
Faculty of Science and Technology
Department of Physics

Unsupervised segmentation of submarine recordings

Tor Kjøtrød
FYS-3941 Master’s thesis in applied physics and mathematics - June 2023

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
The thesis focuses on the unsupervised segmentation of submarine recordings
collected by the Norwegian Polar Institute (NPI) using hydrophones. These
recordings consists of various mammal species, along with other phenomena
like vessel engines, seismic activity, and moving sea ice. With sparse labeling
of the data, a supervised learning approach is not feasible, necessitating the
application of unsupervised learning techniques to uncover underlying patterns
and structures.
The thesis begins by providing essential background theory, including the
Fourier transform, spectrograms, and an introduction to clustering algorithms.
It then covers the forward pass, parameter update and backpropagation of neu-
ral networks. Key components of neural networks and machine learning, such
as different layers, activation functions, and loss functions, are also explained.
Furthermore, well-known deep learning architectures, namely convolutional
neural networks, autoencoders, and recurrent neural networks, are introduced.
The Temporal Neighborhood coding method, which encodes underlying states
of multivariate, non-stationary time-series [1], and the clustering module that
integrates a Gaussian mixture model into a loss function for deep autoen-
coders [2], are introduced.
The proposed data and methods are presented, followed by experimental re-
sults evaluating the performance of the two architectures for segmenting both a
simulated dataset and the spectrogram of the submarine recordings. The thesis
concludes with a discussion of the results and future directions, highlighting
the promising outcomes of the segmentation methods while emphasizing the
need for additional data information to further enhance model performance
and for further evaluation of the methods performance.

Acknowledgements
First i want to thank Heidi Ahonen and the Norwegian Polar Institute, for al-
lowing me to do my thesis with you, and for providing me with the data i have
used in this thesis.
I also want to extend my gratitude towards my supervisor during this thesis,
Ahcène Boubekki, for guiding and helping me throughout the past year, for
being patient with me, but also for always keeping me in a good mood and
motivating me when needed, this has been very valuable to me and i cant thank
you enough for that. Thank you to all the other master students i have shared
an office with this last year, Fredrik, Ole, Adrian, Astrid and Marit. You have
made this busy year fun, but also much easier, thank you for showing up every
day.
Lastly i want to thank my wonderful family Per Arne, Evelyn, Emilie, Odin and
my girlfriend Gina, the support you have showedme the last five years is incred-
ible, i could not have done this without you. For that im forever greatful.

Contents
Abstract i

Acknowledgements iii

List of Figures vii

List of Tables ix

1 Introduction 1

I Background 3

2 Signal Processing 5
2.1 Discrete Fourier Transform 6
2.2 Spectrogram . 6

3 Clustering 9
3.1 Partitional Clustering . 10
3.2 K-Means Algorithm . 11
3.3 Gaussian Mixture Model . 13

4 Neural Network 15
4.1 Feed Forward Networks and Forward Propagation 16
4.2 Gradient Descent . 17
4.3 Backpropagation . 19

5 Neural Networks 23
5.1 Fully Connected Layers . 24
5.2 Convolution . 24
5.3 Transposed Convolution . 25
5.4 Downsampling Layers . 27
5.5 Upsampling Layers . 28
5.6 Dropout . 28

v

vi contents

5.7 Batch Normalization . 29
5.8 Activation Functions . 29
5.9 Loss . 32

6 Deep Learning Architectures 35
6.1 Convolutional Neural Networks 35
6.2 Autoencoder . 36
6.3 Recurrent Neural Networks 37
6.4 Long Short-Term Memory 40

II Method 43

7 Models 45
7.1 Deep Clustering Model . 46
7.2 Temporal Neighborhood Coding 48

8 Proposed Data and Model Architectures 51
8.1 Data . 51
8.2 Proposed Models . 52

III Results and Discussion 55

9 Experiments and Results 57
9.1 Experiments . 58
9.2 Results . 58

9.2.1 TNC Architecture 58
9.2.2 Deep Clustering Architecture 65
9.2.3 Clustering . 69

10 Discussion and Conclusion 71
10.1 Discussion . 71
10.2 Future Directions . 72
10.3 Conclusion . 73

Bibliography 74

List of Figures
3.1 Illustration of a clustering 10
3.2 K-means algorithm . 12

4.1 Feed forward network . 16
4.2 Gradient descent . 18

5.1 1D Convolutions . 24
5.2 1D Transposed convolution 26
5.3 Maxpool . 27
5.4 Upsampling . 28
5.5 Sigmoid and its derivative 30
5.6 ReLU and its derivative . 30
5.7 ELU and its derivative . 31
5.8 Hyperbolic tangent and its derivative 32
5.9 Comparrison of MSE and BCE 33

6.1 Generic CNN architecture 36
6.2 Generic Autoencoder architecture 37
6.3 RNN architecture . 38
6.4 Different input/output schemes of a recurrent neural network. 39
6.5 RNN cell . 40
6.6 LSTM architecture . 41

7.1 Deep Clustering model architecture 46
7.2 Illustration of the TNC algorithm 49

8.1 Deep Clustering model with 1D operations 53

9.1 Labeled test sample, simulated data 58
9.2 Simulated data encoding, TNC with convolution, kernel size 3 59
9.3 Simulated data encoding, TNC with convolution, kernel size 5 60
9.4 Simulated data encoding, TNC with LSTM and 50 hidden layers 61
9.5 Simulated data encoding, TNC with LSTM and 100 hidden

layers . 61

vii

viii l ist of figures

9.6 Simulated data encoding, TNC with LSTM and 256 hidden
layers . 62

9.7 Spectrogram test sample 63
9.8 Spectrogram encoding, TNC with convolution, kernel size 3 . 64
9.9 Spectrogram encoding, TNC with LSTM and 256 hidden layers 65
9.10 Simulated data encoding, CM with convolution, kernel size 3 66
9.11 Simulated data encoding, CM with LSTM and 256 hidden layers 67
9.12 Spectrogram encoding, CM with kernel size 3 68
9.13 Spectrogram encoding, CM with LSTM and 256 hidden layers 68
9.14 Clustering of the Simulated data 70

List of Tables
9.1 Chosen Hyperparameters for the different architectures . . . 65
9.2 Homogenity scores of clustering simulated data 69

ix

1
Introduction
The Norwegian Polar Institute (NPI) has collected a large amount of submarine
audio recordings using hydrophones, the data contains recordings of several
mammal species, such as bearded whales and beluga whales, there are also
recordings of several other phenomenons, such as vessel engines, seismic activ-
ity and moving sea ice. The objective of this thesis is segmentation of these sub-
marine recordings. The data we have received is sparsely labeled, which means
that applying a supervised learning approach is not feasible. In such a scenario,
unsupervised learning techniques become particularly valuable. These meth-
ods can help us uncover underlying patterns and structures within the data [3].

The thesis starts with some background theory to provide the necessary con-
text.This includes covering two fundamental signal processing topics, the Fourier
transform and spectrograms in Chapter 2. Additionally, we provide a brief intro-
duction to clustering, a central technique in unsupervised learning [4]. Along
with some well known clustering algorithms in Chapter 3.
How neural networks process data through the forward pass, and how they can
update their parameters through gradient descent and the backpropagation
algorithm [5] is covered in Chapter 4. In Chapter 5, we cover essential compo-
nents of neural networks and machine learning, including different types of
layers within a neural network, activation functions that introduce non-linearity
to the networks [6], and the loss function.
Moving forward, we introduce some of the well known deep learning archi-
tectures, the convolutional neural network, autoencoders and recurrent neural
networks in Chapter 6 Subsequently, two deep learning methods that are ap-

1

2 chapter 1 introduction

plicable in our case, the Temporal Neighborhood coding method introduced
by Sana Tonekaboni, Danny Eytan and Anna Goldengerg, a framework that
encodes underlying states of multivariate, non-stationary time-series [1]. To-
gether with the clustering module introduced by Ahcène Boubekki, Michael
Kampffmeyer, Ulf Brefeld and Robert Jensen, Which, by rewriting a Gaussian
mixture model into a loss function, allows a deep autoencoder to learn val-
ueable information from the clustering of its encoding [2]. Is introduced in
Chapter 7

The Proposed data and method is introduced in Chapter 8 followed by the
experiments and results we achieved in Chapter 9. In this chapter we show
the performance of the two architectures in regards of segmenting a simulated
dataset aswell as the segmentation of the submarine recordings. In the Final
Chapter, we discuss our results and future direction, where we conclude with
that the methods applied for segmentation shows promising results, but further
steps can be made to improve the performance of the models.

Part I

Background

3

2
Signal Processing
Signal processing is a discipline for manipulating and understanding informa-
tion carrying signals [7]. In this chapter we will cover two techniques within sig-
nal processing, namely the Fourier transform and the spectrogram. The Fourier
transform is a mathematical tool that decomposes a signal into its frequency
components allowing for analysis of the signal in the frequency domain [7].
The spectrogram is a visualization tool that combines the time and frequency
domain at once.

All Sections from this chapter is from the project paper [8].

5

6 chapter 2 signal processing

2.1 Discrete Fourier Transform

The Fourier transform can be applied to a time dependant signal to transform
the signals domain from time to frequency. By applying the Fourier transform
to a time signal, it is possible to analyse the frequency components present in
the signal and their magnitude. On the other side, it is not possible to analyse
how the frequency spectrum changes with time, by only applying a Fourier
transformation to a time signal [7]. The discrete Fourier transforms input, will
be a discrete time signal 𝑥 [𝑛], with real or complex values, consisting of 𝑁
samples. The signal is then transformed, often into a complex valued, signal
in frequency domain 𝑋 [𝑘] with 𝑁 samples [7].
Definition. The discrete Fourier transform is defined as:

𝑋 [𝑘] =
𝑁−1∑︁
𝑛=0

𝑥 [𝑛] · 𝑒−𝑖 (2𝜋/𝑁)𝑘𝑛 . (2.1)

Where 𝑋 [𝑘] is the 𝑘th frequency component of the discrete Fourier transform
output, 𝑘 is the frequency index ranging from 0 to 𝑁 − 1 ,𝑥 [𝑛] is the input
discrete time signal with length 𝑁 , where 𝑛 is the time index, also ranging
from 0 to 𝑁 − 1 [7].

From equation 2.1, one can see that to evaluate one 𝑋 [𝑘] term, for any 𝑘 ≠ 0,
(𝑁 −1) multiplications and summations are needed. To evaluate all terms, the
total number of multiplications becomes (𝑁 − 1)2 aswell as (𝑁 2 − 𝑁) sum-
mations, which can be costly, computationally, for larger signals [7]. The Fast
Fourier transform (FFT) overcomes the limitation of costly computations by
exploiting the periodic properties of the discrete Fourier transform [7].

2.2 Spectrogram

To analyse where in time each frequency occurs, and the power of the frequen-
cies, the approach is slightly different. While still applying the Fourier transform
to the signal, the signal is first divided into small batches of equal size, that
often overlap eachother. Then a windowing function is applied to every batch
followed by the Fourier transformation of each batch. This process is called
the short time Fourier transform. The spectrogram is the plot of all the Fourier
transformed batches of the entire signal [9].
Definition. The Short time Fourier Transform is defined as:

𝑋 [𝑘, 𝑛𝑠] =
𝐿−1∑︁
𝑚=0

𝑤 [𝑚]𝑥 [𝑛𝑠 +𝑚]𝑒− 𝑗 (2𝜋𝑘/𝑁)𝑚 . (2.2)

2.2 spectrogram 7

Where 𝑋 [𝑘, 𝑛𝑠] is the Short time Fourier transformed signal, 𝑛𝑠 is called the
analysis time index, which specifies where the short time discrete Fourier trans-
form is taken,𝑤 [𝑚] is a windowing function, that is non-zero only on the
interval𝑚 = 0, 1,..., 𝐿 − 1, where 𝐿 is much smaller than the length of 𝑥 [𝑛]
and 𝑥 [𝑛] is the input time series [7].
It is common to scale the output of the spectrogram. One way of scaling is to cal-
culate the dB amplitude[10], which is calculated as: 20 log10(𝑋 [𝑘, 𝑛𝑠]).

3
Clustering
Clustering is a technique that reveals hidden structures within data by grouping
similar data points into clusters [11]. We will begin this chapter by introducing
the concept of partitional clustering, and introduce some of the well known
partitional clustering algorithms, the k-means algorithm and Gaussian mixture
models (GMM). K-means partition the dataset into distinct clusters [12]. GMM,
on the other hand, employs probabilistic modeling with Gaussian distributions
to capture data patterns [13].

9

10 chapter 3 clustering

3.1 Partitional Clustering

Partitional clustering seeks to assign each datapoint to one and only one clus-
ter [13].
Given a dataset X = [x1, .., x𝑗 , ..., x𝑁], where x𝑗 = [𝑥 𝑗1, .., 𝑥 𝑗𝑑] that is to be par-
titioned into 𝐾 clusters 𝐶 = [𝐶1, ..,𝐶𝐾], where 𝐾 ≤ 𝑁 , partitional clustering
seeks to partition X such that:

𝐶𝑖 ≠ ∅, 𝑖 = 1, .., 𝐾, (3.1)
𝐾⋃
𝑖=1

𝐶𝑖 = X, (3.2)

𝐶𝑖 ∩𝐶 𝑗 = ∅, 𝑖, 𝑗 = 1, ..., 𝐾, 𝑖 ≠ 𝑗 . (3.3)

Equation 3.1 tells us that no cluster 𝐶𝑖 for 𝑖 = 1, .., 𝐾 is to be an empty set.
Equation 3.2 Tells us that the union of all clusters should be the dataset, that
means that all the datapoints in X should be assigned to a cluster. Finally
equation 3.3 tells us that the intersection between any two clusters should be
the empty set, meaning that a datapoint x𝑖 for 𝑖 = 1, .., 𝑁 should be assigned
to a single cluster. [13].

Figure 3.1: Illustration of a clustering, where every black point represents a single
datapoint. The blue sections represents the clusters.

Figure 3.1 illustrates partitional. Where we can see that the datapoints are
grouped into three clusters. One can also notice that none of the points are
assigned to more than one cluster (equation 3.3), no clusters are empty (equa-
tion 3.1) and no points are unassigned to any cluster (equation 3.2).

