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Searchin
Medline, Embase
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Science

1.January 2011 -

October 2020:
1179 citations

November 2020-

September 2021:
155 citations

808 non-duplicate
publications
screened by title,
abstract and
keywords

studies

criteria applied to
full-text of
remaining 272
publications/

536 duplicates
were removed

80 studies
excluded
accordingto
inclusion/
exclusion criteria

191 studies

included

Fig.1 Prisma flow chart. Flow chart of systematically included 191 studies from 1334 identified studies from Medline, Embase, and Web of science

More than half of the studies have reported performance in
a DICE score in this group. The score range was seen skewed
in different studies with the range of 0.44-0.96; a selection
of lesion size played a key role here for higher performance
or higher DICE score. Another informative measure called
Volume Overlap Error (VOE) gives the difference between
predicted and ground truth in an area. Thus, O is the optimal
score. Twenty-two studies reported VOE, with a 0.01-0.46 mm
range. Other measures were dispersed in different studies,
including accuracy, AUC, precision, or PPV. Few studies
have reported their performance with confidence intervals or
standard errors—references of studies in the group in Table 3.

@ Springer

Lesion detection

Twenty studies had lesion detection as a primary or sec-
ondary study aim. This involves simply detecting if lesions
are present in a CT image. Fifteen of them are proceedings
papers [23, 26, 27, 87, 102, 104, 105, 107-110, 112-114,
119], and five are journal articles [101, 106, 111, 115, 202].

Several newer studies have detected lesions before seg-
mentation of the lesions or diagnosis of the lesions with
ML from CT liver images but have not reported perfor-
mance of the lesion detection task of the model; thus, this
group is smaller.
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Table 1 (continued)
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Springer

per patient (fivefold
cross-validation)

606 patients

No No

No

CNN +RFC and CNN +LRC
SVM

Non-medical

Miscellaneous

Lee et al 2020 [8]

No No

34 labeled CT
70 patients

Non-medical
Medical

Miscellaneous

Sun et al 2020 [189]
Thuring et al 2020

Yes Yes

No

Random Forrest & CNN

Miscellaneous

[164]
Wang et al 2020 [166]

Xu et al 2020 [190]

No

No

70slices (17 patients)
20 from 3dIRCADDb

8CT

CNN (residual CNN)

Non-medical

Miscellaneous

No reference Yes

No

Yes

CNN (Deep neural network)

CNN (v-net)

PP Non-medical

Miscellaneous

Yes

No

Non-medical

Miscellaneous

Yang et al 2021 [191]
Yoshinobu et al 2020

No

No

32 cases

Non-medical CNN (Deep CNN)

PP

Miscellaneous

[192]
Zhang et al 2020 [124]

Yes Yes

Yes

From multicenter data

CNN (DenseNet)

Medical

Miscellaneous

from 3 hospitals

No No

No

1 patient

CNN + ResNet
ANN

Non-medical
Medical

PP

Miscellaneous

Gu et al 2020 [193]

No

No reference

No

21 metastases/lesions

244 patients

Miscellaneous

Kobe et al 2021 [194]
Li et al 2022 [195]

Yes Yes

No

CNN (DenseNet)

Medical

Miscellaneous

External validation was reported only in four studies.
Most studies acquired their training data from local hos-
pitals, and only eight studies have used data sets open for
public use. DL was the choice of a subdomain of ML for
this group.

Reporting of performance was seen as transparent and
detailed in newer studies in all groups. In this group, per-
formance was primarily reported in accuracy and preci-
sion, but five studies reported only false positives and
true positive rate [26, 87, 101, 104, 115]. Two studies
presented its result with a confidence interval or standard
error. It is worth mentioning that the study reporting the
best precision only performed internal validation on the
relatively small, public dataset 3D-IRCADb—references
of studies in the group in Table 3.

