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Abstract

In this thesis we study the second-order statistical moment functions that char-
acterizes complex-valued harmonizable processes. A real-valued harmonizable
process has four Hermitian second-order functions. These functions are equiva-
lent representations of the second-order statistical quantities of the process. For a
complex-valued harmonizable process, however, we need the complementary func-
tions in addition to the Hermitian functions to completely describe the second-
order statistical behavior of the process. We define and discuss the Hermitian and
the complementary functions of complex-valued harmonizable processes. Exact
expressions for the Hermitian and complementary second-order moment functions
for some important sub-classes of complex-valued harmonizable processes are de-
rived and discussed. We introduce, test, and characterize numerical estimators of
these functions. Numerically generated data, and a real-world earthquake data
set, are employed to demonstrate that the estimators work in practice. Based on
the concept of widely linear mean square estimation, we propose a novel gener-
alized measure of coherence for harmonizable random processes. This measure
generalizes a recently proposed measure of coherence based on linear mean square
estimation. Finally, we argue that our alternative coherence measure may in fact
be beneficial for most nonstationary processes, even for real-valued harmonizable
processes.
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Chapter 1

Introduction

A random process is any process running along in time and controlled by prob-
ability laws. This formulation is from [Doob, 1953|, which gives an introduction
to the concept of random processes. Random processes are of interest in a wide
range of fields and applications.

The analysis of random processes has traditionally been dominated by the as-
sumption that the process is stationary. Among the classical texts regarding
stationary processes we find [Grenander and Rosenblatt, 1984; Rosenblatt, 1985;
Yaglom, 1962; Yaglom, 1987]. Stationary processes are characterized by that the
probability laws governing the process do not change with time. Any stationary
process is representable as the weighted sum of infinitesimal harmonic oscillators,
thus connecting the concept of frequency to the process. The main advantage of
the stationarity assumption is that the frequency content of a stationary process
is constant as a function of time. The second-order statistical quantities of a real-
valued stationary process can equivalently be represented in the time domain by
the autocorrelation function, or in the frequency (Fourier) domain by the power
spectral density function.

The stationarity assumption is quite limiting, and many important processes turn
out to be nonstationary. Since nonstationarity is a non-property, the concept of
nonstationary processes includes numerous different classes of random processes.
The frequency content of a nonstationary process will vary as a function of time,
such that it would be of interest to represent the process simultaneously in time
and frequency. Time-frequency analysis of deterministic and random processes
have been given much attention in the literature. For a treatment on time-
frequency analysis for deterministic signals, see [Cohen, 1995|. Time-frequency
analysis of random processes was treated in [Hlawatsch, 1998; Flandrin, 1999|.
An alternative to time-frequency analysis is wavelet theory, where the process is
represented simultaneous as a function of time and scale. For an introduction to
wavelet theory, see e.g., [Mallat, 1998|.



Harmonizable processes were introduced in [Loéve, 1945; Loéve, 1946]. Har-
monizable processes is an important class of nonstationary processes. Recent
publications regarding harmonizable processes include |Lii and Rosenblatt, 2002;
Hanssen and Scharf, 2003; Scharf et al., 2005]. The second-order statistical quan-
tities of real-valued harmonizable processes can be represented with four func-
tions, namely the Hermitian dual-time moment function, the Hermitian dual-
frequency spectral density, the Hermitian time-frequency spectral density and
the Hermitian time-frequency ambiguity function.

Real-valued and complex-valued processes have conventionally been treated in
the same manner, where the dual-time representation of the second-order sta-
tistical quantities is based on the correlation between the process at different
time instants. However, complex-valued processes can possess correlations be-
tween the process and the complex conjugate of the process at different time
instants as well [Neeser and Massey, 1993]. While the Hermitian functions will
completely describe the second-order statistical quantities of a real-valued har-
monizable process, this is not necessarily the case for complex-valued processes.
Complex-valued harmonizable processes will also have a complementary dual-
time moment function, a complementary dual-frequency spectral density, a com-
plementary time-frequency spectral density and a complementary time-frequency
ambiguity function. Interesting results concerning the second-order statistics of
complex-valued processes has been published by [Picinbono and Bondon, 1997;
Schreier and Scharf, 2003b; Schreier and Scharf, 2003a; Scharf et al., 2005].
The objective of this thesis is to study the second-order statistical quantities
of complex-valued harmonizable random processes.

The organization of the thesis is as following. In Chapter 2, we introduce the con-
cept of a harmonizable process, and we define the representations of the second-
order statistical quantities of a harmonizable process.

In Chapter 3, we obtain expressions for the representations of the second-order
statistical quantities of some general complex-valued harmonizable processes.
These expressions illustrate how ignoring the complementary functions can lead
to erroneous conclusions about the process under consideration.

We propose and test estimators of the moment functions, the dual-frequency
spectra and the ambiguity functions of complex-valued processes in Chapter 4.
These estimators are extensions of estimators proposed for real-valued harmoniz-
able processes in [Larsen, 2003|.

In Chapter 5, we implement and test estimators of the time-frequency spectral
densities of complex-valued processes recently proposed in [Scharf et al., 2005].
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In Chapter 6, we analyze numerically generated data and a real-world time series
by the techniques of this thesis. We use the estimators from Chapter 4 and 5 to
estimate the Hermitian and the complementary functions of these data sets, and
we attempt at interpretations of these quantities.

We consider time-frequency and dual-frequency coherence of harmonizable pro-
cesses in Chapter 7. The conventional measure of coherence is based on linear
mean square estimation. We propose an alternative measure of coherence based
on widely linear mean square estimation, which generalized previous coherence
measures.






Chapter 2

Representation of harmonizable
processes

A real-valued random process X () is said to be wide-sense stationary (WSS) if

E[X ()] = constant (2.1)
E[X()X(t')] = Rxx(t —t'),

i.e., the mean value of the process is constant, and the autocorrelation function
is a function only of the time difference and not of absolute time [Cramér, 1940].

The autocorrelation function in (2.2) describes the second-order statistical quan-
tities of the real-valued process X (¢). If the process X (t) is complex-valued, the
autocorrelation function is conventionally defined as E[ X (¢) X*(t')], see e.g., [Pee-
bles, 2001|, where the asterisk denotes complex conjugation. This function may
not contain all the second-order information about the process, but for now we
will assume that it does. We further assume that the process X (¢) has the spectral
representation [Cramér, 1940]

X(t) = / S I4Z(f), (2.3)

where dZ(f) is the complex-valued increment process of X (¢). All limits of in-
tegration are +oo if not otherwise specified. Using this spectral representation,
the conventional autocorrelation function of the process can be expressed by

ELX (X" ()] = [ [ e eI Blaz(7)dz" (7). (2.4)

If the process is WSS, the conventional autocorrelation function should only de-
pend on the time difference ¢ — t'. This is achieved if the increment process has
uncorrelated increments [Yaglom, 1962, i.e.,

E[dZ(f)dZ*(f')] = Sxx (f)(f — f)dfdf’, (2.5)



where §(f) is Dirac’s delta function. Here, Sy y+(f) is the conventional power
spectral density of a WSS process. Substituting (2.5) in (2.4), the conventional
autocorrelation function of X (¢) becomes

Ryx- (t — ) =E[X (6)X* ()]
B / e S (F)df.

This is the Einstein-Wiener-Khintchine relation for WSS processes |Einstein,
1914; Wiener, 1930; Khintchine, 1934]. It states that the conventional autocor-
relation function of a WSS process is related to the conventional power spectral
density by a Fourier transform.

(2.6)

If the increment process has nonorthogonal increments, i.e.,

E[dZ(f)dZ*(f')] = Sy xx (f, f)df df’ (2.7)

where Sy xx- (f, f') is the Loéve spectrum of the process X (t), the conventional
autocorrelation function becomes

BLXOX (1)) = [[ 70008, e (F, £ 28)

A process X (t) having the spectral representation in (2.3), and an increment
process satisfying (2.7), belongs to the class of harmonizable nonstationary pro-
cesses |Loéve, 1978|. In order for the double integral in (2.8) to be convergent,
Sy xx*(f, f') must be a function of bounded variation in the plane [Yaglom,
1987], i.e.,

// |SL,XX* (f, fl)‘ dfdf' < oo. (2.9)

If a process X (t) has a conventional autocorrelation function of the form (2.8)
and the Loéve spectrum of the process is of bounded variation, the process X ()
is harmonizable [Loéve, 1978|. Bounded variation of the Loéve spectrum is thus
a necessary, but not sufficient condition for the process X () to be harmonizable.
Since stationary processes obey

/ By (H)ldf < oo, (2.10)

stationary processes are included in the class of harmonizable processes.

2.1 Hermitian second-order statistical quantities

We define the Hermitian moment function of a general process X (t) by

My - (t,7) = B[X(t + 1) X"(1)]. (2.11)
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Here, ¢ is a global time variable, and 7 is a local time variable. The Hermi-
tian moment function My x+ (¢, 7) is related to the conventional autocorrelation
E[X (t1)X*(t2)] by a change of variables, given by ¢ = t, and 7 = t; — t5. If the
process X () is harmonizable, the Hermitian moment function can be represented
as

MXX* (t, 7_) —-F [/ ej27rf(t+7)dz(f) /e—jZWf’tdZ*(f/)]
_ [[ e rremmiaz oz (1)
_ / / eI eI ITR (47 ( £)AZ*(f — V)]
— / / PTG (o, F)dudf.

(2.12)

The Hermitian dual-frequency spectral density (or Hermitian f-f spectrum) of the

process is
Syx (v, f)dvdf = E[dZ(f)dZ*(f - v)], (2.13)

where f is a global frequency and v is a local frequency relative to f. The Her-
mitian f-f spectrum Sx x- (v, f) is related to the Loéve spectrum Sy, xx(f1, f2)
by a change of variables f = f; and v = f; — fy. Consequently, the Hermitian f-f
spectrum of a harmonizable process must also be a function of bounded variation.

The Hermitian moment function and the Hermitian f-f spectrum are a two-
dimensional Fourier transform pair. By taking the inverse Fourier transform

of the Hermitian f-f spectrum with respect to the local frequency variable v, we
obtain

Prx- (61l = df [ €Sz (v, o
= [z (paz(s - v)
~E [( / e g7 (f — ,,)) "z f)} (2.14)

E {( / eﬂWdZ(a)) * dZ( f)ej%ft]
E [X*(t)dZ(f)e’*™!].

Here, Py x=(t, f) is the Hermitian time-frequency spectral density (or the Hermi-
tian t-f spectrum) of the process X (¢). The Hermitian t-f spectrum is a function
of global time and global frequency. Note that Sy« (v, f) and Py x+(t, f) are a
Fourier transform pair in the variables ¢t and v.



T—=>f
My x~ (ta 7') Py x+ (ta f)
t—v t— v
4 T = f 4
Axx (1/, 7') - Sxx (Va f)

Figure 2.1: Fourier relations between the Hermitian second-order statistical quan-
tities of a harmonizable process.

The last option is to take the inverse Fourier transform of the Hermitian f-f
spectrum with respect to the global variable f,

Axx (v, 7)dv = dv / IS (v, fdf
(2.15)
=E [ / I*ITAZ(f)dZ* (f —v)

The quantity Ay x« (v, 7) is the Hermitian ambiguity function of the process X (),
which is a function of local frequency v and local time 7. The Hermitian ambi-
guity function and the Hermitian f-f spectrum are a Fourier transform pair in the
variables f and 7.

The Hermitian second-order statistical quantities of a harmonizable process can
be represented in four different domains, and these representations are connected
through Fourier transforms as illustrated in Figure 2.1 [Scharf et al., 2001]. The
representations can also be seen as the expectations

My~ (t,7) =EX(t +71)X*(?)] (2.16)
Sxx+ (W, f)dvdf = E[dZ(f)dZ*(f — V)] (2.17)
Pxx+(t, f)df = E[X*(t)dZ(f)e*™"] (2.18)
(2.19)

Ayy(v,7)dv =E { / S ITAdZ(f)dZ* (f — v)

If we define the Hilbert space inner product between two complex-valued random
variables W and Z as (W, Z) = E[W Z*|, we see that the Hermitian moment
function, the Hermitian f-f spectrum and the Hermitian t-f spectrum are Hilbert
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space inner products [Hanssen and Scharf, 2003]

Myx(t,7) = (X (t+7), X (1)) (2.20)
Sxx+ (v, f)dvdf = (dZ(f),dZ(f —v)) (2.21)
Pxx~(t, f)df = (dZ(f)e”™™ ", X (1)) (2.22)

Note that the Hermitian ambiguity function is not a Hilbert space inner product.
If the process X (t) is real-valued, the increment process will have a Hermitian
symmetry dZ*(f) = dZ(—f) and the Hermitian ambiguity function will be a
convolution. The expressions in (2.20)—(2.22) are valid for both real-valued and
complex-valued harmonizable processes.

2.2 Complementary second-order statistical quan-
tities

For a general complex-valued process there will be correlations between the pro-
cess and its complex conjugate |[Neeser and Massey, 1993]. The Hermitian mo-
ment function will not describe the second-order behavior of the process com-
pletely, so we also have to consider the quantity E[X (¢t + 7)X(¢)], which we
denote the complementary moment function [Schreier and Scharf, 2003b]. Pro-
cesses for which the complementary moment function is zero everywhere are called
proper |[Neeser and Massey, 1993|. Examples of proper processes are the analytic
process obtained from any stationary process |Picinbono, 1993] and any circu-
lar process [Picinbono, 1994|. The analysis of proper complex-valued processes
does not differ much from the analysis of real-valued processes. However, many
complex-valued processes are improper, and the complementary functions will
have to be considered. For instance, an analytic process corresponding to a real-
valued, nonstationary process is improper [Schreier and Scharf, 2003b].

We defined the complementary moment function of the process X (t) as
Mxx(t,7) =E[X(t+7)X()]. (2.23)

If X(¢) is harmonizable, we write the complementary moment function as
Mxx(t,7) =E [ / eI qZ(f) / eIz f’)]
= [[ e Bz paz )
= / / P IR [dZ (f)dZ (v — f)]
= / / eIt mIT S« (v, f)dvdf.

