
Faculty of Science and Technology
Department of Computer Science

Local-First Relation Views
Materialized views in SynQLite

Lars Marius Elvenes
INF-3981 Master’s Thesis in Computer Science

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2023 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“Blame the implementation, not the technique.”
–Tim Kadlec

Abstract
In today’s digital landscape where cloud-oriented approaches are widespread
and an integral part, local-first software emerges to offer an alternative [16].
It addresses concerns such as data control, privacy, offline capabilities, collabo-
ration, and performance. The open-source relational database engine SQLite
[28] is a fitting candidate for local-first software as it is not reliant on network
connectivity. SynQLite [33] is an extension of SQLite that enables CRR (conflict-
free replicated relations) support, applying CRDTs (conflict-free replicated data
types) to allow replicating changes between sites without a dedicated coor-
dinator. In this thesis, we implement materialized views [7] in SQLite on top
of SynQLite. The views are incrementally maintained [15] to increase perfor-
mance in comparison to complete refresh, and use data provenance [14] and
causal length [34] in order to track changes across sites and determine how
they should be applied to the views. Experiments comparing the incremental
refresh against the complete refresh show that the incremental approach is
generally faster, at the cost of extra storage usage.

In today’s digital landscape, characterized by widespread cloud-oriented ap-
proaches, the concept of local-first software [16] has emerged as an alternative
solution to address concerns related to data control, privacy, offline capabilities,
collaboration, and performance. This thesis focuses on implementing material-
ized views [7] on top of SynQLite [33], an extension of the SQLite relational
database engine, to enhance performance and support local-first software prin-
ciples.

The SynQLite extension to SQLite offers CRR(conflict-free replicated relations)
[34] support by applying CRDTs (conflict-free replicated data types) [19]. This
allows for replicating changes between sites without a dedicated coordina-
tor. By implementing incrementally maintained materialized views [15], we
aim to increase performance compared to complete refresh approaches. Our
implementation incorporates data provenance [14] and causal length [34] to
track changes across sites and determine how they should be applied to the
views.

Through experiments comparing the incremental refresh with the complete

iv abstract

refresh, we find that the incremental approach generally achieves faster perfor-
mance, albeit with additional storage usage. These findings demonstrate the
potential of materialized views within local-first software applications. This
research contributes to the understanding and implementation of local-first
software principles in the context of SQLite and SynQLite, paving the way
for improved data management and collaboration in decentralized environ-
ments.

Acknowledgements
I would like to express my gratitude to my supervisor, Weihai Yu, for introduc-
ing me to the exciting topic of local-first views. Your guidance, expertise, and
continuous support throughout the entire research process have been invalu-
able. Your insightful feedback and constructive criticism have greatly shaped
the direction of this thesis and enhanced the quality of the work.

Special thanks go to my fellow classmates, who have created an engaging and
enjoyable environment during this journey. Thank you for all the lunch breaks,
discussions, and games of pool. I deeply appreciate our friendship and your
lasting impact on my academic and personal development.

Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Problem statement . 2
1.2 Scope . 3
1.3 Contributions . 4
1.4 Outline . 4

2 Background 5
2.1 Technical background . 5

2.1.1 Views . 5
2.1.2 Materialized views 6
2.1.3 Local-first software 6
2.1.4 Conflict-free replicated relations 7
2.1.5 SynQLite . 8
2.1.6 Data provenance . 8
2.1.7 Causal length . 8

2.2 Related work . 9
2.2.1 Augmenting SQLite for local-first software 9
2.2.2 Maintaining views incrementally 9
2.2.3 Towards replicated and asynchronous data streams for

edge-cloud applications 10

3 Approach 13
3.1 Development . 14
3.2 Work phases . 15

4 Design 17

vii

viii contents

4.1 Provenance expressions . 18
4.2 Update flag . 20
4.3 Evaluating view tuples . 21
4.4 Change propagation . 23

5 Implementation 27
5.1 Materialized views . 27
5.2 Table structure . 28
5.3 Creating views . 29
5.4 Select . 30
5.5 Project . 30
5.6 Joins . 30
5.7 Query parser . 31
5.8 Incremental refresh . 33
5.9 Complete refresh . 37

6 Evaluation 39
6.1 Experimental setup . 39

6.1.1 Project experiment 41
6.1.2 Join experiment . 41
6.1.3 Select experiment 42
6.1.4 Disk usage experiment 42

6.2 Results . 42
6.2.1 Project performance 43
6.2.2 Join performance 47
6.2.3 Disk usage . 51
6.2.4 Operations per refresh 58
6.2.5 Spikes . 59

7 Discussion 61
7.1 Materialized views . 61
7.2 Local-first views . 62
7.3 Query support . 63
7.4 Refresh modes . 63
7.5 Autoincrement . 64
7.6 Multi site merging . 65
7.7 String comparison . 65
7.8 Correctness . 66
7.9 Query design . 66
7.10 Storage costs . 66
7.11 Future work . 67
7.12 Lessons learned . 67

8 Conclusion 69

List of Figures
4.1 Change propagation . 24

5.1 Table structure . 29

6.1 Time taken to refresh following a number of insertions on
a project view. A: Shuffled operation order and 1 insertion
per refresh. B: Shuffle operation order and 100 insertions per
refresh. C: No shuffle of operation order and 1 insertion per
refresh. D: No shuffle of operation order and 100 insertions
per refresh. 43

6.2 Time taken to refresh following a number of updates on a
project view. A: Shuffled operation order and 1 update per re-
fresh. B: Shuffle operation order and 100 updates per refresh.
C: No shuffle of operation order and 1 update per refresh. D:
No shuffle of operation order and 100 updates per refresh. . 45

6.3 Time taken to refresh following a number of deletions on a
project view. A: Shuffled operation order and 1 deletion per
refresh. B: Shuffle operation order and 100 deletions per re-
fresh. C: No shuffle of operation order and 1 deletion per
refresh. D: No shuffle of operation order and 100 deletions
per refresh. 46

6.4 Time taken to refresh following a number of insertions on
a join view. A: Shuffled operation order and 1 insertion per
refresh. B: Shuffle operation order and 100 insertions per re-
fresh. C: No shuffle of operation order and 1 insertion per
refresh. D: No shuffle of operation order and 100 insertions
per refresh. 48

6.5 Time taken to refresh following a number of updates on a join
view. A: Shuffled operation order and 1 update per refresh.
B: Shuffle operation order and 100 updates per refresh. C:
No shuffle of operation order and 1 update per refresh. D: No
shuffle of operation order and 100 updates per refresh. . . . 49

ix

x list of figures

6.6 Time taken to refresh following a number of deletions on a
join view. A: Shuffled operation order and 1 deletion per re-
fresh. B: Shuffle operation order and 100 deletions per re-
fresh. C: No shuffle of operation order and 1 deletion per
refresh. D: No shuffle of operation order and 100 deletions
per refresh. 51

6.7 Size of tables following a number of insertions on a project
view. A: Shuffled operation order and 1 insertion per refresh.
B: Shuffle operation order and 100 insertions per refresh. C:
No shuffle of operation order and 1 insertion per refresh. D:
No shuffle of operation order and 100 insertions per refresh. 52

6.8 Size of tables following a number of updates on a project
view. A: Shuffled operation order and 1 update per refresh.
B: Shuffle operation order and 100 updates per refresh. C:
No shuffle of operation order and 1 update per refresh. D: No
shuffle of operation order and 100 updates per refresh. . . . 54

6.9 Size of tables following a number of deletions on a project
view. A: Shuffled operation order and 1 deletion per refresh.
B: Shuffle operation order and 100 deletions per refresh. C:
No shuffle of operation order and 1 deletion per refresh. D:
No shuffle of operation order and 100 deletions per refresh. 55

6.10 Size of tables following a number of insertions on a join view.
A: Shuffled operation order and 1 insertion per refresh. B:
Shuffle operation order and 100 insertions per refresh. C: No
shuffle of operation order and 1 insertion per refresh. D: No
shuffle of operation order and 100 insertions per refresh. . . 56

6.11 Size of tables following a number of updates on a join view. A:
Shuffled operation order and 1 update per refresh. B: Shuffle
operation order and 100 updates per refresh. C: No shuffle
of operation order and 1 update per refresh. D: No shuffle of
operation order and 100 updates per refresh. 57

6.12 Size of tables following a number of deletions on a join view.
A: Shuffled operation order and 1 deletion per refresh. B:
Shuffle operation order and 100 deletions per refresh. C: No
shuffle of operation order and 1 deletion per refresh. D: No
shuffle of operation order and 100 deletions per refresh. . . 58

List of Tables
4.1 Provenance affected by changes. Red cells will be deleted,

blue cells have been changed, and green have been inserted.
Changes made are: (DELETE WHERE ID = ’2TY54S’; and IN-
SERT INTO Person VALUES(’DAVE’, 51);) (Note that these prove-
nance expressions do not include an update flag) 19

4.2 Provenance and update flag affected by changes. Red cells
will be deleted, blue cells have been changed, and green have
been inserted. Changes made are: UPDATE Person SET Name
= ’Bob’ WHERE UUID = ’2TY54S’; followed by UPDATE Person
SET Name = ’Dave’ WHERE UUID = ’4AS4AB’; 22

5.1 Provenance and update flag affected by changes. Green cells
indicate newly inserted tuples. Changes made are: UPDATE
Person SET Name = ’Bob’ WHERE UUID = ’2TY54S’; followed
by UPDATE Person SET Name = ’Dave’ WHERE UUID = ’4AS4AB’; 32

6.1 Base tables queried by the views in the experiments 40
6.2 The two views used in the experiment 41
6.3 Example of page usage before and during update execution. 53

xi

1
Introduction
In the field of relational databases, the concept of views [32] is a well-established
and researched topic. These are virtual tables, storing a query definition and al-
lowing its results to be accessed as if they were real tables. They are represented
as seemingly normal relations, where data is ordered into rows and columns,
but the results are calculated from scratch each time they are accessed.

In a distributed setting, the views may be derived from queries on data that
resides in locations other than where the view is accessed from. Recalculating
the view on each access leads to increased traffic due to fetching data from
remote sites. A materialized view can accommodate this, by storing the results
of the query as well [6] and allowing more efficient accesses. However, these
types of views require some additional mechanisms for synchronizing and
refreshing the data as changes to the data occur [18], and is also referred to
as maintenance. One such type of refresh method is incremental maintenance
[15],where only the altered data is refreshed, in contrast to a standard complete
refresh, where everything is recalculated.

As different sites may perform different modifications to their data, one also
needs some way of deciding which changes should win when conflicts occur.
Conflict-free replicated data types (CRDTs) [19] have risen as a way of tackling
these issues and ensuring that the results of changes in a distributed setting will
be the same as for a non-distributed setting, in an eventual consistent matter.
They have no centralized coordinator, and instead, each site will make use
of history tables, clocks, and casual lengths to decide the combined results of

1

2 chapter 1 introduction

changes from multiple sites. CRRs (conflict-free replicated relations)[34] make
use of CRDTs in relational database systems, and one concrete example of a
CRR is SynQLite, an expansion on top of the widely used SQLite.

Local-first software [16] is a set of principles that aim to facilitate collaboration
between users and retain user ownership at the same time. It attempts to take
the best of both worlds of traditional offline systems and modern cloud services.
Local-first software often makes use of technologies like CRDTs to store data
and enable version control.

In this master’s thesis, we look into handling local-first materialized views that
are incrementallymaintained and built upon SQLite and the extension SynQLite
to support a distributed database system. Using SQLite for local-first software is
a fitting choice, as it does not rely on internet connectivity, and SynQLite grants
CRR [34] support, which applies CRDTs to relational databases. We make use
of a new variant of provenance expressions to keep track of how the data of the
base tables (points of origin) affects the view tables, which allows us to handle
update operations in addition to inserts and deletes.

1.1 Problem statement

In this thesis, we will develop, on top of SynQLite, support for incremental main-
tenance of local-first views.

The overall goal is to have an implementation of materialized views in SynQLite.
Users should be able to create views stored physically based on a given query on
a specific site and refresh them on demand, pulling changes from a different
given site. They should use an incremental maintenance approach that the
user does not need to manage manually. The system should be able to handle
concurrent changes to the same tables, and the view results should be the same
as if the database was non-distributed.

A set of initial goals was later revised and reformulated into requirements. The
most significant alterations are supporting UPDATE operations on the base
tables, and using incremental maintenance. Updates operations on base tables
should be reflected in the resulting view, and concurrent updates should also be
handled with the results being the same as in a non-distributed setting.

The list of requirements is as follows:

• Views are materialized (results are stored physically)

1.2 scope 3

• Views can be accessed without any additional calculations

• Views satisfy local-first properties and are persistent and accessible offline

• Views can be made using SELECT, PROJECT, and JOIN queries

• Supports insert, delete and update operations

• Can refresh from any available replicas

• Supports complete and incremental refresh

• Ensures eventual consistency using data provenance and causal length

• Users can manage views through Python or shell commands

• Refreshing does not require any manual resolution

• Refreshing is deferred

1.2 Scope

The scope of this project is to research and look into a solution for materialized
views in SynQLite. It is not yet intended for production as there remains more
work to be done to ensure a bug-free experience and a more full-fledged array
of functionality.

The implementation of the views is limited to supporting the most fundamental
operations in queries: select, project, and join (SPJ). It is able to refresh changes
made from INSERT, DELETE, and UPDATE operations done on the base tables.
The thesis does not look into making views querying other views as this requires
generating deltas from the views themselves. It also does not support all SQLite
functionality, such as outer joins [29], aggregations [24], etc. The limitation
to SPJ queries is sufficient to display some of the capabilities of the system and
how the different views can be handled. Sub-queries are another aspect this
project does not look into, as it is out of scope.

The current implementation does not look into real network traffic, but instead
simulates it using different database files located in different directories on
a local machine. This should be sufficient in order to test and look into the
ideas discussed in this project. It can later be expanded upon as SynQLite
offers support for real network traffic, but for this thesis, it is defined as out of

4 chapter 1 introduction

scope.

1.3 Contributions

The project researches and implements incrementally maintained materialized
views in SynQLite, which previously had no support for any type of materialized
view. SQLite also has no internal support for materialized views in any way,
meaning it has to be built from scratch. This research looks into and suggests a
technique for dealing with changes to the views from update operations made
on the base tables, and to our knowledge, this is one of the first works to do so in
a local-first DBMS. Users can easily create and refresh the views on command,
and applying new changes is done automatically. The project also compares
the performance and storage costs of incremental refresh and complete refresh
of materialized views in a local-first database.

1.4 Outline

The remainder of the thesis follows the given structure:

• Background: Goes into the technical background related to materialized
views and CRRs, in addition to work/literature related to this thesis.

• Design: Presents the details around significant design choices made and
strategies chosen for this work.

• Implementation: Describes the implementation of materialized views
in SynQLite.

• Evaluation: Details the experimental setup, experiments performed, and
the results of them.

• Discussion: Discusses how the work performs in relation to the require-
ments and findings of the experiments. It also presents some suggestions
for future work.

• Conclusion: Summarizes the work and the findings presented in this
thesis.

2
Background
This chapter presents some relevant technical background for the thesis re-
garding solutions and techniques applied in this thesis. This is followed by a
selection of related work that has inspired our work and solutions.

