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A B S T R A C T

Deep learning-based approaches for content-based image retrieval (CBIR) of computed tomography (CT) liver
images is an active field of research, but suffer from some critical limitations. First, they are heavily reliant on
labeled data, which can be challenging and costly to acquire. Second, they lack transparency and explainability,
which limits the trustworthiness of deep CBIR systems. We address these limitations by: (1) Proposing a
self-supervised learning framework that incorporates domain-knowledge into the training procedure, and,
(2) by providing the first representation learning explainability analysis in the context of CBIR of CT liver
images. Results demonstrate improved performance compared to the standard self-supervised approach across
several metrics, as well as improved generalization across datasets. Further, we conduct the first representation
learning explainability analysis in the context of CBIR, which reveals new insights into the feature extraction
process. Lastly, we perform a case study with cross-examination CBIR that demonstrates the usability of our
proposed framework. We believe that our proposed framework could play a vital role in creating trustworthy
deep CBIR systems that can successfully take advantage of unlabeled data.
1. Introduction

Content-based image retrieval (CBIR) is a core research area in
medical image analysis, with numerous studies across many different
image modalities (Barata and Santiago, 2021; Ramalhinho et al., 2021;
Haq et al., 2021). CBIR supports clinicians in retrieving relevant images
from a large database compared to a query image, which reduces
labor-intensive manual search and aids in diagnosis. For instance, a
physician might want to investigate how patients in a large database
with a similar disease as a new patient, such as liver metastasis, were
diagnosed. The information from the previous diagnoses can then be
used to determine the proper treatment for the new patient. In analysis
of computed tomography (CT) images of the liver, CBIR have been
an active and important area of medical image analysis for many
years (Zhao et al., 2004; Chi et al., 2013; Yoshinobu et al., 2020). CBIR
has the potential to make labor intensive tasks in the clinical workflow
more time efficient, as illustrated in Section 8.3. Automatic support
systems such as CBIR is becoming increasingly important in clinical
liver disease diagnosis (Radiya et al., 2023), which is discussed in detail
in Section 2.1.
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Currently, deep learning-based CBIR, or deep CBIR, constitute the
state-of-the-art for CBIR (Silva et al., 2020; Yoshinobu et al., 2020; Haq
et al., 2021), due to its high precision and efficiency. However, deep
CBIR suffers from some critical limitations. First (1), current deep CBIR
for CT liver images rely on labeled data for training (Yoshinobu et al.,
2020). Obtaining labeled data can be costly and time-consuming, which
therefore limits the usability of deep CBIR systems. However, recent
works have shown how self-supervised learning can leverage unlabeled
data to improved CBIR systems (Siradjuddin et al., 2019; Monowar
et al., 2022), but such approaches have not been explored in the
context of CBIR of CT liver images. Second (2), deep CBIR suffer from
a fundamental lack of explainability. This can have detrimental effects
in a clinical setting, since deep learning-based systems are known to
exploit confounding factors and artifacts to make their predictions.
For instance, Gautam et al. (2022) showed that a deep-learning-based
system learned to use tokens and artifacts in X-ray images to make
its predictions instead of clinically relevant features. These tokens and
artifacts would not be present for new patients, and such a system
would not work as intended if put into clinical practice. Therefore, it is
vailable online 9 May 2023
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not advisable to blindly trust the retrieved images from the deep CBIR
system without investigating what input features influence the retrieval
process through an explainability analysis.

A promising direction to address the first limitation is learning from
unlabeled data through self-supervision. Recent self-supervised learn-
ing frameworks have shown remarkable results, in some cases even
rivaling supervised learning (Chen et al., 2020; Caron et al., 2020; Chen
and He, 2021). In a nutshell, contemporary self-supervised approaches
train a feature extractor that extracts informative representations by ex-
ploiting known invariances in the data. These representations can then
be used for other tasks, such as CBIR by taking similarities between the
new representations to retrieve similar images. These self-supervised
approaches have been show to improve performance in the context of
chest X-ray (Truong et al., 2021; Azizi et al., 2021), dermatology clas-
sification (Azizi et al., 2021), organ and cardiac segmentation (Hansen
et al., 2022), and whole heart segmentation (Dong et al., 2021), but
have yet to be developed for CBIR of CT liver images.

In this paper, we propose a clinically motivated self-supervised
framework for CBIR of CT liver images. Our proposed framework
incorporates domain knowledge that exploits known properties of the
liver, which leads to improved performance compared to well-known
self-supervised baselines. Concretely, a novel Hounsfield unit clipping
strategy that removes non-liver pixels from the input and allows the
system to focus on the liver is incorporated into the self-supervised
training. While the focus in this paper is on the liver in CT images,
our proposed framework could also be used to focus on other organs by
altering how the Hounsfield units are clipped. For the second limitation,
great improvements have been made in the field of explainable artificial
intelligence (XAI) over the last couple of years, and numerous studies
have shown how XAI can improve the reliability and trustworthiness of
deep learning-based systems in healthcare (Silva et al., 2020; Gautam
et al., 2022; Wickstrøm et al., 2021; Sayres et al., 2019). However,
the majority of these improvements have been in algorithms that
can explain models which produce decisions, such as classification or
similarity scores. When learning from unlabeled data through e.g. self-
supervised learning, such a score or similarity measure might not be
available and standard XAI techniques cannot be applied. But the recent
field of representation learning explainability (Wickstrøm et al., 2023)
aims at explaining vector representations, and can therefore tackle the
lack of explainability in deep CBIR. But such a representation learning
explainability analysis has not been performed in the context of CBIR
of CT liver images.