Equations 3.1 - 3.3 does not set any constraints to which points are to be clus-
tered together, clustering with these constraints alone, may therefore yield
trivial solutions. Proximity measures can be used to cluster datapoints together
based on their distance to one another. A common proximity measure is the

3.2 k-means algorithm 11

𝑙2-norm [13]. Objective functions, also known as clustering criteria, are used
in clustering algorithms, where they evaluate the quality of a clustering solu-
tion. Clustering algorithms aim to find the optimal partition of the datapoints,
through optimizing the objective function. A common objective function is the
sum of squared errors:
Definition. The sum of squared errors is defined as:

J𝑠 (Γ,M) =
∑︁
𝑖

∑︁
𝑗

𝛾𝑖 𝑗 | |x𝑗 −m𝑖 | |2 (3.4)

=
∑︁
𝑖

∑︁
𝑗

𝛾𝑖 𝑗 (x𝑗 −m𝑖)𝑇 (x𝑗 −m𝑖) . (3.5)

Where Γ = {𝛾𝑖 𝑗 } is is a partition matrix, where 𝛾𝑖 𝑗 takes on binary values and
is equal to 1 if the point 𝑥 𝑗 is assigned to the 𝑖th cluster, and 0 else, M is the
cluster centroid, and m𝑖 is the sample mean of the 𝑖th cluster [13].

3.2 K-Means Algorithm

The K-means algorithm is one of the most commonly used clustering algorithms.
The K-means algorithm is optimized by the minimization of the sum of squared
errors function, showed in equation 3.5. The algorithms works by first initializ-
ing the partition matrix randomly, and calculating the cluster centroids, M in
equation 3.5. Then all points in the dataset, are assigned to the cluster which
they have the closes euclidean distance to. The cluster centroids are then recal-
culated. The datapoints are then reassigned to the now shifted cluster centroids
they have the closest euclidean distance to. This assigning of datapoints to clus-
ters, and recalculation of the clusters centroids are repeated iteratively, until
there is no change in the clusters [13].

Given a dataset X consisting of 𝑁 data points: X = [x1, .., x𝑗 , ..., x𝑁], where
x𝑗 = [𝑥 𝑗1, .., 𝑥 𝑗𝑑] that is to be partitioned into 𝐾 clusters 𝐶 = [𝐶1, ..,𝐶𝐾], for
𝐾 ≤ 𝑁 . The K-means algorithm can be expressed as:

12 chapter 3 clustering

1. Initialize:

• Randomly initialize 𝐾 cluster centroids `1, . . . , `𝐾 .

2. Assign data points to clusters:

• For each data point x𝑗 :

– Compute the 𝑙2-distance 𝑑 (x𝑗 , c) between x𝑗 and the cluster
centroids .

– Assign x𝑗 to the clusterwith the closest centroid:𝐶∗ = argmin
𝑘

(𝑑 (x𝑗 , c𝑘)).

3. Update cluster centroids:

• For each cluster 𝐶 = [𝐶1, . . . ,𝐶𝐾]:

– Calculate the new centroids:

`𝑘 =
1
𝑁𝑘

∑︁
x𝑖 ∈𝐶𝑘

x𝑖,

where𝐶𝑘 is the set of data points assigned to cluster 𝑘, and 𝑁𝑘
is the number of data points assigned to 𝐶𝑘 .

4. Repeat steps 2 and 3 until convergence [13].

Figure 3.2: Illustration of K-means iteratively process of recalculating the centroids
and reassigning the points.

Figure 3.2 illustrates how the k-means algorithm starts with a random initial-
ization of the centroids, and how the datapoints are assigned to the nearest
cluster center, after every iteration, the cluster centres are recalculated, and
the points are reassigned to the new nearest clusters.

3.3 gaussian mixture model 13

3.3 Gaussian Mixture Model

A Gaussian mixture model (GMM) is a clustering method that predicts the
probability density function of the data, assuming that it follows a multivariate
normal distribution [14]:

𝑝 (x) =
𝐾∑︁
𝑘=1

𝜋𝑘N
(
x|𝝁𝑘 , Σ𝑘

)
. (3.6)

Where 𝑝 (x) is the probability density function of x, 𝜋𝑘 is the prior probability
of a datapoint belonging to mixture component 𝑘 and N(·) is the multivari-
ate Gaussian distribution with mean vector 𝝁 ∈ 𝑅𝑑 and covariance matrix
Σ ∈ 𝑅𝑑×𝑑 [14]. The clustering via Gaussian mixture models is done by max-
imizing the log likelihood function with respect to the variables 𝜋𝑘 𝝁𝑘 and
Σ𝑘 [14].

The maximization of the log likelihood function can be done by the Expec-
tation maximization (EM) algorithm [12]. The log likelihood function for a
Gaussian mixture model, that is to be fitted to a dataset (X) of 𝑁 observations,
can be expressed as:

ln (𝑝 (X|𝜋, 𝝁, Σ)) =
𝑁∑︁
𝑛=1

ln

(
𝐾∑︁
𝑘=1

𝜋𝑘N
(
x|𝝁𝑘 , Σ𝑘

))
. (3.7)

The EM algorithm starts by initializing the parameters 𝜋 , 𝝁 and Σ, and evaluat-
ing the log likelihood function. Then the cluster responsibilities are evaluated
using the current parameter values, the cluster responsibilities are calculated
using the equation [12]:

E-step: 𝛾 (𝑧𝑛𝑘) =
𝜋𝑘N(x𝑛 |𝝁𝑘 , Σ𝑘)∑𝐾
𝑗=1 𝜋 𝑗N(x𝑛 |𝝁 𝑗 , Σ𝑗)

. (3.8)

The evaluation of the cluster responsibilities are considered the E-step of the
EM algorithm. The M-step of the EM algorithm is the re-estimation of the
parameters. following the equations [12]:

𝝁new
𝑘

=
1
𝑁𝑘

𝑁∑︁
𝑛=1

𝛾 (𝑧𝑛𝑘)x𝑛, (3.9)

M-step: Σnew
𝑘

=
1
𝑁𝑘

𝑁∑︁
𝑛=1

𝛾 (𝑧𝑛𝑘)
(
xn − 𝝁new

𝑘

) (
xn − 𝝁new

𝑘

)T
, (3.10)

𝜋new
𝑘

=
𝑁𝑘

𝑁
. (3.11)

14 chapter 3 clustering

Where 𝑁𝑘 can be considered as the total responsibility assigned to cluster 𝑘,
expressed as [12]:

𝑁𝑘 =

𝑁∑︁
𝑛=1

𝛾 (𝑧𝑛𝑘) . (3.12)

after every E and M step of the EM algorithm, the log likelihood is evaluated,
to check for convergence [12].

When the Gaussian mixture model is fitted to the data, each datapoint is as-
signed to the mixture component based on the posterior probability of the
datapoint belonging to the mixture component. As the assignment to each
cluster is based on probabilities, the GMM method performs soft clustering,
meaning that one single datapoint can be assigned to multiple clusters, or
mixture components, but with different probabilities [12].

4
Neural Network
In this section we will discuss feed-forward networks and forward propagation,
providing insights into how information flows through the network. Optimiza-
tion algorithms, such as stochastic gradient descent and the Adam optimizer,
will be introduced as they optimize the network’s performance [15]. Lastly, we
will go through the backpropagation algorithm.

15

16 chapter 4 neural network

4.1 Feed Forward Networks and Forward
Propagation

This section is based on parts from the project paper [8].
A traditional feed forward neural network consists of at least one layer, the
output layer. The input layer receives the input data and applies weights and
usually biases to the input, then the processed input is passed to the output
layer where another set of weights and biases is applied to create an output. In
addition to the mandatory output layer there can be hidden layers, the hidden
layers also consist of neurons with weights and biases, and are between the
input and output layer [16].

Figure 4.1: Illustration of Feed forward dense network architecture.

Figure 4.1 illustrates the architecture of a generic feed forward Network. Every
feed forward network has at least one output layer, where all layers between
the input and output layer are called hidden layers. As seen in the illustration,
every input or neuron in one of the hidden layers connects to all neurons in the
following layer. There are weights, and usually biases, associated with every
neuron. The weights and biases is applied to all inputs the neuron receives
to create a weighted sum. The weighted sum is passed through an activation
function before its passed to the next layer [16]. The values for the weights and
biases is learned during the training of the network [17]. When the final layer,
the output layer, is reached. A final weighted sum and activation is performed
and the model makes a prediction [18].

4.2 gradient descent 17

The activation of a neuron in a neural network is the activation function applied
to the weighted sum of the neurons input. The weighted sum of the neurons
input follows the equation:

𝑣 = w𝑥 + 𝑏. (4.1)

Where w is the weight matrix associated to the neuron, 𝑏 is the bias vector
associated to the neuron, and 𝑥 is the input data vector to the neuron. The
activation of the neuron follows the formula:

𝑎 = 𝑔(𝑣). (4.2)

Where 𝑎 is the activation of the neuron, 𝑔(·) is the activation function and 𝑣 is
the weighted sum from equation 4.1 [19].

The forward propagation is the passing of the input through all the layers
of the model, where every neuron calculates the weighed sum following equa-
tion 4.2 [20]. After the forward propagation is done, the loss is calculated. In
order to optimize the model such that the loss is minimized, the model has to
update its parameters.

4.2 Gradient Descent

A small loss value indicates that the model is fitting to the data [21]. Therefore
the need to minimize the loss curve with respect to the weights of the model
occurs. In order to do this, the gradient of the loss with respect to the weights
of the model is needed. The gradient of the loss tells us the rate of change of
the loss with respect to each weight. By computing the gradient of the loss,
we can adjust the weights in the direction that reduces the loss the most [20].
The most common optimizing scheme is to update the model parameters using
gradient descent. Where the gradient of the loss with respect to a parameter
is calculated and the parameter is updated in the opposite direction of the
gradient. Mathematically the gradient descent parameter optimization can be
expressed as:

w(𝑟)
𝑗

(new) = w(𝑟)
𝑗

(old) + ∇w(𝑟)
𝑗
. (4.3)

Where w(𝑟)
𝑗

is the weight vector for the jth neuron in the rth layer. w(𝑟)
𝑗

(new)
indicates the updated weight w(𝑟)

𝑗
(old) indicates the old weight and ∇w(𝑟)

𝑗

is the gradient of the loss with respect to the weight w(𝑟)
𝑗

[18]. As ∇w(𝑟)
𝑗

is
the gradient of the loss with respect to the loss, aswell as we know we want
to adjust the weights in the negative direction of the gradient, we can express

18 chapter 4 neural network

∇w(𝑟)
𝑗

as:

Δw(𝑟)
𝑗

= −[𝜕L
𝜕w(𝑟)

𝑗

. (4.4)

Where [is the learning rate of the model, the learning rate is a parameter
that evaluates the magnitude of the step taken in the negative gradient di-
rection [20]. 𝜕L

𝜕w(𝑟)
𝑗

is the derivative of the loss function L with respect to the

weight vector of the jth neuron in the rth layer[18].

Figure 4.2: Illustration of gradient descent.

Figure 4.2 Illustrates the gradient descent scheme, where the red line is the
derivative of the loss function with respect to the weight, the blue point on the
line is the initial weight corresponding tow(𝑟)

𝑗
(old) in equation 4.3, the arrows

pointing from the initial weight is the updated weights position or w(𝑟)
𝑗

(new)
in equation 4.3. The length of the arrow corresponds to the learning rate pa-
rameter, [in equation 4.4. The Figure illustrates how moving in the opposite
direction of the gradient, loss is minimized.

The simplest parameter update scheme is by gradient descent[20]. There are
other more complex optimizing schemes that further builds on stochastic gradi-
ent descent schemes, where stochastic gradient descent is the same as gradient
descent, but the gradient is estimated from a smaller portion, or batch of the
data, instead of calculating the exact gradient [14]. One of these more complex
variants is the Adam optimizer. The Adam optimizer updates two exponential
moving averages estimates of the gradient and the squared gradient, where the
first moving average is of the mean of the gradient and the second moving av-
erage is of the uncentered variance of the gradient [22]. The moving averages
are:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 , (4.5)

4.3 backpropagation 19

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡 . (4.6)

Where 𝑚𝑡 is the moving average estimate of the mean of the gradient, 𝑣𝑡 is
the moving average estimate of the uncentered variance, both at time step 𝑡 .
𝛽1, 𝛽2 ∈ {0, 1) are hyperparameters that controls the exponential decay rate of
the moving averages and 𝑔𝑡 is the gradient at time step 𝑡 [22]. As the estimates
of the mean and variance moment are biased, the Adam optimizer also have a
bias correction for the two momentum estimates:

𝑚𝑡 =
𝑚𝑡

(1 − 𝛽𝑡1)
, (4.7)

𝑣𝑡 =
𝑣𝑡

(1 − 𝛽𝑡2)
. (4.8)

Where𝑚𝑡 and 𝑣𝑡 are the bias corrected momentum estimates of the mean and
variance from equations 4.5 and 4.6 respectively [22].

The weight updating scheme of the Adam optimizer follows the equation:

𝑤𝑡 = 𝑤𝑡−1 − [
𝑚𝑡√
𝑣𝑡 + 𝜖

. (4.9)

Where 𝑤𝑡 is the new weight, 𝑤𝑡1 is the old weight, [is the learning rate,𝑚𝑡

is the bias corrected mean momentum estimate for the weight, 𝑣𝑡 is the bias
corrected variance momentum estimate for the weight and 𝜖 is a small value to
avoid division by zero [22]. From equation 4.9, one can see that the learning
rate of the optimizer is scaled by the momentum estimates of the gradient, thus
yielding an adaptive learning rate for each weight, in contrary to one constant
learning rate for all weights, like in the basic gradient descent scheme from
equation 4.3 [14].

4.3 Backpropagation

To update the weights, an optimizing scheme is applied like described in Sec-
tion 4.2. But to calculate the gradient itself, the backpropagation algorithm
is applied. The backpropagation algorithm is propagating through the model,
similarly to the forward propagation described in Section 4.1, However the
backpropagation algorithm starts at the output of the model [19]. In the out-
put layer, the derivative of the loss function with respect to 𝑣 (𝐿)

𝑗
(𝑖) are explicit

[18], where 𝑣 (𝐿)
𝑗

(𝑖) is the weighted sum performed by the 𝑗 th neuron in the
output layer 𝐿. The derivative of the gradient is thus:

𝛿
(𝐿)
𝑗

(𝑖) = 𝜕L(𝑖)
𝜕𝑣

(𝐿)
𝑗

(𝑖)
. (4.10)

20 chapter 4 neural network

Where L(𝑖) is the loss calculated given model output 𝑔(𝑣 (𝐿)
𝑗

(𝑖)), where 𝑔(·) is
the activation function in the output layer, and label 𝑦 (𝑖) , where 𝑖 = 1, 2, ..., 𝑁 ,
v(𝐿)
𝑗

(𝑖) is the weight of the jth neuron in the output layer (𝐿) and 𝜕 (𝐿)
𝑗

(𝑖) is the
loss gradient with respect to the 𝑣 (𝐿)

𝑗
(𝑖) [18].