2.1 Technical background

2.1.1 Views

Views are a well-established and broadly supported feature of many database
management systems [32]. They are virtual tables that allow users to easily
access the results of queries as if they were physical tables [1]. They do not store
the actual results, only the query definition. This means that they completely
rebuild the results each time the view is accessed, and therefore the data is
always up to date with the newest underlying changes. Additionally, this means
that views are often relatively slow to access, as the entire view has to be
recalculated each time it is accessed.

Views have a wide range of applications, such as limiting access to sensitive
data, simplifying complex queries, combining data frommultiple data sets, and
displaying more relevant information to users.

5

6 chapter 2 background

2.1.2 Materialized views

As views must be recomputed on each access, they may cause a large overhead.
Recalculating their contents even when no changes have been made, can be a
waste of computing resources and time. Materialized views limit this overhead
[7], by saving the results of a views query physically, in addition to the query
definition itself. This allows for better performance for reads, as the data is
already computed and stored. Users can then access the data as if it were a
normal table, and no additional computing must be done. For complex and
demanding queries involving large volumes of data, this difference may be
even greater when comparing standard views and materialized ones.

Materialized views can be used to generate aggregated or summarized data sets
for large amounts of data, such as in data warehousing [4]. Large data sets can
be queried by a materialized view to create a smaller subset that is faster and
more relevant and can be seen as similar to caches. Frequently accessed data
can be fetched quickly as the search area is more limited, and any irrelevant
data is filtered out.

The drawback of materialized views is that they require storage for their data,
in contrast to normal views, as they are stored physically. In addition to this,
they need maintenance in order to ensure that the results are fresh, and not
out of date as changes in the underlying data sets occur. Depending on the
refresh mode, this is not trivial, and the different modes must be considered
carefully for the use case. Different methods have different characteristics,
benefits, and drawbacks, which are highly dependent on the application of
them [23]. Complete refresh for example simply recalculates the entire data
set from scratch. Incremental refresh, on the other hand, attempts to limit the
amount of data that is calculated, by only refreshing data that has beenmodified.
Many commercial DBMS support materialized views, including Oracle [9], SQL
Server [20], PostgreSQL [13], and more.

2.1.3 Local-first software

Local-first software [16] is a set of principles for software that facilitates col-
laboration and user ownership. It follows the idea that ownership of data and
real-time collaboration are not mutually exclusive. In modern cloud apps, the
data resides on the server, which has control over it. The user cannot access
any data other than through the provider of the cloud service, and as soon as
the service is down, the data is inaccessible. "Old fashioned" apps, however,
lie on the local disk. Any data is completely accessible without any servers,
and the user has full control over it. Local-first software attempts to provide
the best of both worlds, with the ownership of a traditional system and the

2.1 technical background 7

collaboration of a modern cloud service. Local-first software presents a set of
ideals that developers should strive for:

1. No spinners: your work at your fingertips - The primary copy of the
data is stored on the local device and is therefore accessible immediately.
Any synchronization can be done behind the curtains.

2. Your work is not trapped on one device - Data is synchronized across
devices the user works on. They are not dependent on a single device to
access the data.

3. The network is optional - The users can access and work on data any-
time, even without internet access, as the primary replica lies on the local
device.

4. Seamless collaboration with your colleagues - Users can collaborate
across multiple devices to edit data simultaneously. They should not have
to manually send files back and forth, and should not have to worry about
conflicts.

5. The Long Now - As all data is stored locally first and foremost, the data is
saved for a long time and can be accessed offline after the online service
eventually shuts down.

6. Security and privacy by default - The local device stores only the users’
data, and therefore there is no centralized database in the cloud holding
everyone’s data, which can be vulnerable. The apps may use end-to-end
encryption for even more safety, and the servers then only hold encrypted
data.

7. You retain ultimate ownership and control - The user holds the own-
ership of the data, not any service provider. This refers not to the legal
aspect but to user agency, autonomy, and control.

2.1.4 Conflict-free replicated relations

CRRs (Conflict-free Replicated Relations) is a concept related to CRDTs(conflict-
free data types), applied to relational databases [34]. They have been devel-
oped to handle some of the issues related to distributed databases and the CAP
theorem [3], which states that it is impossible to ensure all three properties
at the same time: strong consistency, availability to updates, and tolerance to
network partitioning. CRDTs and CRRs provide high availability and partition
tolerance with eventual consistency.

8 chapter 2 background

In a database replicated across multiple sites, where changes are made inde-
pendently on its copy of the database, CRRs provide a way of asynchronously
merging changes from multiple sites without a centralized coordinator. The re-
sults after the merge should be the same as if the database was not distributed,
even when changes are disseminated out of order. This is done by keeping
some extra metadata for the database such as a record of its history.

2.1.5 SynQLite

SynQLite is an extension of SQLite with CRR support, also called a local-first
database [33]. It uses a Python interface to handle synchronization and com-
munication between sites. Replicas of databases are eventually consistent, and
any conflicts are resolved automatically without any need for interaction from
the user.

Users are able to make a pre-existing database into one with CRR support and
interact with the database in a normal SQLite fashion. Metadata will be gener-
ated and maintained automatically when the user interacts with the database.
It supplies users with the ability to fetch changes from one replica and merge
them into another, to synchronize their states. It is based on SQLite and Python
and supplies users with a Python interface and shell commands.

2.1.6 Data provenance

Provenance is information about the origin of something. Data provenance
tells us something about how a data item has been derived [14]. It holds the
source and how the data item has been produced from it, such as the steps
taken to produce a result. It is frequently used in distributed systems [21] and
DBMS in order to validate and debug, among other applications. Based on the
provenance of an item, one can determine the steps needed to create this item,
which can then be used to get the quality of the data, retrace errors, and allow
automation of updates, among other use cases.

2.1.7 Causal length

A causal length is a natural number that is used to track the current status of
a data item and is somewhat related to a version number [34]. When an item
is first inserted into a data set, its causal length will be set to 1, and if it is then
deleted, the CL will increase to 2. A reinsertion will increment it to 3, and so
on. An odd causal length will indicate that the item is currently in the data
set, while an even CL indicates that it has been deleted. Subsequent inserts

2.2 related work 9

or deletes on the same item will not affect the causal length, as it will only
increase if a delete follows an insert or the other way around. It is based on the
idea that insertions and deletions typically happen in turn. This can be used
in distributed databases to keep track of a data item’s presence, across sites.
When synchronizing an item between two sites, the highest causal length wins,
as this must be the latest seen insert/delete operation.

2.2 Related work

2.2.1 Augmenting SQLite for local-first software

The authors [33] present an approach for local-first software which aims to
allow for offline work as well as collaboration over multiple devices. This is
done by applying CRDTs on the relational DBMS SQLite through CRRs.

The work augments the existing SQLite databases with support for synchroniza-
tion mechanisms between multiple devices. Changes made to the databases
can be disseminated to other devices in a decentralized system, and each site
merges the changes with its local copy. It includes conflict-resolution techniques
to ensure consistency across the sites.

Through their experiments, they show that the approach is able to achieve high
levels of performance and scalability while allowing users to collaborate in the
offline-first approach.

This work creates the basis for the underlying CRDT and CRR mechanics used
in our work. It provides mechanics for version control, creating delta tables,
and performing merges of base tables. The views in our work are made on top
of this.

2.2.2 Maintaining views incrementally

In the paper [15], the authors describe an approach to maintaining materialized
views in database management systems that use an incremental approach to
improve efficiency. They discuss the concept of views and challenges related
to maintaining the materialized views after changes occur on the underlying
tables. One of the main challenges is the high cost of recalculating the entire
view each time an underlying change is done.

The incremental approach attempts to accommodate this issue, by only adding
the changes made, instead of recalculating everything from scratch. It identifies

10 chapter 2 background

the changes made on the base tables and applies them to the view. One of their
main contributions is the proposed counting algorithm for tracking view tuples
and their base tuples. The counting algorithm is based on counting the number
of possible derivations for each view tuple. That means for every base tuple that
can be used to construct the view tuple, the count increases. When relevant base
tuples are deleted the count decrements, and when it reaches 0 it is deleted
from the view as well.

This method works well in a non-distributed environment, but it does not fit
well in a distributed one. Different sites may have different base tuples, leading
to different counts. The mechanism cannot tell whether or not a change from a
site has already been applied from a different site, and does not answer how a
view tuple is related to a base tuple. It also does not handle concurrent changes
to its tuples, such as when multiple insertions and deletions of the same tuple
are performed.

Through a series of experiments, they show the effectiveness of their approach
and its ability to efficiently maintain the materialized views. It can handle
large data sets and frequent updates, and they conclude that this approach may
significantly improve the performance of materialized views in DBMSs.

The work of [15] is closely related to ours. It implements materialized views
that use incremental maintenance, which is related to our views. However, it
does not take into consideration a distributed setting with replicated databases
and local-first properties, which is done in this thesis.

2.2.3 Towards replicated and asynchronous data streams
for edge-cloud applications

The paper [22] presents a framework made for the asynchronous transmission
of data streams between replicas on edge devices. It uses CRDTs and data
provenance on an RDBMS to ensure eventual consistency across devices.

The presented approach allows for querying and sharing data between nodes
using materialized views. They are maintained incrementally, which they com-
pare to data streams. To keep track of changes and apply them incrementally
to the views they use an idempotent commutative semiring for data prove-
nance in addition to a casual-length lattice to keep the causality of concurrent
changes.

The approach supports insert and delete operations on views derived from
named conjunctive relational algebra, also referred to as SPJR(select, project,
join, and rename). It also supports unions. The implementation is done in

2.2 related work 11

Elixir using Elixir GenServer for the sites and Erlang Term Storage for data
storage.

Our work is closely related to this approach, but we use different technologies,
such as Python and SynQLite/SQLite instead of Elixir and Erlang Term Storage.
Ourwork does not focusmuch on reducing provenance expressions to theirmost
simple form as the authors of [22]. Additionally, our approach also supports
update operations and not only insert and delete.

3
Approach
The thesis focuses on the approach of the design paradigm presented by [8]
for computer science research. This is related to the engineering process for
computer science research, andmultiple steps are proposed to aid in structuring
the research approach. They give a guideline for how the work should be carried
out. The other two paradigms presented by [8] are theory and abstraction. The
steps for design are:

1. State requirements

2. State specifications

3. Design and implement the system

4. Test the system

By adhering to this design paradigm, we aim to ensure a systematic and struc-
tured approach to the development and evaluation of our proposed solution.
The design process will be guided by the specific requirements and specifica-
tions of our local-first materialized views, incremental maintenance, and the
utilization of SQLite and SynQLite. Rigorous testing procedures will be em-
ployed to validate the system and assess its performance and usability.

13

14 chapter 3 approach

3.1 Development

System development methodologies are formalized steps giving a systematic
approach to developing software [11]. They are frameworks that can be used
to plan, structure, and organize the development process of a project. Multiple
methodologies exist, each with its own strengths and weaknesses.

In this thesis, the development can best be described as close to an agile ap-
proach [2], though followed relatively loosely. Through iterative steps, the
requirements are determined and reevaluated through regular meetings while
solutions are implemented. The method allows for flexibility, which is vital
in a project like this, where exploration and research are essential elements.
Determining a rigid set of requirements would not be beneficial in our case,
as new information is frequently unearthed and may render the requirements
and solutions invalid. Goals and requirements are continuously revised as new
information comes to light, and adjustments are necessary. New features are
added regularly and revisited later when needed.

Tests are made continuously throughout the project as part of the development
process. This gives effective feedback on the current state, and how one should
proceed further. It helps uncover bugs and unintended behavior as it arises,
which may increase the quality of the solution [10]. Most of the tests are func-
tional tests, checking if the contents of the tables comply with the expected
results of the operations performed.

One example of the tests used can be seen in 3.1. This test makes a view on the
column ’name’, and makes an insertion of the tuple (2, "Alice") which is then
deleted afterward. The view is then refreshed which should result in an empty
view. Following this, the tuple (2, "Alice") is reinserted as well as the tuple (3,
"Alice") which will be a duplicate and should not be included in the view. A
refresh is then done, and tests check if all metadata and the view results are
correct.

3.2 work phases 15

Listing 3.1: Test case example

function test_reinsert_duplicate(self, crrs)
s e l f . s e t up_ t b l s (c r r s)
query="SELECT DISTINCT name FROM person WHERE id <3;"
create_v iew (s e l f . viev_name , query , s e l f . db_ loca l)
i n s e r t (s e l f . crr_remote , s e l f . tb l , (2 , " A l i c e "))
de l e t e (s e l f . crr_remote , s e l f . tb l , " id " , " 2 ")
re f resh_v iew (s e l f)
i n s e r t (s e l f . crr_remote , s e l f . tb l , (2 , " A l i c e "))
i n s e r t (s e l f . crr_remote , s e l f . tb l , (3 , " A l i c e "))
re f resh_v iew (s e l f)

c r r_person=s e l f . se l ec t_ remote (s e l f . t b l)
c l=s e l f . s e l e c t _ l o c a l (" v iew__cl ")
v iew_tab le=s e l e c t _ l o c a l (s e l f . view_name)
aug_view=s e l f . s e l e c t _ l o c a l (s e l f . view_name+"__aug ")

a s s e r t (len (c l)+len (mvtbl)+len (aug) == 6)
a s s e r t (c l [1] [0] == crr_person [1] [0])
a s s e r t (c l [1] [1] == crr_person [1] [1])
a s s e r t (c l [1] [2] >= crr_person [1] [2])
a s s e r t (v iew_tab le == [(’me’ ,) , (’ A l i ce ’ ,)])
a s s e r t (aug_view [1] [0] == crr_person [1] [0])
a s s e r t (aug_view [1] [1] >= crr_person [1] [2])
a s s e r t (aug_view [1][−1] == crr_person [1][−1])

3.2 Work phases

The thesis is worked on in multiple phases and is related to the design approach
described earlier. The phases are as follows:

1. Research and design

2. Implementation and testing

3. Testing and evaluation

4. Finalizing and reporting

The first phase consists mostly of designing the solution and performing some

16 chapter 3 approach

preliminary research. As this thesis is related to materialized views in SQLite,
which were implemented in the preceding capstone-project [12] in a non-
replicated database, most of the research in this thesis looks into how to solve
the problem for a local-first system. The next phase is concerned with the imple-
mentation of the designed solution, with testing done along the way. Following
this, the next phase is mostly concerned with making experiments and evalua-
tions, in addition to testing. Lastly, the final phase is focused on making some
final touches to the project and reporting the findings. These phases are not
fixed, as the development follows an iterative approach. The work continu-
ously revisits previous phases, in addition to the following phases. Still, the
main focus of each phase is executed as described, and each phase lasts roughly
1 month.

4
Design
The views follow set theory, meaning that there will be no duplicates present in
the view [5]. This is equivalent to using the "DISTINCT" keyword [29] in SQL
and means that all tuples in the resulting view are unique, even when there are
multiple base tuples (points of origin) that can be used to derive the tuples in
the view. This requires some additional mechanisms to ensure consistency and
correctness. If one of the multiple base tuples that lead to a single view tuple is
deleted, one must make sure that the view tuple is not deleted when the other
base tuples are present. Additionally, different sites may perform concurrent
changes on the same tuples which leads to the need for a mechanism that can
handle these cases and provide consistency.

Note that in this thesis we make an important distinction between the terms
’update’ and ’change’. ’Updates’ are referred to only as the update operation in
SQL,while ’changes’ encompass anymodification of a table, including insertions,
updates, and deletions.