Our contributions are:

• A clinically motivated self-supervised framework specifically de-
signed to extract features focused on the liver.

• A novel analysis that explains the representations produced in the
feature extraction process.

• Thorough evaluation on real-world datasets.
• A case-study where images from the same patient are retrieved

across different examinations.

2. Related work

2.1. Clinical background for automatic support systems in liver disease
research

Performing a liver biopsy is the gold standard for assessing the
nature and severity of liver disease (Bravo et al., 2001), but it also
carries the risk of complications during the procedure (Tapper and
Lok, 2017). Noninvasive evaluation offers an alternative to performing
a biopsy that avoids this risk for complications, where CT imaging
have been a popular noninvasive approach to conduct liver disease
diagnosis (Tapper and Lok, 2017). Manual evaluation of CT images
by clinicians is common in clinical practice, but is labor intensive
2

and for challenging for particular types of disease (Tapper and Lok,
2017). Therefore, it is desirable to design automatic systems that could
support and assist clinicians in noninvasive evaluation of liver disease.
Automatic systems have demonstrated great potential in supporting
clinicians for several important liver diseases. Below we discuss recent
advances and important aspects of automatic support systems in liver
disease research.

Focal liver lesions (FLLs) is a common occurrence in clinical prac-
tice. To distinguish between FLLs is crucial in daily clinical practice to
address the treatment accordingly. Incidence of FLLs was encountered
in around 28.5% (Kreft, 2001) for less than or equal to 2 cm in
diameter. The ratio would be higher when including the lesions above
2 cm. Diagnosis of FLLs is cumbersome, especially in the absence
of malignancy in the patient’s history. Though incidental malignant
lesions are not uncommon (Kreft, 2001), CT images play a significant
role in diagnosing FLLs, while percutaneous biopsy in cases of doubt is
considered the gold standard method. However, fine needle aspiration
biopsy and cut needle biopsy have an accuracy of 78% in diagnosing
FLL (França et al., 2003). Major and minor complications related to
liver biopsy have been identified at 2.44% and 9.53%, consecutively
and remains constants in last decades (Thomaides-Brears et al., 2021).
However, biopsies are relatively contraindicated in certain types of
cancer due to the risk of tumor seeding or fatal bleeding from FLLs.
Noninvasive methods have shown comparable results to biopsy for
diagnosing liver diseases, thus becoming preferable methods for di-
agnosing certain types of lesions (Tapper and Lok, 2017). A recent
preliminary study by Tiyarattanachai et al. (2022) demonstrated that
an automatic FLL detection system could result in similar performance
as radiologists, but operation speed reached 30–34 frames per second.
CBIR facilitates the physician or radiologist to identify the cases diag-
nosed and treated for similar FLLs for case studies. CBIR could also
play a role in creating an image database of similar lesions for the
development of DL-based diagnostic tools.

Chronic liver disease (CLD) is a progressive disease that gradually
deteriorates the liver function, and can be challenging to identify at
an early stage (Zheng et al., 2022). Automatic detection systems could
aid in early identification and treatment of CLD. Singal et al. (2013)
found that machine learning systems outperformed traditional model-
ing methods in predicting development of hepatocellular carcinoma.
Diffuse liver disease staging is another important area of liver disease
research where automatic support systems have been developed (Zhou
et al., 2019). Yasaka et al. (2018) investigated the performance of deep
learning in the staging of liver fibrosis, and found that the automatic
system exhibited a high diagnostic performance. Wang et al. (2018)
conducted a prospective to evaluate the performance of deep learning
for assessing liver fibrosis stages and found that the system could pro-
vide good overall performance, and that diagnostic accuracy improves
as more image were acquired from each individual.

The lack of explainability is regularly highlighted as a major obsta-
cle for the effective implementation of automatic support systems in
the healthcare sector (Marwaha and Kvedar, 2022; Chen et al., 2022;
Ching et al., 2018). This has also been highlighted in the context of
liver disease research (Nam et al., 2022), but no systems have been
developed and tested through clinical trials in the context of CT liver
images. Studies have shown that automatic systems that provide an
explanation together with their prediction can improve performance,
for instance in grading of diabetic retinopathy (Sayres et al., 2019).
Therefore, it is essential to include explainability in the development
of automatic support systems.

2.2. Content-based image retrieval

The goal of CBIR is to find similar images from a large-scale
database, given a query image. CBIR is an active area of research
that span numerous medical imaging domains, such as X-ray (Haq
et al., 2021; Silva et al., 2020), dermatology (Barata and Santiago,
2021; Ballerini et al., 2010), mammography (Jiang et al., 2014), and
histopathology (Peng et al., 2019; Zheng et al., 2019). An illustration

of a CBIR system in the context of CT liver images is shown in Fig. 1.
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Fig. 1. Illustration of content-based image retrieval.
2.3. Content-based image retrieval of CT liver images

CBIR of CT liver images have been extensively studied. Early studies
relied on handcrafted features based on certain properties in the im-
ages. Gabor filters have been used to extract texture information (Zhao
et al., 2004). Texture information have also been combined with den-
sity information in the context of focal liver lesion retrieval (Chi et al.,
2013). Manifold learning have been utilized to facilitate CBIR of CT
liver images (Mirasadi and Foruzan, 2019). Lastly, a Bayesian approach
has been studied in connection with multi-labeled CBIR of CT liver
images (Ramalhinho et al., 2021).