Classification of liver or lesions

Included studies in this group classifying the type and
severity of lesions or tumors, grading hepatocellular car-
cinoma (HCC), and differentiating between HCC, heman-
gioma, and metastases. Most studies differed only between
two categories, such as classifying tumors as either benign
or malign. Forty-seven studies had the classification of
liver or liver lesions as a study aim. Thirty-four of them
journal articles [56, 71, 72, 74, 78, 141-146, 148-152,
154, 156-161, 164-172, 202, 203], and thirteen are pro-
ceedings papers [27, 64, 65, 68, 75, 82, 119, 147, 153,
155, 162, 163, 204]. For classification of liver or liver
lesions, traditional machine learning, e.g., support vector
machines and random forest models, and deep learning
models were commonly used.

Nine studies compared their model performance directly
to one or more clinicians in a competition-based compar-
ison. Only 12 studies have used datasets open for public
validation, and even fewer are needed for training purposes.

Accuracy was a method of choice to present the perfor-
mance in this group; thirty-one studies reported accuracy,
with a range of 0.76-0.99. Sixteen studies reported AUC,
with a range of 0.68-0.97. Precision was reported in four-
teen studies. The precision range was 0.82—1.00. Note that
both Sreeja et al and Romero et al reported a perfect preci-
sion of 1.0, which Sreeja et al commented was possible due
to the small size of their data set [153, 155]. Only three
studies presented their result with a confidence interval—
references of studies in the group are in Table 3.

Other/miscellaneous
The last and most diverse category we found eligible to com-

pare was miscellaneous, including 29 journal article [6, 8, 9,
33,50, 52, 56, 71, 161, 164, 173—-179, 181-184, 186—188,
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Table 2 Definition of performance and outcome measures

Segmentation

refers to a pixel-wise classification of images throughout this review. This is the standard meaning of “segmenta-

tion” of images in data science and engineering. It is not to be confused with anatomical segmentation like the
Coineaud segmentation of liver lobes, commonly used for clinical segmentation of the liver according to the

portal blood supply (19)
DICE

describes the percentage of overlap between the predicted and the observed/”correct” labeled area in an image

(often labeled by a human radiologist), where 1.0/100% means a perfect overlap between predicted and correct

segmentation
Accuracy

related to image segmentation in engineering is a measure describing how many pixels are correctly classi-

fied—1.0/100% being perfect. However, accuracy can be misleading in cases where a class is in very few
pixels; for instance, a small tumor could be only in 2% of the image—and a model predicting that there are 0%
tumors would still have an accuracy of 98%. Therefore, if only accuracy is reported for performance, a measure
of class balance might be relevant to the readers' understanding

Precision and Recall

Precision is the number of relevant observations by a model divided by the total number of observations made by

the model. For instance, if a model marks 100 pixels as tumor tissue and 40 are tumor tissue, the precision is
40%/0.4. Precision is the same as positive predictive value (PPV). Recall is the number of relevant observations
divided by the total number of actual cases, e.g., if an image contains 100 pixels with actual tumor tissue, and
the model observes 80 of them, the model has a recall of 80%/0.8. In binary classification cases, recall is the
same as sensitivity, hit rate, and true positive rate

Volume Overlap Error (VOE) gives a measure of the difference between actual area and predicted area. It functions as a combined score of both

false positives and negatives
U

VOE (U 1s Uz) =100x (1 - %) where U, and U, are true and predicted values, respectively. Optimal scores
U0,

U

are as low as possible, 0 being the perfect score (20)

IoU / Jaccard Index

The intersection over union (IoU), is a measure that quantifies the percentage of overlap between prediction and

observed/true output, much like the DICE coefficient. IoU measures the overlapping pixels between true and
predicted segmentation and divides it by the total number of pixels either of them has marked as a pixel of
interest. A perfect score would be 100%/1.0. This measure is also referred to as the Jaccard Index

Ground truth

refers to the label for anatomical structures in CT images given by a clinician or radiologist. What kind of expert

and level of experience is often specified in each specific study

CNN

refers to Convolutional Neural Network — a deep learning model based on vector calculations used in image
recognition and processing pixel data

191, 194, 195, 205, 206] and 8 proceeding paper [27, 180,
185, 189, 190, 192, 193, 207] total thirty-seven studies. The
aims of the studies are clinical-oriented.