This chapter presents the key design choices used for our solution and explains
the most crucial parts of the principles applied.

17

18 chapter 4 design

4.1 Provenance expressions

This approach follows a variant of provenance expressions, closely related to
the work [22]. The provenance of a tuple is a mathematical expression that
explains how the tuple has been derived and is also described in section 2.1.6.
A provenance expression [14] consists of references to the base tuples, which
are the tuples in the source table(s) used to create each tuple of a view. These
references are separated by the operators ’∗’ (least upper bound) and ’+’ (great-
est lower bound) which can be viewed as the logical ’and’ and ’or’ operators
respectively. Each reference in this case is the globally unique ID of the base
tuple(UUID).

Provenance expressions can be considered to be true/false expressions, where
a true expression means that the tuple should be included in the view, while
a false evaluation means it should be excluded. To consider an element in the
expression to be true, the causal length of the elements must be odd, as this
means it is not currently deleted. It can therefore be used to derive the view
tuple.

Multiple base tuples may be used to derive a view tuple, and how these are
used will determine how they are separated. For the operator ’+’, either one
of the tuples separated by it is sufficient to derive the view tuple. An example
of this is when duplicate tuples are present in the base tables. As long as one
of the duplicates is present, one can procure the view tuple based on these
two, and deleting only one will not affect the end result of the view displayed
to the user. An example of this can be seen in table 4.1. One can see that
both the tuple with a UUID of ’1C21GE’ and ’2TY54S’ can be used to derive the
view tuple ’Alice’. The provenance for ’Alice’ is then ’1C21GE+2TY54S’ before
any changes are made. After the tuple with UUID ’2TY54S’ is deleted, the
provenance expression changes to only be ’1C21GE’ and the causal length of
the deleted tuple is incremented to 2. Still, ’Alice’ remains in the view as the
tuple with UUID ’1C21GE’ is still present.

In the occasion of joins between two base tuples, the references are separated
by ’∗’ since both of these references are needed to derive the view tuple. If either
one of the ’∗’-separated tuples in the expression is missing, the view tuple may
not be derived. This means that the tuple with this provenance is not present in
the view. In this thesis, we define sub-expressions in a provenance expression,
as multiple UUIDs separated by ’∗’. These can be separated by the ’+’ operator
when multiple sub-expressions lead to the same view tuple. Sub-expressions
have the same functionality as single provenance elements, meaning that as
long as one of the sub-expressions is true, the tuple should be included in the
view.

4.1 provenance expressions 19

Person
UUID Timestamp Name Age
1C21GE 1 Alice 20
2TY54S 1 Alice 45
3KLO19 1 Bob 30
4AS4AB 1 Clarice 30

After changes
1C21GE 1 Alice 20
3KLO19 1 Bob 30
4AS4AB 1 Clarice 30
5L109F 2 Dave 51

Name_augmented
Provenance Timestamp Name

1C21GE+2TY54S 1 Alice
3KLO19 1 Bob
4AS4AB 1 Clarice

After changes
1C21GE 2 Alice
3KLO1H 1 Bob
4AS4AB 1 Clarice
5L109F 2 Dave

View__CL
UUID CL Timestamp
1C21GEF 1 1
2TY54SA 1 1
3KLO19H 1 1
4AS4ABJ 1 1

After changes
1C21GEF 1 1
2TY54SA 2 2
3KLO19H 1 1
4AS4ABJ 1 1
5L109F 1 2

View
Name
Alice
Bob
Clarice

After changes
Alice
Bob
Clarice
Dave

Table 4.1: Provenance affected by changes. Red cells will be deleted, blue cells have
been changed, and green have been inserted. Changes made are: (DELETE
WHERE ID= ’2TY54S’; and INSERT INTO Person VALUES(’DAVE’, 51);) (Note
that these provenance expressions do not include an update flag)

To supply users with a view containing only the requested data, one needs to
hide the metadata such as provenance expressions. This is done by separating
metadata into an augmented layer based on the view, in addition to the view
itself. The augmented layer contains an augmented view, a version of the view

20 chapter 4 design

which is where the metadata is stored, while the normal view will only contain
the attributes specified by its query. The metadata includes the causal length
2.1.7, data provenance, and timestamps, all of which are needed to maintain
the views. The augmented layer should not be accessed by the users, only by the
underlying mechanisms used by the system. Since it contains data irrelevant
to the user, and crucial for the view results, accessing it manually may cause
unintended behavior.

4.2 Update flag

Intuitively, when update operations are performed on a single tuple, there is
still only one tuple. Previously, this tuple had other values, but they are simply
overwritten. In our case, when update operations are performed on a site, there
will be two variants for the same tuple: the one with the old values, and the
new one. This is because the new tuple is not identical to the old one, and it is
therefore considered a new unique row, which has no affiliation with the old
one, except for having the same UUID. This leads to update operations being
treated as an insert of a new tuple in the augmented view,with an extra property.
The old tuple should not exist in the final view, and there must therefore be
some mechanism in place to guarantee that it is left out from the view accessed
by the user. This is where the update flag comes in.

What separates our provenance approach is that each of the references in
the provenance expression will also have an additional operator which we
will refer to as the update flag. This update flag is a boolean variable that
keeps track of whether or not this reference still holds the attribute values
held in that augmented row. This boolean is directly connected to a prove-
nance element, represented with a value in parenthesis after the UUIDs/prove-
nance elements. A provenance expression of ’1C21GE+2TY54S’ will become
’1C21GE(True)+2TY54S(True)’ when adding the update flags. The update flags
will initially be set to true in all cases. When an update operation takes place
and changes the values of the underlying referenced base tuple so that it no
longer corresponds to the values held in the augmented view, the update flag
will be set to false. This indicates that this reference is no longer valid for the
current view tuple. At a later point, this referenced tuple may be updated again
to be valid once more. The update flag will then be set back to true. This is a rel-
atively simple approach that allows tuples to be updated at any point without
harming the integrity of the view.

The mechanism uses a last-write-wins approach. A timestamp is tied to the
augmented row, which will be checked each time an update operation occurs.
On refreshes, the row with the highest timestamp wins, as this is the latest seen

4.3 evaluating view tuples 21

operation on this row. This is similar to if the database was not distributed. This
method ensures that update operations can be performed on multiple sites on
the same tuples, and the result will still be consistent in the view displayed
to the user. When a tuple has been updated out, that is the tuple is no longer
valid due to an update operation, the system will still be able to track the tuple.
By doing this, it is also able to differentiate between an updated-out tuple
and a new duplicate of the old base tuple just inserted. The insertion will not
affect the update flags of the existing provenance expression, only add the new
provenance element or expression with its initial update flag. Following this,
the expression can still be evaluated to be true, even when the old tuple can
no longer be used to derive the view tuple.

Take the example seen in table 4.2: There are 3 sites A, B and C where sites
A and B each have a replica of the same relation 𝑅(𝑁𝑎𝑚𝑒,𝐴𝑔𝑒). C makes
a view 𝑉 (𝑁𝑎𝑚𝑒). Sites A and B each make an update operation at times 𝑡1
and 𝑡2 respectively where 𝑡1 < 𝑡2 on the tuple with a UUID of ’4AS4AB’. This
results in the tuples 𝑟A (′𝐵𝑜𝑏′, 30) and 𝑟B (′𝐷𝑎𝑣𝑒′, 30). No matter in which
order C pulls its updates from sites A and B, the resulting view tuple will be
𝑣 (′𝐷𝑎𝑣𝑒′) as the latest update is done on B. If it pulls from A first, then the
tuple will be updated in two steps, and the view tuple will briefly be 𝑣 (′𝐵𝑜𝑏′)
until the update is pulled from B. If the updates are pulled in the other order,
then the view tuple becomes 𝑣 (′𝐷𝑎𝑣𝑒′) immediately, and the update from A
is simply discarded during the attempted refresh, which is what is illustrated
in the tables 4.2.

Additionally in the example tables, one can see how the update flags in the
provenance expression for ’Alice’ is changed from true to false for ’2TY54S’ as
this tuple no longer holds the name value ’Alice’ after the update operations.
The provenance expression in its entirety is still considered to be valid, as the
first sub-expression/element ’1C21GE(True)’ is valid, and the ’Alice’ tuple will
still be included in the view.

4.3 Evaluating view tuples

When deciding whether or not a tuple in the augmented view should be in-
cluded in the actual view, multiple evaluations take place. This is required, as
the augmented view table is a grow-only set and holds both valid and invalid
tuples, and one cannot simply interpret all tuples in the augmented layer to be
in the view. Tuples that have been deleted, or are no longer valid due to update
operations, will still remain in the augmented view, but should not be included
in the view. They are not deleted from the augmented view, as they may be
inserted or updated back in at a later point in time, and the CL and provenance

22 chapter 4 design

Person (site B)
UUID Timestamp Name Age
1C21GE 1 Alice 20
2TY54S 1 Alice 45
3KLO19 1 Bob 30
4AS4AB 1 Clarice 30
After updating ’Alice’ to ’Bob”
and ’Clarice’ to ’Dave’

1C21GE 1 Alice 20
2TY54S 2 Bob 45
3KLO19 1 Bob 30
4AS4AB 3 Dave 30

Person (Site A)
UUID Timestamp Name Age
1C21GE 1 Alice 20
2TY54S 1 Alice 45
3KLO19 1 Bob 30
4AS4AB 1 Clarice 30
After updating ’Clarice’ to ’Bob’

1C21GE 1 Alice 20
2TY54S 1 Alice 45
3KLO19 1 Bob 30
4AS4AB 2 Bob 30
Name_augmented

Provenance Timestamp Name
1C21GE(True)+2TY54S(True) 1 Alice

3KLO19(True) 1 Bob
4AS4AB(True) 1 Clarice

After refresh
1C21GE(True)+2TY54S(False) 2 Alice
3KLO19(True)+2TY54S(True) 2 Bob

4AS4AB(False) 3 Clarice
4AS4AB(True) 3 Dave

Name(view)
Alice
Bob
Clarice

After refresh
Alice
Bob
Dave

Table 4.2: Provenance and update flag affected by changes. Red cells will be deleted,
blue cells have been changed, and green have been inserted. Changes made
are: UPDATE Person SET Name = ’Bob’ WHERE UUID = ’2TY54S’; followed
by UPDATE Person SET Name = ’Dave’ WHERE UUID = ’4AS4AB’;

must be set correctly based on their previous values. For insertions that means
incrementing the CL, while for provenance it means setting the update flag(s)
to true or adding a new element to the expression. By not deleting the excluded
tuples, the system will be able to keep correctly tracking changes made on them

4.4 change propagation 23

at a later point in time, also when considering concurrency.

The provenance expression is split up into sub-expressions, where each of them
are separated by a ’+’ operator. As long as one of these sub-expressions is true,
the tuple is valid and should be included in the view. Each of the IDs in the
sub-expressions of the augmented table is cross-referenced with the CL table,
and we check if the casual length of each of the IDs in the sub-expression is
odd or even. This ensures that tuples that have been deleted in the base table,
will not be included in the view and that none of the required base tuples in a
join are not currently deleted. Additionally, a sub-expression is only true if all
of its update flags are set to true. If the value is false, then this base tuple has
been updated into other values, and may no longer be used to derive the view
tuple.

4.4 Change propagation

The change propagation works in 5 main steps:

1. Fetching delta

2. Marking updates in the augmented views

(a) Refresh view table

3. Refreshing the CL-table

4. Refreshing the augmented views

5. Refreshing view table

All of these steps are performed on the view site, but the first step also includes
the base site, as it needs to generate the delta file, before the view site can fetch
it. For each step in the change propagation procedure, incoming changes are
applied, and may or may not be sent further down the chain. An overview of
the steps involved in the change propagation can be seen in figure 4.1. These
steps essentially calculate how the base changes affect the data in the current
step, and filter out any changes that do not affect the result. Through this pro-
cess, changes will move iteratively through the steps, calculating and applying
changes to metadata, and finally determining and applying the changes to
the views. Some changes done on base tables will not result in any changes
in the view at all, but they may cause changes in the augmented layer. This
could be a new provenance expression or incremented causal length. Each step

24 chapter 4 design

Fetch delta

Mark updates

Refresh augmented

Refresh CL

Refresh view

Refresh view
Execution order

Delta generation

View(local)
site

Remote site

Figure 4.1: Change propagation

down the chain is generally more narrow in what it allows to "pass through",
as changes applied to one step may not cause any more changes further down
the chain.

Any change in the base table will be seen in the delta table, a set of all changes
that have occurred since a given reference point. Changes on a site will be
tracked by SynQLite and the history will be kept in a table. When siteA wants
to refresh its views from the base tables on site B, it will fetch all changes made
on B since its last refresh, by retrieving the delta table calculated by B.

The first step is to set the update flags in the provenance expressions if any
update operations have been performed on B. If the tuples in the delta table
satisfy the "WHERE"-condition for the view, they can be eligible to be applied
to the CL table. The changes applied to the CL table will then be sent further
down to the augmented tables, where they may cause a change to be applied if
it affects the provenance expression of an existing tuple or causes a new tuple
to be inserted. The changes in the augmented tables are then compared with
the causal lengths in the CL table, and may or may not cause a change to move
further down the chain and onto the view. If a duplicate is affected, the change

4.4 change propagation 25

may not be applied to the view, and updating causal lengths of tuples where a
deciding element has an update flag of 0 will also cause no change.

It is not a given that the set of changes to be applied to the next step is smaller
than the one in the previous step, however. A single delete operation on the base
table may lead to a single increment of causal length in the CL table, which may
cause no changes in the augmented table. Still, multiple tuples may be deleted
in the view, assuming they were dependent on the base tuple deleted. The
point still remains, as there must be a change in one of the previous connected
steps in figure 4.1, for changes to be applied to the current step.

5
Implementation
The chapter describes the details of how the solution is implemented and the
most important aspects of the implementation.

5.1 Materialized views

As SQLite has no support for materialized views, one needs to implement a way
of physically storing the results of a query. This is done by using normal tables.
The results of a given query are calculated through a series of steps, where the
data produced is saved in a table. There are no mechanisms supplied by SQLite
that allow automatically merging new results with previous ones, which is a
fundamental part of materialized views. One must therefore implement these
mechanisms manually using insert, update and delete operations. These will
be constructed based on the queries provided when creating the view.

To ensure uniqueness in the view, a unique index [25] is made on the view,
which also may increase query performance in some cases on that view table.
There is also no support for a dynamic "insert or update" operation of new
data. One can however emulate this by dividing it into two separate operations,
where one inserts when possible and updates when it is not. Alternatively using
"insert or replace" [27]. As long as the view tables have the option to refresh,
they are relatively similar to materialized views in their functionality.

27

28 chapter 5 implementation

5.2 Table structure

For each view, there are two tables specific to that view: one that holds the
results of the views query, and one augmented table. The augmented table holds
the view’s attributes in addition to a provenance expression and a timestamp of
the last seen change. When the results of a view are calculated, a query will be
performed on the augmented version, where the provenance and causal length
will be evaluated to determine if each tuple should be included in the view or
not. In addition to holding the attributes and metadata, the augmented table
is used to abstract and limit to only the most relevant data for the user. Note
the difference between an augmented table, which is a single table specific for
the view, and the augmented layer, which includes the augmented view table
and the CL table.

