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Abstract
Due to the lack of clinical, immunologic, genetic, and laboratory markers to predict remission in ulcerative colitis (UC) 
without relapse, there is no clear recommendation regarding withdrawal of therapy. Therefore, this study was to investigate 
if transcriptional analysis together with Cox survival analysis might be able to reveal molecular markers that are specific for 
remission duration and outcome. Mucosal biopsies from patients in remission with active treatment-naïve UC and healthy 
control subjects underwent whole-transcriptome RNA-seq. Principal component analysis (PCA) and Cox proportional haz-
ards regression analysis were applied to the remission data concerning duration and status of patients. A randomly chosen 
remission sample set was used for validation of the applied methods and results. The analyses distinguished two different 
UC remission patient groups with respect to remission duration and outcome (relapse). Both groups showed that altered 
states of UC with quiescent microscopic disease activity are still present. The patient group with the longest remission dura-
tion and no relapse revealed specific and increased expression of antiapoptotic factors belonging to the MTRNR2-like gene 
family and non-coding RNAs. In summary, the expression of anti-apoptotic factors and non-coding RNAs may contribute 
to personalized medicine approaches in UC by improving patient stratification for different treatment regimens.
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Introduction

Ulcerative colitis (UC) is a chronic inflammatory disor-
der which requires long-term treatment in order to achieve 
remission (Ungaro et al. 2017). The inflammation status of 
UC patients is usually determined by endoscopic, histologic, 
and laboratory parameters (Peyrin-Biroulet et  al. 2014; 
Rogler et al. 2013). Different guidelines for medical and sur-
gical treatment of UC are available (Dassopoulos et al. 2015; 
Magro et al. 2017). In general, a step-up approach is rec-
ommended with the goal of obtaining clinical remission 
(Danese et al. 2014). Biological therapy is recommended 
for patients with moderate to severe disease refractory or 
patients dependent on steroid treatment. Side effects of both 
types of medication are common. The current management 
programs for UC aim for induction and maintenance of 
clinical remission to prevent treatment-induced and disease-
related complications.

Today, different scoring systems for UC activity are in use 
to evaluate endoscopic disease activity and activity status, 
but none of the scoring systems have had all criteria fully 
determined (Travis et al. 2011; Rutter et al. 2004). There 
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is no validated current definition of remission, and there-
fore still no consensus on how to define clinical remission 
(Magro et al. 2017). The guidelines from the European Coli-
tis and Crohn’s organization (ECCO) for remission suggest 
the absence of visible mucosal lesions (Mayo endoscopic 
grade 0) in remission (Magro et al. 2013), whereas others 
allow Mayo ≤ 1 including endoscopic grade 1 in remis-
sion (Lamb et al. 2019; Rutgeerts et al. 2005; Schroeder 
et al. 1987). However, it is generally accepted that healed 
mucosa with the absence of mucosal lesions is a treatment 
goal. “Histological” healed mucosa is not included in clini-
cal remission, but there is an increasing focus of includ-
ing histological criteria in healed mucosa (Peyrin-Biroulet 
et al. 2014). It is well known that even in the absence of 
gastrointestinal symptoms as well as normal endoscopic and 
clinical findings, patients may have persisting microscopic 
inflammatory activity even in the absence of gastrointesti-
nal symptoms (Korelitz 2010; Magro et al. 2018; DeRoche 
et al. 2014). This activity can result in progressive accumu-
lation of bowel damage, such as fibrosis, dysmotility, and 
increased risk of colorectal neoplasm (Gupta et al. 2007).

It is self-evident that there is a need for standardization of 
both assessment and validation as well as prognostic values. 
There is still a need to characterize the complex pathogenic 
and healing mechanisms in UC. Due to the lack of clinical, 
immunologic, genetic, and laboratory markers to predict 
remission without relapse, there is no clear recommenda-
tion regarding withdrawal of therapy. Therefore, the current 
study aims to identify molecular signatures in a UC remis-
sion cohort obtained by whole-transcriptome RNA-Seq with 
the intent to provide a better understanding of the molecular 
mechanisms responsible for remission duration and disease 
outcome. Altogether, this knowledge might lead to novel 
personalized therapeutic approaches that will help patients 
to stay in remission.