(2.24)
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The quantity
Sxx(v, f)dvdf = E[dZ(f)dZ(v — f) (2.25)

is denoted the complementary dual-frequency spectral density (or the complemen-
tary f-f spectrum). The complementary f-f spectrum of a harmonizable process
also have to satisfy the condition

J [ 150l v < o (2.26)

We see that the complementary moment function and the complementary f-f
spectrum are a two-dimensional Fourier transform pair.

Taking the inverse Fourier transform of the complementary f-f spectrum with

respect to the local variable v yields the complementary time-frequency spectral
density (or the complementary t-f spectrum) of the process

PX)((t, f)df = df/€j2mjtSXx(V, f)dl/
=E { / ™47 (f)dZ (v — f)]

; K/ ez <a>) dz<f>eﬂ”ft}
E[X (t)dZ(f)e* "] .

(2.27)

The complementary f-f spectrum and the complementary t-f spectrum constitute
a Fourier transform pair in the variables ¢ and v.

Finally, the inverse Fourier transform of the complementary f-f spectrum with

respect to the global variable f produces the complementary ambiguity function
of the process

Axx(v,7)dv = du/ej%fTSXX(V, fdf

[/ ej?wadZ(f)dZ(U_f) (2.28)
[(dZ(v)e*™ ) xdZ(v)] ,

E
E

where * denotes convolution. Thus, the complementary ambiguity function and
the complementary f-f spectrum are a Fourier transform pair in the variables f
and 7.

With these definitions, all the complementary functions are connected through



Representation of harmonizable processes 11

T—=>f
Mxx(t,T) PXX(taf)
t—v t—v
T—>f '
Axx(v, 1) ~ Sxx(v, f)

Figure 2.2: Fourier relations between the complementary second-order statistical
quantities of a harmonizable process.

Fourier transforms as shown in Figure 2.2. We can also express the quantities as
expectations

Mxx(t,7)=E[X(t+7)X(t)] (2.29)
Sxx (v, f,)dvdf = E[dZ(f)dZ (v - f) (2.30)
Px(t, f)df = E[X(1)dZ(f)e’*""] (2.31)
(2.32)

Axx(v,7)dv = E [ / ™47 (f)dZ (v — f)

The complementary ambiguity function is a convolution. The other complemen-
tary functions can be expressed as Hilbert space inner products

Mxx(t,7) = (X (t+7), X*(t)) (2.33)
Sxx (v, f,)dvdf = (dZ(f),dZ"(f —v)) (2.34)
Pxx(t, f)df = (dZ(f)e’*™ ", X*(t)) . (2.35)

For improper complex-valued processes, we now have eight possible represen-
tations of the second-order statistics of the process. In general, we need one
Hermitian and one complementary function to describe the second-order behav-
ior of the process. Note that for real-valued processes, the Hermitian and the
complementary functions are identical.
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2.3 Higher-order statistics

In this thesis, we will only consider the second-order statistical quantities of ran-
dom processes. For a Gaussian process, the first and second-order moment func-
tion of the process will characterize the process completely [Priestley, 1988|. How-
ever, for non-Gaussian processes, the higher-order statistical quantities should
also be considered. We give here references to some work on higher-order statis-
tics for random processes.

The higher-order statistics of real-valued, stationary random processes is treated
in [Nikias and Petropulu, 1993]. A bibliography regarding higher-order statis-
tics of stationary processes is available in [Swami et al., 1997]. In [Birkelund
et al., 2002], the multitaper approach to spectral estimation (see Chapter 4) was
extended to polyspectra of arbitrary order for real-valued, stationary processes.
The higher-order statistics of complex-valued, stationary processes was studied
in [Amblard et al., 1996].

Higher-order statistics of real-valued cyclostationary time series was treated in [Dan-
dawaté and Giannakis, 1994]. In [Gardner and Spooner, 1994; Spooner and Gard-
ner, 1994; Izzo and Napolitano, 1998|, the theory of higher-order statistics was
extended to complex-valued cyclostationary time series and its relatives.

A theory of higher-order moment spectra for real-valued, harmonizable processes
was presented in |Hanssen and Scharf, 2003]. Some work has also been done
on higher-order time-frequency distributions of nonstationary, complex-valued
processes, see e.g., [Amblard and Lacoume, 1992; Amblard and Lacoume, 1994;
Fonollosa and Nikias, 1993].



Chapter 3

Some specific processes

In this Chapter, we utilize some typical nonstationary random processes to exam-
ine the eight second-order statistical quantities. Only cases where exact closed-
form expressions can be derived, are considered. The intention is that these
results shall serve as a library of prototypical moment functions for various in-
teresting and important subclasses of nonstationary processes.

3.1 Stationary process
Let X (t) be a WSS process with conventional autocorrelation function Ry x+ ()

and conventional power density spectrum Sy x+(f). The four Hermitian second-
order statistical quantities in this case become

Myx+(t,7) = Rxx~(7) (3.1)
Sxx- v, [) = ~XX" (f)o(v) (3.2)
Py x (t, f) = ~XX" (f) (3-3)
Axx (v, 7) = Rxx+ (1) 6(v) (3.4)

The Hermitian moment function and the Hermitian t-f spectrum depend only on
7 and f, respectively. This is what we would expect for WSS processes. The
Hermitian f-f spectrum and the Hermitian ambiguity function both contain a
delta function §(v), concentrating these functions on the line v = 0. We can
interpret (3.2) as a relation between the Hermitian f-f spectrum and the sta-
tionary, conventional power density spectrum |Hanssen and Scharf, 2003]. The
Hermitian f-f spectrum of a WSS process will be non-vanishing only on the line
v = f — f' =0, which is the stationary manifold.

If X(t) is a real-valued process, the Hermitian and the complementary quan-
tities will be equal. Let us assume that X(¢) is an improper, complex-valued
WSS process. The definition of WSS processes does not imply any conditions on
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the complementary moment function. We will say that a process is second-order
stationary (SOS) [Picinbono and Bondon, 1997|, if it is WSS, and the comple-
mentary moment function only depends on 7, i.e., E[X(¢)X (¢ + 7)] = Rxx(7).
This use of the term second-order stationary should not be confused with the
conventional use of the term to denote processes that are stationary to order
two, i.e., processes that have a second-order probability density function that is
time-shift invariant [Peebles, 2001]. It is more common to use the term WSS
for complex-valued processes that have mean value and Hermitian moment func-
tion and complementary moment function independent of ¢, see e.g., [Neeser and
Massey, 1993; Schreier and Scharf, 2003b)|.

If X(¢) is an SOS process, the complementary functions are

Mxx(t,7) = Rxx(T) (3.5)
Sxx(v, f) = ~XX(f) é(v) (3.6)
Pxx (t, f) = ~XX(f) (3-7)
Axx(v,7) = Rxx (1) 0(v), (3.8)
where
Rix(r) = [ €2/ 3x (7). (3.9)

Both the complementary f-f spectrum and the complementary ambiguity function
are concentrated on the line v = 0. Thus, v = f+ f' = 0 describes the stationary
manifold for the complementary functions.

3.2 Modulated stationary process

To illustrate the importance of the complementary functions of complex-valued
processes, we consider a WSS real-valued process X (t) with zero mean and define
the complex process

Y (t) = e?* 00 X (), (3.10)

where fj is a constant frequency. In other words, we let the process X (¢) ampli-
tude modulate the complex carrier exp(j27 fot). The process Y (¢) will have the
Hermitian functions

Myys (t,7) = 7T Ry o (1) (3.11)
Syy+ (W, f) = SXX* (f = fo)d(v) (3.12)
Pyy«(t, f) = Sxx+(f — fo) (3.13)
Ayy (v, 1) = ™Ry o (T)8(v) (3.14)
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The mean of Y'(¢) is obviously zero, and from (3.11) we see that the Hermitian
moment function of Y (¢) is independent of ¢. Thus Y (¢) is a WSS process.
However, the complementary functions of Y (¢) are

My (t,7) = e2mhoHrI o o (7) (3.15)
Syy (v, ) = Sxx(f = fo)6(v — 2fo) (3.16)
Pyy(t, f) = e?*™" Sy x (f — fo) (3.17)
Ayy (v, 7) = ™7 Ry x (1) (v — 2f0). (3.18)

Since the complementary moment function depends on ¢, the process Y (¢) is not
an SOS process. Hence, WS stationarity does not imply SO stationarity. In this
case the complementary functions suggests that the process is cyclostationary (see
Section 3.3). Note that since X (¢) is real-valued, we have Rxx+(7) = Rxx(7).

If now X (t) is a complex-valued, SOS process with zero mean, the second-order
statistical quantities of Y (¢) are still as in (3.11)—(3.18), but with Ry x(7) #
Rxx (7). Even if X (¢) is an SOS process, Y (¢) will not be an SOS process.

Finally, if X (¢) is a complex-valued, WSS but not SOS process with zero mean,
the Hermitian functions of Y (¢) are as in (3.11)—(3.14). The complementary
functions will be

Myy (t,7) = 22 CHI N (8, 7) (3.19)
Syy(v, f) = Sxx (v —2fo, f — fo) (3.20)
Pyy(t, f) = e* " Py x(t, f — fo) (3.21)
Ayy (v, 1) = 2T Axx (v — 2fo, 7). (3.22)

Again we see that the Hermitian functions suggests that Y (¢) is a stationary
process, but the complementary functions are highly nonstationary.

3.3 Cyclostationary process

A complex-valued process X () is said to be cyclostationary [Bennett, 1958], or
periodically correlated |Gladyshev, 1961|, with a period Ty = 1/ fy, if the mean
of the process is periodic with period Tj, and the Hermitian moment function
and/or the complementary moment function is periodic in ¢ with period Tj. In
mathematical terms, this is

E[X(t+Tp)] = E[X(t)] (3.23)

My (t +To,7) = Mxx-(t,7) (3.24)
Mxx(t+T0,T):Mxx(t,T). (325)
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In order for X (¢) to be cyclostationary, it has to satisfy (3.23) and at least one
of (3.24) and (3.25). WSS processes have a constant mean value and a Hermitian
moment function that does not depend on ¢, thus WSS and, by definition, SOS
processes are included in the class of cyclostationary processes.

If the Hermitian moment function of a cyclostationary process is periodic in
t, it has a Fourier series expansion in ¢ such that

My x+(t,7) Zeﬂ”kf"tR (1), (3.26)

where .
R® R R 0 TRy 3.27
XX*(T)_TO 0 € XX*(:T) . ( . )

If we further assume that the process is harmonizable cyclostationary |Yaglom,
1987], the function Rgg( (7) has the representation

R\ (1) = / e 1738 (f)df. (3.28)

Thus, the Hermitian moment function of a harmonizable cyclostationary process
X(t) is

Mxx-(t,7) = // gl2mvtei2niT Z d(v — kfo)ggg(* (f)dfdv, (3.29)
k
which can be simplified to
My (1) = S et [ merm 3 (). (3.30)
k

By comparing (3.29) with (2.12), we find the Hermitian f-f spectrum of X (),

Sxx- (W f) =D 6w —kfo) SE)- (). (3.31)

Thus, the spectral measure is concentrated on the lines v = kfy. Since X (¢) is a
harmonizable process, the Hermitian t-f spectrum and the Hermitian ambiguity
function are easily obtained as

Pyx-(t, f) = Zeﬂ”kfots(’“ (f) (3.32)

and

Ay x- (v, 7) 25 v—kfo) / ef2m I S®) L (f)df. (3.33)
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fo

Figure 3.1: The lines of support in the f-v plane for cyclostationary processes.

The Hermitian ambiguity function is also concentrated on the lines v = kf,. If
the complementary moment function is periodic in ¢ with period T, the com-
plementary functions of X (¢) are as in (3.29)-(3.33) with the change of index
XX*—> XX.

Cyclostationary processes are nonstationary, but, as the name suggests, they
are closely related to stationary processes. The f-f spectrum of a stationary pro-
cess is non-zero only on the stationary manifold. Cyclostationary processes are
an extension of this where the f-f spectrum is non-zero only on the lines v = k f
as illustrated in Figure 3.1. The function Sgg( (f) on the line v = kfy bears
some resemblance to a conventional power spectral density of a stationary pro-
cess. However, it is not a power spectral density, since Sﬁg (f) in general is a
complex-valued function. If we replace the f-axis with a 7-axis in Figure 3.1, we
get the lines of support of the ambiguity function of a cyclostationary process.
Consequently, to determine if a process is cyclostationary, we can examine the f-f
spectrum or the ambiguity function for this line concentration.

3.4 Oscillatory process

Since cyclostationary processes are closely related to stationary processes, we may
describe them as weakly nonstationary processes. Another class of weakly nonsta-
tionary processes are processes with evolutionary spectral representations, also
called oscillatory processes. Oscillatory processes were introduced in |Granger
and Hatanaka, 1964] and, in more detail, in [Priestley, 1965]. An oscillatory
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process X (t) has a spectral representation

X(@) = [ A, paz(s), (334
where Z(f) has uncorrelated increments, i.e.,

E[dZ(f)dZ*(f)] = 6(f — f') Sxx- (f)dfdf'. (3.35)

This spectral representation differs from the stationary spectral representation
only in the function A(t, f), which is a "slowly varying” function of ¢ satisfying

[ 1A€A Sxxe () < o0, (3.6)

In order for A(t, f) to vary slowly enough in ¢, it has to obey the representation

Al f) = / 27 4K (0. ), (3.37)

where the differential is with respect to € and |dK (6, f)| has an absolute maximum
at @ = 0 for any fixed f |Priestley, 1965]. The function A(t, f) = 1 everywhere
obviously satisfy these conditions. Stationary processes are therefore included in
the class of oscillatory processes.