Seven studies have performed liver fibrosis staging [33,
173-178] according to “Metavir” or “Fibrosis-4” classifi-
cation [208, 209]. Four compared algorithms performance
with human expert while two studies performed external
validation. Only two studies used public dataset for liver
segmenting purpose; however, private datasets were used
for fibrosis staging training and validation purpose in all
the seven studies. ML method like SVM, k-nearest neighbor
were used traditionally but in the recent studies, CNN-based
systems using different classifier to extract the feature from
the liver image are gaining more attention. Jung et al used
liver and spleen volumetric indices and perform the patho-
logic liver fibrosis staging with CNN [177]. Comparison of
ML algorithm to 3 radiologists’ assessment of liver fibro-
sis staging was performed with more accurate result in ML
group [33].

Six studies segmented blood vessels in the liver from CT
images, including portal and liver veins [52, 179, 183-185,
191]. Twelve studies reported a DICE score with a range of
0.68-0.98. The four studies reported accuracy with a range

of 0.91-0.98, with a mean of 0.96 and a median of 0.97.
Five studies stated that they externally validated their model.

Five retrieved focal liver lesion images as a study aim
[50, 186, 187, 192, 206]. These studies showed how models
could improve clinical workflow by retrieving similar cases
in medical records, including earlier expert opinions.

Two studies, published as journal articles, predicted liver
metastases within colorectal cancer patients [8, 9]. They
reported AUC equal to 0.86+0.01(12) and 0.747 +0.036.

One study focused on the segmentation of bile ducts and
stones in the intrahepatic bile duct—hepatolith and reported
DICE of 0.90 and 0.71 for bile duct and hepatolith segmen-
tation, respectively [6].

Three study focused on response evaluation after chem-
otherapy or radio-embolization of malignant liver lesions
using texture analysis [161, 181, 182]. They compared
texture analysis predictions with survival and serologic
response and reported an accuracy of 0.97, sensitivity of
0.93, and specificity of 1.0. This was after training on sixty-
two patients and testing using cross-validation.

Two recent studies have predicted liver reserve function
using Child—Pugh classification [164, 189] and Thuring
et al have compared the results from their ML model with

@ Springer
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results from clinicians. Prediction of Child—Pugh accuracy
was 53%, classification of Child—Pugh A vs B: accuracy
was 78%, sensitivity 81%, specificity 70%, and AUC 0.80.
Wang et al had preoperatively predicted early recurrence in
HCC. One study has predicted overall survival of patients
with unresectable HCC treated by transarterial chemoembo-
lization [176]. This study also presented fusion of clinical
data with ML model. References of studies in the group in
Table 3.

Discussion

We found that ML is applied to liver CT imaging for vari-
ous clinical oriented aims and covering a broad spectrum
of applications.

At least one-third of studies were documented to perform
very accurately on reliable, but small data. Unfortunately,
reporting of performance was seldom appropriate due to
lack of details. To our knowledge, there exists no standard-
ized form of presenting results for machine learning models
applied to medical imaging.

Several studies reported models that were close to clini-
cal application. However, clinical validation with thorough
documentation of both model and data (training and vali-
dation) to assess quality and generalizability were lacking.
Evaluation of the model by only analysis of a result param-
eters would be imperfect [210].

Almost all studies that performed segmentation of liver
structures from the CT images of the abdomen used deep
learning models, mainly the subtype CNN. Open-access
datasets and competitions like LiTS 2017 contribute sub-
stantially to the development of ML applied to liver imaging,
as more than 280 studies report their model performance in
a standardized format, and the competition is still ongoing
with cumulative comparison. U-Net a sub domain of CNN
is used by many participants and have shown promising
result. The distribution of sources of dataset used by studies
included in this review is illustrated in Fig. 2. The use of
complex models and targeting for complex aims like auto-
matic liver fibrosis staging, treatment response evaluation,
prediction of occurrence of liver metastases, and liver blood
vessels segmentation for traditional anatomical landmarks,
e.g., Coineaud classification, are getting more common and
may herald a maturing process in the field.