The causal length of each tuple is stored in another table, along with the tuple
UUID and timestamp of the last seen change. The causal length is a single inte-
ger, complying with the stated behavior of a casual length attribute described
in 2.1.7. The UUID is the same as for the underlying CRR mechanisms and is
copied from the CRR tables or delta tables generated by SynQLite. These UUIDs
can be found in the provenance expressions of the augmented views and allows
checking causal length for each element in a provenance expression. There is
only one CL table on each site and they keep track of the tuples of all views on
that site. This table is also a grow-only set and therefore includes tuples that
are no longer valid. Tuples that are deleted from the base tables will have their
casual length set to an even number, but the CL-tuple will still remain in the ta-
ble. By keeping the causal length in a table separate from the augmented view,
one can limit the number of columns needed in the augmented view. There is
only a need for one reference point to the causal length for each of the base
tuples, and keeping it in a separate table accommodates this.

To keep track of all views on a site, a table holds each view’s name, query, and
uniquely generated id. These tables only track the views of the site it resides
on and will have no information concerning the other sites’ views. The data in
this table is needed to retrieve the query used to create a view, as this query
is used to perform refreshes. This table will be referred to as the view query
table. Figure 5.1 displays these tables and how they are connected.

It is important to note that the base tables themselves are not maintained on
the view site unless there is a join statement. Any changes on the base tables
will be seen in their entirety in the delta tables and can be produced from the
information in them. After the changes from the delta tables have been applied,
they are discarded and will be fetched again when needed. By only keeping
the delta tables temporarily, one limits the amount of storage space needed
and the size of the search area.

5.3 creating views 29

Views

view_id

query

name

views_cl

uuid

causal length

timestamp

view₁

attributes

view₁__aug

provenance

timestamp

attributes

view₂

attributes

view₂__aug

provenance

timestamp

attributes

Figure 5.1: Table structure

Timestamps are included in the augmented views and the CL tables. The ones
in the CL tables are used when considering if insert and delete operations are
newer than the last seen change. The timestamp in the augmented views is
used when considering update operations on the base tuples, to check if they
are newer than the last seen update operation on each augmented tuple. Using
only the timestamp in the augmented views, one would not get a sufficiently
fine-grained approach to evaluate every single causal length, as concurrent in-
serts/deletes may be done on only a few base tuples. Using only the timestamps
in the CL table, one would have to compare all of the timestamps related to
the unique base tuples of the provenance expressions and the incoming update
timestamp. This would also be insufficient, as an update operation is depen-
dent on comparing the values of the view attributes when applying the change,
and must therefore be tied together.

5.3 Creating views

Materialized views are made by passing a standard SQL query as an argument
to the Python interface along with the views name. The query will be parsed
by a simple query parser and saved in the query table. A table for the view
is made, along with the augmented view table. If this is the first view on this
site, the CL table and view query table are also created. The contents of the
view will initially be based on the current local data at the site of the view. If
there is no local data, then the view is empty until it is refreshed from another
site. The view can then be accessed like any other table in SQLite, and will
only contain relevant information, as all metadata is held in other tables. Views

30 chapter 5 implementation

can be refreshed by using the Python interface or shell commands, which will
refresh all views located on the site, based on changes made on a given remote
site. One does not need a reference to each individual view to do this.

5.4 Select

Selection criteria used when creating a viewwill be saved as part of the query in
the view query table. They will be used all throughout the change propagation
already from the CL-refresh stage to filter out any tuples not part of the view. As
the delta tables from the pull site include all its data, this is an important step
in ensuring that tuples that do not satisfy the criteria are not tracked by the
view systems, and will not affect the views in any way. To be able to verify that
all tuples in a view satisfy the selection criteria, any attributes in the selection
must also be in the project part of the view. If the attribute is not part of the
view, one cannot check if a tuple is updated to a value that does not satisfy the
selection.

5.5 Project

Project is also supported by this implementation. It works by choosing a sub-
set of columns from a base table to be part of the view. Any chosen column
in the view query will be saved in the views query. Any time a refresh is per-
formed, the query is fetched, and with it, the project part as well. The col-
umn’s names will be the same in the view as that of the base table, and its
origin is specified by the prefix, eg. "person.name" when specifying that the
name attribute should come from the person table. These prefixes are rewrit-
ten through the refresh execution to match the query’s use case. For example,
when fetching the incoming delta values, the prefix will be replaced and result
in "delta.delta__person.name", which will target the desired column from the
delta table.

5.6 Joins

The implementation supports inner joins on two tables. Outer joins and self-
joins are left for future work. In order to produce the view tuples from a join
statement, one needs the entire left and right-hand side of the join. This means
that both entire base tables must be kept available and up to date on refreshes.
This is why one of the first steps in change propagation with joins is to merge

5.7 query parser 31

the delta with the local base tables. This allows for rewriting the query to join a
delta table with a local base table and be able to produce every new tuple that
may be derived from the incoming delta. For each of the tables in the join, we
rewrite it to become the delta version of it, joined against the other tables as
local replicas. If one were to only perform the query on the delta tables joined
against the other delta tables, one would not get all possible combinations
of tuples satisfying the query, as the delta tables only hold the most recently
altered tuples. This would result in a non-complete result which would not
contain all the tuples it would in a non-distributed setting.

Take the example seen in table 5.1: The relations vio(vio_id, business_id, date,
type) and insp(insp_id, business_id, score, date) are replicated on sitesA and B,
and the tables have one tuple each, vio(’2UT4RR’, 7602, 20171212, 100001) and
insp(’35IVN1’, 7602, 55, 20160105). A view V(business_id, type, score) is made on
siteA using the query: "SELECT DISTINCT vio.business_id, type, score FROM vio
JOIN insp ON vio.business_id = insp.business_id.)". The view will initially have
one tuple: v(7602, 100001, 55). Site B makes an insertion of tuple vio(’1P8ANN’,
2447, 20160923, 34111) which is followed by site A refreshing the view from
B at time t_2. Site B creates a delta table 𝛿𝑣𝑖𝑜 containing all changes on vio
which means vio(’1P8ANN’, 2447, 20160923, 34111). This is pulled byA and the
refresh starts. This will still result in a view with only one tuple, as there are
no tuples in 𝑖𝑛𝑠𝑝 with a matching business_id for 𝑣𝑖𝑜 to be joined on. Still, the
local replica of 𝑣𝑖𝑜 will be merged with delta, resulting in vio(’1P8ANN’, 2447,
20160923, 34111) in 𝑣𝑖𝑜 on A as well. After this, site B inserts insp(’8H2LAS’,
2447, 89, 20170314) into 𝑖𝑛𝑠𝑝 and site A refreshes 𝑉 from B again at time
t_3. This time the delta table 𝛿𝑖𝑛𝑠𝑝 contains a tuple that can be joined with 𝑣𝑖𝑜.
A rewrites its query to become "SELECT DISTINCT vio.business_id, type, score
FROM vio JOIN insp on vio.business_id = 𝛿𝑖𝑛𝑠𝑝 .business_id" which will produce
the results v(2447, 34111, 89) which is stored in the view.

By performing the joins on one delta table and one local replica, one ensures
that only the new tuples may be produced from the incoming changes (delta),
and one limits the number of rows to compare. This is in contrast to if one
were to join the local tables with each other after applying the delta to the
local tables, which also includes old already seen tuples and could decrease
performance.

5.7 Query parser

The query parser is relatively simple and is used to define the different parts
of a query. It takes in the query as a string and detects SQL keywords such as
"SELECT", "FROM", and "WHERE" in order to decide what the otherwords in the

32 chapter 5 implementation

Violations
vio_id business_id date vio_type
2UT4RR 7602 20171212 100001

After insertion at t_2
2UT4RR 7602 20171212 100001
1P8ANN 2447 20160822 103116

Inspections
insp_id business_id score date
35IVN1 7602 55 20160105

After insertion at t_3
35IVN1 7602 55 20160105
8H2LAS 2447 89 20170314

View_augmented
provenance timestamp business_id type score

KJH887(True)*B75KA2(True) 1 7602 100001 55
After refresh at t_2

KJH887(True)*B75KA2(True) 1 7602 100001 55
After refresh at t_3

KJH887(True)*B75KA2(True) 1 7602 100001 55
IY541Z(True)*PX38MM(True) 3 2447 103116 89

View__CL
UUID CL timestamp
KJH887 1 1
B75KA2 1 1
After refresh at t_2

KJH887 1 1
B75KA2 1 1
After refresh at t_3

KJH887 1 1
B75KA2 1 1
IY541Z 1 2
PX38MM 1 3

View
business_id type score
7602 100001 55
After refresh at t_2
7602 100001 55
After refresh t_3

7602 100001 55
2447 103116 89

Table 5.1: Provenance and update flag affected by changes. Green cells indicate newly
inserted tuples. Changes made are: UPDATE Person SET Name = ’Bob’
WHERE UUID = ’2TY54S’; followed by UPDATE Person SET Name = ’Dave’
WHERE UUID = ’4AS4AB’;

query mean. Using this parser, one can split up the query into more manageable
parts, and reconstruct it to fit the current use case. The implementation reuses
as much as possible from the input query string, to allow for greater freedom

5.8 incremental refresh 33

and a larger degree of customization. It is also far from trivial to mimic the
exact behavior of SQLite and SynQLite in Python, which is why all of the data
management and calculations are done by writing or rewriting the query into
SQLite commands and executing them through the SQLite interface for Python.
The query will be reconstructed and used multiple times throughout the refresh
cycle. Additionally, queries may be written in many different ways and still
be valid and equivalent to other queries, reinforcing the need for a flexible
parser.

5.8 Incremental refresh

The implementation of incremental refresh is more complicated than a com-
plete refresh, as there is more metadata to maintain andmore specific actions to
be taken. The following listing shows the main steps involved in the execution
of incremental refresh:

• Get views

• Get delta file

• Merge delta file if join

• Attach delta

• Mark updates

• Modify query parameters

• Insert or replace CL

• Reverse

• Insert row into augmented view

• Insert row into view

• Update rows in the augmented view

• Insert or delete into view

The first step is to fetch the views and initialize them as Python objects. Next,
the delta file is pulled from the given pull site and merged with the local CRR

34 chapter 5 implementation

files if there is a join in any of the views. If there are no join statements, then
the local CRR files remain untouched. Then the delta file is attached to the
local database file and the merging of the view starts. Pseudo code for the
general merging of the delta with views can be seen in listing 5.1.

Listing 5.1: Algorithm for overall incremental refresh

function merge_delta_views(cursor, views)
f o r view in views :

f o r t ab l e in view . d e l t a _ t b l s :
view . mark_updates (cursor , t ab l e)

a l tered_rows = []
fo r view in views :

f o r t ab l e in view . d e l t a _ t b l s :
i f j o i n in view . query :

view . modify_query_parameters (t ab l e)

i n s e r t ed = view . i n s e r t _ t o _ c l ()

i f j o i n in view . query and i s _ d e l t a (t ab l e) :
j o i n _ t a b l e = ge t_ j o i ned_ t ab l e (t ab l e)
i n s e r t ed += rev e r s e _ i n s _ t o _ c l (j o i n _ t a b l e)

a l tered_rows += in se r t ed

fo r view in views :
f o r t ab l e in view . t a b l e s :

i f j o i n in view . query :
view . modify_query_parameters (t ab l e)

f o r row in a l tered_rows :
i n s e r t ed = view . inser t_ to_aug_v iew (row)
view . in se r t _ to_v i ew (row , i n s e r t ed)

view . update_augmented_view (row)
view . re f re sh_v iew (row)

Since updated rows are similar to inserted rows, except for having a non-unique
UUID, they must first be evaluated to determine the update flag of the old
row values. A query is generated to identify updated rows. This is done by
joining the delta rows with the CL table on UUIDs and joining again with the

5.8 incremental refresh 35

augmented view where the UUID is in the provenance expression and checking
that the incoming timestamp is higher while satisfying the WHERE condition.
Additionally, the CL must be the same in the CL table and the delta table, to
rule out any insert or delete operations. The result will be a set of tuples that
have had their attributes changed and already exist in the view or augmented
view, which is only the case for tuples modified by an update operation.

Each of the updated tuples will then be inspected. To find the old tuples in
the view corresponding to the updated one, a query is made to retrieve all
provenance expressions that include the updated tuples UUID with an update
flag of false and where the attribute values are equal to the updated tuple. This
will get the provenance of tuples where the updated tuple has previously been
updated out, that is updated so the tuple is no longer valid. These provenances
will then be updated to have their update flag set to true, as to indicate that
it has been changed back and is now valid again. The next step is to set the
update flags for invalid tuples. This starts by fetching the provenances of tuples
where the updated tuples UUID is in the provenance expression with an update
flag of true. These are from tuples that have been valid up to this point. Then
an update operation sets the update flag to false on these provenances, where
the attribute values are not equal to the values of the updated tuples. At this
point, all provenance expressions currently in the view should have the correct
update flag values. Before moving on to the other delta rows, a refresh of the
view is done to apply the changes to the view itself. The pseudo-code for the
update operations function mark_updates can be seen in listing 5.2.

Listing 5.2: Algorithm for setting the update flags based on incoming updates

function mark_updates(cursor, table)
f i e l d s = get_column_names (t b l)
updates = s e l f . get_updates (tab le , f i e l d s)

f o r row in updates :
o ld_ tup l e s = ge t _ i n v a l i d _ t up l e s (row)
fo r row in o ld_ tup l e s :

s e t_upda te_ f l ag (row , 1)

new_tuples = ge t _ va l i d _ t up l e s (row)
fo r row in new_tuples :

outgo ing_tup les = se t_upda te_ f l ag (row , 0)

f o r out_row in outgo ing_tup les :
s e l f . r e f re sh_v iew (out_row)

36 chapter 5 implementation

Now inserted and deleted rows can be considered. First, a query is constructed
to insert or replace the new tuple in the CL table. The data to be inserted comes
from a selection on the delta tables joined with the delta history, adding the
"WHERE" criteria, and ensuring that the tuple is not already present in the table
with a larger timestamp. Any insertions resulting from this query mean that an
insert or delete operation has been done on the source site, and there might be
a delete or insert operation to be performed on the view. It is not guaranteed
however, as insertions and deletions of duplicates may not lead to any changes
in the view. If no insertions are done to the CL table, this delta tuple should
not cause any more changes to propagate further in the system.

The next step is to consider the augmented views, and any tuples inserted in
the previous step will be looked at. The changes done on the CL table may
result in either a new tuple to be inserted into the augmented view and/or an
update on the provenance expression of already existing tuples. This is done in
two steps: insert and update. An SQL expression is generated, which inserts or
ignores new augmented tuples with the same UUID as the ones inserted into
the CL table. There is a unique index on the view attributes, and any attempted
insertion of duplicate tuples will be ignored. Each successfully inserted tuple
will then be attempted to be inserted into the actual view, or ignored if it is
a duplicate. Next, the update expression is generated. It generates the new
provenance element based on the tuples inserted into the CL table and adds it
to the existing provenance expressions, where the view attributes are the same.
This ensures that new base tuples can be considered when looking at how a
view tuple is derived.