An oscillatory process X (¢) has the Hermitian functions

Mxx+(t,7) = /eﬂm”A(t +7,0)A*(t, ) Sx x+ (@) dox (3.38)
Sxx*(v, ) = /dK(f —a,0)dK*(v+ f — o, a)Sxx+ (a)do (3.39)
Py (t, f) = / 2= A% (1 o) A (f — @, 0) S () dar (3.40)

Axx(v,7) = // /2T K (8, ) dK* (B — v, o) Sxx+ () de. (3.41)

If X(t) is a complex-valued process, we should assume weak nonstationarity of
the complementary functions also, i.e.,

E[dZ(f)dZ(f") = 6(f + f)Sxx(f)dfdf" (3.42)

Now, A(t, f) should also satisfy the condition

/ A(t, F)A(t, —f)Sxx (f)df < o0, V. (3.43)
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The complementary functions of X (t) are

Mix(t,7) = / 2T A 4 7 0) A(t, —a) Sxx(a)da (3.44)
Sxx(v, f) = / AK(f + a,0)dK (v — a — f,—a)Sxx(a)da (3.45)
Pyx(t, f) = / T2 4 (4 _0\dK (f — 0, 0)Sxx (@) dex (3.46)
Axx(v,7) = / / TR (0, )AK (0 — 0, —)Sxx (@)da.  (3.47)

We have obtained expressions of the second-order statistical quantities of an os-
cillatory process, but compared to the processes we have considered so far, these
expressions do not offer much in the way of interpretation. This class of processes
will not be considered any further in this thesis.

3.5 Linear, time-invariant system

We will examine the output process Y (¢) from a linear, time-invariant system with
impulse response h(t) and transfer function H(f), when the input is a complex-
valued process X (t). The process Y (¢) is then defined as

Y (t) = h(t) x X (t). (3.48)

The Hermitian second-order statistical quantities of Y (¢), when X (¢) is WSS, are

My v+ (t,7) = h(T) * h*(—=7) x Ry x* (7) (3.49)
Syy, f) = |H(f)|2 Sxx+(f)o(v) (3.50)
Pyy-(t, f) = |H(f)|2 Sxx+(f) (3.51)
Ayyr (v, 1) = [h(T) * h*(—7) * Rx x* (T)] 0(v). (3.52)

From these quantities we see that the output process is a WSS process. If X (¢)
is not SO stationary, the complementary moment function of X (¢) depends on ¢
and Y (¢) will not be an SOS process. But if X (¢) is an SOS process, we have the
complementary functions

Myy (t,7) = h(T) * h(—T7) * Rxx(7) (3.53)
Syy (v, ) = H(f)H(—f)Sxx(f)6(v) (3.54)
Pyy(t, f) = H(f)H(-f)Sxx(f) (3.55)
Ayy (v,7) = [h(T) * h(—7) * Rxx (7)] d(v) (3.56)
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Thus, if a complex-valued, SOS process is sent through a linear, time-invariant
system, the output process of the system will also be an SOS process. If the
input process is harmonizable and the absolute value of the transfer function is
uniformly bounded, the output process will also be harmonizable |Yaglom, 1987|.

3.6 Linear, time-variant system

Harmonizable processes are nonstationary, so we should not restrict ourselves to
time-invariant systems. One way to describe a linear, time-variant system is

V() = / h(t, W)X (¢ — u) du, (3.57)

where X (t) is the input process and h(t, u) is a time-varying impulse response |Ya-
glom, 1987]. Here, ¢ is the time the impulse response is observed and t — u is the
time the impulse was introduced to the system. Thus, this impulse response is a
function of two time variables, the global time ¢ and the local time u. We define

Py(t, f) = /eﬂﬂf“h(t, u)du (3.58)

and

Sh(v, f) = / / eI U =2V (4 ) b, (3.59)

If X(t) is a harmonizable process, all eight second-order quantities of Y (¢) can
be expressed as functions of Py(t, f), Sk(v, f) and the f-f spectra of X (¢). The
Hermitian functions of Y (¢) are

Myy~(t,7) = // P ISP (t+ 7, f) Py (8, f — v)Sxx+ (v, f)dvdf (3.60)
Syy- (v, ) = / Su(f — B.8)Si(a— B+ f — v, — 0)Sxx- (0, )dad (3.61)
Pyy-(t, f) = / / 2 =BG, (f — B, B)Pi(t, B — ) Sx x (o, B)dadB  (3.62)

Avy ) = [[ [ @98, 8)510+ @ = 1,5 = @) S (0 B)dAdads.
(3.63)
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Likewise, we find the complementary functions of Y(¢) to be

Myy (t,7) = // eI ITI?EP, (t 4+ 7, f)Py(t,v — f)Sxx (v, f)dvdf (3.64)
Syy(v, f) = / Su(f = B, B)Sn(v — a+ B — f, 0 — B)Sxx (v, f) dadB (3.65)
Pyvt, f) = / / e2m@=BDLS, (f — B, B)Pult, o — F)Sxx (v, f)dadf  (3.66)

Ayy (v, 7) = / / / 72 BHNT G (X, B)Sh(v — o — N, a — B)Sxx (e, B)dAdadp.
(3.67)

The input process is harmonizable. If now

/ / Palt + 7, D)L (t, f — ) Sy (0, )l dvdf <0 Ve, 7 (3.68)

and

/ Po(t+7 )Pty — F)Sxx(v, f)|dvdf <o V7, (3.69)

the output process Y (t) is also harmonizable [Yaglom, 1987]. Consequently, for
the time-varying system described by (3.58), an SOS input process results in a
harmonizable output process. Under some wide conditions the output process
Y (¢) will be harmonizable even if the input process X (¢) is not [Cambanis and
Liu, 1970].

3.7 Harmonizable process with stationary addi-
tive noise

Many systems introduce additive noise to random processes such that
Y(t) = X(t) + N(t), (3.70)

where X (t) is a general random process and N(t) is a random noise process.
The noise is often assumed to be a real-valued WSS process or a complex-valued
SOS process. Let N(t) be a complex-valued SOS process with conventional auto-
correlation function Ry (7), conventional power spectral density Syy+(f) and
complementary functions Ryy(7) and Syy(f). If X () is a harmonizable pro-
cess, and the noise and the process are statistically independent, the Hermitian
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functions of Y (¢) will be

Myy(t,7) = Mxx+ (t,7) + Ryn~(7) (3.71)
Syy+ (v, f) = Sxx (v, f) + Syn+ (£)5(v) (3.72)
Pyy~(t, f) = Pxx+(t, ) + Syn- (f) (3.73)
Ayy+(v,7) = Axx- (v, 7) + Ryn+ (7)d(v) (3.74)

The complementary functions of Y (¢) are obtained by replacing all the Hermi-
tian functions in (3.71)—(3.74) with their complementary equivalents. In the f-f
spectra and in the ambiguity functions, the noise in Y (¢) is concentrated on the
stationary manifold. When analyzing the process Y'(¢) we are only interested in
information about X(¢), and in these two domains only the stationary part of
X (t) is corrupted by noise. Therefore, by doing the analysis in the dual-frequency
domain or through the ambiguity function, we are able to retrieve most of the
information uncorrupted by noise.

3.7.1 White Gaussian noise process

A real-valued process N(t) is called a white process if its conventional power
spectral density Syy+(f) is constant for all f [Proakis and Salehi, 2002|. For a
real-valued white process N(t), the second-order statistical quantities are

Myy~(t,7) = Co(1)
Syn (v, f) = Co(v)
Py (t, f) =C

Ay~ (v,7) = Co(1)é(v),

where C' € R is a constant. Obviously, real-valued white processes are WSS
processes. From the moment function we see that the white process at any two
different times t; # t, is uncorrelated if N(t) is zero-mean. If the zero-mean,
white process is also a Gaussian process, these values will also be independent.
In communication systems, the thermal noise is often assumed to be a zero-mean,
white Gaussian process |Proakis and Salehi, 2002]. We will in this thesis use the
term white Gaussian noise process for a real-valued, stationary, zero-mean, white
Gaussian process.

3.8 Chirp with random phase

A signal that is used in many areas of signal processing is a linear frequency
modulation (FM), also called a chirp. A chirp is usually defined as a deterministic
signal, but in order to form a random process, we will introduce a random phase.
The chirp process can be expressed as

X (t) = exp [jm (2at + Bt* + 27)], (3.79)
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where W is a random variable. The variable o determines the starting instanta-
neous frequency of the chirp and the variable § is the chirp rate. From (3.79) we
determine the Hermitian moment function as

My x+(t,7) = exp [jm(Br° +2B7t + 2a7)] . (3.80)

By a two dimensional Fourier transform of (3.80) we obtain the function

Sxx(v, f) = %exp [%(VQ + 2av — 2f1/)] : (3.81)

For X (¢) to be a harmonizable process, it is necessary that the f-f spectra are
functions of bounded variation. But if X (¢) is harmonizable, its Hermitian f-f
spectrum is given by (3.81), and we see that

/ / S (v, f) dvdf = / / 167" ddf. (3.82)

Since 3 # 0 is a constant, Sy v+ (v, f) is not a function of bounded variation and
we must conclude that the chirp process is not harmonizable.

To obtain the function in (3.81) we did a two dimensional Fourier transform
where we let both time variables go from —oo to co. When dealing with ac-
tual processes, however, the time has to be limited and the representation of the
process should be

X(t) = Or(t) - exp [jm (2at + Bt* + )], (3.83)
where
1 LT <t< X
I (t) = 2= 2 3.84
r(t) {0 otherwise ( )

is a rectangular pulse. The parameter 7" will then control the limits of integration,
i.e., the time interval the process is defined for. With these limits we can only
find closed form expressions for the moment functions, and not for the other six
second-order functions.

3.9 Chirp with Gaussian envelope and random
phase

We now consider a modification of the chirp process as follows. Introduce a
Gaussian envelope to define a modulated chirp process

X(t) =exp [—mp(t— m)Q} exp [jm (B> + 2at + 20)] (3.85)
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where U is a random variable. This is a chirp with starting instantaneous fre-
quency «, chirp rate § and Gaussian envelope centered at t = m and 1/u is a
width measure of the Gaussian envelope. The Hermitian moment function of
X(t) is

My x+(t,7) =exp {—7ru [(t-I-T - m)2 +(t - m)z]}

3.86
X exp [jw (/57'2 + 287t + 2047')] , ( )
and the two-dimensional Fourier transform of this function is
1 —T 2 2
Suxe 0 f) =gexo { 2 [+ @ ms = 1)+ a4+ ms - 7]}
JmB 2
xexp{w [(V—l—a—f—/fm/ﬂ) ]} (3.87)

o mis-a] .

where 6% = u? + 32, Here, Sxx- (v, f) is a function of bounded variation, it is the
Hermitian f-f spectrum of X (¢). We now find the Hermitian t-f spectrum

1 arctan o

3 B/
Pyx+(t, f) :% exp {O_ZM [(a—f+ mpB)? + 6*(t — m)Q]}

X exp |:—j71' (5152 +2at — 2tf — NQ;H2>] (3.88)

. 2
on [ (-5 |

and the Hermitian ambiguity function

1
Ay x> (v, 7) =—= exp [j7 (2at + v + 2mfT — 2mv))]

o

(3.89)
X exp [—% (1/2 — 20B71v + 027'2)]

of the process.

Figure 3.2 shows the real part of the Hermitian second-order quantities of the
process X (t) with a = —0.3, 8 = 0.005, p = 3 x 1075 and ¥ uniformly dis-
tributed on [0,1/2]. The chirp has an instantaneous frequency [Flandrin, 1999]

fi=a+pt (3.90)

at each time instant ¢. Here, the time goes from ¢t = 0 to ¢ = 100, such that the
instantaneous frequency of the process will increase linearly with time from —0.3
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Figure 3.2: Hermitian second-order statistical quantities of a chirp with Gaussian
envelope. Top left: R{My = (¢t,7)}. Top right: R{Pyx-(t,f)}. Bottom left:
R{Axx*(v,7)}. Bottom right: R{Sy = (v, )}

to 0.2. We see that the strong red line in the Hermitian t-f spectrum concurs
with this. The Hermitian ambiguity function is concentrated on a straight line,
and the gradient of this line is

0Axx- (v, 7) _ l
T —_— 5. (3-91)

Because of the complex conjugation in the definition of the Hermitian moment
function, the random phase will cancel out for the Hermitian functions. This
is not the case for the complementary functions. We define the characteristic
function of ¥ as

Py (z) = E[e*] . (3.92)

Thus, the complementary moment function is

Mxx(t,7) =Py (2) exp {—7ru [(t +7— m)2 +(t— m)2} }

3.93
x exp [jm (288° + 2Bt + Br° + 207 + 4at) ], (3.93)
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from which we find the complementary f-f spectrum

j arctan(3/u) _
Sxx(v,f)=q)\y(2)e]9 ’ eXp[ ‘;;Tﬁ (U+u2m/ﬁ—a—f)2}
X exp { _gjﬁ [(f + u?m/B — a)2 — 202N2m2/52} } (3.94)

<exp{ T v —a—mp - P+ (et m— 1]

Note that Sxx(v, f) is also a function of bounded variation. The complementary
t-f spectrum and the complementary ambiguity function are

Pex(t, f) _24(2) ef;gmn(ﬂ/m exp | = gﬁ (a e u;m> 2]
X exp [jw (51&2 +2at 4+ 2tf + “2;12” (3.95)
<exp{ T (0= ]+ mp) + 0 ¢ - m)]
and
Ay (v, r) =22 ef;;c_:“”/“w exp { [+ (v~ 20— 2mB)’] }
X exp [;—W (B> + 2BTv + 4u2m2)] (3.96)
<exp |+ mitm )5 - 20,
respectively.

We see some strong features in Figure 3.3, which shows the real part of the
complementary functions of X (¢) with a = —0.3, 8 = 0.005, u = 3 x 1075 and
¥ uniformly distributed on [0,1/2]. However, we are not able to relate these
features directly to this process.