For all the other layers, or hidden layer 𝑟 < 𝐿 the gradient is calculated differ-
ently. This is because of the successive dependence among the layers [18].

𝜕L(𝑖)
𝜕𝑣

(𝑟−1)
𝑗

=

𝑘𝑟∑︁
𝑘=1

𝜕L(𝑖)
𝜕𝑣

(𝑟)
𝑘

(𝑖)

𝜕𝑣
(𝑟)
𝑘

(𝑖)

𝜕𝑣
(𝑟−1)
𝑗

(𝑖)
, (4.11)

where 𝜕L(𝑖)
𝜕𝑣

(𝑟−1)
𝑗

(𝑖)
is the derivative of the loss function with respect to the output of

the 𝑗 -th neuron in the (𝑟 −1)th layer, 𝑣 (𝑟−1)
𝑗

(𝑖) and 𝑘𝑟 is the number of neurons
in the 𝑟 th layer. If we apply the notation from equation 4.10 in equation 4.11,
we get:

𝛿
(𝑟−1)
𝑗

(𝑖) =
𝑘𝑟∑︁
𝑘=1

𝛿
(𝑟)
𝑗

(𝑖)
𝜕𝑣

(𝑟)
𝑘

(𝑖)

𝜕𝑣
(𝑟−1)
𝑗

(𝑖)
. (4.12)

The second term in the sum is the derivative of the output of the 𝑘th neuron
in the 𝑟 th layer with respect to the output of the 𝑗 th neuron in the (𝑟 − 1)th
layer, 𝑣 (𝑟−1)

𝑗
(𝑖). This term is given by the derivative of the activation function

𝑔(·) applied to the weighted sum 𝑣
(𝑟−1)
𝑗

(𝑖) [18]:

𝜕𝑣
(𝑟)
𝑘

(𝑖)

𝜕𝑣
(𝑟−1)
𝑗

(𝑖)
=

𝜕

𝜕𝑣
(𝑟)
𝑗

(𝑖)
𝑔(𝑣 (𝑟−1)

𝑗
(𝑖)) = 𝑔′(𝑣 (𝑟−1)

𝑗
(𝑖))𝑤 (𝑟)

𝑘 𝑗
. (4.13)

If we insert the equation 4.13 into equation 4.12, we get:

𝛿
(𝑟−1)
𝑗

(𝑖) =
𝑘𝑟∑︁
𝑘=1

𝛿𝑟𝑗 (𝑖)𝑔′(𝑣
(𝑟−1)
𝑗

(𝑖))𝑤 (𝑟)
𝑘 𝑗
. (4.14)

Where 𝑤 (𝑟)
𝑘 𝑗

is the weight connecting the 𝑘th neuron in the (𝑟 − 1)th layer
to the 𝑗 th neuron in the 𝑟 th layer, and 𝑔′(·) is the derivative of the activation
function 𝑔(·) [18].

Finally, to get the derivative of the loss with respect to the weights of the model,
the chain rule is applied once again:

𝜕L(𝑖)
𝜕w(𝑟)

𝑗

=
𝜕L(𝑖)
𝜕𝑣

(𝑟)
𝑗

(𝑖)

𝜕𝑣
(𝑟)
𝑗

(𝑖)

𝜕w(𝑟)
𝑗

, (4.15)

4.3 backpropagation 21

where 𝜕L(𝑖)
𝜕w(𝑟)

𝑗

is the derivative of the loss with respect to the weight vector of

the 𝑗 th neuron in the 𝑟 th layer, 𝜕L(𝑖)
𝜕𝑣

(𝑟)
𝑗

(𝑖)
is the derivative of the loss with respect

to the argument of the activation function for the 𝑗 th neuron in the 𝑘th layer

and
𝜕𝑣

(𝑟)
𝑗

(𝑖)
𝜕w(𝑟)

𝑗

= y(𝑟−1) (𝑖) [18] is the derivative of the argument of the activation

function for the 𝑗 th neuron in the 𝑘th layer with respect to the weights in the
𝑗 th neuron in the 𝑟 th layer. If we apply the notation from equation 4.10 we
get:

𝜕L(𝑖)
𝜕w(𝑟)

𝑗

= 𝛿
(𝑟)
𝑗

(𝑖)y (𝑟−1) (𝑖), (4.16)

Inserted to equation 4.4 we get[18]:

Δw(𝑟)
𝑗

= −[
𝑁∑︁
𝑖=1

𝛿
(𝑟)
𝑗

(𝑖)y (𝑟−1) (𝑖) . (4.17)

5
Neural Networks
This chapter introduces some of the key concepts in neural networks. We start
this chapter with fully connected layers, followed by convolutions, which are
central to convolutional neural networks (CNNs). These operations act as filters,
extracting features from the input data [23]. Next, we look at other architec-
tural components like down and -upsampling layers followed by dropout and
batch normalization, and their purpose. Lastly we show some popular activa-
tion functions that introduce non-linearity into neural networks [24] and the
role of loss functions in quantifying the error of the model.

23

24 chapter 5 neural networks

5.1 Fully Connected Layers

Fully connected layers are feed forward networks like shown in figure 4.1, with
only an input and output layer. Where all neurons in the input layer connects to
every neuron in the output layer, that performs a weighted sum as in equation
4.1 followed by an activation function.

5.2 Convolution

This section is based on parts from the project paper [8].
In convolutional neural networks, feature maps are created by performing a
sliding dot product between the input and learnable filters, this sliding dot
product is the convolution operation [23].

Figure 5.1: Illustration of one dimensional convolution.

Figure 5.1 is a visual illustration on how a convolution between a one dimen-
sional input and a filter of equal dimensionality generates a feature map. Defi-
nition. The convolution operation is defined as:

𝑦 [𝑛] =
𝑀∑︁
𝑘=0

ℎ[𝑘]𝑥 [𝑛 − 𝑘] . (5.1)

where 𝑦 [𝑛] is the output of the convolution operation at the position 𝑛 in the
feature map, 𝑥 is the input of length 𝑁 and ℎ is the kernel with length 𝑀 + 1.
A common way to express the convolution between an input sequence and a
kernel is: 𝑦 [𝑛] = ℎ[𝑛] ∗ 𝑥 [𝑛]. Where ∗ denotes the convolution operation [7].

A convolution can also be applied as a form of down sampling the input, as the
size of the resulting feature mapmay differ from the input. The parameters that

5.3 transposed convolution 25

decide the size of the feature map is input size, padding, kernel size and stride.
Padding is the adding of extra pixels to the edges of the input data [25], kernel
size is the size of the filter applied to the input data [26] and stride is how
many pixel values the filter moves between each convolution operation [27].
The size of the resulting feature map can be calculated as follows:

𝑆𝑜 =
𝑆𝑖 + 2𝑝 − 𝑘

𝑠
+ 1. (5.2)

Where, 𝑆𝑜 is the output size, 𝑆𝑖 is the input size, 𝑝 is the padding,𝑘 is the kernel
size and 𝑠 is the stride[28].

In the illustration visualized in figure 5.1 the input size is 9, padding is 0,
kernel size is 3 and stride is 1. These values inserted in equation 5.2 results in
a output size of 7. In other words, the convolutional operation uses multiple
input values to generate one output value, as a result, the size of the output is
smaller than the input value.

Convolutional layers are layers where the running dot product between the
input data and a set of kernels is performed. The convolutional layers are of-
ten used in the beginning of the network, with the intention that the network
should learn to extract relevant features in the form of feature maps. The ker-
nels in the model can be random initialized, and the model will update the
weights of the kernels during the training of the model. Convolutional layers
are especially good for images, or other forms of data were there are spatial
patterns present relevant for the task at hand, as the convolutional layers can
capture these spatial patterns [29]. As the kernel slides over the input it is pro-
cessing, the kernel is able to detect small, but still meaningful features from the
input, such as edges [30]. Also due to the sliding dot product, the same weights
are applied to almost all the datpoints of the input, as a result, the kernel only
need to learn one set of parameters, instead of a separate set for each location
in the input [30]. This parameter sharing leads to something called transla-
tion equivariance, which means that if something is changed in the input, the
resulting feature map will also change in the same way [30].

5.3 Transposed Convolution

The transposed convolution is an operation that takes in a low dimension input
and returns a higher dimensional output, thus up sampling the input. Trans-
posed convolutions can thus be applied as a response to the down sampling of
a convolutional operation [31].

26 chapter 5 neural networks

Figure 5.2: Illustration of 1D transposed convolution.

Figure 5.2 illustrates the how the transposed convolution between a one di-
mensional input and a kernel will result in a larger, one dimensional output.
One can see from the illustration, that one value in the input space corresponds
to multiple values in the output space, which is opposite to the convolution
operation, where multiple values in the input space corresponds to one value
in the output space

5.4 downsampling layers 27

5.4 Downsampling Layers

Figure 5.3: Illustration of the Maxpool operation.

Downsampling layers are performed to reduce the dimensionality of the the
intermediate representations [32], As described in Section 5.2, Convolutional
layers can be applied to reduce the dimensionality, but there are also pooling
operations that can be applied as a downsampling layer. The pooling operation
is also a form of convolutional operation. The Maxpooling operation is illus-
trated in figure 5.3, which, similar to the convolution, slides over the input, but
instead of calculating a dot product, the maxpool operation simply returns the
maximum value. There are other operations similar to the maxpooling opera-
tion, such as the average pool, which instead of returning the maximum value,
it returns the average value [30]. In addition to reducing the dimensionality of
the feature maps, the pooling operation also contributes to making the feature
maps invariant to small translations of the input, this means that if the input
is altered slightly, the resulting feature map would not change [30].

28 chapter 5 neural networks

5.5 Upsampling Layers

Figure 5.4: Illustration of Upsampling operation.

Upsampling layers, are the opposite of downsampling layers, where the goal
is to increase the dimensionality of the representation or feature map. From
Section 5.3, we know that transposed convolutions can be applied for upsam-
pling, but there are also other operations that are used. One of the simplest
approaches to upsampling is by nearest-neighbor interpolation [33] and is illus-
trated in figure 5.4. From the figure one can see that one value in the data that
is to be upsampled, is repeated in order to double the dimensionality.

5.6 Dropout

Overfitting is a phenomenon in machine learning that occurs when for exam-
ple a very large network is trained on a relatively small training set [34]. One
consequence of an overfitted model is that the model can achieve very high
accuracy on the training data, but performs poorly in the testing phase, where
a new dataset with a similar distribution is presented to the model [34]. Over-
fitting occurs when the model starts to not only learn patterns in the data, but
also the noise present in the data [35]. This leads to so called co-adaptation of
feature detectors, where the activation of a neuron, for example, is only rele-
vant if the activation of other specific neurons occur [34]. To avoid overfitting,
dropout layers are introduced to the model, where a percentage of the feature
detectors, such as neurons in a dense layer, are omitted from the network [34].
By omitting a percentage of the neurons the remaining neurons are forced to be
more robust and not rely on the activity of other specific neurons [36].

5.7 batch normalization 29

5.7 Batch Normalization

When training a Neural network, we can feed one datapoint (𝑥) at a time
through the network, or as mentioned in Section 4.2, it is also common to feed
the Neural network batches of data. As shown in Section 4.2 The parameters
of the model are updated during training by backpropagating the gradients.
One problem that arises by doing so, is called internal covariate shift, which
means that the distribution of the input of every layer in the model changes
during training, thus slowing down the training of the model, one approach
that addresses this problem is Batch normalization [37].
Definition. Batch normalization is defined as:

𝑥 (𝑘) =
𝑥 (𝑘) − E[𝑥 (𝑘)]√︁

Var[𝑥 (𝑘)]
. (5.3)

Where 𝑥 is a 𝑑-dimensional input 𝑥 = (𝑥 (1) , ..., 𝑥 (𝑑)) and E[·] is the expected
value and Var[·] is the Variance [37].

Batch normalization is a technique that helps to standardize the input of the
layers in the model. as a result of adding batchnormalizing after each layer, the
optimization curve smooths out, and the gradients are more stable[38].

5.8 Activation Functions

In Deep learning, activation functions or transfer functions are used to introduce
non-linearity to the model, as we discussed in Section 4.1, the neurons in a
neural network performs a weighted sum to its inputs, thus performing a linear
mapping of its input [24]. This weighted sum is passed through the chosen
activation function to introduce non-linearity to the neurons output [6]. There
are multiple different activation functions to choose from, and the choice of
activation function may impact the performance of the model, as the activation
function has an impact on how the input of the model is mapped [6]. A common
activation functions is the Sigmoid function [39].
Definition. The Sigmoid function and its derivative is defined as:

𝜎 (𝑥) = 1
1 + 𝑒−𝑎𝑥 , (5.4)

𝜎 ′(𝑥) = 1
1 + 𝑒−𝑎𝑥

(
1 − 1

1 + 𝑒−𝑎𝑥

)
=

𝑎𝑒−𝑎𝑥

(1 + 𝑒−𝑎𝑥)2 . (5.5)

Where 𝜎 ∈ (0, 1) is the Sigmoid, 𝑥 ∈ (−∞,∞) is the input, 𝑎 is a slope param-
eter [39] and 𝜎 ′ ∈ (0, 0.25) is the derivative of the Sigmoid function.

30 chapter 5 neural networks

Figure 5.5: Sigmoid function and its derivative for different slope parameters.

Figure 5.5 illustrates how the Sigmoid function from equation 5.4 and its deriva-
tive from equation 5.5 changes for different slope parameters (𝑎). Another
common activation function is the Rectified Linear Unit (ReLU) function.
Definition. The Rectified Linear Unit and its derivative is defined as:

𝑓 (𝑥) =
{
𝑥, if 𝑥 > 0
0, otherwise

, (5.6)

𝑓 ′(𝑥) =
{
1, if 𝑥 > 0
0, otherwise

. (5.7)

Where 𝑓 (𝑥) ∈ (0,∞) is the ReLU function, 𝑓 ′(𝑥) ∈ (0, 1) is the derivative of
ReLU, 𝑥 ∈ (−∞,∞) is the input [6].

Figure 5.6: ReLU function and its derivative.

Figure 5.6 shows how the ReLU function from equation 5.6 and its derivative
from equation 5.7 changes for different input values.