Recently, deep learning-based feature extraction have improved
performance significantly in CBIR of CT liver images. The most straight
forward approach for deep CBIR is to train a neural network for the
task of CT liver image classification and use the intermediate features
prior to the classification layer for calculating similarities. This has been
demonstrated to produce good results when the network was trained
for the task of focal liver lesions detection (Yoshinobu et al., 2020).
However, all these approaches need labeled data to train the deep
learning-based feature extractor.

2.4. Self-supervised learning

Learning from unlabeled data is a fundamental problem in machine
learning. Recently, self-supervised learning have shown promising re-
sults in computer vision (Chen et al., 2020; Chen and He, 2021), natural
language processing (Devlin et al., 2019; Brown et al., 2020), and
time series analysis (Franceschi et al., 2019; Wickstrøm et al., 2022).
Furthermore, recent studies have also demonstrated that self-supervised
learning can improve performance across several imaging domains in
medical image analysis (Azizi et al., 2021; Truong et al., 2021; Hansen
et al., 2022; Dong et al., 2021).

For computer vision, there are three main approaches to self-
supervised learning. First, contrastive self-supervised learning is per-
formed by sampling positive pairs and negative samples and learning a
representation where the positive pairs are mapped in close proximity
and far from the negative samples. The SimCLR framework (Chen et al.,
2020) is one of the most widely used approaches in this category.
Second, clustering-based self-supervised learning utilizes clustering
algorithms to produce pseudo-labels which in turn are used to learn
a useful representation of the data. DeepCluster (Caron et al., 2018)
and the SwAV framework (Caron et al., 2020) are two of the most
widely used clustering-based self-supervised approaches in the litera-
ture. Lastly, siamese self-supervised approaches learn how to produce
a useful representation by maximizing agreement between positive
pairs of samples. The two main contemporary approaches in siamese
self-supervised approaches are the SimSiam framework (Chen and He,
2021) and the BYOL framework (Grill et al., 2020).
3

2.5. Explainability

Explainability is of vital importance for machine learning systems
in healthcare. Without it, clinicians cannot fully trust the algorithms
decision and the system becomes less reliable. Many recent studies
have shown how explainability can be incorporated into deep learning
systems for medical image analysis, ranging from diabetic retinopa-
thy (Quellec et al., 2021), dermatology (Barata and Santiago, 2021;
Gu et al., 2021), X-ray (Khakzar et al., 2021), and endoscopic im-
ages (Wickstrøm et al., 2020; Vasilakakis et al., 2021).

Most of the widely used explainability techniques typically leverage
the classification or similarity score to ascertain input feature impor-
tance (Springenberg et al., 2015; Schulz et al., 2020; Plummer et al.,
2020), and such approaches have been explored in the context of deep
CBIR. For models trained for classification tasks, explanations through
gradient information have been shown to both provide new insights
and improve performance for X-ray images (Silva et al., 2020). For
models trained to output a similarity score, it has been shown how
the similarity score can be used to provide explanations (Dong et al.,
2019; Plummer et al., 2020). Similarity score explanations have been
explored for X-ray images (Hu et al., 2022). Lastly, it has been shown
that explanation by examples can be effective in histopathological
images (Peng et al., 2019).

In the unlabeled setting where only the feature extraction model
is available, these techniques are not applicable. In such cases, it is
desirable to explain the vector representation of an image, since the
decision is not available. Representation learning explainability is a
very recent field of XAI, that has yet to be developed for CBIR. In this
work, we leverage the RELAX framework (Wickstrøm et al., 2023) to
explain the feature extractors trained using self-supervised learning.
RELAX is the first method that allows for representation learning
explainability and has been shown to provide superior performance to
competing alternatives (Wickstrøm et al., 2023).

3. A clinically motivated self-supervised approach for CT liver
images

In this section, we present our proposed clinically-motivated self-
supervised approach and the SimSiam framework for self-supervised
learning.

3.1. A clinically motivated self-supervised approach for CT liver images

We propose to incorporate clinical knowledge into our
self-supervised framework to learn more clinically relevant features.
In self-supervised learning, known invariances in the data are used to

train a feature extractor that extracts relevant features from the input
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Fig. 2. Effect of Hounsfield unit clipping on CT liver images. From left to right, no
clipping, narrow clip (50, 150), and wide clip (−200, 300).

Fig. 3. Distribution of pixel intensity values for liver pixel from the Decathlon dataset
and the two clipping strategies used in our proposed framework.

images. For instance, the liver can occur on both the left and right hand
side of an image, depending on which direction the patient is inspected.
Therefore, the feature extractor should be invariant to horizontal flips
in the images, and this invariance can be learned by incorporating
horizontal flipping into the self-supervised learning procedure. Iden-
tifying these invariances is crucial to make the self-supervised system
work properly and focus on clinically relevant features in the input
images. Our motivation is based on the knowledge that the pixel
intensities of the liver lay within a certain range for CT images. A
standard pre-processing step is to clip the pixel intensities of the CT
images (Li et al., 2018a), such that unimportant pixels are removed
prior to learning. The pixel intensities of CT images represent a physical
quantity, namely the Hounsfield unit. The same clipping is usually
applied to all images. However, if this clipping was incorporated into
the self-supervised learning procedure, the network could be guided
to learn which features are liver features and which ones are not. Our
motivation is to exploit the knowledge that the liver should be invariant
to pixel intensity clipping for a certain range of clipping.