Lastly, the view table is incrementally refreshed based on the tuples inserted
into the CL table. Listing 5.3 shows pseudo-code for this function. First, all
provenance expressions containing the CL tuples UUID are selected. Each of
these provenance expressions is evaluated and each individual UUID in them
is compared with the causal length in the CL table. The evaluation determines
whether or not the tuple should be in the view. For it to be in the view two
conditions need to be satisfied. As long as one of the sub-expressions gotten by
splitting the entire expression on "+" satisfies these conditions, the tuple will
be in the view. The conditions are:

1. The casual length of all provenance elements must be odd

2. The update flag of all provenance elements must be "(True)"

If the provenance expression of a tuple is valid, an insertion of that view tuple is
performed, and it will be ignored if it is a duplicate. If the provenance expression
is even, a delete operation is done instead, where the view attributes are equal
to the augmented tuple evaluated. After these steps are done, the view should

5.9 complete refresh 37

be up to date on all changes fetched from the pull site and applied.

Listing 5.3: Algorithm for applying changes to the view

function refresh_view(cursor, table)
re levant_rows = get_aug_rows (provenance (row))

fo r row in re levant_rows :
i s _p rov_va l i d = evaluate_provenance (row)

i f i s _p rov_va l i d :
tup l e_va lue s = format_va lues (row , s e l f . query)
in se r t _ to_v i ew (tup le_va lue s)

e l s e :
delete_from_view (row)

5.9 Complete refresh

For the purpose of performance comparisons, the implementation also supports
complete refresh, which is a refresh where all data of a view is recalculated
from scratch each time it is refreshed. The main steps of a complete refresh
are:

• Get views

• Get delta file

• Merge delta file

• Drop metadata tables

• Recreate view from scratch

The first step is getting all the views from the view query table. These will then
be initialized by parsing the queries and defining objects of the view class to
easily access them. Next, we fetch the delta file from a site specified by the user.
This uses the underlying SynQLite methods of generating a delta file based on
recent changes on that site. The next step is merging the delta file with the local
replicas of the base tables. This is done using the supplied SynQLite methods
that handle the merging and results in up-to-date base tables in the local replica.
When this is done the data needed to remake the views is available through

38 chapter 5 implementation

the local replicas. The next step is dropping all metadata tables related to the
views so they can be remade later. Now all view tables and metadata tables are
remade from scratch, using the methods used for initializing new views. This
uses all available data from the local base table replicas, and the views will be
up-to-date.

6
Evaluation
This chapter describes the experiments performed and presents the results
of them. Some findings are presented along with the reasoning behind their
occurrence. The experiments focus on performance and storage costs for the
implemented views.

6.1 Experimental setup

All experiments and evaluations are executed on the same single computer
with the following key specifications:

• OS: Ubuntu 22.04.1

• CPU: Intel i7-11700 @ 2.50 GHz (8 cores)

• Memory: 16GiB DDR4 3200 MHz

• Disk: Kioxia M.2 SSD 512 GB 33MHz

They are performed using Python 3.10.6 and SQLite version 3.37.2 with the
Python SQLite interface version 2.6.0.

The experiments are not run in a distributed setting but simulate it using mul-

39

40 chapter 6 evaluation

Experiment tables
Violations Inspections

vio_id INTEGER PRIMARY KEY insp_id INTEGER PRIMARY KEY
business_id TEXT business_id TEXT
date TEXT date TEXT

violationtypeid INTEGER score INTEGER
risk_category TEXT type TEXT
description TEXT

Table 6.1: Base tables queried by the views in the experiments

tiple directories and SQLite database files. For instance, a "local" folder and
a "remote" folder each contain a database file, and are both located on the
same machine. They will not be synchronized in any way other than that of the
experiments’ refreshes. The SQLite files are instantiated as CRR databases and
a series of operations are executed on each database individually. The experi-
ments then treat the "remote" folder as if it were located on another machine,
but will not have to go through the network to pull its changes. This simulated
approach should be sufficient to test the functionality of the solution, as the
focus of this thesis is to look into using SynQLite for local-first views and de-
veloping a method for handling update operations on the base tables. Actual
networking is not required to see if the proposed solution is viable.

Experiments are run using the same base relation on each run, and the order
of operations will also be the same each time. 2000 operations are done on the
remote table one at a time, followed by refreshing the view for each operation.
This is also repeated with the number of operations per refresh set to 100
instead of one at a time, still resulting in 2000 operations in total. This is done
to see how the number of operations per refresh affects the performance. Each
experiment is repeated a number of times, and the averages are calculated and
used for all plots, tables, and comparisons. There are three main experiment
categories, one for insertions, one for updates, and one for deletions. These
operations are done on the "remote" database file and a refresh is done on the
"local" database file pulling changes from the remote one. The refresh is done
incrementally and completely, and the results are compared. The three types
of experiments are each done on a project view and a join view which will be
described further.

Experiments also consider two variants of the same experiments, shuffling
and non-shuffling modes. Shuffling the order of execution means that the
update operations and delete operations are executed in a random order, while
non-shuffling means that they are executed in the same order as they were
inserted.

6.1 experimental setup 41

Views
MV_project MV_join
business_id business_id
date date

violationtypeid type
score

Table 6.2: The two views used in the experiment

6.1.1 Project experiment

The experiment starts by creating a project view as "SELECT DISTINCT busi-
nesss_id, date, violationtypeid FROM violations". This will initially be empty,
as there is no data in the local violations table. Two variants of the experiments
are run, one where one insertion is done for each refresh, and one where 100
insertions are done for each refresh. The time used to perform the refresh is
taken and added to the set of results. After all iterations are done, the exper-
iment is repeated 5 times, and the average times are then used for the plots.
The results of the time used to refresh the views based on insertions done on a
remote site can be seen in figure 6.1.

For the update and the delete experiment, all views, tables, and data from
the insertion experiment are reused, to have some data to work with. Update
operations are performed on the date values and simply increment the date
by 1. What value is changed has no impact on the results, what matters is that
some arbitrary value is updated, to be defined as a change. The operations are
executed in the same fashion as for inserts: doing 1 update operation per refresh,
then repeating the experiments with 100 operations per refresh, and timing how
long the refresh takes. When it comes to delete operations, the views, tables,
and data from the insert experiment are reused again. A delete operation
deletes tuples from the base table based on the vio_id and is executed in the
same pattern as updates and insertions. The results of the update experiment
can be seen in figure 6.2 and deletions can be seen in figure 6.3.

6.1.2 Join experiment

Experiments on views using joins are made from the query "SELECT DISTINCT
vio.business_id, vio.date, type, score FROM vio JOIN insp on vio.business_id =
insp.businesss_id". This view is initially empty since the local inspections(insp)
and violations(vio) tables are empty. 2000 insertions are done on each table at
the remote site and the view is refreshed, pulling the remote changes.

42 chapter 6 evaluation

The insertions on each base table are not guaranteed to match on business_id,
meaning that they may not result in complete tuples that can be included in
the view. The same goes for the delete and the update experiment. Not all
operations will affect the actual view, only the underlying CRR tables. These
experiments are performed in the same way as for the project experiment,
where the results of the insertion experiment are reused for the update and
delete experiments. It is also performed with 1 operation on each table per
refresh, and 100. The results for the time used to refresh a view using joins and
performing inserts, updates, and deletes on a remote site can be seen in figure
6.4, figure 6.5, and figure 6.6 respectively.

6.1.3 Select experiment

There is no explicit experiment for the select operation. This is because its be-
havior is not dramatically different from the project one, as the only difference
is including the "WHERE <selection criteria>" in all queries used in the meta-
data. It will still produce similar results when included in the join experiment
and the project experiment.

6.1.4 Disk usage experiment

The experiments just presented also measure the disk usage of the database.
For each refresh, the size of all tables is measured and summed up, which also
includes all metadata tables. The measurement is done using an SQLite query
on the dbstat table [31] which stores information regarding the disk space of
the tables in the database file. SQLite only tracks disk usage in terms of pages
used by each table, meaning there are only rough estimates of the actual disk
usage. It should still be sufficient to see the trends and characteristics of the
system, however. Size measurements are done for both the join experiment
and the project experiment.

6.2 Results

For each experiment, there is a plot made. Each plot consists of 4 subplots,
where two of them use no shuffling of execution order, and two use a ran-
domly shuffled order. Each of these two pairs has one plot for 1 operation per
refresh and one for 100 operations per refresh. The plots also include the me-
dian, in addition to the averages, to get a clearer picture with less prominent
spikes.

6.2 results 43

6.2.1 Project performance

When looking at the graph for insertions and a project view with 1 operation per
refresh in figure 6.1, one can see that the incremental approach is faster than the
complete refresh approach, in every step except for a few spikes. The complete
approach graph grows exponentially with respect to the data size in contrast
to the incremental one, which remains approximately constant throughout the
entire graph. This is to be expected, as the complete approach recalculates
the entire set of results on each refresh, in addition to the metadata tables
needed to calculate the view. The incremental approach on the other hand,
only calculates and applies the current incoming changes.

0 500 1000 1500 2000
insertions

0.03

0.41

0.79

1.17

1.55

tim
e

(s
)

A. Shuffle 1 op/refresh

0 500 1000 1500 2000
insertions

0.13

0.41

0.69

0.97

1.25

1.53

tim
e

(s
)

B. Shuffle 100 op/refresh

0 500 1000 1500 2000
insertions

0.03

0.57

1.11

1.65

2.19

tim
e

(s
)

C. No shuffle 1 op/refresh

0 500 1000 1500 2000
insertions

0.13

0.48

0.83

1.18

1.53

1.88

tim
e

(s
)

D. No shuffle 100 op/refresh

Insertions on project

Incremental Complete Incremental median Complete median

Figure 6.1: Time taken to refresh following a number of insertions on a project view. A:
Shuffled operation order and 1 insertion per refresh. B: Shuffle operation
order and 100 insertions per refresh. C: No shuffle of operation order and
1 insertion per refresh. D: No shuffle of operation order and 100 insertions
per refresh.

The number of changes made is very low on each refresh, meaning that there

44 chapter 6 evaluation

is a large difference in the number of rows calculated for each approach. For
a view with n number of tuples, the number of view tuples to calculate on
an incremental refresh is 1, while for the complete approach, the number is n.
Additionally, this is the case for the metadata tables, as the incremental refresh
only has to add 1 new tuple to the existing CL table and 1 to the augmented
view for each insert, while the complete refresh recalculates these too from
scratch.

When the operations per refresh are increased to 100 it reveals a slight linear
increase in time taken to refresh incrementally while the complete refresh
still grows exponentially. The incremental refresh is slower than the complete
refresh, to begin with. At about 1900 tuples inserted, the incremental refresh
starts becoming faster than the complete. The reasoning behind this pattern
may still be attributed to the fact that the incremental refresh calculates only
the incoming changes and not the entire table as the complete refresh does,
but both seem to be affected by the size of the tables, only less so for the
incremental refresh. When there are more tuples (100) to calculate on each
refresh, the incremental approach naturally uses more time than for 1 operation
per refresh.

For updates on the project view in figure 6.2, one can see that the incremental
approach performs better than the complete one at 1 update per refresh. The in-
cremental approach graph is relatively constant throughout the measurements.
Similarly, the complete approach is close to constant, but at a higher time taken.
Since the incremental refresh mode treats newly updated rows as new ones
and keeps the old values in the augmented view tables, the amount of data
stored increases. This does, however, not seem to have a large effect on the
time needed to execute a refresh. The complete refresh mode does not save the
old values of the updated tuples and therefore has about the same amount of
data to consider on each refresh, which naturally leads to a relatively constant
execution time. Again, on each refresh, the incremental approach only has to
calculate the results for 1 tuple, while the complete approach has to calculate
n tuples for a table of size n which causes a much larger time demand.

When the number of updates per refresh is set to 100, the complete refresh
becomes faster than the incremental one. The complete approach still uses the
same amount of time, as there is the same amount of tuples to calculate as
for 1 operation per refresh. The incremental refresh however has to perform
more calculations in comparison to when performing 1 operation per refresh.
Naturally, this causes a longer refresh time. One can also see that the incremen-
tal refresh graph increases slightly as the number of updates goes up both for
the shuffled and non-shuffled order. This can be attributed to the fact that in
update operations of random order, more pages may be used by SQLite, causing
larger search areas and slower execution. This will be expanded upon further

6.2 results 45

in the disk usage section 6.2.3.

0 500 1000 1500 2000
updates

0.04

0.67

1.30

1.93

2.56

3.19

tim
e

(s
)

A. Shuffle 1 op/refresh

0 500 1000 1500 2000
updates

1.56

1.85

2.14

2.43

2.72

tim
e

(s
)

B. Shuffle 100 op/refresh

0 500 1000 1500 2000
updates

0.04

0.64

1.24

1.84

2.44

tim
e

(s
)

C. No shuffle 1 op/refresh

0 500 1000 1500 2000
updates

1.57

1.86

2.15

2.44

2.73

tim
e

(s
)

D. No shuffle 100 op/refresh

Updates on project

Incremental Complete Incremental median Complete median

Figure 6.2: Time taken to refresh following a number of updates on a project view. A:
Shuffled operation order and 1 update per refresh. B: Shuffle operation
order and 100 updates per refresh. C: No shuffle of operation order and 1
update per refresh. D: No shuffle of operation order and 100 updates per
refresh.

When it comes to 1 deletion per refresh and the project view, the incremental
approach graph is constant, while the complete refresh graph decreases roughly
linearly. This can be seen in figure 6.3. As the number of tuples in the view
shrinks, so does the time taken to perform a complete refresh, as it is directly
dependent on the number of rows with regard to execution time. Fewer tuples
mean a faster refresh. The incremental refresh is faster overall, which again
can be accredited to the fact that the incremental refresh only calculates the
result of 1 changed tuple at a time, while the complete refresh calculates the
entire view again.

46 chapter 6 evaluation

0 500 1000 1500 2000
deletions

0.03

0.45

0.87

1.29

1.71
tim

e
(s

)

A. Shuffle 1 op/refresh

0 500 1000 1500 2000
deletions

0.65

0.83

1.01

1.19

1.37

tim
e

(s
)

B. Shuffle 100 op/refresh

0 500 1000 1500 2000
deletions

0.03

0.53

1.03

1.53

2.03

2.53

tim
e

(s
)

C. No shuffle 1 op/refresh

0 500 1000 1500 2000
deletions

0.60

0.79

0.98

1.17

1.36
tim

e
(s

)

D. No shuffle 100 op/refresh

Deletions on project

Incremental Complete Incremental median Complete median

Figure 6.3: Time taken to refresh following a number of deletions on a project view. A:
Shuffled operation order and 1 deletion per refresh. B: Shuffle operation
order and 100 deletions per refresh. C: No shuffle of operation order and
1 deletion per refresh. D: No shuffle of operation order and 100 deletions
per refresh.

When the number of deletions per refresh is set to 100, the results change
slightly. The incremental refresh now has a very slight linear increase in time
taken in relation to the number of tuples. As old tuples are not deleted from
the metadata tables, only the view, the amount of data grows even when tuples
are deleted. This negatively affects the execution time and the graphs move
toward an intersection at around 1400 tuples deleted. The complete refresh
takes longer to execute, to begin with, but becomes faster than the incremental
refresh when the number of tuples in the view moves toward 0. This is to be
expected as the complete refresh does not keep "old" metadata and has less to
calculate.