An activation function similar to the ReLU function is the Exponential Lin-
ear Unit (ELU) function, which similarly to ReLU, returns 𝑥 for 𝑥 > 0, However
instead of returning 0 for other values, it returns a weighted exponential of the

5.8 activation functions 31

value.
Definition. The Exponential Linear Unit and its derivative is defined as:

𝑔(𝑥) =
{
𝑥, if 𝑥 > 0
𝛼 (𝑒𝑥 − 1) , otherwise

, (5.8)

𝑔′(𝑥) =
{
1, if 𝑥 > 0
𝑔(𝑥) + 𝛼, otherwise

. (5.9)

Where 0 < 𝛼 is a hyperparameter to define the value of the function for
𝑥 < 0 [40], 𝑔(𝑥) ∈ (−𝛼,∞) is the Exponential Linear Unit, 𝑥 ∈ (−∞,∞) is the
input and 𝑔′(𝑥) ∈ (0, 1) is the derivative of the ELU function.

Figure 5.7: ELU function and its derivative.

Figure 5.7 shows how the ELU function from equation 5.8 and its derivative
from equation 5.9 changes for different input values.

Finally the hyperbolic tangent function.
Definition.The hyperbolic tangent and its derivative is defined as:

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (5.10)

tanh′(𝑥) = 1 − tanh2(𝑥) (5.11)

Where tanh ∈ (−1, 1) is the hyperbolic tangent, tanh′ ∈ (0, 1) is the derivative
of the hyperbolic tangent and 𝑥 ∈ (−∞,∞) is the input [41].

32 chapter 5 neural networks

Figure 5.8: Hyperbolic tangent function and its derivative.

Figure 5.8 shows how the hyperbolic tangent tanh(·) and its derivative tanh′(·)
changes for different input values 𝑥 .

Softmax is also an activation function, but in contrast to the other activation
functions mentioned above, the Softmax function is mostly used in the output
layer of the model [42].
Definition. The Softmax function is defined as:

Softmax(𝑥𝑖) =
𝑒𝑥𝑖∑𝐾
𝑗=1 𝑒

𝑥 𝑗
for 𝑖 = 1, ..., 𝐾 and x = (𝑥1, ..., 𝑥𝐾) ∈ 𝑅𝐾 . (5.12)

For each value (𝑥𝑖) of a vector (x), the Softmax function (Softmax(·)) applies
the exponential to said value and divides it by the sum of the exponential
applied to all values of the vector. This ensures the sum of the values of the
output vector to be equal to 1 [42].

5.9 Loss

This section is based on parts from the project paper [8].
The loss function of a neural network is an integral part of howmachine learning
algorithms are able to learn and improve their performance [43]. The loss
function is used to inform the model on its performance of the task at hand.
In classification tasks, the loss is a measure of whether the predicted class
is equal to the true class. For an autoencoder the loss measures how similar
the reconstructed output is to the input. During the training of a feed forward
machine learning algorithm, the model passes the input through all its layers, to
yield an output, the loss function calculates the performance of the model and
the model can then adjust its parameters such that the loss is minimized [17].
The loss function to choose depends on the task at hand, for a classification
problem, one possible loss function can be the cross-entropy loss function,
which in the binary class case is called the binary cross entropy.

5.9 loss 33

Definition. The Binary cross entropy loss function is defined as:

LBCE = − 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)). (5.13)

Where 𝑁 is the number of samples, 𝑦𝑖 ∈ {0, 1} is the true class of sample 𝑖 and
𝑦𝑖 ∈ {0, 1} is the predicted class for sample 𝑖 [44].

Figure 5.9: Comparison of the Mean squared error loss and the binary cross entropy
loss

The blue line in figure 5.9 shows how the binary cross-entropy function from
equation 5.13 changes for different predicted class values (𝑦), when𝑦 = 0. First
notice that the loss has its minimum when the predicted class is equal to the
true class (𝑦 = 𝑦). One can also see that the cross-entropy loss increases expo-
nentially as the difference between the true class and predicted class increases.

In the case of where the number of classes is not binary, the categorical cross
entropy loss function can be applied.
Definition. The categorical cross entropy loss function is defined as:

LCCE = − 1
𝑁

𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑝𝑖𝑐 log(𝑦𝑖𝑐) . (5.14)

Where 𝑁 is the number of samples,𝐶 is the number of classes, 𝑝𝑖𝑐 is a one-hot
encoded label for sample 𝑖 and 𝑦𝑖𝑐 is the predicted probability distribution, or
the output from the model for sample 𝑖 [45].The categorical cross entropy has
the same features as the binary cross entropy function, where the loss has its

34 chapter 5 neural networks

minimum when 𝑦 = 𝑦 and the loss increases exponentially with the difference
of the predicted class and true class.

Another common loss function is the mean squared error loss.
Definition. The mean squared error loss function is defined as:

LMSE =
1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2. (5.15)

Where 𝑁 is the number of samples, 𝑦 is the label and 𝑦 is the model prediction.
In the case of an autoencoder, 𝑦 would be the input of the model and 𝑦 would
be the autoencoders reconstruction of the input.

The red line in figure 5.9 illustrates how the mean squared error loss changes
as the difference between the label and model prediction increases, where the
label value is set to be zero. From the figure one can see that the loss has its
minimum when the model prediction is equal to the label 𝑦 = 𝑦. Because of
the squared term in equation 5.15, the loss increases rapidly when the model
prediction is diverges from the label value[46]. One can also notice that the
MSE loss increases slower than the cross-entropy loss, as the predicted value
diverges from the true value.

6
Deep Learning
Architectures

In this chapter we will go through some general deep learning architectures,
we start with convolutional neural networks (CNN) and autoencoders, lastly we
introduce Recurrent neural networks (RNN) Long Short-Term memory (LSTM)
architecture.

6.1 Convolutional Neural Networks

This section is based on parts from the project paper [8].
Convolutional neural networks (CNNs) are neural networks that applies con-
volutional and downsampling layers like described in Section 5.2 and 5.4 re-
spectively, to learn spatial or temporal patterns in the data [29] and reduce
dimensionality of the data [32]. After the convolutional and downsampling,
fully connected layers are applied, described in Section 5.1 [47]. Because of
the convolutional layers ability to learn and extract spatial or temporal pat-
terns, convolutional neural networks are well suited for data that contains such
spatial or temporal patterns [48].

35

36 chapter 6 deep learning architectures

Figure 6.1: Illustration of a generic Convolutional neural network. (Heavily inspired
by [49]).

Figure 6.1 shows the architecture of a generic convolutional neural network,
Where the input data (Gray box) is passed through convolutional and down-
sampling layers (Orange and red boxes) The feature maps from the last con-
volutional layer is flattened and passed through fully connected layers. where
the final output layer makes a prediction or classification. Also worth noticing
is that after every convolutional layer and after every fully connected layer
an activation function is applied to the output of said layer. It is also possi-
ble to implement a Batch Normalizing layer after every activation function,
to smooth out the optimizing curve [38] and have dropout layers to avoid
overfitting [34].

6.2 Autoencoder

An autoencoder is a unsupervised deep learning method consisting of an en-
coder and decoder, the encoder part of the autoencoder is given the input and
creates a compressed representation of the given input. the compressed rep-
resentation, or the encoding of the input, is then given to the decoder, which
have to recreate the input of the autoencoder [50]. As the autoencoder aims to
minimize the loss between the input space and the output space, and because
the encoding space often has a lower dimensionality than the input space. The
autoencoder has to create an efficient compressed representation of the input
space. Such that the decoder can recreate the input as good as possible, while
only having access to said representation [51].

6.3 recurrent neural networks 37

Figure 6.2: Illustration of a generic Autoencoder architecture.

Figure 6.2 shows the architectural structure of a generic convolutional neu-
ral network autoencoder. The input of the autoencoder illustrated as a gray
box, is passed through a number of alternating convolution and downsampling
operations, illustrated with orange and red boxes respectively, to create the
encoding of the input space. As mentioned in Section 5.2, the convolution op-
eration itself can be applied as a downsampling operation, but there are also
operations like the maxpool operation from Section 5.4 that are frequently used
for downsampling[52]. The encoding space is illustrated as the teal square in
the middle of the figure. After the encoding is done, the decoding of the en-
coding space is performed, again, in an alternating fashion, convolutions, but
now in combination with upsampling operations, are applied to the encoding,
the upsampling is illustrated with blue boxes. The Upsampling operation can
be in the form of transposed convolutional layers, shown in Section 5.3 or by
using the nearest neighbor interpolation method from Section 5.5. The output
of the autoencoder, illustrated as the purple box, has the same dimensionality
as the input.

As mentioned earlier, an autoencoders goal is to recreate its input, but there are
also other applications of the autoencoder. As the output of the autoencoder
is the same size as the input, autoencoders can be used for image segmen-
tation [53] or as generative models [50]. Autoencoders can also be applied
in classification [50] or clustering tasks by utilizing the efficient, compressed
representation found in the encoding space of the autoencoder [51].

6.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural network that is com-
monly used in deep learning applications that deal with sequential data [54].
RNNs are designed to handle variable-length sequences of data [30], where
each element in the sequence is processed by the network, and the output at

38 chapter 6 deep learning architectures

each time step is used as input for the next time step. This ability to process
sequences of data makes RNNs particularly useful for natural language pro-
cessing, speech recognition, and time-series prediction [54].

The main difference between RNNs and other neural network architectures is
the ability to ’memorize’ information from previous inputs, in order to better
understand and predict the current input [55]. This is achieved by using recur-
rent connections. This allows the network to build a memory of the previous
inputs and use this information to make an informed prediction at the current
time step [56].

Figure 6.3: Illustration of standard Recurrent Neural Network Architecture(Heavily
inspired by [57]).

Figure 6.3 Illustrates how a standard RNN architecture would look like, and
how temporal data 𝑥𝑡 together with the information from the previous state
ℎ𝑡−1 is passed to the RNN cell together create an output 𝑦𝑡 and the input to
the next hidden layer ℎ𝑡 .

6.3 recurrent neural networks 39

(a) One-to-one architecture. (b) One-to-Many architecture.

(c) Many-to-One architecture. (d) Many-to-Many architecture.

Figure 6.4: Different input/output schemes of a recurrent neural network.

RNNs can have a variable input size, aswell as a variable output size, and the
different combinations of input and output sizes lets us classify RNNs into
four categories, there is the one-to-one RNN, that has one input layer and one
output layer (figure 6.4a), one-to-many, which has one input layer and multiple
output layers (figure 6.4b). Many-to-one, which has many input layers and one
output layer (figure 6.4c). Finally many-to-many has many input layers and
many output layers(figure 6.4d) [58].

40 chapter 6 deep learning architectures

Figure 6.5: Illustration of the RNN cell.

Figure 6.5 illustrates how the RNN cell, has weights and biases (𝑊𝑥ℎ) for the
input data (𝑥𝑡), (𝑊ℎℎ) for the previous state ℎ𝑡−1 and (𝑊𝑦ℎ) for the output
layer. The figure also shows how the sum of weighted input and previous state
are sent to the activation function 𝑔(·) to form the next hidden state ℎ𝑡 [56].

Another feature of a Recurrent neural network is the weights of the network,
illustrated as𝑊ℎℎ,𝑊𝑥ℎ and (𝑊𝑦ℎ) in figure 6.5. The same weights are applied
for every timestep of the model, where a timestep is a transition between the
RNN cells in figure 6.3 [56].

One of the biggest drawbacks of a standard Recurrent neural network, like
the one illustrated in figure 6.3, is that its ability to store, or memorize informa-
tion for long periods of time is not sufficiently good enough [56]. This is due
to a problem known as vanishing gradient, which is a phenomenon that occurs
when updating the same weights recursively with gradients, leading to expo-
nentially small weight updates for longer sequences [59]. The Long Short-Term
Memory (LSTM) architecture adresses the vanishing gradient problem by in-
troducing a memory cell, that is controlled by a gating mechanism [30].

6.4 Long Short-Term Memory

Long Short-Term Memory (LSTM) network. LSTMs use a special gating mech-
anism that allows the network to selectively remember or forget information
from previous inputs, enabling them to retain information over long periods
of time [59]. LSTM networks have a memory cell, that enables the network to

6.4 long short-term memory 41

retain the information, what information to store within the memory cell, is
controlled by three gates, the forget gate, input gate and output gate [56].

The forget gate controls howmuch of the information from the previous timesteps
that should retain in the memory cell. The input gate controls how much of the
current input 𝑥𝑡 should be added to the memory cell [56], and the output gate
controls how much of the information stored in the memory cell that should
be used to form the output of the LSTM at the current timestep [60].

Figure 6.6: Illustration of the Long Short-TermMemory architecture (Heavily inspired
by [57])

Figure 6.6 illustrates the architecture of the LSTM architecture. With the cell
state𝐶𝑡 at timestep 𝑡 and the three gating mechanisms 𝑓𝑡 , 𝑖𝑡 and 𝑜𝑡 that repre-
sents the forget, input and output gates respectively. and the output ℎ𝑡 .
From the figure one can see that the input is merged together with the input
from the previous layer. The forget gate and its weights determines what to
information that is to be forgotten from the cell state [61]. The input gate
decides what information that should be added to the cell state, preventing
irrelevant information to be stored [62].

Part II

Method

43

7
Models

45

46 chapter 7 models

7.1 Deep Clustering Model

As mentioned in Section 6.2, autoencoders can be useful in clustering tasks,
by utilizing the compressed representation from the embedding of the au-
toencoder [51]. However, by using clustering methods such as the k-means
algorithm from Section 3.2, the autoencoder is prevented from learning valu-
able information from the clustering. The clustering module introduced in [2]
allows for a learnable clustering together with the embedding. This is done by
rephrasing a Gaussian Mixture Model to act as a loss function for a one hidden
layer autoencoder, and therefore passing the clustering abilities of a GMM onto
the simple autoencoder, creating a clustering module. The clustering module
can then be trained simultaneously with a deep autoencoder, where the deep
autoencoder can create non-linear representations of the input data, for the
clustering module to partition.

Figure 7.1: Illustration of a deep clustering architecture, the upper architecture is a
deep autoencoder, the clustering module is connected to the deep autoen-
coders encoding space.

Figure 7.1 illustrates how a deep clustering model needs to be setup, where the
upper architecture is where the input data (𝑥) is fed to the deep autoencoder,
the embedding of the deep autoencoder (𝑧) is fed to the decoder part of the
deep autoencoder to create a reconstructed output (𝑥), but is also passed to the
lower architecture, where the clustering module, with the clustering abilities of
a GMM, is clustering the embedding of the deep autoencoder (𝛾) and recreates
the deep autoencoders embedding (𝑧).