Based on this motivation, we propose a Hounsfield clipping strategy
where the pixel values for the same image are clipped and scaled
based on different ranges of Hounsfield units. Fig. 2 shows how our
proposed clipping scheme affects an image. The leftmost image has no
clipping applied, and illustrates why it is important to remove some
pixel intensities in order to highlight relevant structures in the images.
The middle image shows the narrow clipping strategy between 50
and 150 Hounsfield units. Notice how only the liver and some other
organs are now visible in the image. The rightmost image shows the
wide clipping strategy between −200 and 300 Hounsfield units. In this
case, some redundant structures are removed, but more organs are left
visible compared to the middle image. The images considered in this
paper are intra venous contrast enhanced images taken in the portal
venous phase. These two ranges were chosen based on the following.
First, it is known that the liver typically has Hounsfield units in the
4

range 50–60 (Tisch et al., 2019). Furthermore, we have collected all
pixel intensities for the liver in the Decathlon dataset. These values
are shown in Fig. 3, and illustrates how the narrow clip will remove
some of the liver pixels but keep the main proportion, while the wide
clip will keep almost all liver pixels apart from some outliers. Our
proposed framework for learning representations that focus on liver
features is shown in Fig. 4. Each image is clipped with the wide and
narrow range, before the data augmentation is applied. Afterwards, we
follow the SimSiam approach described below. During testing, we use
the wide clipping to ensure that most liver pixels are kept in the images.
Our proposed clipping procedure introduced minimal computational
overhead, due to the clipping operation being simple to compute. Also,
since the same architecture is used for the feature extraction, our
proposed framework has the same computational demand and number
of parameters as previous self-supervised approaches.

3.2. SimSiam framework

In this work, we build on the SimSiam framework. The main mo-
tivation for this choice is that both contrastive and clustering-based
self-supervised approaches requires a large batch size during train-
ing to provide high quality representations (Chen et al., 2020; Caron
et al., 2020). This can be computationally challenging, especially if
the medical images in question are large. However, the siamese-based
approaches (Chen and He, 2021) are less sensitive to the batch size used
during training. Furthermore, we opt for the SimSiam approach over
BYOL to avoid training both a student and a teacher network used in
BYOL, again to avoid additional computations.

Let 𝐗 ∈ R𝐻×𝑊 represent an input image with height 𝐻 and width
𝑊 and 𝑓 a feature extractor that transforms 𝐗 into a new 𝑑-dimensional
representation 𝐡 ∈ R𝑑 , that is 𝑓 (𝐗) = 𝐡. Next, two views 𝐗1 and 𝐗2 are
constructed by augmenting the original image. The task performed in
SimSiam to learn a useful representation, is to maximize the similarity
between the two views. The representation 𝐡 is the new representation
that can be used for downstream tasks, such as CBIR. However, the
loss is not computed directly on the output of the feature extractor
𝑓 . Instead, a multilayer perceptron-based projection head 𝑔 transforms
𝐡 into a new representation 𝐳, that is 𝑔(𝐡) = 𝐳, where the loss is
computed. This projector is a crucial component in most self-supervised
frameworks (Chen et al., 2020; He et al., 2020), as it avoids dimensional
collapse in the representation 𝐡 (Jing et al., 2022), which is the one
that will be used for downstream tasks such as CBIR. The learning is
performed by minimizing the negative cosine similarity between the
two views:

𝐷(𝐳1, 𝐳2) = −
𝐳1

‖𝐳1‖2
⋅

𝐡2
‖𝐡2‖2

, (1)

where ‖ ⋅ ‖2 denotes the 𝓁2-norm. The full SimSiam loss function is
defined as:

𝐿 = 𝐷(𝐳1,𝐡2) +𝐷(𝐳2,𝐡1). (2)

An important component of the SimSiam framework is a stop-gradient
(stopgrad) operation, which is incorporated into Eq. (2) as follows:

𝐿 = 1
2
𝐷(𝐳1, stopgrad(𝐡2)) +

1
2
𝐷(𝐳2, stopgrad(𝐡1)) (3)

The stop-gradient operation is applied to the projector network, such
that the encoder on 𝐗2 no gradient from 𝐡2 in the first term, but
it receives gradients from 𝐳2 (and similarly for 𝐗1). The stop-grad
operation allows SimSiam to mimic a teacher–student setup, but avoids
the need to store two networks. Furthermore, it has been shown that the
stop-grad operation is critical to avoid the problem of complete collapse
in the representations (Tian et al., 2021).
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Fig. 4. Illustration of proposed self-supervised framework.
Data augmentation. The prior knowledge injected through the data
augmentation is of paramount importance to ensure that the models
learns relevant features. The data augmentation used in SimSiam is
similar to the standard approach in recent self-supervised learning (He
et al., 2020; Chen et al., 2020):

1. Crop with a random proportion from [0.2, 1.0], and resize to a
fixed size.

2. Flip horizontally with a probability of 0.5.
3. Color augmentation is performed by randomly adjusting the

brightness, contrast, saturation, and hue of each image with a
strength of [0.4, 0.4, 0.4, 0.1]

4. Randomly convert image to gray scale version with a probability
0.2.

Note that the input images are converted to pseudo RBG images by
stacking the input image 3 times along the channel axis. Prior works
have shown that the augmentation scheme listed above can lead to
increased performance across several medical image related tasks (Azizi
et al., 2021; Truong et al., 2021; Hansen et al., 2022; Dong et al.,
2021), albeit not in the context of CBIR of CT liver images. However,
these augmentations are selected with natural images in mind, and do
not take into account the properties of CT liver images. Our proposed
Hounsfield unit clipping scheme takes into account the particular char-
acteristics of CT images of the liver, which we hypothesize can improve
the self-supervised framework.