6.2 results 47

6.2.2 Join performance

When looking at joins and 1 insertion per refresh, one can see from the graphs
6.4 that the incremental refresh mode performs better than the complete re-
fresh mode in general. For insertions the time required to refresh increases for
both approaches, as is natural when the amount of data grows. The complete
refresh increases exponentially, while the incremental refresh has a very slight
linear increase. The time increase for the incremental refresh may however be
accredited to a slightly different reason, though still related to the increased
size of data. When insertions are made on the underlying base tuples, the value
of the attribute in the join condition may not match. This means that the left
and right side tuples inserted cannot be joined, but they will be added to the
local base table replicas. As more tuples are inserted over time, the chances of
two tuples satisfying the join criteria increase, and they may produce a view
tuple. This leads to a more frequent insertion to the view as more insertions are
made, and the graph has a higher frequency of spikes in time used the higher
the number of insertions. Still, the increase in time taken is also affected by the
number of tuples considered, as there is a larger search space when querying
the tables.

48 chapter 6 evaluation

0 500 1000 1500 2000
insertions

0.03

0.47

0.91

1.35

1.79
tim

e
(s

)

A. Shuffle 1 op/refresh

0 500 1000 1500 2000
insertions

0.12

0.52

0.92

1.32

1.72

tim
e

(s
)

B. Shuffle 100 op/refresh

0 500 1000 1500 2000
insertions

0.03

1.04

2.05

3.06

4.07

tim
e

(s
)

C. No shuffle 1 op/refresh

0 500 1000 1500 2000
insertions

0.13

0.53

0.93

1.33

1.73
tim

e
(s

)

D. No shuffle 100 op/refresh

Insertions on join

Incremental Complete Incremental median Complete median

Figure 6.4: Time taken to refresh following a number of insertions on a join view. A:
Shuffled operation order and 1 insertion per refresh. B: Shuffle operation
order and 100 insertions per refresh. C: No shuffle of operation order and
1 insertion per refresh. D: No shuffle of operation order and 100 insertions
per refresh.

The complete approach seems to be more stable, as there is only one more tuple
in each base table to take into accord when calculating the results, and the time
needed to execute the refresh should not be dramatically different from the last
refresh. The graph grows exponentially in relation to the number of operations
previously performed similar to that of the project experiment. The incremental
approach varies more between each refresh, but still generally uses less time
than complete refreshes, even when considering the spikes. Looking at the
graphs for 100 insertions per refresh, there are some changes. The complete
refresh still grows exponentially, but the incremental refresh seems to have a
more significant linear increase in comparison to 1 insertion per refresh. The
difference in time needed when comparing shuffled order and non-shuffled
order of insertion are insignificant.

6.2 results 49

For updates on the join view with 1 update per refresh in figure 6.5, the incre-
mental approach is still relatively constant. Not every update on the base table
leads to a change in the view, as the base tuple affected by the update may not
be included in the view. However, the chance of affecting the view seems to
be close to constant. This is because the update operations do not affect the
join condition, and the number of tuples in the view is constant throughout
the experiment. The columns in the join condition are intentionally left out of
the update operation, to keep the number of view tuples the same throughout
the experiment. The odds of getting a "hit" on a tuple that is also in the view is
the same for any number of updates performed, and there will be no increase
in spike frequency as there is for the insertions.

0 500 1000 1500 2000
updates

0.04

0.80

1.56

2.32

3.08

3.84

tim
e

(s
)

A. Shuffle 1 op/refresh

0 500 1000 1500 2000
updates

2.15

2.36

2.57

2.78

2.99

3.20

tim
e

(s
)

B. Shuffle 100 op/refresh

0 500 1000 1500 2000
updates

0.04

0.60

1.16

1.72

2.28

2.84

tim
e

(s
)

C. No shuffle 1 op/refresh

0 500 1000 1500 2000
updates

2.11

2.40

2.69

2.98

3.27

3.56

tim
e

(s
)

D. No shuffle 100 op/refresh

Updates on join

Incremental Complete Incremental median Complete median

Figure 6.5: Time taken to refresh following a number of updates on a join view. A:
Shuffled operation order and 1 update per refresh. B: Shuffle operation
order and 100 updates per refresh. C: No shuffle of operation order and 1
update per refresh. D: No shuffle of operation order and 100 updates per
refresh.

The graph for complete refresh is very slightly concave, but close to constant,

50 chapter 6 evaluation

and is slower than the incremental refresh for 1 update per refresh. It does not
matter if an update operation affects a view tuple or not, the number of tuples
to calculate for the view remains the same. When the number of updates per
refresh is increased to 100, the incremental refresh starts increasing in relation
to the number of tuples and becomes slower than the complete refresh, which
remains at roughly the same time needed. It also becomes very erratic, which
may be because of the random chance of an update leading to a change in the
view. The increase in time can be accredited to the fact that the old values of
the updated tuples remain in the metadata tables, and the search space for
the queries increases. The incremental approach naturally has worse scaling
here as it stores the old values of the updated tuple in the metadata tables in
addition to the new ones.

The delete on join view experiment seen in figure 6.6 shows that the incre-
mental refresh is again close to constant, while the complete refresh graph
decreases approximately linearly. One could expect that the incremental re-
fresh would have some more variations depending on the number of deletions,
as is the case for insertions, but it is even more consistent in terms of spikes. As
each view tuple is dependent on two base tuples, and deleting only one would
result in a delete in the view, the first deletions should have a higher chance
of affecting the view than the last deletions. This can not be seen in the graph,
however.

The decrease in time needed for the complete refresh is to be expected for the
join view as well as the project. The amount of data to calculate decreases and
the more deletes are performed on the base tables, the fewer computations
need to be performed. As the time needed to execute a refresh is highly de-
pendent on the number of tuples, this is to be expected. For the experiment
with 100 deletions per refresh, the complete refresh performs roughly the same,
but the graph for incremental refresh starts decreasing when the number of
total deletions increases. This shows that the increased amount of metadata in
comparison to the complete refresh, does not cause a larger overhead as the
number of deletions increases, and the lower number of view tuples lead to
faster refreshes here too.

6.2 results 51

0 500 1000 1500 2000
deletions

0.04

0.62

1.20

1.78

2.36

2.94

tim
e

(s
)

A. Shuffle 1 op/refresh

0 500 1000 1500 2000
deletions

0.66

1.05

1.44

1.83

2.22

tim
e

(s
)

B. Shuffle 100 op/refresh

0 500 1000 1500 2000
deletions

0.03

0.73

1.43

2.13

2.83

tim
e

(s
)

C. No shuffle 1 op/refresh

0 500 1000 1500 2000
deletions

0.58

1.10

1.62

2.14

2.66

tim
e

(s
)

D. No shuffle 100 op/refresh

Deletions on join

Incremental Complete Incremental median Complete median

Figure 6.6: Time taken to refresh following a number of deletions on a join view. A:
Shuffled operation order and 1 deletion per refresh. B: Shuffle operation
order and 100 deletions per refresh. C: No shuffle of operation order and
1 deletion per refresh. D: No shuffle of operation order and 100 deletions
per refresh.

6.2.3 Disk usage

The experiment results in figure 6.7 show that disk usage goes up as insertions
are made. This is to be expected, as disk usage directly correlates to the num-
ber of tuples in the tables. Both the incremental and the complete approach
increase linearly in terms of space used in relation to the number of tuples in-
serted in total. The complete refresh increases faster than the complete refresh,
however, and the results are the same for all four variants of the experiment.
In other words, shuffling and number of insertions per refresh does not matter
for insertions on the project view in terms of disk usage.

52 chapter 6 evaluation

0 500 1000 1500 2000
insertions

0.020

0.314

0.607

0.901

1.194
siz

e
(b

yt
es

)

1e6 A. Shuffle 1 op/refresh

0 500 1000 1500 2000
insertions

0.046

0.349

0.652

0.955

1.258

siz
e

(b
yt

es
)

1e6 B. Shuffle 100 op/refresh

0 500 1000 1500 2000
insertions

0.020

0.314

0.607

0.901

1.194

siz
e

(b
yt

es
)

1e6 C. No shuffle 1 op/refresh

0 500 1000 1500 2000
insertions

0.046

0.349

0.652

0.955

1.258
siz

e
(b

yt
es

)

1e6 D. No shuffle 100 op/refresh

Insertions on project

Incremental Complete

Figure 6.7: Size of tables following a number of insertions on a project view. A: Shuf-
fled operation order and 1 insertion per refresh. B: Shuffle operation order
and 100 insertions per refresh. C: No shuffle of operation order and 1 in-
sertion per refresh. D: No shuffle of operation order and 100 insertions
per refresh.

As previously mentioned, the update operations also lead to an increase in the
number of tuples for the incremental refresh mode, and therefore a higher disk
usage as the total number of updates increases. These results can be seen in
6.8. This pattern does not emerge in the update experiment for the complete
refresh mode, as it does not store as much metadata. It only holds the relevant
augmented view rows, and not the old updated values as it does for the incre-
mental refresh. This leads to constant disk usage for the complete approach,
while the incremental approach has a linear increase and a generally higher
space requirement when there is no shuffling of the order of updates. When
shuffling is turned on, the updates occur in a random order and not in the same
order as the insertions. This leads to a slightly exponential graph which flat-
tens towards the end (last updates) for the incremental refresh. The complete
refresh is also curved with a concave shape. The reason for the curve is that

6.2 results 53

a random order of updates means that more may pages are used due to the
fragmentation of data. As long as a single tuple resides on a page, that page is
considered used, and the database takes up more space. Randomly picking a
tuple to update leads to a concentration of more pages used around the middle
of the experiment, as at this point there is a larger chance for pages to be par-
tially filled up. After the spike, the first pages used start being freed, while new
pages are used. Updating in the same order as the tuples were inserted means
that the first pages used will be freed when all the tuples on that page have
been updated. An example of this is illustrated in table 6.3. Initially, all tuples
lie ordered neatly into full pages which is a number of 3 pages. After 6 updates
one can see that performing the updates in order leads to the first two pages
being freed, and page 3 and 4 is used instead. Still, the database only uses 3
pages. When the order is shuffled randomly, and 6 updates are performed, the
result is more scattered. Tuple 1, 5, and 6 have not been updated, and remain
on their original page. The rest have been updated, and have been placed into
pages 3 and 4. Note that page 2 has been freed. In total, the number of pages
used when shuffling the order becomes 4. If all 9 updates were executed, the
number of pages used would be 3 for both the non-shuffled and shuffled ap-
proach. In general, the incremental refresh uses less space than the complete
refresh. This is natural as the complete refresh also maintains the local replicas
of the base tables.

Initial No shuffle Shuffle

Page 0
Tuple 1
Tuple 2
Tuple 3

Tuple 1

Page 1
Tuple 4
Tuple 5
Tuple 6

Tuple 5
Tuple 6

Page 2
Tuple 7
Tuple 8
Tuple 9

Tuple 7
Tuple 8
Tuple 9

Page 3
Tuple 1
Tuple 2
Tuple 3

Tuple 3
Tuple 2
Tuple 4

Page 4
Tuple 4
Tuple 5
Tuple 6

Tuple 8
Tuple 9
Tuple 7

Table 6.3: Example of page usage before and during update execution.

54 chapter 6 evaluation

0 500 1000 1500 2000
updates

0.536

0.745

0.955

1.164

1.374

1.583

siz
e

(b
yt

es
)

1e6 A. Shuffle 1 op/refresh

0 500 1000 1500 2000
updates

0.5868

0.8020

1.0172

1.2324

1.4476

siz
e

(b
yt

es
)

1e6 B. Shuffle 100 op/refresh

0 500 1000 1500 2000
updates

0.5356

0.7262

0.9169

1.1076

1.2982

siz
e

(b
yt

es
)

1e6 C. No shuffle 1 op/refresh

0 500 1000 1500 2000
updates

0.5755

0.7729

0.9703

1.1678

1.3652
siz

e
(b

yt
es

)

1e6 D. No shuffle 100 op/refresh

Updates on project

Incremental Complete

Figure 6.8: Size of tables following a number of updates on a project view. A: Shuffled
operation order and 1 update per refresh. B: Shuffle operation order and
100 updates per refresh. C: No shuffle of operation order and 1 update per
refresh. D: No shuffle of operation order and 100 updates per refresh.

For deletions in the project experiment seen in figure 6.9, the number of tuples
in the view goes down as the number of deletions increases, while the number
of metadata tuples does not. Overall, it leads to linearly less storage needed as
the total number of deletes goes up, for both refresh modes when there is no
shuffling. The incremental refresh mode requires less space than the complete
refresh mode for the project views in general. When shuffling is turned on, one
can see similar trends to the update experiment, that is both graphs become
concave. The reasoning is the same as for the update experiments, as a delete
leads to an update operation of the CL table, which increases page usage. When
all operations are done, the first used pages start being freed.

6.2 results 55

0 500 1000 1500 2000
deletions

0.4854

0.7000

0.9146

1.1293

1.3439

siz
e

(b
yt

es
)

1e6 A. Shuffle 1 op/refresh

0 500 1000 1500 2000
deletions

0.5087

0.7330

0.9572

1.1815

1.4057

siz
e

(b
yt

es
)

1e6 B. Shuffle 100 op/refresh

0 500 1000 1500 2000
deletions

0.4854

0.6861

0.8868

1.0875

1.2882

siz
e

(b
yt

es
)

1e6 C. No shuffle 1 op/refresh

0 500 1000 1500 2000
deletions

0.5089

0.7172

0.9255

1.1338

1.3421

siz
e

(b
yt

es
)

1e6 D. No shuffle 100 op/refresh

Deletions on project

Incremental Complete

Figure 6.9: Size of tables following a number of deletions on a project view. A: Shuffled
operation order and 1 deletion per refresh. B: Shuffle operation order and
100 deletions per refresh. C: No shuffle of operation order and 1 deletion
per refresh. D: No shuffle of operation order and 100 deletions per refresh.

When looking at the results for joins in figure 6.10, there is generally more data
stored. As already mentioned, for join views using incremental refresh, one also
maintains local replicas of the CRR tables, which means that there is overall
more disk usage. The complete refresh mode views already maintain the CRR
tables locally, and the difference between disk usage for the project and join
views is therefore not as drastic as for the incremental views. When looking
at insertions, the disk usage scales roughly linearly, but slightly exponential,
and shuffling and the number of insertions per refresh have no significant
impact.

56 chapter 6 evaluation

0 500 1000 1500 2000
insertions

0.02

0.43

0.84

1.25

1.66
siz

e
(b

yt
es

)

1e6 A. Shuffle 1 op/refresh

0 500 1000 1500 2000
insertions

0.103

0.524

0.945

1.365

1.786

siz
e

(b
yt

es
)

1e6 B. Shuffle 100 op/refresh

0 500 1000 1500 2000
insertions

0.02

0.43

0.84

1.25

1.66

2.07

siz
e

(b
yt

es
)

1e6 C. No shuffle 1 op/refresh

0 500 1000 1500 2000
insertions

0.103

0.523

0.943

1.363

1.783
siz

e
(b

yt
es

)

1e6 D. No shuffle 100 op/refresh

Insertions on join

Incremental Complete

Figure 6.10: Size of tables following a number of insertions on a join view. A: Shuffled
operation order and 1 insertion per refresh. B: Shuffle operation order
and 100 insertions per refresh. C: No shuffle of operation order and 1
insertion per refresh. D: No shuffle of operation order and 100 insertions
per refresh.

For update operations on the join experiment in figure 6.11, the complete ap-
proach uses a roughly constant amount of space, while the incremental ap-
proach increases with the number of total updates when there is no shuffling.
Both graphs have a more curved graph when shuffling is turned on. This is the
same case as for the project experiment, but the graphs are even more curved,
which may occur because there is more data in general. The incremental ap-
proach uses more space than the complete approach, which can be attributed
to the fact that the local replicas of the base tables are also maintained, which
demands more space.