7.1 deep clustering model 47

The Loss function of the deep clustering model is defined as:

LAE−CM (𝑋 |Θ) =𝛽
𝑁∑︁
𝑖=1

| |x𝑖 − x𝑖 | |2

+
𝑁∑︁
𝑖=1

| |z𝑖 − z̃𝑖 | |2

+
𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝛾𝑖𝑘 (1 − 𝛾𝑖𝑘) (7.1)

+
𝐾∑︁
𝑘=1

(1 − 𝛼𝑘) log(𝜸𝑘)

+ _ | |𝝁T𝝁 − I𝑘 | |

Where x and x is the input and output of the autoencoder respectively, z and z̃
is the input and output of the clustering module, 𝝁 is the center of the centroid,
and𝛾 is the cluster responsibility. The first two terms of the loss function:

𝐿1 = 𝛽

𝑁∑︁
𝑖=1

| |x𝑖 − x𝑖 | |2, (7.2)

and

𝐿2 =

𝑁∑︁
𝑖=1

| |z𝑖 − z̃𝑖 | |2, (7.3)

are the reconstruction loss functions for the two different autoencoders. Equa-
tion 7.2 is the loss of the deep autoencoder, weighted by a constant 𝛽. The
loss of the simple autoencoder in the clustering module is shown in equation
7.3. These terms penalizes the model if the reconstructed output isn’t equal to
the models input, this will push the model towards making efficient encodings,
such that the decoders are able to reconstruct the input. The third term:

𝐿3 =

𝑁∑︁
𝑖=1

𝐾∑︁
𝑘=1

𝛾𝑖𝑘 (1 − 𝛾𝑖𝑘), (7.4)

encourages the model to make clearer cluster assignments, this is because 𝐿3
is only zero when 𝛾 is a one-hot vector. Minimizing 𝐿3 leads to a sparse 𝛾 , and
the resulting cluster assignments are clearer. The fourth term:

𝐿4 =

𝐾∑︁
𝑘=1

(1 − 𝛼𝑘) log(𝜸𝑘), (7.5)

balances the Dirichlet prior, if all elements in 𝛼𝑘 are non-zero, the model is
incentivized to utilize all the clusters. The final term:

𝐿5 = _ | |𝝁T𝝁 − I𝑘 | |, (7.6)

48 chapter 7 models

encourages the cluster centroids to be orthogonal.Where _ is a hyperparameter
that controls the importance of this term in the overall loss function and I𝑘 is
the identity matrix with dimensionality 𝑘×𝑘. When the cluster centroids are or-
thogonal to eachother, better separation of the clusters is achieved [63].

7.2 Temporal Neighborhood Coding

Temporal Neighborhood coding (TNC) is an unsupervised representation learn-
ing for time series method introduced by Sana Tonekaboni, Danny Eytan and
Anna Goldengerg. The method defines neighborhoods in time with stationary
properties and ensures that the distribution of signals from a certain neigh-
borhood is distinguishable from distributions originating from other neighbor-
hoods in the encoding space of the model [1].

The neighborhoods are defined as stationary regions of the signal, with size [,
where [is evaluated by using the Augmented Dickey-Fuller test (ADF-test). The
ADF-test is used to measure the stationarity of a given time series. The starting
value for [is 1, and the 𝑝-value is calculated. If the 𝑝-value is greater than a
threshold value, the test fails, and the signal is not considered stationary. If the
test is passed, the value of [is increased iteratively, performing the ADF-test
and calculating the 𝑝-value for every step, until the test failes. This ensures that
the widest neighborhood, where the signal still remains stationary, is used [1].

The AugmentedDickey-Fuller test assumes that the time series can be expressed
as a AR(𝑝)-process [64], the time series (𝑥𝑡) and its first difference (Δ𝑥𝑡) can
then be expressed as:

𝑥𝑡 =

𝑝∑︁
𝑗=1

𝜙 𝑗𝑥𝑡− 𝑗 +𝑤𝑡 ,

Δ𝑥𝑡 = 𝛾𝑥𝑡−1 +
𝑝−1∑︁
𝑗=1

𝜓 𝑗𝑥𝑡− 𝑗 +𝑤𝑡 .

Where 𝛾 =
∑𝑝

𝑗=1 𝜙 𝑗 − 1 and𝜓 𝑗 = −∑𝑝

𝑖=𝑗
𝜙𝑖 for 𝑗 = 2, .., 𝑝 [65].

The ADF-test is used to test the hypothesis that the autoregressive polynomial
𝜙 (𝑧), defined as:

𝜙 (𝑧) = 1 − 𝜙1𝑧 − . . . − 𝜙𝑝𝑧𝑝, (7.7)

has a unit root at 1, meaning that 𝜙 (1) = 0. The hypothesis is thus 𝐻0 : 𝛾 = 1,
meaning that if the test is passed, the time series is not stationary. The test is

7.2 temporal neighborhood coding 49

performed through a Wald test based on 𝛾 [65]:

𝑡𝛾 =
𝛾

se(𝛾) . (7.8)

where 𝛾 is the estimated value of 𝛾 through the regression of Δ𝑥𝑡 on
𝑥𝑡−1,Δ𝑥𝑡−1, ...,Δ𝑥𝑡−𝑝+1 and se(·) denotes the standard error [65].

Further, the assumption that windows within a particular neighborhood share
similar characteristics. Windows outside of the neighborhood, represented as
𝑁𝑡 are likely to contain unsimilar features, is made. If assumed that windows
sampled from 𝑁𝑡 are negative samples, a sampling bias can occur, as the sam-
pled window from 𝑁𝑡 might not necessarily be a negative sample, but in con-
trary, the sampledwindowmight contain similar characteristics to the reference
window. Thus, by wrongfully labeling the 𝑁𝑡 -sampled window as a negative
sample, the bias occurs, and it can impact the learning of the model [66]. To
avoid the sampling bias, windows sampled from 𝑁𝑡 are considered unlabeled.
The classifier learns by sampling labeled, positive, data from a reference neigh-
borhood and unlabeled data from another neighborhood(𝑁𝑡). The unlabeled
data is then considered as a mixture of both positive and negative samples with
a positive class prior 𝜋 [1]. Every sample drawn from the reference neighbor-
hood is considered a positive sample, and is unit weighted. The samples drawn
from 𝑁𝑡 is considered as combination of both positive and negative samples,
with weights 𝑤 and 1 −𝑤 , where 𝑤 is the probability of a window sampled
from 𝑁𝑡 to be a positive sample [1].

When the neighborhoods are defined. An encoder is trained such that the
representations of samples from the same neighborhood are distinguishable
from samples from other neighborhoods. This is done by a encoder that maps
the input to a lower dimensional space followed by a discriminator that receives
two samples from the encoding and predicts the probability of the two samples
to originate from the same neighborhood. [1].

Figure 7.2: Illustration of the TNC algorithm [1].

50 chapter 7 models

Figure 7.2 shows how the TNC algorithm first defines the neighborhood dis-
tribution of the sample window, the sample window is the area enclosed by
the black dotted square. Then in the left plot, the encoder is fed two samples
originating from the same neighborhood distribution, the encodings of the two
samples are fed to the discriminator, where the discriminator is predicting the
probability of the two samples being from the same neighborhood. In the right
plot, the encoder is given one sample from the reference neighborhood, again,
the area enclosed by the black dotted square, and a sample from another dis-
tribution, originating from the area enclosed by the red dotted line. Here the
encoding of the other sample is weighed to adjust for the sampling bias.

As the discriminator yields the probability of whether the two samples originate
from the same neighborhood or not, the loss function is thus opted to make the
discriminator accurate, where it will be close to 1 if the two representations
originates from neighboring samples and 0 if the two representations originate
from non-neighboring samples. While also the non-neighboring samples are
weight adjusted to adjust for positive, non-neighboring samples.

L = − E𝑊𝑡∼𝑋
[
E𝑊𝑙∼𝑁𝑡

[
logD(𝑍𝑡 , 𝑍𝑙)

]
+ E𝑊𝑘∼𝑁𝑡

[
(1 −𝑤𝑡) × log(1 − D(𝑍𝑡 , 𝑍𝑘))

+𝑤𝑡 × logD(𝑍𝑡 , 𝑍𝑘)
]]
. (7.9)

Where E𝑥∼𝑦 is the expected value of x sampled from y, D(𝑍𝑡 , 𝑍𝑘) is the out-
put of the discriminator, where the input is the encoding of𝑊𝑡 and𝑊𝑘 and
𝑤 is the weights that consider the positive samples in the non neighboring
distribution [1].

8
Proposed Data and Model
Architectures

8.1 Data

In the thesis we have used two different datasets. one of the datasets we have
used is the same as in [1], the simulated dataset. The simulated dataset was
made to replicate a very long, non-stationary and high frequency time series,
with three underlying dynamics and four different states. As this dataset is
simulated, the four different states are balanced, when it comes to appearance
of the four different states in the files [1].The other dataset is the same as we
used in the project paper [8]. A dataset consisting of audiofiles recorded by
hydrophones located in different locations in the seabed around Svalbard. This
dataset has multiple recordings of different mammal species, aswell as other
recordings, such as moving ice and recordings of boat engines. The individual
audiofiles vary in length, where the shortest audiofile is 6.04 minutes and the
longest audiofile is 17.1 minutes. The labeling of the audiofiles varies, as the
labeling for the appearance of boats in the audiofiles are good, where every
timestep is binary labeled according to whether there is a boat present in the
audiofile at that timestep or not, on the other hand, the appearance of other
phenomenons in the dataset, such as a recording of a mammal, is only labeled
once for the entire dataset, meaning that we knowwhich audiofile that contains
a recording of a bearded seal, but we do not now where in the audiofile the
recording is, nor how long the recording is. Based on this, we decided to in-

51

52 chapter 8 proposed data and model architectures

stead of cluster each mammal class, we decreased the number of classes to the
nature of the sounds, some of the mammals, like the walrus and belugas, can
make sounds that resembles clicking noises, while the bowhead, for example,
makes more of a continuous song. These two sound characteristics makes up
two classes, we also needed a class for no sound, in addition to the presence
of boats, this adds up to 6 different classes. Namely: clicking, song, no sound,
all three with and without the presence of boat engines.

The dataset we used from the TNC was preprocessed in the same way as in the
paper. The simulated data is generated using a hidden Markov model, with 4
different states. The resulting signals are also normalized to have zero mean
and standard deviation equal to one [1].
The audiofiles are preprocessed by first converting the audiofiles into spectro-
grams. The spectrograms are further averaged such that every timestep in the
spectrograms is equal to one second of audio, further, the highest frequencies
are clipped such that only the first 80 frequency bins are used. Finally the spec-
trograms were normalized to have zero mean and standard deviation equal to
one.

8.2 Proposed Models

During training and inference of the models the simulated data was split into
windows of length 50. The labels of the windows were defined as the label
occurring most within each window. The spectrograms were similarly split into
windows of length 14, which is equal to 14 seconds of audio per spectrogram.
The labels denoting occurrences of boats in the spectrograms were decided if
boat audio occurred in more than 50% of the window, all other was set to no
boat. The labels denoting if other phenomena occurred in the audiofiles were
assigned to all the windows of each spectrogram. So if the audiofile was labeled
to contain audio of walrus, then all windows of that audiofile was labeled to
contain walrus audio. All datasets were split into training and testing sets with
a ratio of 80/20.

In addition to the models used in [1], we also did a further build on the TNC
models, such that they follow the structure of an autoencoder, with an encoder
and a decoder. This gives us a total of fourmodels, one clusteringmodel utilizing
convolution, one clustering model utilizing the LSTM architecture, and one en-
coder utilizing convolutional and one encoder utilizing the LSTM architecture.
In our experiment, all of the models are applied to both the datasets.

8.2 proposed models 53

Figure 8.1: Architecture of the autoencoder utilizing one dimensional convolutions,
pooling and upsampling layers for the encoder/decoder together with
the implemented Clustering module applied on the deep autoencoders
encoding space.

Figure 8.1 illustrates the deep clustering model utilizing convolutional layers
to encode and decode the data. This deep clustering model was applied on
the simulated data and the spectrogram data, the only difference between the
autoencoder used for the two different datasets is the shape of the input/output
space, due to the nature of the two datasets. The orange boxes represent one-
dimensional convolutional layers with the ELU activation function and batch
normalization. The red boxes represent maxpool operations. The green boxes
represent fully connected layers, including a hidden layer and dropout layer.
The encoding space is passed to the clustering module that partitions the data.
The decoder starts with a fully connected layer, followed by convolutional lay-
ers and upsampling layers using nearest neighbors interpolation like described
in Section 5.5, illustrated as the blue boxes. The loss function for the model is
shown in equation 7.1, and the model was optimized using the Adam optimizer
from Section 4.2 with a learning rate equal to 10−3 and a weight decay factor
of 10−5.

The deep clustering model, that utilizes the LSTM structure described in Sec-
tion 6.3 to encode and decode the input data has similar structure to the model
illustrated in figure 8.1, however, the convolutional layers, aswell as the pooling
and batch normalization layers in the encoder and decoder has been replaced

54 chapter 8 proposed data and model architectures

by a the LSTM architecture. The input data is passed to a LSTM encoder, which
encodes the data into a smaller dimensionality, the LSTM encoding is similarly
to the CNN deep clustering module passed to a one hidden layer fully connected
layer,which also has a dropout layerwith probability of 0.5. The encoding space
is also passed to a clustering module for clustering, and to another one hidden
layer fully connected layer with dropout, followed by a LSTM decoder, which
reconstructs the models input. The loss function is the same as for the CNN,
equation 7.1 together with a Adam optimizer with learning rate 10−3, and a
weight decay factor of 10−5.

Part III

Results and Discussion

55

9
Experiments and Results

57

58 chapter 9 experiments and results

9.1 Experiments

All the models were trained for 200 epochs, but the weights that achieved the
lowest loss for the testing data was saved and used for inference.

9.2 Results

9.2.1 TNC Architecture

In this section we will present the results from applying the TNC architecture
to the simulated dataset aswell as the spectrograms. The encoder utilizing
convolutions was tested for different kernel sizes and the encoder utilizing the
LSTM architecture was tested for different number of hidden layers. The plots
for all tests follow the same structure, consisting of 3 parts, the upper plot shows
the test sample applied to the model, the middle part shows the encoding of the
model, and the bottom part of the plots will show spectral clustering applied
to the encoding of the model, this will act as an unsupervised segmentation of
the input data.