4. Explaining representations

Explainability is a critical component for creating trustworthy and
reliable deep learning-based systems. For deep CBIR, we want to know
what information the feature extractor is using to create the represen-
tation that the retrieval is based on. This requires explaining the vector
representations produced by the feature extractor, which cannot be ac-
complished with standard explainability techniques since they require
a classification or similarity score to create the explanation. However,
the recent field of representation learning explainability address the
problem of explaining representations (Wickstrøm et al., 2023). In this
work, we leverage the RELAX (Wickstrøm et al., 2023) framework to
explain the representations used in the CBIR system.

4.1. RELAX

RELAX is an occlusion-based explainability framework that provides
input feature importance in relation to a vector representation, as
opposed to a classification or similarity score. The core idea of RELAX
is to evaluate how the representation of an image changes as parts of
the image are removed using a mask. Let 𝐌 ∈ [0, 1]𝐻×𝑊 represent a
stochastic mask used for removing parts of the image. Next, 𝐡̄ = 𝑓 (𝐗⊙
𝐌), where ⊙ denotes element-wise multiplication, is the representation
of a masked version of 𝐗 and 𝑠(𝐡, 𝐡̄) is a similarity measure between
5

Fig. 5. Illustration of RELAX. A feature extractor produces a new representation of
an input image, and RELAX determines what input features are important for the
representation.

the unmasked and the masked representation. The intuition behind
RELAX is that when informative parts are masked out, the similarity
between the two representations should be low, and vice versa for non-
informative parts. Finally, the importance 𝑅𝑖𝑗 of pixel (𝑖, 𝑗) is defined
as:

𝑅̄𝑖𝑗 =
1
𝑁

𝑁
∑

𝑛=1
𝑠(𝐡, 𝐡̄𝑛)𝑀𝑖𝑗 (𝑛). (4)

Here, 𝐡̄𝑛 is the representation of the image masked with mask 𝑛, and
𝑀𝑖𝑗 (𝑛) the value of element (𝑖, 𝑗) for mask 𝑛. The similarity measure
used in the cosine similarity, as proposed in prior works (Wickstrøm
et al., 2023). The RELAX framework is illustrated in Fig. 5.

The mask generation is a crucial component in RELAX. In this work,
we follow the strategy used in previous studies (Petsiuk et al., 2018;
Wickstrøm et al., 2023). Binary masks of size ℎ × 𝑤, where ℎ < 𝐻
and 𝑤 < 𝑊 , are generated, where each element of the mask is sampled
from a Bernoulli distribution with probability 𝑝. To produce smooth and
spatially coherent masks, the small masks are upsampled using bilinear
interpolation to the same size as the input image. Furthermore, the
number of masks required to obtain reliable estimates of importance
is an important hyperparameter. In this work, we generate 3000 masks
to obtain an explanation for a single image, as suggested in a prior
work (Wickstrøm et al., 2023).
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Fig. 6. From left to right, mean average precision, knn accuracy, and relevance rank scores versus epochs across 20 training runs on the test images from the Decathlon dataset
The plot show how performance increase with training time, and that the proposed framework learns faster with better results.
5. Evaluation

We introduce the set of scores utilized to provided quantitative
evaluation of our proposed framework.

5.1. Evaluating quality of CBIR

A standard approach to evaluate the quality of a CBIR system is to
measure the class-consistency in the top retrieved images (Silva et al.,
2020; Li et al., 2018b). One of the most common approaches to evaluate
the class-consistency is through mean average precision (MAP):

MAP = 1
𝑁

𝑁
∑

𝑛=1

1
𝐾

𝐾
∑

𝑘=1
precision(k)𝑛, (5)

where 𝑁 is the number of test samples (query images), 𝐾 is the top-𝐾
retrieved images for each query image, and precision is defined as:

precision(k) =
|relevant images ∩ k-retrieved images|

|k-retrieved images| . (6)

MAP evaluates the precision of the retrieved images across several
values of K, which makes it robust towards fluctuations among the top
retrieved images.

5.2. Evaluating quality of representations

The most widespread approach for evaluating the representation
produced by a self-supervised learning framework is to train a simple
classifier on the learned representations (Chen et al., 2020; Caron et al.,
2020; He et al., 2020). The motivation for this, is that a simple classifier
is highly dependent on the representation it is given to perform the
desired task. In this work, we follow recent studies that use a k-nearest
neighbors (KNN) classifier (Caron et al., 2021, 2020) to evaluate the
quality of the representation. We opt for a KNN classifier over a
linear classifier as it does not require any training, which can lead to
ambiguities in the results (Kolesnikov et al., 2019), and has minimal
hyperparameters to tune.

5.3. Evaluating the quality of explanations

Great improvements have been made in the field of XAI over the last
couple of years. In contrast, the field of evaluation for explanations is
still under active development (Doshi-Velez and Kim, 2017). However,
recent advances have introduced new methods for providing quantita-
tive evaluation of explanations. In this work, we use the relevance rank
accuracy score (RR) (Arras et al., 2022). RR measures how many of the
top-𝑀 relevant pixels lies within the ground truth segmentation mask.
It can be considered a proxy for how well the explanation agrees with
a human explanation for a given images. Let 𝑅𝑀 denote the 𝑀 most
relevant pixels in an explanation, and 𝑆 the segmentation mask for the
liver. RR can then be defined as:

RR = 1
𝑁

𝑁
∑

𝑛

|𝑅𝑀 (𝑛) ∩ 𝑆(𝑛)|
|𝑆(𝑛)|

. (7)

The RR is computed using the Quantus toolbox (Hedström et al., 2023).
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5.4. Statistical test for quantitative evaluation

We use a permutation test (Welch, 1990) to determine if differ-
ences in quantitative performance is statistically significant. The null
hypothesis in a permutation test is that all samples come from the same
distribution. In our case, the null hypothesis is that the performance
of two feature extractors trained using different methods is the same,
and the test statistic is the difference between mean performance across
multiple training runs. If the performance is truly equal, the mean
difference should not change significantly if the performance of the
two feature extractors are mixed together and shuffled. The 𝑝-value
is computed by counting the number of mean differences that have a
greater value than the mean difference of the original configuration. We
repeat the training procedure 20 times for each approach, which would
results in 40! permutations. This is computationally intractable, so we
perform 10000 permutations of the performance scores to conduct the
statistical test.