Both the Hermitian and the complementary f-f spectrum of the chirp with Gaus-
sian envelope are functions of bounded variation. Strictly speaking this is not
sufficient to conclude that the chirp process with Gaussian envelope is harmoniz-
able, but it strongly suggests that X (¢) is harmonizable.
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Figure 3.3: Complementary second-order statistical quantities of a chirp with
Gaussian envelope. Top left: R {Mxx(t,7)}. Top right: R {Pxx(t, f)}. Bottom
left: R {Axx(v,7)}. Bottom right: R {Sxx(v, )}

3.10 Analytic process corresponding to a station-
ary process

An analytic process is a complex-valued process that only has positive frequencies.
The analytic process Y (¢) corresponding to the real-valued process X (t) is

Y(t) = X(8) + j7H{X ()}, (3.97)

where H {X (t)} denotes the Hilbert transform of X (¢) [Bracewell, 1986]. If X (%)
is a real-valued WSS process with spectral representation as in (2.3), the process
Y (t) has the spectral representation

Y(t) =2 / " g dZ(f), (3.98)

where dZ(f) is the increment process of X (¢). Since X (t) is WSS, dZ(f) has
uncorrelated increments, i.e.,

E[dZ(f)dZ*(f')] = 6(f — [)Sxx- (F)dfdf" (3.99)
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The Hermitian quantities of Y (¢) are

Myy- (t,7) = 4 / T 5 (f)df (3.100)
0
. ASxx (f)o(v) f=>0
Syy+(v, f) = {0 F <0 (3.101)
_ 4‘§XX* (f) =0
Pyy-(t, f) = {0 o (3.102)
Ayy~ (v, 7) = 45(v) / "I S (), (3.103)
0

Since the Hermitian moment function of Y'(¢) is independent of ¢, Y'(¢) is a WSS
process. But Y(¢) has complex values, so we should also consider the complemen-
tary functions. The process X (¢) is real-valued, thus its corresponding increment
process dZ(f) will have a Hermitian symmetry dZ*(f) = dZ(—f). We use the
spectral representation in (3.98) to obtain the complementary moment function
as

Myy(t,7) = 4E |:/00 /00 €j27rf(t+7')ejQﬂf’tdZ(f)dZ(f/)]
0 0

—an| [ [Ttz iz p) (3.104)
o Jo
=i [ [ eI S (D
o Jo
The delta function in the last line is zero everywhere except when f = —f’.
Since both f and f’ are non-negative, we will never have f = —f' and the

complementary moment function is zero everywhere. Thus the analytic process
Y (t) corresponding to a real-valued WSS process X (t) is a proper WSS process.
If a general analytic process is an SOS process, it will also be proper [Picinbono
and Bondon, 1997]. We see in (3.100)-(3.103) that the Hermitian functions of
Y (t) only depend on Sy x+(f) for f > 0.

3.11 Analytic process corresponding to a harmo-
nizable process

Analytic processes obtained from real-valued processes are used in many systems,
e.g., single-sideband amplitude modulation [Proakis and Salehi, 2002|. In such
systems the noise is often assumed to be stationary, but the information signal
will in general be nonstationary. Let

X(t) = / 47 (f) (3.105)
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be a real-valued harmonizable process with
E[dZ(f)dz"(f — v)] = Sxx* (v, f)dvdf. (3.106)

The analytic process Y (t) corresponding to X (¢) has the spectral representation

Y(t) =2 / h S dZ(f). (3.107)

This representation suggests that Y'(¢) is a harmonizable process with an incre-
ment process

A2 (f) = 2u(1)dZ(f), (3.108)
where u(f) is the unit step function
1 >0
= - 3.109
lf) {0 e (3.109)
This gives us the Hermitian functions
My (t,T) = 4// o)el?metei?mhr g (o, B)dadp (3.110)
* > <
Syy+ (v, f) = {4SXX W) F20vs] (3.111)
0 otherwise
_ ]27rozt >
Pyy(t, f) = {” @) Sxx- (e fldo [ 20 , (3.112)
otherwise
Apy (7) =4 [ u(Bu(8 = V)™ Sy (v, )5 (3.113)

Since Y (t) is a complex-valued process, we have to consider the complementary
functions as well. The complementary moment function of Y (¢) is

Myy (t,T) = 4// u(o — B)ef? el TS (e, B)doud). (3.114)

Clearly this function is non-vanishing, thus an analytic process corresponding
to a harmonizable real-valued process is improper. The other complementary
functions are

4Sxx+ (v, f) v>f,f>0
Syv (v, ) = 3.115
vy (. f) {0 otherwise ( )
4 [ u( 1S v (a, f)da f>0
Pyy(t 3.116
() = { otherwise ( )

Avr(v7) =4 [ ulB)uly = B S - ( 5)d5. (3.117)
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Figure 3.4: The darker shaded area is the area in the f-v plane where Sy (v, f)
is non-zero. The lighter shaded area is the area in the f-v plane where Syy (v, f)
is non-zero.

In Figure 3.4, the darker shaded area is the area of the f-v plane where the
Hermitian f-f spectrum of Y (¢) is nonzero and proportional to the f-f spectrum
of X (t). Likewise, the lighter shaded area is the area of the f-v plane where
the complementary f-f spectrum of Y (¢) is non-zero and proportional to the f-f
spectrum of X (t). When we generate an analytic process Y (¢) from a real-valued
harmonizable process X (t), we are interested in the part of X () corresponding to
positive frequencies. We see from Figure 3.4 that we need both the f-f spectrum
and the complementary f-f spectrum of Y'(¢) to describe our area of interest.



Chapter 4

Estimators

Consider the random process
X (t) = cos(2m fot + ¥), (4.1)

where the phase ¥ is a random variable. If we randomly draw a phase ¥, we
obtain the realization
x(t) = cos(2m fot + ¥y). (4.2)

Here, z(t) is a deterministic time function. In practice, we will not know the
exact expression of the random process, we will only have available realizations
(often just one) of the process. Since the realizations are deterministic, we cannot
determine exactly the statistical quantities of the process based on its realizations.
In this case, we have to estimate the Hermitian and the complementary functions
from the realizations.

4.1 Discrete-time processes

So far we have looked at random processes in continuous-time. A discrete-time
harmonizable process X [k] has the spectral representation

1/2
X[H] = / ) (4.3)

1/2

where dZ(f) is the increment process of X[k| [Yaglom, 1987]. We define the
Hermitian second-order quantities of a discrete-time harmonizable process as

Mx x+[k, k] = E[ X[k + ] X*[k]] (4.4)

Sxx+ (v, fdvdf =E[dZ(f)dZ*(f —v)] (4.5)

Pxx-[k, f)df =E [X*[k]dz(f)ej%ﬂc] (4.6)
1/2

Axx-(v,kldv = E / S IR AZ(F)dZH(f —v) |, (4.7)
-1/2
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Figure 4.1: Fourier relations between the second-order representations of a
discrete-time harmonizable process.

and the complementary second-order quantities are defined as

Mx x|k, k] = B[ X[k + ] X [k]] (4.8)
Sxx (v, f)dvdf =E[dZ(f)dZ(v — f)] :
Pxxlk, f)df = E[X[k]dZ(f)e*"/*] (4.10)
Axx(v,kldv = E / v eI 4Z(f)dZ (v — )| . (4.11)
—1/2

Here, k is a discrete global time variable, x is a discrete local time variable, f
is a continuous global frequency variable, and v is a continuous local frequency
variable. The quantities are connected through discrete-time Fourier transforms
as shown in Fig 4.1. Note that discrete variables are delimited by a square bracket
and continuous variables are delimited by a parenthesis.

4.1.1 Sampling

For continuous-time processes, we often only have a sampled realization of the
process. The samples of the process X (t) at t = kAt, k € Z, have the spectral
representation in (4.3) with the increment process

dZ(f) =2fn Y dZx(2fn(f +n)), (4.12)

n=—oo

where dZx(f) is the increment process of the continuous-time process X (¢). Here,
fnv = 1/2At is the Nyquist frequency. If the process X (¢) is bandlimited to
(—fB, fB], and if we sample the process such that fy > fp, then dZ(f) contains
only one term, dZx(2fn f). If fx < fB, or if the process is not bandlimited, con-
tributions of dZx(f) for |f| > fn will be folded back into the interval (—1/2,1/2].
This phenomenon is known as aliasing [Shannon, 1949|. Thus, to avoid aliasing,
the sampling frequency f; = 1/At¢ must be at least twice the highest frequency
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component of the process, which is the Nyquist criterion [Nyquist, 1924].

In all our numerical examples, we will use At = 1, i.e., a sampling frequency
fs = 1. Thus, to avoid aliasing, the process under consideration should only have
frequencies in the interval (—1/2,1/2].

4.2 Estimators of the moment functions

We assume that we have K samples z[k], k = 0,..., K — 1, of a realization of a
complex-valued harmonizable process X (t) with zero mean.

A general estimator of the Hermitian moment function is [Martin and Flandrin,
1985]

My x- [k, k] = Zfb[u, klz[k + ulz*[k + Kk + u]. (4.13)
The complementary moment function will likewise have an estimator

Myxlk, 6] = ®[u, £lalk + ulalk + & + u]. (4.14)

Here, ®[u, k] is a data window that corresponds to a smoothing of the products
zlk+u]z*[k+k+u| and z[k+u]z[k+Kk+u] in the global time direction. In |[Larsen,
2003], it was stated that for white processes, the moment function is singular on
the line 7 = 0 and for broadband processes, the moment function is expected to
decay rapidly as a function of k. We therefore do not want to smooth in the local
time direction.

4.3 Estimators of the ambiguity functions

The Hermitian ambiguity function is often estimated by means of a tapered
Fourier transform of the Hermitian moment function estimator |[Larsen, 2003],

Agx (v, k] = Z vlk, Kle 2™k Z O[u, klx[k + u]z* [k + Kk + u). (4.15)

We estimate the complementary ambiguity function in the same manner,

Axx(v, K] = Z vlk, k)e 7k Z O[u, k|z[k + u]z[k + Kk + ul. (4.16)

The columns of v[k, k] are data tapers. Data tapers (also called data windows)
are used with the discrete Fourier transform to reduce spectral leakage |Percival
and Walden, 1993|. Spectral leakage may cause a bias in the amplitude and the



34

position of a harmonic estimate. Hence, data tapers should have low sidelobe
levels and the transition to the low sidelobes from the main lobe should be very
rapid, or equivalently, the dynamic range should be large. For an extensive treat-
ment of data windows in conjunction with Fourier transformations, see [Harris,
1978].

4.4 Dual-frequency spectra

In order to estimate the f-f spectrum, we need an estimate of the increment process
of the process. The multitaper approach to spectral estimation was introduced
in [Thomson, 1982]. This approach involves solving an integral equation using
an eigenfunction expansion.

4.4.1 Discrete Prolate Spheroidal Wave Functions and Se-
quences

In [Slepian, 1978] it was shown that the eigenfunctions of the Dirichlet kernel are
fundamental to the study of time- and frequency-limited systems. The phase-
shifted Dirichlet kernel is defined as

K
Zeﬂwk Sls?r(l(w% ) iz f(K—1), (4.17)

The eigenfunctions V,,(f; K, W) of the kernel are known as discrete prolate spheroidal
wave functions (DPSWF) [Slepian, 1978] and are solutions to the equation

w
/ Dl = PVl K W = MK W)Vl W), (4.18)

Here, W is a bandwidth defining a local frequency interval (f — W, f + W). For
notational convenience, we will not show the dependency on the parameters K
and W in the following. The integral equation (4.18) will only have K non-zero
eigenvalues, and we order them such that

)\0 >N >0 A1 > 0. (419)
The DPSWFs are doubly orthogonal

1/2
/_ ValH)Vin(F)df = An / (f)df = Ab[n —m]. (4.20)

1/2

The inverse Fourier transform of the DPSWFs,

valk] = /1/2 Va(f)e*r Ik df, (4.21)

1/2
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Figure 4.2: Left panel: The four DPSS tapers v, [k] with largest eigenvalues A, for
K=50 samples and with a bandwidth W = 2/ K. Right panel: The corresponding
energy spectra.

are the discrete prolate spheroidal sequences (DPSS) [Slepian, 1978]. The DPSS
are real-valued sequences, and they are also doubly orthogonal

2 vnlk]vm[k] = An Z vnlklvmlk] = And[n — m). (4.22)

In multitaper spectral estimation, the DPSS are used as data tapers [Thom-
son, 1982|. The following considerations are by and large from [Larsen, 2003|. If
we consider all functions which are a Fourier transform of a sequence of length
K, the eigenfunction Vy(f) corresponding to the largest eigenvalue will have the
largest fractional energy in the band (—W,W). The eigenfunction V;(f) corre-
sponding to the second largest eigenvalue will have the largest fractional energy
in the band (—W, W) of all functions which are a Fourier transform of a sequence
of length K, and are orthogonal to V(f). It can be shown that the N = 2KV |
largest eigenvalues have values close to one, while the remaining have values close
to zero. The amount of spectral leakage is 1 — A,, such that using only the N
eigenfunctions corresponding to large eigenvalues ensures that the spectral leak-
age is kept low.

Figure 4.2 shows the four DPSS tapers v,[k] with largest eigenvalues A, for
K = 50 samples and a time-bandwidth product KW = 2 in the left panel
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and their corresponding energy spectra in the right panel. Only the first DPSS
is non-negative like conventional bell-shaped data tapers. Note also that as the
eigenvalue decreases, the sidelobe levels increases.

4.4.2 Estimator of the increment process

A discrete-time process X[k| has the spectral representation in (4.3). We want
to estimate dZ(f) from the K samples of a realization f the process. By taking
the finite discrete Fourier transform of the samples, we have

K-1

y(f) = 3 e gk, (4.23)

k=0
Since y(f) can be inverted to recover the data, there is no information lost in
the transformation. Substituting the process with its spectral representation, we
have

1/2 K-1
o) = [ Y ez ()

1/2 k=0
s (4.24)

= Dy(f — f)dZ(f").
—1/2
Now (4.24) can be seen as a Fredholm integral equation of the first kind for
dZ(f). This equation cannot be solved exactly, but it has several approximate
solutions. The multitaper approach to spectral estimation uses an approximate
solution based on eigenfunction expansions. The estimate [Thomson, 1982]

(fo)

Z(f; fo) = Zv f= 1) (4.25)
where
K-1
Za(f) = z[k]on[k]e 7Tk, (4.26)
k=0

will be a high-resolution estimate of dZ(f) which is valid for fo—W < f < fo+W.