Simulated Data

As mentioned in Section 8.2 both the encoder utilizing convolutional layers
and the LSTM architecture was applied to the simulated data. First we will
present the performance of the encoder that used convolutional layers. The
encoder utilizing convolutional layers was tested with kernel size 3 and 5. In
this section we will see the following sample of the simulated data:

Figure 9.1: Test sample from simulated data where the background is colored depen-
dent on the label of the timeseries at that specific point in time

The plot in figure 9.1 shows a window of one of the testing data time series,
for the simulated dataset. The window has a length of 600 timesteps. The
background of the plot illustrates the label of the time series at every timestep,
the change in color illustrates a transition from one class to another, signifying

9.2 results 59

different underlying patterns or characteristics within the data. This test sample
is used for inference of the models trained on the simulated data.

Figure 9.2: Labeled sample together with encoding, from inference of TNC architec-
ture utilizing convolutional layers with kernel size 3.

The upper plot of figure 9.2 shows the time series window with the different
labels as mentioned in Section 9.2.1, the middle plot shows a heatmap of the
encoding space of the trained encoder with kernel size 3, as it processes the
input, where black is the lowest value and white is the highest value. The choice
of encoding size is 10, as in the paper [1]. The bottom plot shows the spectral
clustering of the encoding.

The upper plot reveals four distinct transitions in the labels of the time se-
ries: starting with green, followed by yellow, returning to green, and finally
transitioning to blue. From analyzing the heatmap corresponding to the area
where the timeseries is labeled green, approximately the first 50 timesteps and
the period between timestep 300 and 450. We can see that the indices 5 and
8 of the heatmap are brightest. This indicates that the model has learned the
underlying patterns of the data when the label is green, as we expect the same
indexes to light up when the model receives input consisting similar patterns.
For the yellow area in the timeseries plot, we can observe that indices 3,5,8 and
9, are bright, the same indices are bright for the entire yellow section of the
timeseries where the label is yellow, except in the are around time index 200.
Where all indicies are almost equally bright. This can indicate uncertainties in
the model regarding the yellow label of the dataset. For the last 150 timesteps,
when the timeseries is labeled blue, we observe that index 4 is brightening up.

Something worth noticing is that when the time series label is yellow and
green, we observed that indicies 5 and 8 was prominent for both labels, this
might indicate that the model struggles with distinguishing the two labels from
one another, as the model uses both these indicies to represent different un-
derlying patterns. However when the blue label is occuring in the timeseries,

60 chapter 9 experiments and results

we observed that index 4 is prominent, which in this example only occured for
the blue label, indicating that the model is able to separate the blue label from
the green and the yellow.

When analyzing the segmentation of the timeseries, the results are as expected,
where we can observe that the segmentation is black for for the green part
of the time series, and orange for the blue part of the time series, which is
correctly segmented. We also observe that for the most part, the segmentation
of the yellow part of the time series is correctly, however the area around the
200 mark of the time series is wrongly segmented. This is expected because of
the encoding in that area.

Figure 9.3: Labeled sample together with encoding, from inference of TNC architec-
ture utilizing convolutional layers with kernel size 5.

Figure 9.3 shows how the results of the convolutional encoder, but with the
kernel size increased from 3 to 5. From the segmentation in this plot we can
observe that although the wrongfully segmentation of the timeseries around
the 200 mark of the timeseries has decreased in size, the correctly segmented
part of the blue part in figure 9.2 of the timeseries has now been introduced to
uncertainty in the model, resulting in wrongly segmented areas in this part. So
although the model has decreased its error for the yellow label, the uncertainty
for the blue label has increased.

Now onto the encoder utilizing the LSTM architecture, in the paper, 100 hidden
layers was used. We start of with the encoder utilizing the LSTM architecture
with 50 hidden layers.

9.2 results 61

Figure 9.4: Labeled sample together with encoding, from inference of TNC architec-
ture utilizing the LSTM architecture with 50 hidden layers.

Figure 9.4 Shows the reference time series, the 50 hidden layer encoding of
the time series and the segmentation of the encoding. From the encoding plot,
we observe similarities from the plots in figure 9.2, where specific indicies are
brightening up dependent on the label of the time series. Where indices 3 and
4 are prominent for the time series where the green label occurs, 7, 8 and 9
are bright for the yellow labeled part of the time series and indexes 0 and 1 are
bright for the blue part of the time series.
The segmentation of the timeseries shows some similarities to the CNN experi-
ments, but there are some differences, first we observe that the consistency of
the segmentation for the green labeled part of the time series, has declined, as
for this network, the segmentation of the green labeled parts of the time series,
is almost equally much purple as black, for the yellow part of the time series,
we observe that for the most part, the segmentation is orange, with exceptions
of the 200 mark and in the areas where the model transitions from green to
yellow and the transition from yellow to green. For the area where the label is
blue, the segmentation is correct.

Figure 9.5: Labeled sample together with encoding, from inference of TNC architec-
ture utilizing the LSTM architecture with 100 hidden layers.

62 chapter 9 experiments and results

Figure 9.5 Shows the timeseries, encoding and segmentation, when the data is
applied to the 100 hidden layer LSTM encoder. From this plot one can see that
the segmentation errors has decreased for the yellow part of the time series,
but it seems like the segmentation of the green labeled parts of the time series
has decreased in quality, as the segmentation for the green labeled part in the
start seems to be segmented to the purple color, while the segmentation of the
green labeled part after time step 300 is for the most part being black. We can
also see similar patterns from the 50 hidden layer LSTM encoder, where the
segmentation is wrong in the transitions between labels.

Figure 9.6: Labeled sample together with encoding, from inference of TNC architec-
ture utilizing the LSTM architecture with 256 hidden layers.

Figure 9.6 shows the timeseries, encoding and segmentation where a LSTM
encoder with 256 hidden layers have been used. Again the same pattern of
the segmentation in the transitions between labels is prominent, on the other
hand, the segmentation quality of the green labeled parts of the time series
has improved.

From the plots above, it seems that the encoders utilizing convolutions, out-
performs the LSTM architecture when it comes to segmenting the test sample
of the timeseries, where the encoder using kernel size 3 has the best perfor-
mance, we can also notice that all segmentation’s were incorrect for the 200
mark of the test time series, indicating that perhaps that part of the timeseries
has different underlying patterns then expected for that specific label and can
perhaps be considered an outlier. We can also notice that for all the encoders
utilizing the LSTM architecture, the segmentation’s are incorrect in the area
where the timeseries transitions between different labels.

9.2 results 63

Spectrogram Data

In this section the TNC encoders are applied to the spectrograms of the au-
diofiles we received from the Norwegian polar institute, similarly to the sim-
ulated data, we have used one sample from the testing data to analyse the
testing of the performance of the models:

Figure 9.7: Spectrogram test sample. The label of the spectrogram is ice and bowhead

Figure 9.7 shows the test sample used below, the label of the audiofile is ice
and bowhead, meaning the audiofile has recordings of moving ice, aswell as
recordings of a bowhead We also know that there is no recordings of boats in
this audiofile. As the labeling of the spectrogram data is not for every timestep,
but for the file as a whole, it is hard to say for sure what everything that occurs
in the spectrogram is, but we can still see some occurrences in the spectrogram
that have similar features to eachother, like the two spikes that occur, in the
spectrogram between timestep 60 and 100.

64 chapter 9 experiments and results

Figure 9.8: Spectrogram test sample together with encoding, from inference of TNC
architecture utilizing convolutional layers with kernel size 3.

Figure 9.8 shows the same spectrogram as in figure 9.7. Together with the
encoding of the TNC encoder with kernel size 3 in the middle plot, and the
segmentation of the image using spectral clustering in the bottom plot. We can
see that for almost the entirety of the input, the model yields one prominent
index, index 2. This is not unexpected as for the most part of the spectrogram,
there seems to be only noise, however, we can see for the two spikes in the
spectrogram, between time index 60 and 100, that there is a pause in the
prominence of index two, this might indicate that the model has learned to
separate the spikes from other features in the spectrograms, we can see from
the segmentation image in the bottom, that almost for the entire first part of
the image, the segmentation is consistent to the purple color, this is until the
spikes occur, and segmentation changes color. We also see the same pattern
for the other spike in the spectrogram.

9.2 results 65

Figure 9.9: Spectrogram test sample together with encoding, from inference of TNC
architecture utilizing the LSTM architecture with 256 hidden layers.

Figure 9.9 shows how the TNC architecture utilizing the LSTM architecture
with 256 hidden layers performed on the spectrogram test sample. We can
observe that for the first spike in the spectrogram there is a change in the
segmentation, but the same change does not occur for the second spike in the
spectrogram, indicating uncertainties, in the models prediction of that specific
phenomenon.

9.2.2 Deep Clustering Architecture

In this section we will present the results when applying the deep clustering
architecture to the same datasets as in Section 9.2.2. We have created two
different deep clustering models, one model utilizing convolutions with kernel
size 3, and one using the LSTM architecture with 256 hidden layers, as these
performed best with the TNC architecture.

Simulated Data Spectrogram Data
DCMCNN DCMLSTM DCMCNN DCMLSTM

𝛼 1.1 1.1 1.3 1.2
𝛽 4 4 15 50
_ 1 4.5 4.5 4.5
Orthonormal False False True True

Table 9.1: Table of hyperparameters applied in the Loss function for the different deep
clustering models.

66 chapter 9 experiments and results

Table 9.1 shows the final choice of the hyperparameters of the clustering mod-
ules loss function, that created the following outputs. Where DCMCNN denotes
a deep clustering model that utilizies convolutions, and DCMLSTM denotes a
deep clustering model that utilizes the LSTM architecture.

Simulated Data

For the deep autoencoder utilizing convolutions we did the same approach as
in [2], where the deep clustering model that processed the simulated data,
was pretrained for 5 epochs, where only the reconstruction loss of the deep
autoencoder, equation 7.2, is backpropagated. After the first 5 epochs, the clus-
tering module was initialized by using the Kmeans algorithm on the embedded
dataset. Followed by the training of the full model using the loss function
LAE−CM from equation ?? for the remaining 195 epochs. This was only done
for this model.

Figure 9.10: Labeled sample togetherwith encoding, from inference of deep clustering
architecture utilizing convolutional layers with kernel size 3.

Figure 9.10 shows how the performance of the deep clustering model utilizing
convolutions with kernel size 3. The testing sample is the same as for the
TNC models. From the segmentation, we can observe that the model performs
well at the start of the timeseries, where the first 50 timesteps are uniformly
segmented to the white class. The transition in labels from green to yellow in
the timeseries approximately at timestep 50, results in a similar shift in the
segmentation, with a transition from white to black. However, during the span
of the yellow label,we can observe that the encoding starts to fluctuate between
different indexes, resulting in a similar fluctuation in the segmentation,which is
not ideal, as we want the heatmap of the embedding to remain stable as long as
the labels remain unchanged. On the other hand, for the most part of the yellow
timeseries, the embedding shows strong activity at index 1, which corresponds
to the black segmentation. After the yellow period of the timeseries, the label

9.2 results 67

is changed back to green again. As mentioned earlier, ideally, the embedding
would then transition back to index 2,which is the index with strong activations
in the previous part of the timeseries when the label was green. This is not
the case, as the embedding shows a strong activation in index 9, which results
in the incorrect segmentation of the first part green labeled signal. Eventually
the segmentation transitions back to white, which is the correct label. For the
last part of the timeseries, we observe the total opposite, where the embedding
first has distinguished the blue part of the signal from the yellow and green
signal, as the embedding is purple, but then the segmentation transitions back
to white, which corresponds to the green label.

Figure 9.11: Labeled sample togetherwith encoding, from inference of deep clustering
architecture utilizing the LSTM architecture with 256 hidden layers.

Figure 9.11 shows the deep clustering architecture utilizing the LSTM archi-
tecture with 256 hidden layers. We can see that the model has learned some
of the underlying patterns as the segmentation is consistent with the label in
the start of the time series, in the transition to the yellow label and during the
yellow phase of the time series, we can see that the heatmap of the encodings
are fluctuating alot, resulting in equal fluctuations in the segmentation, this
indicates uncertainties in the model when it comes to the yellow label, further,
we observe that when the timeseries transitions back to the green phase, the
heatmap of the encodings stabelizes, and the segmentation is for the most part
back to black again, however, we can see that in the transition to the blue phase,
the encodings do not change, resulting in an flawed segmentation for the blue
part of the timeseries.

68 chapter 9 experiments and results

Spectrogram Data

Figure 9.12: Spectrogram test sample together with encoding, from inference of deep
clustering architecture utilizing convolutions with kernel size 3.

Figure 9.12 shows the spectrogram test sample, together with the deep clus-
tering embedding of the input image, together with the segmentation of the
timeseries. We can observe from the embedding that the embedding indexes
are more distinct compared to the TNC architectures embedding, we can also
observe that for both the spikes occuring in the spectrogram, index 0 is active,
indicating that the model maybe have learned to distinguish this pattern from
others, we can also observe that the noise in the start of the spectrogram also
is segmented differently than the other noises in the spectrogram.

Figure 9.13: Spectrogram test sample together with encoding, from inference of deep
clustering architecture utilizing the LSTM architecture with 256 hidden
layers.

9.2 results 69

Figure 9.13 shows the performance of the deep clustering model, using the
LSTM architecture with 256 hidden layers. We can see that the noise in the
beginning of the spectrogram has a consistent segmentation, this can mean
that the model has learned the underlying pattern of that phenomenon, we
can also observe for both of the spikes in the spectrogram, the segmentation is
the same, indicating that the model might have learned the pattern correlated
with the spikes.

9.2.3 Clustering

As the plots in the two previous sections only consider one test sample, we
have also performed a clustering of the entire simulated dataset, this is to give
us some insight in the overall performance of the different models. In addition
to clustering the data, we also calculated the homogenity score of the clusters.
The homogenity score, is a measure of the homogenity of the classes assigned
to each cluster [67]. The clustering of the dataset was performed with the
kmeans algorithm applied to the encodings of the various models. Because of
the sparse labels of the spectrograms, the clustering and homogenity scores
was only applied to the simulated data.

Homogenity Score
TNCLSTM 0.916
TNCCNN 0.808
DCMLSTM 0.508
DCMCNN 0.472

Table 9.2: Table of Homogenity scores for the different architectures.

Table 9.2 Shows the homogenity score for 4 different models, The TNC algo-
rithm that utilized convolutions with kernel size 3. The TNC algorithm that
utilized the LSTM architecture with 256 hidden layers, aswell as the deep
clustering model, that utilized convolutions with kernel size 3 and the LSTM
architecture with 256 hidden layers. As we can see from the table, the highest
homogenity score was achieved with the TNC architecture that used the LSTM
architecture, and the lowest scoring model is the deep clustering model, utiliz-
ing convolutions. We can also see that both the TNC models are the highest
scoring architectures.