6. Data

In this section, we present the data used to evaluated our proposed
framework.

6.1. Decathlon data

The medical segmentation decathlon is a biomedical image analysis
challenge where several tasks and modalities are considered (Antonelli
et al., 2022). One of the datasets in this challenge is a CT liver dataset
acquired from the LiTS dataset (Bilic et al., 2023) and consists of 201
contrast-enhanced CT liver images from patients with mostly cancers
and metastatic liver disease. However, we exclude 70 of these images
as they do not include label information. Using every slide from each
volume is computationally intractable. Therefore, we construct a slice-
wise dataset as follows. From each volume, we sample 5 slices with
no liver and 5 slices with liver. We construct the training set from the
first 100 volumes and the test set from the remaining 31 volumes. This
results in a balanced dataset with 1000 training images and 310 test
images.

6.2. UNN data

The UNN dataset is from an extensive database of CT scans from The
University Hospital of North Norway (UNN). It is under development
through a close collaboration between UiT, The Arctic University of
Norway, and UNN. The database contains CT volumes of 376 patients
surgically treated for rectal cancer from 2006 to 2011 in North Norway.
The examinations were conducted for diagnostic and routine follow-
up purposes. The full dataset consists of CT with coronal, sagittal, and
axial slices of mainly the thorax, abdomen, and pelvis. Examinations
were conducted with different scanners and protocols at eight different
hospitals in North Norway in the period 2005 to 2020.

From the full dataset a subset of 3347 axial volumes from 368 pa-
tients was selected based on descriptive keywords and DICOM metadata
to limit it to contain mostly volumes of the liver and abdomen. This
subset is similar to the CT liver partition of the medical segmentation
decathlon dataset in terms of image resolutions and contents, but more
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Fig. 7. From left to right, mean average precision, knn accuracy, and relevance rank scores versus epochs across 20 training runs on the test images from the UNN dataset. The
plot show how performance increase with training time, and that the proposed framework learns faster with better results.
Table 1
An overview of deep learning architecture, number of parameters, activation function,
and optimization method used in the proposed method.

Architecture Num. of params. Activation Optimization

ResNet50 ∼23 million ReLU SGD

diverse in terms of image quality, contrast enhancement levels, and
artifacts because it is only curated using keywords and metadata, and
not by manual assessment.

From the UNN dataset, a subset of 10 randomly selected vol-
umes from 10 different and randomly selected patients with liver
tumors were manually labeled with segmentation masks of the liver
and metastatic regions by a clinician (co-author K.R.) to be used in our
study. In addition, two volumes from a patient that had been treated
with liver surgery to remove a metastatic liver segment were included.
One volume was before the surgery, and one after the surgery. The
study of these pre- and post-operative images is conducted as a use-case
of cross-examination CBIR.

7. Data robustness

To ensure real life clinical benefits, automatic algorithms should
be able to handle data from different sources. The data used in this
manuscript has been collected from multiple different sites. The Dechat-
lon dataset consists of data from seven clinical sites, and the UNN
dataset provides an additional dataset for increased diversity. By train-
ing and evaluating on images from multiple clinical sites, we work
towards creating algorithms that are robust to shifts in the data.

8. Experiments

We present the results of the experimental evaluation of our pro-
posed framework. All models were trained with a batch size of 32 and
for 250 epochs. Optimization was carried out using stochastic gradi-
ent descent with momentum=0.9, weight decay=0.0001, and learning
rate=0.05 * batch size/256, as used in the SimSiam framework (Chen
and He, 2021). As in previous works (Chen et al., 2020; Chen and
He, 2021), a ResNet50 (He et al., 2016) was used as the feature
extractor, with the output of the average pooling layer as the final rep-
resentation. The ResNet50 is a convolutional neural network consisting
of 48 convolutional layers, one max pooling layer, and one average
pooling layer. The activation function used in the ResNet50 is the ReLU
activation function (Glorot et al., 2011). The important advantage of
the ResNet family of convolutional neural networks is the use of skip
connections between computational layers. This improves the gradient
flow in the neural networks which enables deeper networks with higher
capability to be trained. The ResNet50 is one of the most widely used
convolutional neural networks for computer vision tasks. For both the
KNN classifier and the MAP we set K=5. Code is available at https:
//github.com/Wickstrom/clinical-self-supervised-CBIR-ct-liver.git. Ta-
ble 1 gives an overview of several important components used in the
proposed framework.
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Table 2
Mean and std of mean average precision, knn accuracy and relevance rank score across
20 training runs on the test images from the Decathlon dataset. Results show that the
proposed framework outperforms the baselines. Bold numbers indicate a statistically
significant improvement at a significance level of 0.05. Significance was determined
using a permutation test (Welch, 1990).