6.2 results 57

0 500 1000 1500 2000
updates

2.0199

2.1189

2.2179

2.3168

2.4158

2.5147

siz
e

(b
yt

es
)

1e6 A. Shuffle 1 op/refresh

0 500 1000 1500 2000
updates

2.1357

2.2439

2.3521

2.4603

2.5685

2.6767

siz
e

(b
yt

es
)

1e6 B. Shuffle 100 op/refresh

0 500 1000 1500 2000
updates

2.0173

2.1071

2.1970

2.2869

2.3767

2.4666

siz
e

(b
yt

es
)

1e6 C. No shuffle 1 op/refresh

0 500 1000 1500 2000
updates

2.1346

2.2265

2.3183

2.4101

2.5020

2.5938

siz
e

(b
yt

es
)

1e6 D. No shuffle 100 op/refresh

Updates on join

Incremental Complete

Figure 6.11: Size of tables following a number of updates on a join view. A: Shuffled
operation order and 1 update per refresh. B: Shuffle operation order and
100 updates per refresh. C: No shuffle of operation order and 1 update
per refresh. D: No shuffle of operation order and 100 updates per refresh.

When considering delete operations the amount of disk usage decreases linearly
with regard to the amount of deletes performed for both refresh modes when
there is no shuffling. These results are shown in figure 6.12. This is as expected
as disk usage is dependent on the number of tuples stored. The incremental
refresh mode uses more space overall, as there is more metadata to maintain
in comparison to the complete refresh mode. When shuffling is turned on, the
graphs become concave once again, which may be because the deletions only
lead to less space used when a page is completely unused by SQLite. The top
of the curve lies a little to the left of the middle, as to begin with pages are not
empty yet, and there are more pages used when tuples are updated.

58 chapter 6 evaluation

0 500 1000 1500 2000
deletions

1.7062

1.8194

1.9326

2.0458

2.1590
siz

e
(b

yt
es

)

1e6 A. Shuffle 1 op/refresh

0 500 1000 1500 2000
deletions

1.8047

1.9262

2.0477

2.1692

2.2906

siz
e

(b
yt

es
)

1e6 B. Shuffle 100 op/refresh

0 500 1000 1500 2000
deletions

1.7060

1.7793

1.8525

1.9258

1.9991

siz
e

(b
yt

es
)

1e6 C. No shuffle 1 op/refresh

0 500 1000 1500 2000
deletions

1.8063

1.8848

1.9633

2.0418

2.1203
siz

e
(b

yt
es

)

1e6 D. No shuffle 100 op/refresh

Deletions on join

Incremental Complete

Figure 6.12: Size of tables following a number of deletions on a join view. A: Shuffled
operation order and 1 deletion per refresh. B: Shuffle operation order
and 100 deletions per refresh. C: No shuffle of operation order and 1
deletion per refresh. D: No shuffle of operation order and 100 deletions
per refresh.

6.2.4 Operations per refresh

For the project view, one can see that the incremental refresh is generally faster,
or scales better than the complete refresh in most experiments. The incremen-
tal refresh graph is close to constant in almost every case when the number of
operations per refresh is set to 1. In contrast, the complete refresh has some
more variety to it, depending on the type of operations performed. When the
number of operations per refresh is set to 100 the results become less lopsided
and reveal that the incremental approach does not outperform the complete ap-
proach in every case. In some cases, as for insertions, the incremental approach
grows more linearly.

6.2 results 59

The incremental refresh shows an increase in time taken as the number of op-
erations per refresh goes up, while the complete refresh uses roughly the same
amount of time, as it already recomputes all the view contents and metadata.
It also shows that at a certain point in the number of operations per refresh
where the complete refresh becomes faster and more suited than the incremen-
tal refresh. One must therefore carefully consider the use case of the views,
and choose a refresh mode that is best suited. If frequent refreshes are done,
and the number of operations performed is small, the incremental approach is
generally faster. If the refreshes are performedmore rarely and a larger number
of operations are done, then the complete refresh may be better.

6.2.5 Spikes

For all the graphs of time used, one can see relatively frequent and large spikes.
These are more frequent for the complete refresh graphs than for the incre-
mental refresh. There are multiple possible reasons for this phenomenon, and
the biggest suspect is memory management and disk access. SQLite accesses
databases using caches, and each page is read into the cache memory when
accessed from the disk [30]. This is supported by the fact that the complete
refresh generally handles more data, and performs larger calculations (recal-
culating the entire view and metadata), which may have a larger possibility
of running out of cache space. This requires the system to fetch data from the
database file which is stated to be an order of magnitude slower than access-
ing main memory [30]. The memory may also be affected by other processes
running on the machine during the experiment execution, making these spikes
more unpredictable.

7
Discussion
This chapter discusses how the work done compared against the stated require-
ments in section 1.1. It details some of the implications of the evaluation and
how the work translates to real-world use. Additionally, some quirks and poten-
tial issues of the solution and implementation are discussed. Some suggestions
for future work are also provided.

7.1 Materialized views

The implementation uses normal SQLite tables to represent views and their
metadata, which are stored physically on the disk and will be persistent and
available offline. The view’s contents are calculated during explicit refresh calls
in a deferred approach, and any changes made on the base tables will not be
seen in the view until the user has given a refresh command. The contents of
the view can then be accessed directly like any normal SQLite table, without
any additional calculations or overhead. This allows for fast reads for the user
and any demanding calculations can be performed at non-critical times to
avoid any delays in the user’s experience. This is in contrast to normal (non-
materialized) views, where the results of the view must be calculated each time
it is accessed. This slows down read times, and demanding or large queries can
take a relatively long time to compute before the data can be read.

One issue with using normal SQLite tables for materialized views is that they

61

62 chapter 7 discussion

allow for interactions that are normally not available for views, such as writing
to it. Normal SQLite views are read-only, but there are no mechanisms in place
to limit the users to only allow reads on materialized views. One could make
use of triggers and an additional table or column to implement a write lock.
This can be a simple boolean whose value determines whether or not a write
will be allowed or not but is not done in this thesis.

7.2 Local-first views

One aspect of the thesis is to provide views that follow the properties of local-
first software, where the main aspect is to allow the use of the views while
the device is offline and synchronize the views when an online connection is
available at a later time. The implemented solution should support this in theory,
but extensive testing on a real-world online system has not been done. The
views can be accessed offline at any timewithout any limitations regarding their
offline status. Any data held in the view when online, will remain when going
offline, as there are no mechanisms that are dependent on an online connection,
except for the refresh. It does require an online connection to fetch the changes
made to the base tables, but as soon as that data set has been retrieved, the
refresh execution occurs offline, and the data can be accessed regardless of any
connection. This is also the case when creating the view initially, as there must
be some data available to base the view contents upon.

Generating and fetching delta is done using the functionality provided by Syn-
QLite. As SynQLite aims to support local-first properties, it already provides a
good base for local-first views to build upon. It takes care of tracking changes
on the base tables, which are used to get base table changes, that can be fur-
ther examined by the view mechanisms to get the relevant changes. SynQLite
also provides synchronization mechanisms that are used to merge incoming
base table changes with the local base tables in the complete refresh and in
incremental refreshes where a join is present in the views query.

One issue with using local-first views and SynQLite is that the synchronization
of base tables interferes with the views if one wants to use CRR tables located
at the same site as the views. Since SynQLite lets sites track the other sites
and when they have last fetched delta, a synchronization of the base tables
may cause a view refresh not to get all changes since its last refresh. This is
because the timestamp of the last pull will be higher than when the view was
refreshed, and the site that generates the delta assumes that any changes done
before the last pull has been seen by the requesting site. One must therefore
choose to either use local-first views or CRR-tables on a certain site or perform
synchronizations and refreshes at the same time. The complete refresh does

7.3 query support 63

this already, and by calling the refresh command, syncing of base tables is done
too. The incremental refresh does not do this unless there is a join in its query.
One could relatively easily implement a method for syncing base tables too
when doing an incremental refresh.

7.3 Query support

The implementation allows for creating and maintaining views using the most
fundamental query techniques, select, project, and join. These may be com-
bined or used without the others and grants a basis for further development
of functionality, such as adding aggregations, CTEs, outer joins, etc. The basic
SPJ queries should be sufficient to provide some insight into the qualities and
potential of the techniques and technologies applied in this solution. As the
queries written by the user are parsed and repurposed for all stages of the
refresh, the user can write normal SQLite queries in a natural way for creating
the views, and the syntax is the same as for standard SQLite.

There are some limitations to what the system can handle, however, other than
limiting to SPJ queries. SQLite and SQL in general offer a lot of functionalities,
and supporting all of them in our implementation is far from trivial. Using
aliases for column names is one example. Aliases can provide more readability
and allow for obfuscation for protection and abstraction purposes and are com-
monly used when working with views. The views also follow set semantics and
are intended to not include duplicates. Because of this, the user must include
the "DISTINCT" keyword when initializing a view.

The incremental refresh treats queries containing "JOIN" very differently from
queries that do not. As long as this keyword is included in the query, the in-
cremental refresh will have to perform some additional string modifications
before constructing the queries used in the refresh and also synchronizing the
local version of the base tables. The impact of this can be seen all throughout
the experiments performed, where the main aspects are that join views require
more storage and are slower to refresh.

7.4 Refresh modes

The main refresh mode of this thesis is incremental refresh, but it does also
support complete refresh. They both make use of the same metadata and share
some techniques used to calculate the view results. There are however some
differences, and it is not intended to use both refresh modes interchangeably

64 chapter 7 discussion

on the same site. Upon creation of a view, one should already have in mind
what refresh mode should be used. Using both may cause some unintended
behavior, and one should carefully consider the characteristics of the modes for
the intended use case of the views. As seen in the experiments, the incremental
mode is generally faster than the complete, but it costs more storage space
when using joins. If the refreshes are frequent and the number of changes
is relatively small each time, then the choice should usually be incremental
refresh. If refreshes are performed more rarely, and the changes to the base
tables are large, then the complete refresh mode may perform better. When
storage space is very limited, and the user intends to use a join view then
the incremental refresh mode may take up too much space to be used, and
the complete approach could be a better fit. This is especially true when the
number of operations is high in comparison to the number of refreshes.

One key difference between the two is that the complete refresh does not con-
sider update flags. This is because the results are completely recalculated each
time they are refreshed, and the old value of an updated tuple is overwritten
from the start. Therefore it does not need to keep track of the old tuples and
maintain the update flags.

7.5 Autoincrement

Autoincrement is a mechanism common in relational DBMS that will automat-
ically increment the integer primary key of tuples when inserting, to avoid
reusing primary keys and ensure uniqueness. Using the autoincrement mech-
anism in local-first views and SynQLite may however cause some errors. It
may override the manually inserted primary key, and cause inconsistent results
across sites. If different sites insert a tuple with the same values, autoincre-
ment may choose a different primary key for the same tuple, as the data this
value is based upon can be different on the different sites. It may also cause
errors even when there is only one site performing insertions, because of this
override.

The results of the view will then vary depending on what value the system
chooses for the primary key, which again depends on the order of insertions.
This is an especially large issue when performing joins based on the primary
key. Additionally, if a tuple is deleted and later inserted again, the primary key
is not guaranteed to be the same, even though the tuple is intended to be the
same, which may also cause some unintended results.

SQLite automatically applies autoincrement to primary key columns of type
integer without any option to turn it off. One must therefore be careful when

7.6 multi s ite merging 65

creating views, and try to avoid using integer primary keys for the join condition.
There are some ways to go around this problem, such as using a different
column type or replacing the primary key attribute with a unique constraint
on the column instead.

7.6 Multi site merging

When new tuples are inserted into a base table in SynQLite, a unique UUID
is generated. The UUID is a randomized value and is not deterministic. This
means that tuples with the same values inserted at two different sites will have
a different UUID. SynQLite uses the UUID of tuples to identify them, and as the
two tuples have different UUIDs, they will be treated as two different tuples
when synchronized. This may cause unintended behavior when refreshing a
view from different sites. This is however an issue that has been somewhat
accommodated in SynQLite as it uses a mapping to identify tuples across sites.
This is not made use of in the current local-first view implementation, as it
is out of scope. If the sites do not attempt to insert the exact same tuple, the
solution is able to refresh from any available site.

7.7 String comparison

SQLite does not enforce data types of columns, instead, it uses affinities [26].
These give a hint about the datatype in this column but do not ensure that the
values are of the correct type. When creating a table in SQLite, the standard
column affinity is set to be of type "BLOB" if no affinity is specified. When
comparing column values, such as in a query, any column two columns can be
compared regardless of affinity. This may not always behave as expected, such
as when comparing an integer value against a "BLOB" value. SQLite treats all
integers and "REAL" values as smaller than a "BLOB" or text value. This means
that for example 9 <′ 1′ will be true, and may cause some issues if one is not
careful with the affinity types.

One way to work around this is to make sure that creating tables based on some
existing data is done entirely through SQLite commands, as SQLite uses the
same affinity for a column as its source. If the table is made by first selecting
some values through a select, keeping the values in memory in Python such as
through variables, and then creating a table from these values, the affinities of
the new table are not guaranteed to be the same as for the source.

66 chapter 7 discussion

7.8 Correctness

To ensure correctness, 49 tests were made using pytest [17]. These check if
the results following a variety of operations, and using different queries for
the views, are correct. The results of the views following a set of operations
and a refresh should be the same as for a normal (non-materialized) view in
a non-distributed setting, and the tests are used to verify that this is the case.
Using the "pytest-cov" plugin the coverage was measured to be 89%.

7.9 Query design

The implementation makes frequent use of SQLite queries to manipulate the
database. Queries in general can be written in a wide variety of ways and still
yield the same result. How the query is written has a massive impact on how
long it takes to execute, and when they are performed as regularly as in our
refresh algorithms they are crucial in how the solution performs. The queries
used in the current implementation have gone through multiple iterations, but
may still be optimized further. As with any solution in a development process,
the inner workings may change, and a query that was previously used may be
replaced with a more suited one. By revisiting old queries, many performance
improvements have been made. One example is the query used to identify and
retrieve incoming tuples that have been updated. This query previously used
four join statements to get tuples resulting from the incoming delta, also tracked
in the CL table in addition to in the augmented view. The latter part, being
included in the augmented view, is replaced with an additional select statement
that checks if it exists, instead. This improves the refresh times drastically, going
from a linear increase in time needed to refresh depending on the size of the
data set, to a close to constant time needed.

7.10 Storage costs

Due to the relatively large amount of extra storage costs, one must consider if
views are worth using. If the views are rarely used, or the disk usage is crucial
for the device holding the views then the negative impact of having views
on the site may outweigh the benefits. This is especially true for join views
using incremental refresh as they use consume the most disk space seen in the
experiments 6.2.3.

7.11 future work 67

7.11 Future work

In the current implementation, there is no work done to ensure that one can
create views from other views. This can be a useful mechanic and is something
that SQLite allows for standard non-materialized views. As the current solution
uses some of the inbuilt SynQLite methods to generate a delta file for a site,
and the materialized views are made separately without initializing the tables
as CRR-tables, it is not possible to create views from other views. One would
need to create some functionality that allows for creating delta tables for views
to be able to support this mechanic.

Another possible improvement would be to expand upon query support to allow
for more possibilities such as aggregations, subqueries, outer joins, etc. This
would improve the usefulness of these views and allow for a broader range of
applicable use cases.