70 chapter 9 experiments and results

Figure 9.14: Clustering of all simulated data, for all models, upper left is the embed-
ding of the TNC model utilizing the LSTM architecture with 256 hidden
units, upper right is the clustered embedding of the TNC architecture
utilizing convolutions with kernel size 3, bottom left is the embedding of
the Deep clustering model utilizing convolutions and kernel size 3, finally
the bottom right plot is the clustered embedding of the deep clustering
model utilizing the LSTM architecture with 256 hidden units.

Figure 9.14 shows the clustering performance of the 4 different models. The
colors of the points are consistent with the background of the timeseries used as
a test sample in the previous section. The upper left plot is the clustering of the
embedding from the TNC architecture with LSTM, the upper right plot is the
embedding of the TNC architecture using convolutions. the bottom left plot is
the clustered embedding of the deep clustering module using convolutions and
the bottom right is the clustered embedding of the deep clusteringmodule using
the LSTM architecture. As we can see from the plot above, the TNC model that
utilized the LSTM architecture has performed best in separating the different
classes. Which corresponds well with the homogenity scores showed in table
9.2. We can also see that neither of the deep clustering models have done a
very good separation of the classes, but some classes are better separated than
others.

10
Discussion and Conclusion
10.1 Discussion

In Chapter 9, we present our results regarding the segmentation of both the
simulated dataset and the spectrograms of the submarine recordings. We ex-
plore the performance of different architectures, focusing on the Temporal
neighborhood coding and deep clustering model.

In Section 9.2.1 we presented the TNC architectures performance, showing that
it performswell in the unsupervised segmentation of the simulated dataset.Most
of the models demonstrate satisfactory performance on the test sample, except
for a specific area in the timeseries where all models incorrectly segment. This
discrepancy could be explained as that part of the time series being an outlier,
but we dont know for sure. The TNC architecture’s performance on the spec-
trograms, as presented in Section 9.2.1 is difficult to quantify, this is because
of the sparse labeling of the data. Therefore, we rely on visual analysis. This
was heavily based on two distict features within the spectrogram used as a test
sample. Based on that we found that the segmentation of the encoding of the
TNC architecture using convolutions were consistent with the occuring of the
spikes in the spectrogram. This leads us to believe that the model has learned
to distinguish that feature of the spectrograms from other features.

The Deep clustering models performance on the simulated data, showed in
Section 9.2.2, also showed promise for the test sample, although not as consis-
tent as the TNC architectures, these models still managed to somewhat distin-

71

72 chapter 10 discussion and conclusion

guish the different underlying patterns from eachother. Where on the specific
test sample, the deep clustering module utilizing convolutions seemed to out-
perform the one utilizing the LSTM architecture. The deep clustering models
performance on the spectrograms was presented in Section 9.2.2, again, be-
cause of the limited label information we have, we did a visual inspection of
the resulting segmentation. Based on the visual inspections, we can say that
the deep clustering algorithms performed well, where both the convolutional
network aswell as the recurrent, managed to segment the spikes in the spec-
trograms, we can also see a more detailed segmentation of the noise in these
spectrograms, atleast compared to the TNC architecture that utilized convolu-
tions.

Finally we performed a clustering of the entire simulated time series data,
this was done to get a more full scale overview of the different models perfor-
mance, and not make any conclusion based on one test sample alone. From the
clustering we saw, that the TNC algorithms performed much better compared
to the deep clustering models. One reason for this might be the nature of the
dataset, as the TNC architecture is made for the purpose of time series analysis,
its fair to assume that the TNC has an inherent advantage over the Deep cluster-
ing model. We also observe that for both the TNC architecture and for the Deep
clustering models, the models utilizing the LSTM architecture outperformed
the models using convolutions. This is most likely due to the nature of the data,
as the simulated dataset is resembling a multivariate time series, the LSTM’s
outperformance of the convolutional counterpart is expected [68, 69]. From
the clustering of the deep clustering algorithms embedding, we notice that the
yellow and red classes are best separated, while the blue and green classes are
hardly separated at all, we see the same patterns if we consider the segmen-
tation of the test time series sample. Here we can see that the segmentation
of the time series during the green and blue phase of the plot, are segmented
equally.
Overall, our findings shed light on the performance of different architectures
in the segmentation of the simulated dataset and spectrograms. The TNC ar-
chitectures demonstrate solid results, while the deep clustering models show
promise but exhibit slightly less consistency. These insights provide valuable
information for further research.

10.2 Future Directions

Further investigation into the effect of tuning the hyperparameters within the
loss function introduced in Section 7.1 is crucial for enhancing the performance
of our model. The optimization of these parameters significantly influences the
model’s ability to capture relevant patterns, achieve accurate reconstructions,

10.3 conclusion 73

and produce meaningful clusters. Therefore, we need to tune the hyperparam-
eters 𝛽, 𝛼 , and _ to achieve optimal performance.
Tuning 𝛽 allows us to control the trade-off between an accurate reconstruction
and clustering performance. Also by tuning 𝛼 , thus regulating the impact of
the priors, finally _ which controls the relevance of the orthogonality term.
The optimizing of these parameters is important for achieving the best possible
performance.

Another future direction might be to get access to better labeled data or uti-
lizing the limited label information we already have in a better way. Either
way, by improving our labels, we can improve our evaluation of the models
segmentation abilities.

By gaining more label information and by tuning our hyper parameters, we
can gain a more comprehensive understanding of the model’s performance and
thus perform better segmentation of our recordings.

10.3 Conclusion

In this thesis, we looked into the application of Temporal Neighborhood Coding
(TNC) and a deep clustering model for segmenting submarine recordings. The
segmentation would need to be in an unsupervised manner due to the limited
label information available.

TNC, a method designed to encode the underlying states of multivariate, non-
stationary time-series [1], played a crucial role in our research. We aimed to
capture the underlying patterns and temporal dependencies present in the
submarine recordings by leveraging its encoding capabilities. We also imple-
mented a deep clustering model, made possible by using the clustering module
introduced in [2], which incorporates the clustering capabilities of a Gaussian
mixture model into a simple autoencoder. This is accomplished by rephrasing
the Gaussian mixture model as a loss function.

Because of the lack of label information, we also segmented a simulated dataset
in an unsupervised manner, the segmentation of the simulated dataset showed
promising results, where the TNC architecture outperforms the deep clustering
method. However the performance on the submarine recordings is more chal-
lenging to quantify due to the limited label information available. Nevertheless,
our visual analysis of the segmentation results provided valuable insights into
the capabilities of both TNC and the deep clustering model.

Moving forward, a more comprehensive exploration of hyperparameter tuning

74 chapter 10 discussion and conclusion

could lead to even better segmentation results. Additionally, access to improved
labeled data would enable a more robust evaluation of our models’ segmenta-
tion abilities on the submarine recordings.

In conclusion, our investigation of Temporal Neighborhood Coding and the
deep clustering model for the unsupervised segmentation of submarine record-
ings and simulated data has provided valuable insights. The application of these
methods has demonstrated their efficacy in successfully segmenting the data
by capturing underlying patterns and structures. However, further research is
needed to fully optimize and refine these methods.

Bibliography
[1] Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised

Representation Learning for Time Series with Temporal Neighborhood Cod-
ing. 2021. arXiv: 2106.00750 [cs.LG].

[2] Ahcène Boubekki et al. “Joint optimization of an autoencoder for cluster-
ing and embedding.” eng. In: Machine learning 110.7 (2021), pp. 1901–
1937. issn: 0885-6125.

[3] Hojin Lee et al. “Feature selection practice for unsupervised learning
of credit card fraud detection.” English. In: Journal of Theoretical and
Applied Information Technology 96.2 (Jan. 2018). Funding Information:
This research was supported by the MSIP (Ministry of Science, ICT and
Future Planning), Korea, under the ITRC (Information Technology Re-
search Center) support program (IITP-2017-2015-0-00403) supervised
by the IITP (Institute for Information communications Technology Pro-
motion) and by Institute for Information communications Technology
Promotion (IITP) grant funded by the Korea government (MSIP) (No.
R0132-16-1004, Development of Profiling-based Techniques for Detect-
ing and Preventing Mobile Billing Fraud Attacks) Publisher Copyright:
© 2005 – ongoing JATIT LLS., pp. 408–417. issn: 1992-8645.

[4] Krzysztof J Cios et al. Data Mining: A Knowledge Discovery Approach. eng.
New York, NY: Springer, 2007. isbn: 9780387333335.

[5] Roy Nuary Singarimbun, Erna Budhiarti Nababan, and Opim Salim Sito-
mpul. “Adaptive Moment Estimation To Minimize Square Error In Back-
propagation Algorithm.” In: 2019 International Conference of Computer
Science and Information Technology (ICoSNIKOM). 2019, pp. 1–7. doi:
10.1109/ICoSNIKOM48755.2019.9111563.

[6] Marina Adriana Mercioni and Stefan Holban. “The Most Used Activation
Functions: Classic Versus Current.” In: 2020 International Conference on
Development and Application Systems (DAS). 2020, pp. 141–145. doi:
10.1109/DAS49615.2020.9108942.

[7] James H. McClellan, Ronald W. Schafer, and Mark A. Yoder. DSP First,
second edition. Pearson Education Limited, 2015. isbn: 9781292113869.

[8] Tor Kjøtrød. Comparison of state-of-the-art methods for vessel detection
in submarine recordings. FYS-3740 Project Paper in applied physics and
mathematics. 2022.

75

https://arxiv.org/abs/2106.00750
https://doi.org/10.1109/ICoSNIKOM48755.2019.9111563
https://doi.org/10.1109/DAS49615.2020.9108942

76 BIBLIOGRAPHY

[9] Nasser Kehtarnavaz. “CHAPTER 7 - Frequency Domain Processing.” In:
Digital Signal Processing System Design (Second Edition). Ed. by Nasser Ke-
htarnavaz. Second Edition. Burlington: Academic Press, 2008, pp. 175–
196. isbn: 978-0-12-374490-6. doi: https://doi.org/10.1016/B978-
0- 12- 374490- 6.00007- 6. url: https://www.sciencedirect.com/
science/article/pii/B9780123744906000076.

[10] Tom Bäckström. Spectrogram and the STFT - Introduction to Speech Pro-
cessing - Aalto University Wiki. [Online; accessed 15. Aug. 2022]. Aug.
2022. url: https://wiki.aalto.fi/display/ITSP/Spectrogram+and+
the+STFT.

[11] Minlei Liao et al. “Cluster analysis and its application to healthcare
claims data: a study of end-stage renal disease patients who initiated
hemodialysis.” eng. In: BMC nephrology 17.24 (2016), pp. 25–25. issn:
1471-2369.

[12] Christopher M Bishop. Pattern recognition and machine learning. eng.
New York, 2006.

[13] Rui Xu. Clustering. eng. Piscataway, New Jersey, 2015.
[14] Sigurd Løkse. Leveraging Kernels for Unsupervised Learning. eng. 2020.
[15] Dami Choi et al. On Empirical Comparisons of Optimizers for Deep Learn-

ing. 2020. arXiv: 1910.05446 [cs.LG].
[16] Daniel Svozil, Vladimír Kvasnicka, and Jirí Pospichal. “Introduction to

multi-layer feed-forward neural networks.” In: Chemometrics and Intel-
ligent Laboratory Systems 39 (1 1997), pp. 43–62. issn: 0169-7439. url:
https://www.sciencedirect.com/science/article/pii/S0169743997000610.

[17] Yimin Yang et al. “Recomputation of the Dense Layers for Performance
Improvement of DCNN.” In: IEEE 42 (11 2019), pp. 2912–2925. issn:
0162-8828. url: https://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=8718406.

[18] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition.
eng. San Diego, CA, USA: Elsevier Science, 2008. isbn: 1597492728.

[19] Ethem Alpaydin. Introduction To Machine Learning, third edition. The
MIT Press, 2014. isbn: 9780262028189.

[20] Abhijit Ghatak. Deep Learning with R. eng. Singapore, 2019.
[21] Nadikatla Chandrasekhar and Samineni Peddakrishna. “Enhancing Heart

Disease Prediction Accuracy through Machine Learning Techniques and
Optimization.” In: Processes 11.4 (2023). issn: 2227-9717. doi: 10.
3390/pr11041210. url: https://www.mdpi.com/2227-9717/11/4/1210.

[22] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization.” eng. In: (2014).

[23] Narendra Kumar et al. Advance Concepts of Image Processing and Pattern
Recognition: Effective Solution for Global Challenges. eng. Transactions
on Computer Systems and Networks. Singapore: Springer, 2022. isbn:
9811693234.

https://doi.org/https://doi.org/10.1016/B978-0-12-374490-6.00007-6
https://doi.org/https://doi.org/10.1016/B978-0-12-374490-6.00007-6
https://www.sciencedirect.com/science/article/pii/B9780123744906000076
https://www.sciencedirect.com/science/article/pii/B9780123744906000076
https://wiki.aalto.fi/display/ITSP/Spectrogram+and+the+STFT
https://wiki.aalto.fi/display/ITSP/Spectrogram+and+the+STFT
https://arxiv.org/abs/1910.05446
https://www.sciencedirect.com/science/article/pii/S0169743997000610
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8718406
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8718406
https://doi.org/10.3390/pr11041210
https://doi.org/10.3390/pr11041210
https://www.mdpi.com/2227-9717/11/4/1210

BIBLIOGRAPHY 77

[24] Chigozie Nwankpa et al. Activation Functions: Comparison of trends
in Practice and Research for Deep Learning. 2018. arXiv: 1811 . 03378
[cs.LG].

[25] Xiaofei He et al. “Coherence Enhancing Diffusion for Discontinuous
Fringe Patterns with Oriented Boundary Padding.” eng. In: Intelligence
Science and Big Data Engineering. Image and Video Data Engineering.
Vol. 9242. Lecture Notes in Computer Science. Switzerland: Springer
International Publishing AG, 2015, pp. 362–369. isbn: 9783319239873.

[26] Ignazio Gallo, Shah Nawaz, and Alessandro Calefati. “Semantic Text
Encoding for Text Classification Using Convolutional Neural Networks.”
In: 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR). Vol. 05. 2017, pp. 16–21. doi: 10.1109/ICDAR.
2017.323.

[27] Michael W Berry et al. “Arabic Phonemes Recognition Using Convolu-
tional Neural Network.” eng. In: Soft Computing in Data Science. Vol. 1100.
Communications in Computer and Information Science. Singapore: Springer
Singapore Pte. Limited, 2019, pp. 262–271. isbn: 9789811503986.