Pretraining MAP ACC RR

IN 79.4 80.3 5.00
IN + SS (baseline) 87.5 ± 1.0 88.7 ± 0.8 14.7 ± 3.1
IN + SS (ours) 88.7 ± 0.8 91.2 ± 1.1 14.8 ± 2.1

Table 3
Mean and std of mean average precision, knn accuracy and relevance rank score
across 20 training runs on test images from the UNN dataset. Results show that the
proposed framework outperforms the baselines. Bold numbers indicate a statistically
significant improvement at a significance level of 0.05. Significance was determined
using a permutation test (Welch, 1990).

Pretraining MAP ACC RR

IN 80.7 83.0 4.34
IN + SS (baseline) 83.7 ± 1.7 86.2 ± 2.4 18.4 ± 3.0
IN + SS (ours) 84.3 ± 1.7 87.8 ± 2.3 18.0 ± 3.5

8.1. Quantitative results

Tables 2 and 3 present the MAP, accuracy of a 5NN classifier,
and the RR on the test data from the Decathlon and UNN datasets.
The results show that the proposed framework outperforms the stan-
dard self-supervised approach across most scores. Furthermore, self-
supervised learning greatly improves upon simply using the feature
extractor trained on the Imagenet dataset. Also, the improvements are
transferable across datasets, as the feature extractors trained on the
Decathlon data also leads to improved performance in the UNN data.

Figs. 6 and 7 present the evolution of MAP, accuracy of a 5NN
classifier, and the RR on the test data from the Decathlon and UNN
datasets across training. The plots highlight how the scores improve as
training progresses and stabilizes. However, an interesting observation
is that the MAP and KNN accuracy achieves its highest value earlier in
training on the UNN dataset, which suggests that the feature extractor
is starting to learn features specific to the Decathlon dataset. In future
works, this could be addressed by introducing more regularization into
the self-supervised training procedure.

8.2. Explaining representations — qualitative results

The relevance rank scores in Tables 2 and 3 show that the proposed
framework utilizes liver features in the image to a larger degree than
the baseline approaches. However, the scores are far from perfect,
which means that other parts of the image are also being used. Also,
the feature extractor that is only trained on the Imagenet dataset has a
very low relevance rank score, meaning that it is putting little attention
on the liver. All of these observations can be investigated through XAI.
In this section, we illuminate these observations through a new ex-
plainability analysis for CBIR by leveraging the RELAX framework that
was described in Section 4.1. We show 4 qualitative examples, where
the first example shows explanations for the feature extractor trained
using Imagenet, and the remaining three examples shows explanations

https://github.com/Wickstrom/clinical-self-supervised-CBIR-ct-liver.git
https://github.com/Wickstrom/clinical-self-supervised-CBIR-ct-liver.git
https://github.com/Wickstrom/clinical-self-supervised-CBIR-ct-liver.git
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Fig. 8. Example (1): CBIR example from Decathlon dataset with feature extractor pretrained on Imagenet dataset. Top row shows, from left to right, the query and the top 5
retrieved images. Bottom row shows the important features for the representation of each image, with important features in red and less important in blue. Some of the retrieved
images do not contain the liver, and the explainability analysis shows that the feature extractor is focusing on the spine and rib cage instead of the organs. This information is
important to understand why non-relevant images are retrieved, and would not be available without the explainability analysis.
Fig. 9. Example (2): CBIR example from Decathlon dataset with feature extractor pretrained using the proposed self-supervised framework. Top row shows, from left to right,
the query and the top 5 retrieved images. Bottom row shows the important features for the representation of each image, with important features in red and less important in
blue. All retrieved images contain the liver, and the explainability analysis shows that the feature extractor is focusing on the liver.
for the feature extractor trained using the proposed framework. In all
examples, we show a query from the test set and the 5 retrieved images
by the CBIR system. Additionally, we show the explanation for the
query and retrieved images. The explanation show which features in
the input are the most important for the representation of the image,
where important pixels are highlighted in red and non-important pixels
in blue.

Example 1: the feature extractor pretrained on Imagenet fo-
cuses on hard edges such as the spine. Fig. 8 displays an example
where 2 of the 5 the retrieved images do not contain parts of the liver.
When inspecting the explanations, it is clear that the feature extractor
is not focusing on the liver, but rather on the tailbone. We hypothesize
that since the feature extractor has never been presented with CT
images, it utilizes prominent features with hard edges such as the spine,
as opposed to organs with softer boundaries. The behavior discovered
in this example is important, as it might also result in unexpected or
poor retrievals for other queries.

Example 2: the feature extractor trained using the proposed
framework focuses on liver features. Fig. 9 shows an example where
all the retrieved images contain liver. Additionally, it is evident that the
feature extractor is putting more emphasis on the liver for all the im-
ages, which illustrates how the proposed self-supervised framework has
enabled the feature extractor to focus on clinically relevant features.
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Example 3: the feature extractor trained using the proposed
framework uses features from organs that often co-occur with the
liver. Fig. 10 displays an example where the CBIR system retrieves
5 images that contain the liver, but where the explainability analysis
shows that it not focusing on part of the images where the liver is
present. Instead, it puts attention on the kidneys, which are quite
prominent in all images. The kidneys often occur together with the liver
in many CT images, and it also has similar pixel intensities as the liver
(in terms of Hounsfield units). Therefore, it is not surprising that the
feature extractor has learned to utilize both liver and kidney features,
which also explains the behavior in this example. Such insights would
not be obtainable without conducting the explainability analysis.

Example 4: the feature extractor trained using the proposed
framework focuses on liver features, also for images from a differ-
ent dataset. Lastly, Fig. 11 shows an example from the UNN dataset.
This example illustrates that also on this new and unseen dataset, the
feature extractor is basing the representation of these images features
associated with the liver.