4.4.3 Estimators of the dual-frequency spectra

We may now estimate the Hermitian f-f spectrum at (v, f) = (fi1 — fo, f1) by aver-
aging the sample covariance matrix of the estimate of the increment process over
(=W, W) x (=W, W) around each point (f1, f2) [Larsen, 2003]. This procedure
yields

§XX*(Va )—§ xx* (fl anfl)
= / Z(fl + & [1) 27 (fa + &2, f2) H (&, &2)dEdEs.
W J =
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We choose to smooth over a bandwidth 2W along the stationary manifold, i.e.,

H(&,6) =0(6 — &)/|2WK|. Then

~ 1 W ~
Scx- ) = tagpger [ 20+ €5 )2+ 1, )y

[2WEK] ) w
N-1N-1 7z
= LT S B [y e
VN (428)
= N Z Tzn(fl)z:;(fz)
n=0 m=0 n
_ LN 4l Zi(f)
B N n=>0 " ,

where we have used that the DPSWFs are orthogonal. This estimator was pro-
posed in [Thomson, 1982].

If we use the same procedure to estimate the complementary f-f spectrum, we
have an estimator

SXX(V [) = Sea(f1 + f2, f1)
(4.29)
/ / Z(fi +&; f1)Z (f2 + &, f2)H (&1, &) dEdEs.

Again, we want to do the smoothing over a bandwidth 2WW along the stationary
manifold. The stationary manifold of the complementary f-f spectrum is the line
v = fi1+ fo =0, we now choose H(&,&) = 6(& +&)/[2WK|. Since the DPSS
are real-valued, the DPSWF will have a Hermitian symmetry V,(f) = V*(—f).
We estimate the complementary f-f spectrum with

W ~ ~
Sx(vf) = ey | ZUh+ € 20— 6 F)de

N—-1N-1
-3y W/ Va(&)Vin (=€1)d&

n=0 m=0 noim -

L2 2,0 Zuh) * 430

=y 00 | vemiends
1R Zalf) Za(fo)
N — An

Multitaper spectral analysis was described in great detail in [Percival and Walden,
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1993]. The following statements are from this book. For multitaper analysis,
typical choices of the time-bandwidth product KW are values between 2 and 4,
although values larger than 4 are sometimes of interest. For a fixed K, increasing
KW increases the number of tapers with good leakage properties, thus reduc-
ing the variance of the estimate. However, increasing KW also decreases the
resolution of the estimate.

4.5 Testing the estimators

The estimators outlined here for the Hermitian functions are known to work for
real-valued processes. We want to assess whether our estimators of the comple-
mentary functions work properly. Our implementation of these estimators are
based on code from [Larsen, 2003|. Consider a real-valued chirp process in noise,

Y (t) = cos [7(Bt* + 2at)] + N(2), (4.31)

where N(t) is a white Gaussian noise process. If we define a complex-valued
process X (t) = exp [jm(8t* + 2at)] + N(t), we see that

X(t) +X*(t)

Y(t) = 5 (4.32)
The moment function of Y (¢) will be
Myy~(t,7) = E[Y (1 + 7)Y (2)]
(4.33)

1
=1 [MXX* (t,7) + My o+ (t,7) + Mxx(t,7) + Mx x (2, 7')] .

By Fourier transforms we get similar expressions for the f-f spectrum

SYY* (V’ f) = i [SXX* (V’ f)+S;(X* (_V’ _f)+SXX(V’ f)+S;(X(_V’ _f)]’ (434)

and the ambiguity function

1
Ayye (v, 1) = 1 [AXX* (v, 7) + Ay o (v, 7) + Axx (v, 7) + Ak x (-7, 7')} (4.35)

We generated K = 100 samples y[k] = Y (k) and z[k] = X (k), £ =0,...,K — 1,
with a = —0.3, 8 = 0.005 and a noise process with standard deviation ¢ = 0.05.
Figure 4.3 shows the available samples y[k].

We use the estimator in (4.13) to estimate the Hermitian moment functions
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Figure 4.3: Samples y[k] of the real-valued noisy chirp process.

of Y(t) and X(t) and the estimator in (4.14) to estimate the complementary
moment function of X (¢). The kernel

1/N, =0,....N,— 1
ou, ] = 4 /N =0 N, (4.36)
0 otherwise

is applied with NV; = 15. This is a moving average of N; samples in the k-direction.
In Figure 4.4 we compare the estimate of M,y +(t,7) obtained from (4.13) with
the estimate of My« (¢, 7) based on estimates of the moment functions of X (),
as in (4.33).

We estimate the Hermitian f-f spectra of Y (¢) and X(¢) with (4.28), and the
complementary f-f spectrum of X () with (4.30). We use a time-bandwidth prod-
uct KW = 5/2. In Figure 4.5 we compare the estimate of Sy~ (v, f) obtained

from (4.28) with the estimate of Sy« (v, f) based on estimates of the f-f spectra
of X(t), as in (4.34).

The Hermitian ambiguity functions of Y (¢) and X (¢) are estimated with (4.15)
and the complementary ambiguity function of X (¢) is estimated with (4.16). The
data taper

2m(k +1)

v[k] = 0.5 — 0.5 cos ( N1

> k=0,...,N—1, (4.37)
know as a Hann window [Harris, 1978|, is used for all k. In Figure 4.6 we compare
the estimate of Ayy+ (v, 7) obtained from (4.15) with the estimate of Ay« (v, 7)
based on estimates of the ambiguity functions of X (¢), as in (4.35).

The estimates of the three Hermitian statistical quantities of Y'(¢) obtained by



40

Figure 4.4: |J/\4\Yw [k, k]|. Top: Estimate based on y[k]. Bottom: Estimate based
on zlk].

analyzing the real-valued time series y[k] are identical to the estimates obtained
by analyzing the complex-valued time series x[k| and using the relations (4.33)—
(4.35). This suggests that the estimators of the complementary quantities are
correct.
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Chapter 5

Estimation of the time-frequency
spectrum

Estimation of the time-frequency behavior of a process has been given much at-
tention in the literature. One of the more popular approaches to time-frequency
analysis is the Wigner-Ville time-frequency distribution, introduced by Wigner
in [Wigner, 1932 in quantum mechanics, and by Ville in [Ville, 1948] in signal
theory. The Wigner-Ville distribution has many desirable properties, but it is
not clear what property of the process the distribution actually measures. The
common assumption is that the Wigner-Ville is an energy density. However, this
cannot be true since the Wigner-Ville distribution can attain negative values.
Time-frequency analysis of synthetic aperture sonar data using the Wigner-Ville
distribution and its relatives was presented in [Hindberg et al., 2004].

The Hermitian time-frequency spectrum of complex-valued processes can be esti-
mated using multitaper by the baseband complex demodulate [Thomson, 1989).
However, there is no equivalent way to estimate the complementary t-f spectrum.

To estimate the Hermitian and the complementary t-f spectrum of a process,
we define

Vi )df =B [ X () (¢7*1dZ(f))’] (5.1)
Vax(t, )df =E | X(¢) (e27'az* (- )] (5.2)

Here, Vxx=(t, f) is the Hermitian Rihaczek time-frequency distribution (HR-
TFD) |Rihaczek, 1968] and Vxx (¢, f) is the complementary Rihaczek time-frequency
distribution (CR-TFD) [Schreier and Scharf, 2003b]. The relationship between

these time-frequency representations and the t-f spectra are then

Px x (t, f) = (VXX* (t, f))* (5-3)
Pxx(t, f) = Vxx(t,—f).
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Time-frequency analysis favors the use of analytic processes since it reduces the
number of cross-terms that cause interference in the distribution [Flandrin, 1999|.
For analytic processes, the HR-TFD will only be non-zero for positive frequen-
cies and the CR-TFD only for negative frequencies. This is consistent with the
Hermitian and complementary t-f spectrum of the process being non-zero only
for positive frequencies, as we showed in Section 3.11.

Note that the HR-TFD and the CR-TFD are generally complex-valued. The
following quote is from [Scharf et al., 2005]: “We interpret the Rihaczek distribu-
tion of stochastic signals as a distribution of correlation over time and frequency,
rather than a distribution of energy. This resolves concerns about the meaning
of negative or complex energy.” It was also shown in [Scharf et al., 2005] that the
Rihaczek distribution determines the time-varying Wiener filter for estimating
the process from its increment process.

5.1 Estimation of the Rihaczek distributions

The HR-TFD and the CR-TFD are bilinear time-frequency distributions that are
covariant to shifts in time and frequency. They are therefore members of Cohen’s
class [Cohen, 1966]|, and the discrete-time version of Cohen’s class can be used
to estimate these distributions [Martin and Flandrin, 1985|. The HR-TFD is
estimated with

Vixe [k, f) = Z Z wlk + m]g[m, pla* [k +m — ple 7>, (5.5)
M=—00 §=—00
and we estimate the CR-TFD with

VXX[k f)= Z Z z[k 4+ m]d[m, plz[k + m — ple 2™ (5.6)

M=—00 I=—00

Here, m is a global time variable and 4 is a local time variable. In [Scharf et al.,
2005], a factorized kernel

¢lm, pl = wi[mlws[plwz[m — p] (5.7)

was suggested as a suitable dual-time kernel for these estimators. We will now
implement and test these estimators. We use the estimators in (5.5) and (5.6)
along with the relations in (5.3) and (5.4) to estimate the Hermitian and com-
plementary t-f spectrum of analytic processes.
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5.2 Choice of windows

Inserting the kernel (5.7) in (5.5) and (5.6), we obtain

o0

Vix- [k, f) = Z zlk + m]w:[m]

(5.8)
/ Wa(r) (Balk, £ = F)e0=) " gp
and
Vix[k, f) = Z [k + m]w, [m]
(5.9)
/ wo(s) (sl —(f = F)em1) ay
Here, W5 (f) is the Fourier transform of ws[u], and
Fylk,f) = Y wsm]z[m + kle 7>/ (5.10)

is the Short-Time Fourier Transform (STFT) of z[k| using window ws. The
window w3 should be a smooth data taper to stabilize the STFT, and the windows
w; and wy should be localized to concentrate the estimator in time and frequency,
respectively [Scharf et al., 2005]. There are many possible ways of choosing these
windows and the parameters associated with the windows to fulfill this, and we
have no way of determining what the optimal choice would be. We will consider
two kernels composed of two different sets of windows.

5.2.1 Hamming and Gaussian windows

We start by selecting w3 to be the smooth data taper

2
ws[n| = 0.54 — 0.46 cos <N1n1> n=0,...,N—1 (5.11)

known as the Hamming window [Harris, 1978]. The Gaussian window [Harris,
1978] is defined by

2
wln| = exp (%) n=0,...,N—1. (5.12)

The choice of o controls the width of the window itself and the width of the
Fourier transform of the window. By choosing a small value of o, the window
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Figure 5.1: The kernel ¢[m, u| with w3 as a Hamming window and w; and w, as
Gaussian windows with o = 10 and o2 = 40, respectively.

will be concentrated in time. Likewise, a large value of ¢ gives a narrow window
in the Fourier domain. We choose w; to be a Gaussian window with ¢ = 10 and
wo to be a Gaussian window with 02 = 40. Figure 5.1 shows the resulting total
kernel ¢[m, | with these windows.

We will generate numerical data from some processes which have well-known
time-frequency behavior, to examine how the estimators work with these win-
dows. In the following, N(t) is a white Gaussian noise process with standard
deviation oy = 0.05.

First, we consider the process
X (t) = cos(2m fot) + N(t) + jH {cos(2m fot) + N(t)} . (5.13)

The process X (t) is a complex-valued, analytic process corresponding to a cy-
clostationary real-valued process. We generated K = 100 samples z[k], k£ =
0,...,K —1, of X(¢t) with fop = 0.3.

Figure 5.2 shows the estimates of the Hermitian and complementary spectrum
based on these samples. We see that the Hermitian t-f spectrum is concentrated
on the line f = fy, and it is reasonably constant as a function of time. This is
what we would expect for this process, since X(¢) consists of a pure tone with
frequency fo and N(t) which has a constant t-f spectrum. The complementary
t-f spectrum has its largest values at frequency fj.
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Figure 5.2: Estimates of the t-f spectra of the process in (5.13). Top: |Pxx [k, f)|.
Bottom: |Pxx[k, f)|.

The process
X(t) = cos [7(2at + Bt*)] + N(t) + jH {cos [7(2at + Bt*)] + N(1)}.  (5.14)

is a complex-valued, analytic process corresponding to a real-valued chirp in white
Gaussian noise. We generated K = 100 samples z[k], £ =0,..., K — 1, of X(¢),
with a = 0.15 and 8 = 0.0025.

The estimates of the Hermitian and the complementary t-f spectrum based on
these samples are shown in Figure 5.3. The chirp has a starting instantaneous
frequency of a = 0.15, and the frequency will increase as a linear function of time
such that at k = K — 1, the instantaneous frequency of the chirp will be 0.4. We
see that this behavior is reflected in our estimate of the Hermitian t-f spectrum.

We will estimate the t-f spectra of the two-tone process in noise,

X (t) =cos(2m f1t) + cos(27 fat) + N(t)

5.15
+ jH {cos(27 fit) + cos(2m fot) + N(t)} . (5.15)
The process X (t) consists of two distinct tones at frequencies f; and fs.

We generated K = 100 samples z[k], k =0,..., K —1, of X(¢) with f; = 0.2 and
f2 =0.3.
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Figure 5.3: Estimates of the t-f spectra of the process in (5.14). Top: |Pxx [k, f)|.
Bottom: |Pxx[k, f)|.

We see in Figure 5.4 that the Hermitian t-f spectrum is indeed concentrated
on the lines f = 0.2 and f = 0.3. The spectrum is, however, no longer constant
as a function of time. There is a pulsation of the lines which is periodic with fre-
quency fo — fi = 0.1. Since the estimator is a quadratic function of the samples,
this pulsation is probably due to interference between the two sinusoidal compo-
nents of the process, a process commonly referred to as a “beat”. By increasing
o2 and decreasing o2, we can reduce the interference in the estimate. However,

this will give an estimate with poorer overall resolution.

Except for the interference in the two-component process, the estimated Her-
mitian t-f spectra in this section have been consistent with what we would expect
for the different processes. However, we had no such intuition regarding the com-
plementary t-f spectra. From the figures in this section, we see that the estimate
of the complementary t-f spectrum appears to fill in the parts that are missing
on the edges of the estimate of the Hermitian t-f spectrum.

This choice of windows seems to work quite well for single-component processes,
but for multi-component processes we may experience interference in the esti-
mates.
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Figure 5.4: Estimates of the t-f spectra of the process in (5.15). Top: |Pxx- [k, f)|.
Bottom: |Pxx[k, f)|.