[28] Aqeel Anwar. “What is Transposed Convolutional Layer? - Towards Data
Science.” In: Medium (Mar. 2023). issn: 4056-3111. url: https://
towardsdatascience.com/what-is-transposed-convolutional-layer-
40e5e6e31c11.

[29] Gavnet Singh Chada, Jan Niclas Reimann, and Andreas Schwung. “Gen-
eralized Dilation Neural Networks.” In: (2019). url: https://arxiv.
org/pdf/1905.02961.pdf.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[31] Naoki. “Up-sampling with Transposed Convolution - Naoki - Medium.”
In: Medium (Oct. 2022). url: https://naokishibuya.medium.com/up-
sampling-with-transposed-convolution-9ae4f2df52d0.

[32] Gangming Zhao, JingdongWang, and Zhaoxiang Zhang. “Random Shift-
ing for CNN: a Solution to Reduce Information Loss in Down-Sampling
Layers.” In: PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL
JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE. Ed. by C Sierra.
26th International Joint Conference on Artificial Intelligence (IJCAI),
Melbourne, AUSTRALIA, AUG 19-25, 2017. 2017, pp. 3476–3482. isbn:
978-0-9992411-0-3.

[33] Augustus Odena, Vincent Dumoulin, and Chris Olah. “Deconvolution
and Checkerboard Artifacts.” In: Distill 1.10 (Oct. 2016), e3. issn: 2476-
0757. doi: 10.23915/distill.00003.

[34] Geoffrey E. Hinton et al. Improving neural networks by preventing co-
adaptation of feature detectors. 2012. arXiv: 1207.0580 [cs.NE].

[35] Xue Ying. “An Overview of Overfitting and its Solutions.” In: Journal of
Physics: Conference Series 1168.2 (2019), p. 022022. doi: 10.1088/1742-

https://arxiv.org/abs/1811.03378
https://arxiv.org/abs/1811.03378
https://doi.org/10.1109/ICDAR.2017.323
https://doi.org/10.1109/ICDAR.2017.323
https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11
https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11
https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11
https://arxiv.org/pdf/1905.02961.pdf
https://arxiv.org/pdf/1905.02961.pdf
http://www.deeplearningbook.org
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://naokishibuya.medium.com/up-sampling-with-transposed-convolution-9ae4f2df52d0
https://doi.org/10.23915/distill.00003
https://arxiv.org/abs/1207.0580
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022

78 BIBLIOGRAPHY

6596 / 1168 / 2 / 022022. url: https : / / dx . doi . org / 10 . 1088 / 1742 -
6596/1168/2/022022.

[36] Pierre Baldi and Peter J Sadowski. “Understanding Dropout.” In: Ad-
vances in Neural Information Processing Systems. Ed. by C.J. Burges et
al. Vol. 26. Curran Associates, Inc., 2013. url: https://proceedings.
neurips.cc/paper_files/paper/2013/file/71f6278d140af599e06ad9bf1ba03cb0-
Paper.pdf.

[37] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. 2015. arXiv:
1502.03167 [cs.LG].

[38] Shibani Santurkar et al. How Does Batch Normalization Help Optimiza-
tion? 2019. arXiv: 1805.11604 [stat.ML].

[39] Simon Haykin. Neural networks : a comprehensive foundation, second
edition. eng. Upper Saddle River, New Jersey, USA, 1999.

[40] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs). 2016.
arXiv: 1511.07289 [cs.LG].

[41] Swalpa Kumar Roy et al. LiSHT: Non-Parametric Linearly Scaled Hy-
perbolic Tangent Activation Function for Neural Networks. 2023. arXiv:
1901.05894 [cs.CV].

[42] Kunal Banerjee et al. Exploring Alternatives to Softmax Function. 2020.
arXiv: 2011.11538 [cs.LG].

[43] Qi Wang et al. “A Comprehensive Survey of Loss Functions in Machine
Learning.” In: Ann. Data. Sci. 9.2 (Apr. 2022), pp. 187–212. issn: 2198-
5812. doi: 10.1007/s40745-020-00253-5.

[44] Cai Guo et al. “Multi-Stage Attentive Network for Motion Deblurring via
Binary Cross-Entropy Loss.” eng. In: Entropy (Basel, Switzerland) 24.10
(2022), p. 1414. issn: 1099-4300.

[45] A Rusiecki. “Trimmed categorical cross-entropy for deep learning with
label noise.” eng. In: Electronics letters 55.6 (2019), pp. 319–320. issn:
0013-5194.

[46] George Seif. “Understanding the 3 most common loss functions for Ma-
chine Learning Regression.” In: Medium (Feb. 2022). url: https://
towardsdatascience.com/understanding-the-3-most-common-loss-
functions-for-machine-learning-regression-23e0ef3e14d3.

[47] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural
Networks. 2015. arXiv: 1511.08458 [cs.NE].

[48] Huimei Han, Ying Li, and Xingquan Zhu. “Convolutional neural network
learning for generic data classification.” eng. In: Information sciences 477
(2019), pp. 448–465. issn: 0020-0255.

[49] Kenneth Leung. “How to Easily Draw Neural Network Architecture Di-
agrams.” In: Medium (Sept. 2022). issn: 6613-8875. url: https :
//towardsdatascience.com/how- to- easily- draw- neural- network-
architecture-diagrams-a6b6138ed875.

https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://dx.doi.org/10.1088/1742-6596/1168/2/022022
https://dx.doi.org/10.1088/1742-6596/1168/2/022022
https://proceedings.neurips.cc/paper_files/paper/2013/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1511.07289
https://arxiv.org/abs/1901.05894
https://arxiv.org/abs/2011.11538
https://doi.org/10.1007/s40745-020-00253-5
https://towardsdatascience.com/understanding-the-3-most-common-loss-functions-for-machine-learning-regression-23e0ef3e14d3
https://towardsdatascience.com/understanding-the-3-most-common-loss-functions-for-machine-learning-regression-23e0ef3e14d3
https://towardsdatascience.com/understanding-the-3-most-common-loss-functions-for-machine-learning-regression-23e0ef3e14d3
https://arxiv.org/abs/1511.08458
https://towardsdatascience.com/how-to-easily-draw-neural-network-architecture-diagrams-a6b6138ed875
https://towardsdatascience.com/how-to-easily-draw-neural-network-architecture-diagrams-a6b6138ed875
https://towardsdatascience.com/how-to-easily-draw-neural-network-architecture-diagrams-a6b6138ed875

BIBLIOGRAPHY 79

[50] Dor Bank,Noam Koenigstein, and Raja Giryes. Autoencoders. 2021. arXiv:
2003.05991 [cs.LG].

[51] Chunfeng Song et al. “Auto-encoder Based Data Clustering.” In: Progress
in Pattern Recognition, Image Analysis, Computer Vision, and Applications.
Ed. by José Ruiz-Shulcloper and Gabriella Sanniti di Baja. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013, pp. 117–124. isbn: 978-3-
642-41822-8.

[52] Prasant Kumar. “Max Pooling, Why use it and its advantages. - Geek
Culture - Medium.” In: Medium (Jan. 2022). url: https://medium.
com/geekculture/max- pooling- why- use- it- and- its- advantages-
5807a0190459.

[53] Evan M. Yu et al. An Auto-Encoder Strategy for Adaptive Image Segmen-
tation. 2020. arXiv: 2004.13903 [eess.IV].

[54] Robin M. Schmidt. Recurrent Neural Networks (RNNs): A gentle Introduc-
tion and Overview. 2019. arXiv: 1912.05911 [cs.LG].

[55] Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Net-
works. [Online; accessed 8. May 2023]. Mar. 2022. url: http : / /
karpathy.github.io/2015/05/21/rnn-effectiveness.

[56] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Net-
works. eng. 2012th ed. Vol. 385. Studies in Computational Intelligence.
Berlin,Heidelberg: Springer Berlin / Heidelberg, 2012. isbn: 9783642247965.

[57] Christopher Olah. Understanding LSTM Networks – colah’s blog. [Online;
accessed 9. May 2023]. Sept. 2022. url: http://colah.github.io/
posts/2015-08-Understanding-LSTMs.

[58] Amjad Almahairi et al. “Augmented CycleGAN: Learning Many-to-Many
Mappings from Unpaired Data.” In: Proceedings of the 35th Interna-
tional Conference on Machine Learning. Ed. by Jennifer Dy and Andreas
Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR,
2018, pp. 195–204. url: https : / / proceedings . mlr . press / v80 /
almahairi18a.html.

[59] Navin Kumar Manaswi. “RNN and LSTM.” In: Deep Learning with Ap-
plications Using Python : Chatbots and Face, Object, and Speech Recogni-
tion With TensorFlow and Keras. Berkeley, CA: Apress, 2018, pp. 115–126.
isbn: 978-1-4842-3516-4. doi: 10.1007/978-1-4842-3516-4_9. url:
https://doi.org/10.1007/978-1-4842-3516-4_9.

[60] Sepp Hochreiter and Jürgen Schmidhuber. “LSTM can Solve Hard Long
Time Lag Problems.” In: Advances in Neural Information Processing Sys-
tems. Ed. by M.C. Mozer, M. Jordan, and T. Petsche. Vol. 9. MIT Press,
1996. url: https://proceedings.neurips.cc/paper_files/paper/
1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf.

[61] Junyoung Chung et al. Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling. 2014. arXiv: 1412.3555 [cs.NE].

[62] Kamilya Smagulova and Alex Pappachen James. “A survey on LSTM
memristive neural network architectures and applications.” eng. In: The

https://arxiv.org/abs/2003.05991
https://medium.com/geekculture/max-pooling-why-use-it-and-its-advantages-5807a0190459
https://medium.com/geekculture/max-pooling-why-use-it-and-its-advantages-5807a0190459
https://medium.com/geekculture/max-pooling-why-use-it-and-its-advantages-5807a0190459
https://arxiv.org/abs/2004.13903
https://arxiv.org/abs/1912.05911
http://karpathy.github.io/2015/05/21/rnn-effectiveness
http://karpathy.github.io/2015/05/21/rnn-effectiveness
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
https://proceedings.mlr.press/v80/almahairi18a.html
https://proceedings.mlr.press/v80/almahairi18a.html
https://doi.org/10.1007/978-1-4842-3516-4_9
https://doi.org/10.1007/978-1-4842-3516-4_9
https://proceedings.neurips.cc/paper_files/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf
https://arxiv.org/abs/1412.3555

80 BIBLIOGRAPHY

European physical journal. ST, Special topics 228.10 (2019), pp. 2313–
2324. issn: 1951-6355.

[63] Wei Wang et al. “Clustering With Orthogonal AutoEncoder.” In: IEEE
ACCESS 7 (2019), pp. 62421–62432. issn: 2169-3536. doi: 10.1109/
ACCESS.2019.2916030.

[64] Efstathios Paparoditis and Dimitris N. Politis. “The asymptotic size and
power of the augmented Dickey-Fuller test for a unit root.” eng. In:
Econometric reviews 37.9 (2018), pp. 955–973. issn: 0747-4938.

[65] Robert H Shumway and David S Stoffer. Time Series Analysis and Its
Applications: With R Examples. eng. Springer Texts in Statistics. Cham:
Springer International Publishing AG, 2017. isbn: 9783319524511.

[66] Ching-Yao Chuang et al. “Debiased Contrastive Learning.” In: Advances
in Neural Information Processing Systems. Ed. by H. Larochelle et al.
Vol. 33. Curran Associates, Inc., 2020, pp. 8765–8775. url: https://
proceedings.neurips.cc/paper_files/paper/2020/file/63c3ddcc7b23daa1e42dc41f9a44a873-
Paper.pdf.

[67] Daniyal Kazempour, Peer Kröger, and Thomas Seidl. “Towards an Inter-
nal Evaluation Measure for Arbitrarily Oriented Subspace Clustering.”
In: 2020 International Conference on Data Mining Workshops (ICDMW).
2020, pp. 300–307. doi: 10.1109/ICDMW51313.2020.00049.

[68] Sangdi Lin and George C. Runger. “GCRNN: Group-Constrained Con-
volutional Recurrent Neural Network.” In: IEEE Transactions on Neu-
ral Networks and Learning Systems 29.10 (2018), pp. 4709–4718. doi:
10.1109/TNNLS.2017.2772336.

[69] Narek Abroyan. “Convolutional and recurrent neural networks for real-
time data classification.” In: 2017 Seventh International Conference on
Innovative Computing Technology (INTECH). 2017, pp. 42–45. doi: 10.
1109/INTECH.2017.8102422.

https://doi.org/10.1109/ACCESS.2019.2916030
https://doi.org/10.1109/ACCESS.2019.2916030
https://proceedings.neurips.cc/paper_files/paper/2020/file/63c3ddcc7b23daa1e42dc41f9a44a873-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/63c3ddcc7b23daa1e42dc41f9a44a873-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/63c3ddcc7b23daa1e42dc41f9a44a873-Paper.pdf
https://doi.org/10.1109/ICDMW51313.2020.00049
https://doi.org/10.1109/TNNLS.2017.2772336
https://doi.org/10.1109/INTECH.2017.8102422
https://doi.org/10.1109/INTECH.2017.8102422

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	I Background
	2 Signal Processing
	2.1 Discrete Fourier Transform
	2.2 Spectrogram

	3 Clustering
	3.1 Partitional Clustering
	3.2 K-Means Algorithm
	3.3 Gaussian Mixture Model

	4 Neural Network
	4.1 Feed Forward Networks and Forward Propagation
	4.2 Gradient Descent
	4.3 Backpropagation

	5 Neural Networks
	5.1 Fully Connected Layers
	5.2 Convolution
	5.3 Transposed Convolution
	5.4 Downsampling Layers
	5.5 Upsampling Layers
	5.6 Dropout
	5.7 Batch Normalization
	5.8 Activation Functions
	5.9 Loss

	6 Deep Learning Architectures
	6.1 Convolutional Neural Networks
	6.2 Autoencoder
	6.3 Recurrent Neural Networks
	6.4 Long Short-Term Memory

	II Method
	7 Models
	7.1 Deep Clustering Model
	7.2 Temporal Neighborhood Coding

	8 Proposed Data and Model Architectures
	8.1 Data
	8.2 Proposed Models

	III Results and Discussion
	9 Experiments and Results
	9.1 Experiments
	9.2 Results
	9.2.1 TNC Architecture
	9.2.2 Deep Clustering Architecture
	9.2.3 Clustering

	10 Discussion and Conclusion
	10.1 Discussion
	10.2 Future Directions
	10.3 Conclusion

	Bibliography