8.3. Case study: Cross-examination CBIR

A typical scenario in clinical practice is comparing a newly con-
ducted examination with one ore more previous examinations. For
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Fig. 10. Example (3): CBIR example from Decathlon dataset with feature extractor pretrained using the proposed self-supervised framework. Top row shows, from left to right,
the query and the top 5 retrieved images. Bottom row shows the important features for the representation of each image, with important features in red and less important in
blue. All retrieved images contain the liver, but the explainability analysis reveals that the focus is on the kidneys, not the liver.
Fig. 11. Example (4): CBIR example from UNN dataset with feature extractor pretrained using the proposed self-supervised framework. Top row shows, from left to right, the
query and the top 5 retrieved images. Bottom row shows the important features for the representation of each image, with important features in red and less important in blue.
All retrieved images contain the liver and the feature extractor is focusing on the liver, which illustrates that the feature extractor trained on the Decathlon dataset transfers well
to the UNN dataset.
instance, one might want to compare a particular slice from the new
examination with a selection of slices from one or several previous
examinations. Such a comparison can help physicians understand how
a disease has progressed since the previous examination, such as the
development of liver metastasis. But when conducting such a com-
parison, the physician must manually inspect the new examination,
and potentially several previous examinations. The CT scans are often
taken with different settings across examinations, and it is therefore not
possible to simply select the same slice from different examinations,
as this can image completely different parts of the patient. A precise
and reliable CBIR system could make such a cross-examination more
efficient, by automating the retrieval process for the physician.

Fig. 12 displays an example of such a cross-examination. The query
is selected from a recent examination, and the retrieved images are
from the previous examination of the same patient. This patient is
from the UNN dataset and was selected since liver metastasis has been
developed between the two examinations. The query was selected by an
experienced physician (co-author K.R.), which also selected five images
to examine from the previous examination. Ideally, the CBIR system
should align well with the image selected by the physician. In this
example, the CBIR system produces a successful retrieval, as it identifies
the same images as the physician. However, an interesting observation
is that the images retrieved by the CBIR system are not sorted in the
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same manner as the physician’s retrievals. This deviation might be due
to the CBIR system being trained on single slices without a sense of
spatial coherence. Future works could address this by incorporating
neighboring samples as positive pairs in the self-supervised training.

8.4. Comparison with non-deep learning feature extractors

We compare a feature extractor trained using our proposed self-
supervised approach with non-deep learning feature extraction meth-
ods. We consider Gabor filters (Granlund, 1978) as in prior works (Zhao
et al., 2004; Lee et al., 2006) and histogram of oriented gradients
(HOG) (Dalal and Triggs, 2005). For the Gabor filters we take inspi-
ration from the prior work of Lee et al. (2006) and build a filter bank
with 6 orientations, 4 scales, and 3 × 3 filter sizes. For each filtered
image, we take the mean, variance, minimum value, and maximum
value, which leads to a feature vector of size 96 for each image. For
the HOG feature extraction we follow the prior work of Purojin Shamini
(2018) and use 9 × 9 pixels per cell, and use 9 number of orientation
bins. The results are shown in Tables 4 and 5 for the Decathlon and
UNN data, respectively. For both datasets, the features produced by the
deep learning architecture trained using our proposed self-supervised
methodology clearly outperforms the previous approaches that use
handcrafted features.
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Fig. 12. An example of cross-examination CBIR. The query is from a recent examination, and the retrieved images are from a prior examination from the same patient. The goal
of such a study is to investigate the development of liver metastasis. The query and retrieved images in the top row are selected by an experienced physician, and the bottom row
are the retrieved images from the CBIR system. The CBIR successfully retrieves the same images as the physician, but lacks the spatial coherence to order the retrieved images.
Table 4
Mean and std of mean average precision and knn accuracy across 20
training runs on the test images from the Decathlon dataset. Results
show that the proposed framework outperforms the baselines. Bold
numbers indicate a statistically significant improvement at a significance
level of 0.05. Significance was determined using a permutation test
(Welch, 1990).
Feature extractor MAP ACC

Gabor 0.50 0.50
HOG 0.77 0.77
Ours 89.1 ± 1.3 90.6 ± 1.4

Table 5
Mean and std of mean average precision and knn accuracy across 20
training runs on the test images from the UNN dataset. Results show
that the proposed framework outperforms the baselines. Bold numbers
indicate a statistically significant improvement at a significance level
of 0.05. Significance was determined using a permutation test (Welch,
1990).
Feature extractor MAP ACC

Gabor 0.49 0.49
HOG 0.78 0.75
Ours 89.1 ± 1.3 90.6 ± 1.4

9. Conclusion

We proposed a clinically motivated self-supervised framework for
CBIR of CT liver images. Our proposed framework exploits the prop-
erties of the liver to learn more clinically relevant features, which
leads to improved performance. Moreover, we leverage the RELAX
framework to provide the first representation learning explainability
analysis in the context of CBIR of CT liver images. Our analysis provides
new insights into the feature extraction process and shows how self-
supervised learning can provide feature extractors that extract more
clinically relevant features compared to feature extractors trained on
non-CT liver images. Our experimental evaluation also shows how the
proposed framework generalizes to new datasets, and we present a
clinically relevant user study. In future works, we intend to investigate
how the proposed approach can be extended to extract features specific
to other organs based on clipping strategies catered specifically to the
desired organ. We believe that the proposed framework can play an
essential role in constructing reliable CBIR that can effectively utilize
unlabeled data.
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