5.2.2 Kaiser-Bessel windows

We introduced the DPSS in Section 4.4.1, and stated that they are good choices
for data windows. We want to use the DPSS of order zero, vy[k], for all the data

windows in the kernel of the estimators of the t-f spectra. Here, the choice of the
time-bandwidth product KW of the DPSS should differ for the different windows.

A problem with the DPSS is that they do not have a closed form expression.
We will therefore use an approximation of the DPSS of order zero called the
Kaiser-Bessel window |Kaiser, 1966]. This window is defined by

o ]

Iy (rav)

v[n] = (5.16)

where Iy(x) is the modified Bessel function of the first kind of order zero. The
parameter « in (5.16) corresponds to the time-bandwidth product KW of the
DPSS that the Kaiser-Bessel window is an approximation to. Figure 5.5 shows
the window and its energy spectrum for the Kaiser-Bessel window and the DPSS
of order zero. The Kaiser-Bessel window has a maximum value of one, but here
we have scaled the Kaiser-Bessel window to have the same maximum value as
the corresponding DPSS.
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Figure 5.5: Comparison between the DPSS of order zero and the Kaiser-Bessel
window for K = 50 samples and a bandwidth W = 4/K. Top: The Kaiser-Bessel
window (left) and its energy spectrum (right). Bottom: The DPSS of order zero
(left) and its energy spectrum (right).

In Figure 5.6 we show four different kernels of the Rihaczek estimators con-
structed from three Kaiser-Bessel windows. The notation KW; is used for the

| Kernel || KWy | KW, | KW |

Gl 4 | 2 | 3
Gl 6 | 4 | 5
¢3[m7 :U'] 8 4 6
Ga[m, ) || 16 8 12

Table 5.1: The time-bandwidth products of four kernels constructed from three
Kaiser-Bessel windows.

time-bandwidth product of window w; in the kernel. The time-bandwidth prod-
ucts of each kernel are specified in Table 5.1. We see that as the time-bandwidth
products of the windows increase, the size of the kernel decreases.

All the time-bandwidth products in Table 5.1 were chosen such that KW; >
KW3 > KW,. The larger the value of KW;, the narrower the window w; will
be in time. Likewise, the smaller the value of K'W;, the narrower the window
w; will be in frequency. If ws is supposed to stabilize the STFT, and w; and
wy are used to concentrate the estimate in time and frequency respectively, we
should have the ordering KW, > KW3 > KW,. Exactly how the ratio between
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Figure 5.6: Kernels based on three Kaiser-Bessel windows. Top left: The kernel
o1[m, p| with KW, = 4, KW, = 2 and KW3 = 3. Top right: The kernel ¢o[m, p]
with KW; =6, KWy = 4 and KW3 = 5. Bottom left: The kernel ¢s|m, p] with
KW, =8, KW, = 4 and KW3 = 6. Bottom right: The kernel ¢4[m, ] with
KW, =16, KWy =8 and KW3 = 12.

the time-bandwidth products should be, will have to be determined through trial
and error for any given data set.

We estimate the t-f spectra of the chirp process in Section 5.2.1 with the four
kernels in Table 5.1. Figure 5.7 and Figure 5.8 shows the magnitude of the
estimates of the Hermitian and complementary t-f spectrum obtained with the
different kernels. The localization of the estimate improves as the kernel decreases
in size. But we also see that the magnitude of the estimate depends on the size
of the kernel, the magnitude decreases as the kernel decreases in size. Note that
the magnitude of |Pxx [k, f)| is much smaller than the magnitude of | Px x+ [k, f)|.

Of the kernels in Table 5.1, ¢4[m, u] gave the best localization of the chirp. We
will use this kernel to estimate the t-f spectra of the other two processes consid-
ered in Section 5.2.1. The t-f spectra of the single tone are shown in Figure 5.9.
These estimates are quite similar to the estimates in Figure 5.2 obtained with the
previous kernel. Figure 5.10 shows the t-f spectra of the process consisting of two
tones. Here, the Kaiser-Bessel kernel has improved the estimates dramatically,
and the interference between the two tones has disappeared altogether.

The kernel consisting of three Kaiser-Bessel windows with KW, > KW3 > KW,
gave us good estimates of the t-f spectra both for single-component and two-
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Figure 5.7: Estimates of the Hermitian t-f spectrum of a chirp process using the
kernels in Figure 5.6. Top left: ‘ﬁxx* [k, f)| with kernel ¢1[m, u]. Top right:
| Py x+ [k, f)| with kernel ¢om, ). Bottom left: |Py - [k, f)| with kernel ¢s[m, u].
Bottom right: |I3XX [k, f)| with kernel ¢4[m, pl.

component processes.

5.3 Statistical properties

We estimated the Hermitian and complementary t-f spectrum of a process by
estimating the HR-TFD and the CR-TFD of the process. From (5.5) and (5.6)
we have

[VXX [k, f = Z / Vix*[m,)®[m — k, f — a)da (5.17)
E[VXXk nl= _Z /I/ZVXX[moz ®[m —k, f — a)da (5.18)

where ®[m, f) is the discrete-time Fourier transform of the kernel ¢[m, u] with
respect to the variable . Thus, the expected value of the estimators are a time-
frequency smoothed version of the HR-TFD and the CR-TFD [Scharf et al., 2005].

We will use Monte Carlo simulation to approximate the expected values of the
estimators of the t-f spectra. We consider the process in (5.14). We generate
K = 50 samples z[k], k = 0,..., K — 1, with @ = 0.15, § = 0.0051 and N(t)
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Figure 5.8: Estimates of the complementary t-f spectrum of a chirp process using
the kernels in Figure 5.6. Top left: |Pxx[k, f)| with kernel ¢1[m, zi]. Top right:
|Pxx[k, f)| with kernel ¢s[m, pu]. Bottom left: |Px [k, f)| with kernel ¢s[m, u].
Bottom right: |I3XX[k, f)| with kernel ¢4[m, .

with standard deviation oy = 0.05. The estimates P %1k, f) and PXX[k f)
are calculated from these samples. We generate K neW samples and calculate

P(Q) [k, f) and PP [k, f) based on these samples. This is repeated L = 1000
tlmes and we estimate the expected values by

Py [k, f) = ZP@ (5.19)
Pyx[k, f) = ZP)@( k, f). (5.20)

From Figure 5.11 we see that the approximated expected value of the t-f spectra
are time- and frequency-smoothed versions of the spectra themselves.

We can also use Monte Carlo simulation to estimate the variance of the esti-
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Figure 5.9: Estimates of the t-f spectra of the process in (5.13) with the kernel
¢a[m, p]. Top: |Pxx-[k, f)[. Bottom: [Pxxl[k, f)|.

mators of the t-f spectra. This numerical approximation is

Var { Pxx- [k, /) } = LZ\P“ 6, 1) = [Pxx Tk, A7 (5.21)
Var { Pex[k, f) } = %Z B[k, D) — |Pxxlk, )] (5.22)
i=1

Figure 5.12 shows the Monte Carlo estimate of the variance of the estimators.

The variance of Py y- «[k, f) is largest in the area where the magnitude of each

()

estimate P, . [k, f) is largest. This is also true for the variance of Pxx [k, f).

An approximate expression for the variance of the estimate of the Hermitian
t-f spectrum was derived in [Scharf et al., 2005] as

R 00 1/2
Var{Pec N}~ 3 [ 18— — P P o) da
/
—i—/l 2<I>[m—k,f+a)<l>*[m—k,f—a) (5.23)
0

X ‘Pxx[k, a)\zda] .
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Figure 5.10: Estimates of the t-f spectra of the process in (5.15) with kernel
¢a[m, p]. Top: |Pxx+[k, f)[. Bottom: [Pxxl[k, f)].

This approximation assumes quasistationary processes whose time of stationar-
ity is much greater than the correlation time. Since analytic, SOS processes are
proper, this assumption on the complementary functions will result in approx-
imately zero variance for the estimate of the complementary t-f spectrum. We
examine the quasistationary process

X(t) =exp[j(2nfot + V)], (5.24)

which is a pure tone with a random phase. Here, fy = 0.2 and ¥ is uniformly
distributed on [—, 7].

We estimated Var {]3XX [k,f)} for this process with (5.23) and with Monte
Carlo simulation using L = 1000 iterations and K = 50 samples for each it-
eration. From Figure 5.13, we see that the two estimates of the variance are
qualitatively alike.
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Figure 5.11: Expected value of the estimators of the t-f spectra approximated
with Monte Carlo simulation. Top: ‘ﬁxx* [k, f)‘ Bottom: ‘ﬁXX[k,f)‘.
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Figure 5.12: Variance of the estimators of the t-f spectra approximated with
Monte Carlo simulation. Top: W{ﬁm* [k, f)} Bottom: W{Pxx[k,f)}
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Figure 5.13: Variance for the estimator of the Hermitian t-f spectrum of the
process in (5.24). Top: Variance approximated with (5.23). Bottom: Variance
estimated with Monte Carlo simulation.
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Chapter 6

Numerical examples

We have derived exact theoretical expressions of the Hermitian and the comple-
mentary functions of some random processes. In this chapter, we will estimate
these functions with the estimators outlined in the previous chapters. We will
use the estimation procedure discussed in Section 4.5 for the moment functions
and the ambiguity functions. The f-f spectra are estimated by (4.28) and (4.30)
and the t-f spectra are estimated by (5.5) and (5.6). For each process, we have
chosen the number of samples V; to average over for the moment functions, the
time-bandwidth product KW for the estimate of the f-f spectra, and the kernel in
the estimates of the t-f spectra. In the following, N (%) is the analytic process cor-
responding to a white Gaussian noise process with standard deviation o = 0.05.
Thus, N(t) is proper, and its complementary functions are zero everywhere.

6.1 Single tone process
We start off by looking at the noisy single-tone process
X (t) = exp(j2m fot) + N (). (6.1)

This is a cyclostationary process, since the mean-value and the complementary
moment function of X (¢) is periodic in ¢, with period 7'= 1/ f;. The Hermitian
moment function is independent of ¢.

Figure 6.1 and Figure 6.2 shows the estimates of the Hermitian and the com-
plementary second-order statistical quantities, respectively. The estimates are
based on K = 100 samples z[k], £ = 0,..., K — 1, of the process X(¢) with
fo = 0.1. Note that we should average over at least one period in the estimates of
the moment functions, i.e., Ny > 10. Here, we have chosen N; = 15, KW = 5/2
and the Kaiser-Bessel kernel with KW; = 16, KW, =8 and KW3 = 12.

The moment functions are non-zero only in the area of the k-x plane where both
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Figure 6.1: Estimates of the Hermitian second-order statistical quantities of the
noisy single-tone process. Top left: \MXX [k, k]|. Top right: |Pyx+[k, f)|. Bot-
tom left: |Ayx+ (v, £]| on a log scale. Bottom right: |Sxx- (v, f)| on a log scale.

k and k +  have values between zero and K — 1. In this area, the magnitude of
My - « [k, k] is reasonably constant except for on the edges, whereas Mxx [k, k] has
its largest values on these edges. The single tone is a straight line at f = f; in the
estimate of the Hermitian t-f spectrum. The estimate of the complementary t-f
spectrum has its values at frequency fy for K =0 and £ = K — 1. Since the Her-
mitian moment function is independent of ¢, the Hermitian ambiguity function
will be concentrated around the stationary manifold. Likewise, the complemen-
tary ambiguity function should have its values on v = 0 and v = 2 f, because of
the periodicity of the complementary moment function. Furthermore, Sy x+ (v, f)
has a spike at (0, fo) and Sxx (v, f) has a spike at (2f,, fo). We see that all the
estimates are consistent with the theoretical results.

6.2 Two-tone process

Our next example is the two-tone process in noise,

X (t) = exp(j2r fit) + exp(j27 fot) + N(2). (6.2)

It is easy to show that the mean value, the Hermitian and the complementary
moment function of this process is periodic in ¢ with period 7" = 1/ f,, where
fo = fa— fi. Thus, X (%) is a cyclostationary process. The moment functions are
also periodic in 7 with the same period.
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Figure 6.2: Estimates of complementary second-order statistical quantities of the
noisy single-tone process. Top left: \MXX[k k]|. Top right: |Pxx[k, f)|. Bottom
left: |Ayx (v, k]| on a log scale. Bottom right: [Sxx (v, f)| on a log scale.

The estimates presented in Figure 6.3 and 6.4 are based on K = 100 samples
zlk], k = 0,..., K — 1, of the process with f; = 0.1 and f, = 0.2. Again, we
should average over at least one period 7" in the estimates of the moment func-
tions. However, for this process we should avoid values of N, that are multiples
of the period, i.e., Ny # nT, where n € N. Here, N; = 15, KW = 5/2 and the
kernel is the Kaiser-Bessel kernel with KW; = 16, KW, = 8 and KW3 = 12.

We see an interference pattern in M x|k, k], where the magnitude drops ev-
ery tenth sample in both directions. Again, M xx* |k, k] has its smallest values
and M xx|k, k| has its highest values on the edges of the area defined by the
samples. The estimate of the complementary moment functions also exhibits
periodic drops in the magnitude. Because of the periodicity of the Hermitian
moment function, the lines of support for the Hermitian ambiguity function and
the Hermitian f-f spectrum are v = +f, and v = 0. Likewise, the complementary
ambiguity function and the complementary f-f spectrum are non-zero only on
v=2f1,v=2fyand v = f1 + fo. The estimates of the ambiguity functions have
their values concentrated on these lines. But Axx (v, k] also has values on v = 0,
this is most likely due to a weakness in the estimator. There are four spikes in
Sxx* (v, f) and four spikes in Sxx= (v, f) located where we would expect them.
In the estimate of the Hermitian t-f spectrum, the two tones are the two straight
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Figure 6.3: Estimates of the Hermitian second-order statistical quantities of the
noisy two-tone process. Top left: \M xx* [k, £]|. Top right: |Py x+[k, f)|. Bottom
left: |Ayx+ (v, £]| on a log scale. Bottom right: |Sx x+ (v, f)| on a log scale.

lines at f = f1 and f = f,, and the complementary t-f spectrum fills in the values
missing on the edges.