ML systems showed promising results on retrospec-
tive data for several tasks related to CT imaging, as some
segmentation studies reported models with more than 98%
ability to predict which pixels or voxels contained liver in
abdominal CT scans. Further, several studies reported 95%
performance compared to ground truth for liver or liver
lesions classification. In recent years, identified studies have
used ML for prediction of occurrence or treatment effect of

liver metastases, liver vessel segmentation, and evaluation of
treatment effect on liver malignancy. These showed results
around 70-80% of ground truth.

Other applications such as classification of liver fibrosis
stage and prediction of benign or malign lesions showed
promising results and potential for the high impact of ML
in future routine clinical practice.

Reporting of model performance should give in the state-
of-the-art visualization methods, e.g., confusion matrix. In the
studies like segmentation task, measuring parameter like mean
surface distance with standard error should be reported to get
overall transparency of the model performance [116]. Sixty-
two studies identified in this review have such breach in report-
ing of model performance. This makes it difficult to get a good
overall understanding of the field, especially for clinicians. We
encourage the readers to assess such results with caution.

Further, reporting of standard error and confidence inter-
vals was often lacking. We recommend that it should be
reported by default. This problem was also seen in other
applications of ML to medical images, and we concur with
the need for reporting standards for medical application as
stated by Aggarwal et al [10].

There are potentially many applications of ML in liver
CT imaging have been identified thorough this review, espe-
cially in the miscellaneous group aims are clinically derived,
while segmenting of liver and its lesions could implement
as diagnostic and treatment planning tool. Studies in clas-
sification group could serve diagnosis of different lesions,
e.g., different types of malign and benign tumors, or severity
of the liver cirrhosis. Despite the promising performance
reported in many studies, clinical applications of ML in liver
CT imaging have to pass through the corridor of clinical
validation and clinical trials [210].

The main issues identified in the literature were limited
access to high-quality data and lack of clinical validation.
External validation is becoming more popular among devel-
opers, illustrated in Fig. 3, but it is insufficient to qualify
for medical application. There is an urgent need for a shift
in focus towards clinical validation in this field. Scholars
should perform feasibility studies in clinical routine, and
design and carry out prospective studies to validate the per-
formance of ML tools in realistic clinical settings. Develop-
ers should seek to collaborate with clinicians in this process.
Strength and weakness of the study as well future perspec-
tive is given in the supplementary material.

Conclusion

We found reports of many ML applications to liver CT
images in the literature, including automatic liver and lesion
segmentation, lesion detection, liver or lesion classifica-
tion, liver vessel segmentation including bile ducts, fibrosis

@ Springer
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Fig. 2 Distribution of used
dataset in the model for training
and validation purpose. Publicly
available datasets include Lits
2017, 3D-Ircadb, Sliver 2017
and other, while private dataset
were mostly collected from

local hospitals Public dataset,
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Fig.3 Bar-chart categorize by validation method in timeline. An increasing trend of external validation from 2011 to 2021 are demonstrated in
dotted line
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staging, metastasis prediction, and evaluation of chemother-
apy as treatment of hepatocellular carcinoma and retrieval of
relevant liver lesions from other similar cases. Several were
documented to perform very accurately on reliable but small
data. Deep learning models and classification models of ML
were commonly used. However, presenting the result of stud-
ies is not standardized in the literature. Some studies were
close to reporting sufficient details on clinical relevance, data
characteristics and quality, algorithm characteristics and bias,
and performance measures on external data to be considered
ready for clinical use. Further prospective, clinical studies
are recommended, and the need for a more interactive tech-
nological and medical research is evident to achieve a secure
clinical use of ML methodology in this field.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00330-023-09609-w.
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