As previously discussed, using these views on a site may cause conflicts with
any CRR tables on that same site. It would be useful if one could use both at
the same site without conflicts. This can be done by making some new function
for the CRR class, that allows for generating delta independently for views and
CRR-tables and using separate time stamps for the two. This would allow for
getting and applying changes separately, but issues may still arise as join-views
and complete refresh will refresh the underlying base tables/CRR tables as
well.

Additionally looking into using real-world network traffic for the system can
also be done. The implementation should not be far from being able to handle
these cases already, as everything is built with it in mind. One would have to
test the system with multiple sites and replicas that reside on separate devices
and ensure that the results remain correct and consistent.

7.12 Lessons learned

Through the work on this thesis, I have learned a lot about SQLite, its character-
istics, and its quirks. Many behaviors have caused unintended results and have
demanded some investigation to understand. Additionally, I have learned a lot
about the importance of query design, as this can be crucial for the performance
and the capabilities of the system. As the queries are executed frequently, it is
essential to adjust them for their specific use case to reach acceptable results.
Small changes can have huge impacts on the system.

I have also learned about exciting technologies such as CRRs and local-first

68 chapter 7 discussion

software in addition to the broad field of distributed systems. Debugging and
testing are crucial aspects in these systems, as bugs and peculiarities may be
hard to discover and get to the root of. Without the continuous use of the
implemented test cases, ensuring that the results and behaviors of the solution
are acceptable may have been insurmountable.

8
Conclusion
In this thesis, we have implemented and explored local-first relational views on
top of SynQLite, an SQLite extension with CRR support. SynQLite keeps track of
the history of changes and allows for generating a delta for base table changes.
Previous works have implemented similar views using other technologies, but
not in SQLite. This solution uses materialized views and supports both incre-
mental and complete maintenance methods in order to apply changes made
on other sites.

Applying only new changes to the view using the incremental refresh is done
by utilizing causal lengths and provenance expressions. These allow us to keep
track of the base tuples and different changes made to them and how they affect
the end result that is the contents of the view. This thesis also presents an ad-
dition to the provenance expressions that allow for tracking update operations
as well, and not only inserts and deletes.

Experiments are conducted on a simulated distributed setting and show a sub-
stantial improvement in refresh speed using the incremental approach in com-
parison to the complete refresh approach. The incremental refresh is close to
constant in all three operations: insert, delete, and update, while the complete
refresh is highly dependent on the size of the view in terms of the number of
tuples. The complete approach does however perform better than the incre-
mental approach in some cases, particularly where the number of operations
are relatively large per refresh. One must therefore consider the use case and
its characteristics, before deciding on what mode to use.

69

Bibliography
[1] Grant Allen and Mike Owens. The Definitive Guide to SQLite. 2nd. USA:

Apress, 2010, pp. 59–59, 153–161. isbn: 1430232250.
[2] Kent Beck et al. Manifesto for Agile Software Development. 2001. url:

http://www.agilemanifesto.org/.
[3] Eric A. Brewer. “Towards Robust Distributed Systems (Abstract).” In:

Proceedings of the Nineteenth Annual ACM Symposium on Principles of
Distributed Computing. PODC ’00. Portland, Oregon, USA: Association
for Computing Machinery, 2000, p. 7. isbn: 1581131836. doi: 10.1145/
343477.343502. url: https://doi.org/10.1145/343477.343502.

[4] Goretti K. Y. Chan, Qing Li, and Ling Feng. “Design and Selection of Ma-
terialized Views in a Data Warehousing Environment: A Case Study.”
In: Proceedings of the 2nd ACM International Workshop on Data Ware-
housing and OLAP. DOLAP ’99. Kansas City, Missouri, USA: Association
for Computing Machinery, 1999, pp. 42–47. isbn: 1581132204. doi: 10.
1145/319757.319787. url: https://doi.org/10.1145/319757.319787.

[5] Surajit Chaudhuri andMoshe Y. Vardi. “Optimization of Real Conjunctive
Queries.” In: Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. PODS ’93. Washington,
D.C.,USA: Association for ComputingMachinery, 1993, pp. 59–70. isbn:
0897915933. doi: 10.1145/153850.153856. url: https://doi.org/10.
1145/153850.153856.

[6] Leonardo Weiss F. Chaves et al. “Towards Materialized View Selection
for Distributed Databases.” In: Proceedings of the 12th International Con-
ference on Extending Database Technology: Advances in Database Tech-
nology. EDBT ’09. Saint Petersburg, Russia: Association for Computing
Machinery, 2009, pp. 1088–1099. isbn: 9781605584225. doi: 10.1145/
1516360.1516484. url: https://doi.org/10.1145/1516360.1516484.

[7] Rada Chirkova and Jun Yang. “Materialized Views.” In: Foundations and
Trends® in Databases 4.4 (2012), pp. 295–405. issn: 1931-7883. doi:
10.1561/1900000020. url: http://dx.doi.org/10.1561/1900000020.

[8] D. E. Comer et al. “Computing as a Discipline.” In: Commun. ACM 32.1
(Jan. 1989), pp. 9–23. issn: 0001-0782. doi: 10.1145/63238.63239.
url: https://doi.org/10.1145/63238.63239.

71

http://www.agilemanifesto.org/
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/319757.319787
https://doi.org/10.1145/319757.319787
https://doi.org/10.1145/319757.319787
https://doi.org/10.1145/153850.153856
https://doi.org/10.1145/153850.153856
https://doi.org/10.1145/153850.153856
https://doi.org/10.1145/1516360.1516484
https://doi.org/10.1145/1516360.1516484
https://doi.org/10.1145/1516360.1516484
https://doi.org/10.1561/1900000020
http://dx.doi.org/10.1561/1900000020
https://doi.org/10.1145/63238.63239
https://doi.org/10.1145/63238.63239

72 BIBLIOGRAPHY

[9] Oracle Corporation. Materialized View Concepts and Architecture. url:
https : / / docs . oracle . com / cd / B10500 _ 01 / server . 920 / a96567 /
repmview.htm. (accessed: 26.05.2023).

[10] Lisa Crispin. “Driving Software Quality: How Test-Driven Development
Impacts Software Quality.” In: IEEE Software 23.6 (2006), pp. 70–71.
doi: 10.1109/MS.2006.157.

[11] Mihai Liviu Despa. “Comparative study on software developmentmethod-
ologies.” In: Database Systems Journal (2014), pp. 37–56.

[12] Lars Marius Elvenes. “Materialized views in SQLite.” Capstone Project,
University of Tromsø. 2022.

[13] The PostgreSQL Global Development Group. Materialized Views. url:
https://www.postgresql.org/docs/current/rules-materializedviews.
html. (accessed: 26.05.2023).

[14] Amarnath Gupta. “Data Provenance.” In: Encyclopedia of Database Sys-
tems. Ed. by LING LIU and M. TAMER ÖZSU. Boston, MA: Springer US,
2009, pp. 608–608. isbn: 978-0-387-39940-9. doi: 10.1007/978-0-
387-39940-9_1305. url: https://doi.org/10.1007/978-0-387-39940-
9_1305.

[15] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. “Main-
taining Views Incrementally.” In: SIGMODRec. 22.2 (June 1993), pp. 157–
166. issn: 0163-5808. doi: 10 .1145 / 170036. 170066. url: https :
//doi.org/10.1145/170036.170066.

[16] Martin Kleppmann et al. “Local-First Software: You Own Your Data,
in Spite of the Cloud.” In: Proceedings of the 2019 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. Onward! 2019. Athens, Greece: Association
for Computing Machinery, 2019, pp. 154–178. isbn: 9781450369954.
doi: 10.1145/3359591.3359737. url: https://doi.org/10.1145/
3359591.3359737.

[17] Holger Krekel et al. pytest x.y. 2004. url: https://github.com/pytest-
dev/pytest.

[18] Alexandros Labrinidis and Yannis Sismanis. “View Maintenance.” In:
Encyclopedia of Database Systems. Ed. by LING LIU and M. TAMER ÖZSU.
Boston,MA: Springer US, 2009, pp. 3326–3328. isbn: 978-0-387-39940-
9. doi: 10.1007/978-0-387-39940-9_852. url: https://doi.org/10.
1007/978-0-387-39940-9_852.

[19] Mihai Letia, Nuno Preguiça, and Marc Shapiro. “Consistency without
concurrency control in large, dynamic systems.” In: ACM SIGOPS Operat-
ing Systems Review 44.2 (Apr. 2010), pp. 29–34. doi: 10.1145/1773912.
1773921.

[20] Microsoft. Views. url: https://learn.microsoft.com/en- us/sql/
relational-databases/views/views?view=azure-sqldw-latest. (ac-
cessed: 26.05.2023).

https://docs.oracle.com/cd/B10500_01/server.920/a96567/repmview.htm
https://docs.oracle.com/cd/B10500_01/server.920/a96567/repmview.htm
https://doi.org/10.1109/MS.2006.157
https://www.postgresql.org/docs/current/rules-materializedviews.html
https://www.postgresql.org/docs/current/rules-materializedviews.html
https://doi.org/10.1007/978-0-387-39940-9_1305
https://doi.org/10.1007/978-0-387-39940-9_1305
https://doi.org/10.1007/978-0-387-39940-9_1305
https://doi.org/10.1007/978-0-387-39940-9_1305
https://doi.org/10.1145/170036.170066
https://doi.org/10.1145/170036.170066
https://doi.org/10.1145/170036.170066
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/3359591.3359737
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://doi.org/10.1007/978-0-387-39940-9_852
https://doi.org/10.1007/978-0-387-39940-9_852
https://doi.org/10.1007/978-0-387-39940-9_852
https://doi.org/10.1145/1773912.1773921
https://doi.org/10.1145/1773912.1773921
https://learn.microsoft.com/en-us/sql/relational-databases/views/views?view=azure-sqldw-latest
https://learn.microsoft.com/en-us/sql/relational-databases/views/views?view=azure-sqldw-latest

BIBLIOGRAPHY 73

[21] Paulo Pintor, Rogério Luís de Carvalho Costa, and José Moreira. “Why-
and How-Provenance in Distributed Environments.” In: Database and Ex-
pert Systems Applications. Ed. by Christine Strauss et al. Cham: Springer
International Publishing, 2022, pp. 103–115. isbn: 978-3-031-12423-5.

[22] Owais Qayyum and Weihai Yu. “Toward Replicated and Asynchronous
Data Streams for Edge-Cloud Applications.” In: Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing. SAC ’22. Virtual Event:
Association forComputingMachinery, 2022,pp. 339–346. isbn: 9781450387132.
doi: 10.1145/3477314.3507687. url: https://doi.org/10.1145/
3477314.3507687.

[23] Abderrazak Sebaa and Abdelkamel Tari. “Materialized View Mainte-
nance: Issues, Classification, and Open Challenges.” In: Int. J. Coopera-
tive Inf. Syst. 28 (2019), 1930001:1–1930001:59.

[24] SQLite. Built-in Aggregate Functions. url: https://www.sqlite.org/
lang_aggfunc.html. (accessed: 23.05.2023).

[25] SQLite. CREATE INDEX. url: https://www.sqlite.org/lang_createindex.
html. (accessed: 23.05.2023).

[26] SQLite. Datatypes In SQLite. url: https://www.sqlite.org/datatype3.
html. (accessed: 03.05.2023).

[27] SQLite. INSERT. url: https://www.sqlite.org/lang_insert.html.
(accessed: 23.05.2023).

[28] SQLite. Most Widely Deployed and Used Database Engine. url: https:
//www.sqlite.org/mostdeployed.html. (accessed: 01.12.2022).

[29] SQLite. SELECT. url: https://www.sqlite.org/lang_select.html.
(accessed: 01.12.2022).

[30] SQLite. SQLite File IO Specification. url: https://www2.sqlite.org/
fileio.html. (accessed: 23.05.2023).

[31] SQLite. The DBSTAT Virtual Table. url: https://www.sqlite.org/
dbstat.html. (accessed: 12.0.5.2023).

[32] Michael Stonebraker. “Implementation of Integrity Constraints andViews
by Query Modification.” In: Proceedings of the 1975 ACM SIGMOD Inter-
national Conference on Management of Data. SIGMOD ’75. San Jose, Cal-
ifornia: Association for Computing Machinery, 1975, pp. 65–78. isbn:
9781450373289. doi: 10.1145/500080.500091. url: https://doi.
org/10.1145/500080.500091.

[33] Iver Toft Tomter and Weihai Yu. “Augmenting SQLite for Local-First
Software.” In: New Trends in Database and Information Systems. Ed. by
Ladjel Bellatreche et al. Cham: Springer International Publishing, 2021,
pp. 247–257.

[34] Weihai Yu andClaudia-Lavinia Ignat. “Conflict-Free ReplicatedRelations
for Multi-Synchronous Database Management at Edge.” In: 2020 IEEE
International Conference on Smart Data Services (SMDS). 2020, pp. 113–
121. doi: 10.1109/SMDS49396.2020.00021.

https://doi.org/10.1145/3477314.3507687
https://doi.org/10.1145/3477314.3507687
https://doi.org/10.1145/3477314.3507687
https://www.sqlite.org/lang_aggfunc.html
https://www.sqlite.org/lang_aggfunc.html
https://www.sqlite.org/lang_createindex.html
https://www.sqlite.org/lang_createindex.html
https://www.sqlite.org/datatype3.html
https://www.sqlite.org/datatype3.html
https://www.sqlite.org/lang_insert.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/lang_select.html
https://www2.sqlite.org/fileio.html
https://www2.sqlite.org/fileio.html
https://www.sqlite.org/dbstat.html
https://www.sqlite.org/dbstat.html
https://doi.org/10.1145/500080.500091
https://doi.org/10.1145/500080.500091
https://doi.org/10.1145/500080.500091
https://doi.org/10.1109/SMDS49396.2020.00021

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem statement
	1.2 Scope
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Technical background
	2.1.1 Views
	2.1.2 Materialized views
	2.1.3 Local-first software
	2.1.4 Conflict-free replicated relations
	2.1.5 SynQLite
	2.1.6 Data provenance
	2.1.7 Causal length

	2.2 Related work
	2.2.1 Augmenting SQLite for local-first software
	2.2.2 Maintaining views incrementally
	2.2.3 Towards replicated and asynchronous data streams for edge-cloud applications

	3 Approach
	3.1 Development
	3.2 Work phases

	4 Design
	4.1 Provenance expressions
	4.2 Update flag
	4.3 Evaluating view tuples
	4.4 Change propagation

	5 Implementation
	5.1 Materialized views
	5.2 Table structure
	5.3 Creating views
	5.4 Select
	5.5 Project
	5.6 Joins
	5.7 Query parser
	5.8 Incremental refresh
	5.9 Complete refresh

	6 Evaluation
	6.1 Experimental setup
	6.1.1 Project experiment
	6.1.2 Join experiment
	6.1.3 Select experiment
	6.1.4 Disk usage experiment

	6.2 Results
	6.2.1 Project performance
	6.2.2 Join performance
	6.2.3 Disk usage
	6.2.4 Operations per refresh
	6.2.5 Spikes

	7 Discussion
	7.1 Materialized views
	7.2 Local-first views
	7.3 Query support
	7.4 Refresh modes
	7.5 Autoincrement
	7.6 Multi site merging
	7.7 String comparison
	7.8 Correctness
	7.9 Query design
	7.10 Storage costs
	7.11 Future work
	7.12 Lessons learned

	8 Conclusion