6.3 Chirp process

We estimate the second-order statistical quantities of the chirp process
X (t) = exp [jm(2at + B2 + U)] . (6.3)

We generated K = 100 samples z[k], & = 0,..., K — 1, of the process with
a = 0.15, § = 0.0025 and ¥ uniformly distributed on [—1,1]. The estimates of
the Hermitian quantities are shown in Figure 6.5, and the estimate of the com-
plementary quantities are shown in Figure 6.6. For the estimates, we have used
KW = 5/2, N; = 15 and the Kaiser-Bessel kernel with KW; = 16, KW, = 8
and KW3 = 12.

Here, Ay y (v, k] has values on the stationary manifold and on a line with gradient

DAy x+ 1
XX (Va K] —— (64)
ov B

We see the chirp as a linear function in the Hermitian t-f spectrum estimate,
and Px x|k, f) has its values at the beginning and at the end of this line. The
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Figure 6.4: Estimates of complementary second-order statistical quantities of the
noisy two-tone process. Top left: |[Mxx[k, x]|. Top right: [Pxxl[k, f)|- Bottom
left: |Axx (v, k]| on a log scale. Bottom right: |Sxx (v, f)| on a log scale.

estimate of the Hermitian f-f spectrum is concentrated in an area around v = 0
and the estimate of the Hermitian moment function is concentrated in an area
around 7 = 0. This suggests that for this process, there is a strong relationship
between neighboring samples and between neighboring frequencies. In Sx x (v, f)
the chirp again appears as a linear function starting at frequency f = « and
ending at frequency f = 0.4, only now as a function of the local frequency
variable v instead of the global time k. For this process, no further insight was
gained through the estimates of the complementary moment function and the
complementary ambiguity function.

6.4 Sinusoidal frequency modulation
We now consider the sinusoidal FM process
X (t) = exp {j27 [fct + sin (27 fut)]} + N(2), (6.5)

where f, is the carrier frequency, and f,, is the modulation frequency. We use the
code from [Auger et al., 1996] to generate K = 250 samples z[k|, k =0,..., K —1
of a sinusoidal FM with f. = 0.3 and a modulation sinusoid with period K/2,
minimum frequency 0.1 and maximum frequency 0.4. For this process, which is a
single-component process, the kernel from Section 5.2.1 gave the best localization
in the estimates of the t-f spectra. The parameters for the other estimators are
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Figure 6.5: Estimates of the Hermitian second-order statistical quantities of the
chirp process. Top left: |Myx+[k,k]|. Top right: |Pxx+[k, f)|. Bottom left:
|Ax x* (v, k]| on a log scale. Bottom right: |Sxx+ (v, f)|.

KW =5/2 and N; = 30. Figure 6.7 shows the estimates of the Hermitian func-
tions of X (¢) and Figure 6.8 shows the estimates of the complementary functions
of X(t).

The estimate of the Hermitian moment function shows us that two samples that
are K /2 = 125 samples apart have a strong correlation, since the sinusoidal FM
has a period of 125 samples. The diagonal lines connecting the strongest values
in Mx x|k, k] displays the correlation between samples where the modulation si-
nusoid has different orientation. We see two periods of a sinusoid with maximum
frequency 0.4 and minimum frequency 0.1 in the estimate of the Hermitian t-f
spectrum, and the estimate of the complementary t-f spectrum has its largest val-
ues at the edges. Note that the position in k for £ = 0 of the circles in Mx x|k, x|
corresponds to the position of the maxima and the minima of the modulation
sinusoid in Pxx[k, f). In Axx+(v, k], we see two sinusoids as a function of .
These sinusoids have the same period as the modulation sinusoid and an ampli-
tude equal to the difference between the maximum and the minimum frequency of
the modulation sinusoid. The two sinusoids oscillate around the line » = 0. The
estimate of the complementary ambiguity function also has these two sinusoids,
but here they oscillate around v = 0.5, which is the sum of the minimum and the
maximum frequency of the modulation sinusoid. But half of the sinusoids have
been folded back to oscillate around ¥ = —0.5 due to aliasing. The estimates of
the f-f spectra have their values in the frequency range we expect, and they have
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Figure 6.6: Estimates of complementary second-order statistical quantities of
the chirp process. Top left: |Mxx[k, k]|. Top right: |Pxxlk, f)|- Bottom left:
|Axx (v, k]| on a log scale. Bottom right: |Sxx (v, f)|.

their maximal values at f = 0.1 and f = 0.4. But for this process, it is hard to
characterize the process from its f-f spectra.

6.5 Fractional Brownian motion

Fractional Brownian motion (FBM) provides a useful model for processes with
long-term dependence. The FBM process is a real-valued, nonstationary, harmo-
nizable process. An FBM process X (¢) is commonly defined as [Mandelbrot and
Van Ness, 1968|

1 0
X — X(0) =~ b Y H-2 (L H-1/2) gy
0~ XO) =g | | (=9 = ") ar
t (6.6)
+ / (t— s)H_l/QdY(s)] :
0
Here, Y'(¢) is standard Brownian motion, dY (¢) is a differential increment of Y ()
and H € (0,1) is the Hurst parameter. When H = 1/2, X (¢) is a standard Brow-

nian motion process. It can be shown that for H € (0,1/2), X (¢) will fluctuate
more than Y (¢) and for H € (1/2,1), X (t) will be smoother than Y'(¢).

The f-f spectrum and the t-f spectrum of an FBM process was found in [Digéard,
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Figure 6.7: Estimates of the Hermitian second-order statistical quantities of a
noisy sinusoidal FM process. Top left: |My [k, k]|. Top right: |Pxx+[k, f)|.
Bottom left: |Axx+ (v, k]| on a log scale. Bottom right: |[Sxx*(v, f)| on a log
scale.

2004| to be
Sxx+ (v, f) =(2m) @ 2| f — | CHD5(v) — |p| CHI5(f —v)
— ‘f _ y‘f(H+1/2)5(f)‘y‘f(H+1/2)] (6'7)
and
_2a0(1 — 2H)cos(mH)  on

— 2(2m) 2 jsin(r fo)el ™I ),

respectively. We see that the f-f spectrum has its values on the three discrete
lines of support f =0, v =0 and f = v. Note also that the t-f spectrum has a
delta function §(f) in the first term. We will only consider the f-f spectrum and
the t-f spectrum of this process.

We generated K = 250 samples of FBM processes with different values of H
using the code from [Lowen, 2000]. Figure 6.9 shows the samples of the FBM
processes with H = 0.1, H = 0.5 and H = 0.8. Figures 6.10-6.12 show a section
of the estimates of the f-f spectra with KW = 5 for the three FBM process. The
estimates are concentrated on the lines f = 0 and v = f, as expected. The line
v = 0 is also present in the estimates, but it is difficult to see since it is only
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Figure 6.8: Estimates of complementary second-order statistical quantities of
a noisy sinusoidal FM process. Top left: |Mxx|k,«]|. Top right: |Pxxlk, f)|.
Bottom left: |Axx (v, k]| on a log scale. Bottom right: [Sxx (v, f)| on a log scale.

one pixel wide. Note that as H increases, S <x* (v, f) becomes more concentrated
around the point f = 0, v = 0, which follows from (6.7).

Since an FBM process is real-valued, the t-f spectrum will have the symmetry
Pxx+(t, f) = Py (t,—f), so we only consider the t-f spectrum for positive fre-
quencies. The estimate of the t-f spectrum of the FBM processes with H = 0.1,
H = 0.5 and H = 0.8 are shown in Figures 6.13-6.15. The Kaiser-Bessel kernel
with KW; = 16, KW, = 8 and KW3 = 12 was used in the estimates. Here, the
t-f spectrum has its largest values at f = 0 for all three values of H. Due to
the second term in (6.8), the value of H will control how fast the Hermitian t-f
spectrum decays as f increases. This is reflected in our estimates.

6.6 Earthquake data

We will analyze a real world time series. The time series in Figure 6.16 contains
the number of earthquakes of magnitude larger than 7.0 on the Richter’s scale
for each year from year 1900 to year 2003 inclusive. The data can be down-
loaded from the Earthquake Data Base System of the U.S. Geological Survey at
http://neic.usgs.gov/neis/eqlists/Tup.html.

The f-f spectrum of the time series is estimated using a time-bandwidth product
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Figure 6.9: Samples of FBM processes with different values of H. Top: H = 0.1.
Middle: H = 0.5. Bottom: H = 0.8.

KW =5/2. From Figure 6.17 we see that the estimate of the f-f spectrum of the
data has the same structure as the estimated f-f spectrum for the FBM processes.
This time series was also analyzed in [Digard, 2004], where the Hurst parameter
was estimated based on SXX (v, f) to be H =0.29. We use an average of Ny = 10
samples to estimate the moment function and the ambiguity function of the time
series. These estimates are displayed in Figure 6.18, where k& = 0 denotes the
year 1900, k¥ = 1 the year 1901 and so on. Here, |AXX (v, k]| has its largest
values on the stationary manifold v = 0. The estimate of the moment function
has large values around the years 1913, 1949 and 1975. Figure 6.19 shows the
estimates of the t-f spectrum for the time series using the Kaiser-Bessel kernel
with KW, =16, KW5 = 8 and KWj3 = 12. The estimate has the same structure
as the estimates of the t-f spectra for the FBM processes.

The f-f spectrum and the t-f spectrum of the earthquake data have the same
structure as the spectra of an FBM process. The earthquake data cannot be a
realization of an FBM process, since the earthquake data do not attain negative
values. Even so, there seems to be some sort of connection between the time
series and FBM due to their similarities in terms of spectral correlations.
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Figure 6.10: The estimate |Sx - (v, f)| on a log scale for an FBM process X (t)
with H = 0.1.
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Figure 6.11: The estimate \S\XX (v, f)| on a log scale for an FBM process X (t)
with H = 0.5.
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Figure 6.12: The estimate |Sx - (v, f)| on a log scale for an FBM process X (t)
with H = 0.8.

Figure 6.13: The estimate |ﬁxx* [k, f)| on a log scale for an FBM process with
H=0.1.
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Figure 6.14: The estimate | Py - [k, f)| on a log scale for an FBM process with
H =10.5.
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Figure 6.15: The estimate |ﬁxx* [k, f)| on a log scale for an FBM process with
H =0..8.
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Figure 6.16: Number of earthquakes of magnitude larger than 7.0 on the Richter’s
scale per year.
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Figure 6.17: The estimate |Sy x- (v, f)| on a log scale for the earthquake data.
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Figure 6.18: Estimates of the moment function and the ambiguity function of the
earthquake data. Top: My y+ [k, k|. Bottom: |Ay y+ (v, k]| on a log scale.
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Figure 6.19: The estimate | Py - [k, f)| on a log scale for the earthquake data.
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Chapter 7

Coherences

The increment process dZ(f) of a harmonizable process X (¢) has non-orthogonal
increments. Thus, we want to quantify the correlation between the increment
process at different frequencies. The frequency content of harmonizable pro-
cesses changes with time, such that the correlation between the process and its
increment process is also of interest. To obtain objective measures of these cor-
relations, we introduce the concept of coherence. A measure of coherence of the
process should be restricted to values between zero and one.

7.1 Mean square estimation

We are interested in estimating the value of a complex random variable Z in
terms of the observation of another complex random variable W.

In linear mean square estimation (LMSE), Z is estimated as a linear function
of W. We choose the constant o such that the estimate Z = oW minimizes the
mean square error E [\Z -7 \2] [Picinbono, 1993|. By taking the derivative of
the mean square error with respect to «, setting the result to zero and solving

for o, we find
E[ZW*
o= ———. (7.1)
E[[W]?]

This minimal mean square error will be

¢ =E[|z] -E||ZP]

(7.2)
—E[127] (1 |0, ).
where |1E[ZW*] |2
o = BZEEWE (73)

Note that this solution for « leads to E [(Z — E)W*} = 0. This is the orthogo-
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Figure 7.1: The projection of Z onto the vector space spanned by V.

nality condition [Picinbono, 1993|, which states that the mean square error of the
best linear estimate of Z is orthogonal to the observation of W. We can think of
Z as the projection of Z onto the vector space spanned by W, as illustrated in
Figure 7.1. The correlation coefficient will then be the magnitude squared cosine
of the angle associated with the Hilbert space inner product (Z, W) [Picinbono,
1993].

The mean square error €2 is a measure of how close our estimated value Z will be
to the actual value of Z. A small mean square error suggests that Z is estimable
by W as a linear function, i.e., that there is a linear relationship between the
two random variables. Likewise, a large mean square error implies that our esti-
mate is poor. Obviously, the mean square error is non-negative, but it is upper
bounded by E[|Z|?]. However, by using Schwartz’ inequality it is easy to show
that 0 < |p,|* < 1. The quantity |p,|? is often called the correlation coefficient.
We compare the mean square errors of estimating Z from the observation of two
different random variables W; and W,. Any difference in the two mean square
errors is due to the term |p, |, since E[|Z|%] is constant. Lets say that the mean
square error of estimating Z from W is smaller than the mean square error of
estimating Z from W,. The correlation coefficient of W will then be larger than
the correlation coefficient of W5. Thus, the larger the correlation coefficient, the
better we can estimate Z from W.

For complex random variables, we should not limit ourselves to estimate Z as
a linear function of W. In widely linear mean square estimation (WLMSE) we
estimate Z as a widely linear function of the observation of W and its complex
conjugate W* |Picinbono and Chevalier, 1995]. As in LMSE, we choose the con-



Coherences 77

stants «, 8 such that the estimate Z=aW + BW* minimizes the mean square
error | [|Z -7 |2] By taking the partial derivative of the mean square error

with respect to v and 3, setting the result to zero and solving for o and 3, we

find
_E[ZWE[W]] - E[WZ] (E[W?])"

5 5 (7.4)
(E[W)" - [E[W?]]
and
= E[ZW]E[[W] ]Q_E[ZW*]EE[W I (7.5)
(E[W)” - [E[W?]
The minimal mean square error is then
¢, =E[|2]] ~E||2P] 76
=E[1Z]°] (1 —lpw.I")-
Here, :
‘pWL‘Z = E’ (77)
with
£ = (E(WZ') + E(WZ)*) E[[W]] -
—2R{(E[W?])"E[WZ"|E[WZ]} '
and
n=E[|zF] (E[WPF)’ - [E[W?[). (7.9)

This solution for o and [ leads to the orthogonality principle of WLMSE where
now E [(Z — Z)W*} =0and E [(Z — Z)W] = 0. Thus, the mean square error
of the best widely linear estimate of Z is orthogonal to both the observation
W and its complex conjugate W* [Picinbono and Chevalier, 1995|. Again, we
can think of Z as the projection of Z onto the vector space spanned by W and W*.

To compare the mean square error associated with LMSE and the mean square
error associated with WLMSE, we define the quantity
Aé = ei — 63[/ .
2

E[WZ|E[|W[?] — E[W?2E[W*Z] (7.10)

E[|Z2] (E[W)° - [E[W?]])

Obviously, the numerator of Ae? is non-negative. By Schwartz’ inequality, the
denominator of Ae® will also be non-negative, such that € > €2 . Since €2 and
A¢? is non-negative, we have 0 < |p,,, |> < 1. As for LMSE, the quantity |p,,, |
will have values close to one if Z is a good estimate of 7, i.e., Z is estimable as
a widely linear function of W.



78

7.2 Dual-frequency coherence

We want a useful measure of the dual-frequency coherence of a harmonizable
process X (%), i.e., we want to quantify the correlation between dZ(f) and dZ(f —
v). It dZ(f) and dZ(f —v) are correlated, dZ(f — v) should be linearly estimable
from dZ(f). We argued that in using LMSE, the quantity |p,|? will have values
close to one if the two variables are linearly estimable from each other and values
close to zero if they are not. If we estimate Z = dZ(f — v) from W = dZ(f), we
have

. [ElZ(HdZ(f - )]
Px D) = Bz DR a2 - v

(7.11)
_ [Sxx+ (v, f)|2
Sxx*(0,f) Sxx+(0,f —v)

The quantity |p, , (v, f)|” is the magnitude squared cosine of the angle associated
with the Hilbert space inner product (dZ(f),dZ(f — v)), which is the Hermitian
f-f spectrum of a harmonizable process. Thus, we use |p, , (v, f)|” as a measure
of the dual-frequency coherence of a harmonizable process [Hanssen and Scharf,
2003].

| 2

Since the increment process of a harmonizable process is complex-valued, we
can estimate dZ(f — v) as a widely linear function of dZ(f). The correlation
coefficient associated with WLMSE will have high values if dZ(f — v) is widely
linear estimable from dZ(f). Likewise, the correlation coefficient will have values
close to zero if we are not able to estimate dZ(f — v) as a widely linear function
of dZ(f). By using WLMSE to estimate Z = dZ(f — v) from W = dZ(f), we
obtain the correlation coefficient

2 _ f(l/’ f)
|oxwe s F)F = . 1) (7.12)
where
f(’/a f) = (|SXX* (1/, f)|2 + |SXX(2f -V, f)|2) Sxx* (0, f) (7 13)
— 2R {Sxx (2f, f)Sxx(2f — v, f)Sxx-(v, )} '
and
n(v, f) = Sxx+ (0, f —v) [ISxx= (0, /) = [Sxx(2f, )] - (7.14)

We propose the quantity [p, ., (v, f)|> as an alternative measure of the dual-

frequency coherence of a harmonizable process. For complex-valued processes,
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the measure in (7.12) has the obvious advantage that it utilizes both the Hermi-
tian and the complementary f-f spectrum. If the complex-valued process X () is
proper, Sxx (v, f) is zero everywhere and |p, ., (v, f)|* reduces to |p, , (v, f)[>.
A real-valued process cannot be proper, and the Hermitian and complementary
quantities of real-valued processes are equal. The quantity |p, ,,, (v, f)|? is an al-
ternative measure of coherence for both real-valued harmonizable processes and
improper, complex-valued harmonizable processes. However, for real-valued pro-
cess we have to take into account that both £(v, f) and n(v, f) will be zero for

f=0.

7.3 Time-frequency coherence

The time-frequency coherence of a harmonizable process X (t) measures the coher-
ence between the process X (¢) and the modulated increment process dZ( f)e/*"/*.
Time-frequency coherence can be seen as an estimation problem, where we mea-
sure the degree that we are able to estimate the process Z = X(t) from the
modulated increment process W = dZ(f)e’?"/*. Using LMSE we define

. [E[x(az(p)e=r |
6D = X PIEZ

(7.15)

2

— |PXX* (t, f)
MXX* (t, O)SXX* (O, f)

Again, |y, ,(t, f)|* is the magnitude squared cosine of the angle associated with
the Hilbert space inner product (dZ(f)e/®"/*, X (t)), which is the Hermitian t-
f spectrum of a harmonizable process. We use the quantity |y, (¢, f)[* as a

measure of the time-frequency coherence of harmonizable processes [Hanssen and
Scharf, 2003].

We can also estimate the process X (t) as a widely linear function of the modu-
lated increment process. The corresponding correlation coefficient will measure
how good this estimate will be, with values close to one if the estimate is good
and values close to zero if the estimate is poor. If we use WLMSE to estimate
Z = X(t) from W = dZ(f)e’?™, we get the correlation coefficient

2 f(t, f)
Vaewr & )7 = ) (7.16)

where

E(t, f) = (IPxx+(t, f)I? + [Pxx (1, f)|?) Sxx+ (0, f)

. 7.17
— 2% {67‘747Tft5;(x(2f; f)PXX(ta f)PXX* (t’ f)} ( )
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and

n(t, f) = My x- (t, 0) USXX* (0, f)‘2 - |SXX(2f: f)m : (7-18)

We propose the quantity |v, (¢, f)[* as an alternative measure of the time-
frequency coherence of a harmonizable process. This quantity is a function of
both the Hermitian and the complementary functions of the process. If the
complex-valued process X (t) is proper, the complementary functions will be zero
everywhere and |v, ., (t, f)|* reduces to |y, (¢, f)|*. The time-frequency coher-
ence measure in (7.16) is also valid for real-valued processes, since dZ(f)e/2™/*
still has complex values. Note that, for real-valued processes, both 7(¢, f) and
&(t, f) will be zero for f = 0.

7.4 Numerical examples

We want to test these coherence measures on some random processes. This can
of course be done by calculating the exact expressions for a known process. How-
ever, we cannot use stationary or cyclostationary processes since this would result
in delta functions in the denominator of the coherences. The chirp with Gaus-
sian envelope from Section 3.9 is a good candidate for evaluating the coherences
from the calculated expressions. But if we calculate |p, , (t, )% [y, (t F)I
Vi (t, f)|? and |7y, . (¢, f)|* for this process, we obtain that the coherences
equals unity everywhere.

Therefore, we turn to estimating the quantities required in the coherence mea-
sures. Since the moment functions, the t-f spectra, and the f-f spectra are esti-
mated with different methods, the values of these estimates are not comparable,
and the time-frequency coherence measures based on these estimates will not be
properly normalized. The dual-frequency coherence measures, however, only con-
tain Hermitian and complementary f-f spectra, and the f-f spectra are estimated
with comparable methods. We will examine the dual-frequency coherences of
some processes based on numerical data.

7.4.1 Estimation of the dual-frequency coherence
We will estimate the dual-frequency coherence of a chirp process
X(t) = exp [jm(2at + B> + V)] . (7.19)

Here, K = 250 samples z|k], £k = 0,..., K — 1, are generated from the process
with &« = —0.3, § = 0.002 and a random phase ¥ uniformly distributed on [—1, 1].
The f-f spectra are estimated using a time-bandwidth product of KW = 7.
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Figure 7.2: Estimate of the dual-frequency coherence |p, , (v, f)[* of a complex-
valued chirp.

Figure 7.2 and 7.3 shows the estimate of |p, , (v, f)|* and |p, ., . (v, f)|?, respec-
tively. The chirp has a starting instantaneous frequency —0.2, and by the last
sample the frequency will be 0.3. We see that for —0.2 < f < 0.3, both co-
herence measures are concentrated in a small area around v = 0. In this area,
the coherence is reasonably constant. Thus, in the frequency range of the chirp,
neighboring frequencies are strongly correlated. The estimate of |p, ., (v, f)[?
has the disadvantage that it has considerably more noise in this range than the
estimate of |p, , (v, f)|*.

We would also expect high coherence in the areas of the f-v plane where both f
and f — v are outside of the frequency range of the chirp, such that both dZ(f)
and dZ(f —v) will be zero. These areas are defined more correctly in the estimate
of |py wi (v, f)|? than in the estimate of |p, . (v, f)|*.

We stated that |p ., (v, f)|* also would be an alternative measure of the dual-
frequency coherence for real-valued processes. We therefore examine the real-
valued chirp process

X (t) = cos [7(2at + Bt*) + V], (7.20)

We generated K = 250 samples z[k], k = 0,..., K — 1, of X(¢) with a = —0.2,
f = 0.002 and a random phase ¥ uniformly distributed on [—7,7]. The es-
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Figure 7.3: Estimate of the dual-frequency coherence |p, ,,, (v, f)|* of a complex-

valued chirp.

timates with a time-bandwidth product KW = 4 based on these samples are
shown in Figure 7.4 and 7.5. When dealing with real-valued processes, we define
|pxwe (¥,0)[* = 0 in order to avoid the singularities at f = 0.

As for the complex-valued chirp, we expect high coherence in the areas where
both f and f — v are not in the frequency range of the chirp. This is a real-
valued process, so the increment process of X (¢) will have a Hermitian symmetry
such that the frequency range of the chirp is [—0.3,0.3]. Again, we see that these
areas are better defined in the estimate of |p, ,, (v, f)|* than in the estimate of

[ox (v P

We have high coherence in a small area around v = 0 in the frequency range
of the chirp. Since X (t) is a real-valued process, dZ(f) and dZ(—f) should be
strongly correlated. Thus, we should have high coherence in a small area around
the line v = 2f in the frequency range of the chirp. Both estimates of the dual-
frequency coherence of the process have these features. We would expect the
value of the coherence of the real-valued chirp in these areas to be constant, as it

was for the complex-valued chirp. While |p, ,,, (v, f)|? is reasonably constant in
these areas, |p, , (v, f)|?

exhibits quite large variations. But also for this process,
there is considerably more noise in |p, ,,, (v, f)|* in this range.
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Figure 7.4: Estimate of the dual-frequency coherence |p, , (v, f)[? of a real-valued

chirp.

Next, we estimate the dual-frequency coherence of an FBM process. Figure 7.6
and Figure 7.7 shows the estimate of the dual-frequency coherence based on
K = 250 samples of an FBM process with Hurst parameter H = 0.1 using a
time-bandwidth product KW = 4.

Both coherence estimates have values equal to one on the line v = 0. Since
the FBM process is a real-valued process, we should have strong coherence on
the line v = 2f as well. In the estimate of |p, (v, f)|°, we can see that there
is something happening on this line, but the coherence is far from one. Thus,
the coherence based on LMSE could lead to the conclusion that this process is
complex-valued. The estimate of |p, . (v, f)|?, however, has values equal to one
for v = 2f.

Finally, the dual-frequency coherence of the earthquake data from Section 6.6
is estimated using a time-bandwidth product KW = 3. From Figure 7.8 and
Figure 7.9, we see that both estimates have strong coherence on v = 0. The
earthquake data is real-valued, so we expect strong coherence on v = 2f. We see
that also for this process, only |py . (v, f)|* has values close to one on this line,
whereas |p, , (v, f)|* misses this coherence.
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Figure 7.5: Estimate of the dual-frequency coherence |p, ., (v, f )|? of a real-
valued chirp.

Figure 7.6: Estimate of the dual-frequency coherence |p, , (v, f)[* of an FBM
process with Hurst parameter H = 0.1.
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Figure 7.7: Estimate of the dual-frequency coherence |p, ,,, (v, f)|* of an FBM
process with Hurst parameter H = 0.1.

Figure 7.8: Estimate of the dual-frequency coherence |p, , (v, f)[? of the earth-
quake data.
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Figure 7.9: Estimate of the dual-frequency coherence |p, ., (v, f)|* of the earth-
quake data.



Chapter 8

Conclusion

In this thesis, we have studied the second-order statistical quantities of complex-
valued harmonizable processes. We saw that the Hermitian second-order sta-
tistical quantities of complex-valued, harmonizable processes can be represented
in four different domains, through the Hermitian temporal moment function, the
Hermitian f-f spectrum, the Hermitian t-f spectrum and the Hermitian ambiguity
function. In order to completely describe the second-order statistical quantities
of improper complex-valued processes, the complementary moment function, the
complementary f-f spectrum, the complementary t-f spectrum and the comple-
mentary ambiguity function have to be considered. It is common to assume that
complex-valued processes are proper, but we have seen many examples of im-
proper processes in this thesis.

We defined estimators of the moment functions, the ambiguity functions and the
f-f spectra of complex-valued processes based on existing estimators for the corre-
sponding quantities of real-valued processes. We implemented new estimators of
the t-f spectra of complex-valued harmonizable processes. For these estimators,
we have to choose data windows for a factorized kernel. We tested two possi-
ble kernels. The kernel with Hamming and Gaussian windows worked well for
single-component processes, but exhibited interference terms in the estimates for
multi-component processes. A kernel constructed from Kaiser-Bessel windows
worked well for both single-component and multi-component processes.

We proposed alternative measures of the dual-frequency and the time-frequency
coherence of real-valued and improper complex-valued harmonizable processes.
This alternative coherence will depend on both the Hermitian and on the com-
plementary functions of the process. We estimated both the alternative and the
conventional dual-frequency coherence based on numerically generated data and
on a real-world time series. One problem with the alternative coherence was that
it was more noisy than than the conventional coherence. For two of the examined
real-valued processes, however, the conventional coherence missed the coherence



88

due to the Hermitian symmetry of the increment process. This coherence was
clearly present in the proposed generalized coherence. Thus, for many processes
the alternative coherence is thought to be very useful, even for real-valued pro-
cesses.

The results of this thesis illustrate the importance of the complementary functions
of complex-valued processes. There is still work to be done on the understand-
ing and interpreting of the complementary functions and on the extension to
higher-order statistics and higher-order coherences of complex-valued processes.
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