Materials and methods

Patient material

A standardized sampling method was used to collect mucosal 
biopsies (n = 56) from patients in remission (RR; n = 26). 
For comparison purposes, normal patient biopsies (NN; n = 
16) and biopsies from patients with active UC (UC; n = 14) 
were adapted from an earlier study (Fenton et al. 2021). The 
level of inflammation in UC patients was diagnosed based 
upon established clinical endoscopic and histological criteria 
as defined by the European Colitis and Crohn’s Organiza-
tion (ECCO) guidelines (Magro et al. 2017). A total Geboes 
score was determined for the remission samples (Geboes 
et al. 2000). TNF mRNA levels in biopsies were estimated 
by qPCR (Olsen et al. 2007). TNF-α values of <7000 copies/
ug RNA were considered non-inflamed tissues. Faecal cal-
protectin was measured with the Calprest ELISA kit (Euro-
spital). All patient characteristics are depicted in Table 1. 
All methods were performed in accordance with the Decla-
ration of Helsinki. The study participants signed informed 
and written consent forms. Approvals were granted by the 
Regional Committee of Medical Ethics of Northern Norway, 
Ref no: 14/2004, 1349/2012 and 29895/2020. The samples 
were taken from an established biobank approved by the 
Norwegian Board of Health (952/2006).

RNA isolation

Total RNA was isolated using the Allprep DNA/RNA 
Mini Kit from Qiagen (catalogue number 80204) and 
the QIAcube instrument (Qiagen), according to the 
manufacturer’s protocol. Quantity and purity of the 
RNA were assessed by using the NanoDrop ND-1000 

Table 1   Characteristics of 
patients

*TNF-α copies/μg RNA in 18 patients. £Proctitis/rectosigmoid/left-sided colitis/pancolitis. #5-ASA/ster-
oids/immunosuppressives/biologics. €Average calprotectin levels in 16 patients. ¥Average calprotectin lev-
els in 11 patients. §Data adapted for comparison from Fenton et al. (Fenton et al. 2021)

Characteristics Control§ (n = 16) Remission (n = 26) Treatment-naïve 
active UC§ (n = 14)

Gender (male/female) 11/5 15/11 9/5
Age (years) mean ± SD 52.5 ± 16.9 48.4 ± 13.4 40.7 ± 13.9
Endo score mean ± SD 0 0 1.79 ±0.43
Geboes score (total) ± SD n.d. 0.36 ± 1.38 6.35 ± 2.93
TNF-α copies/μg RNA ± SD 3663 ± 1973 5060 ± 3047* 15907 ± 9623
Calprotectin (mg/kg) mean ± SD n.d. 23.8 ± 35.7€ 587.5 ± 483.8¥

Extension of disease£ _ 2/7/8/9 2/9/3
Duration of remission (years) ± SD _ 4.38 ± 4.28 _
Medication# _ 26/0/7/2 _
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spectrophotometer (Thermo Fisher Scientific, Wilm-
ington, DE). The Experion Automated Electrophoresis 
System (Bio-Rad, Hercules, CA) and the RNA StdSens 
Analysis Kit (Bio-Rad, catalogue # 700–7103) were used 
to evaluate RNA integrity. The RNA samples were kept 
at −70 °C until further use. All RNA samples used for 
analyses showed an RNA integrity number (RIN) value 
of between 8.0 and 10.0.

Library preparation and next‑generation 
sequencing

Whole transcriptome libraries of UC remission samples 
were prepared with the TruSeq Stranded Total RNA 
LT Sample Prep Kit from Illumina (Catalogue number 
RS-122–2203). The amount of input material was 1 μg of 
total RNA. The Bioanalyzer 2100 (Agilent Technologies, 
Santa Clara, CA) and the Agilent DNA 1000 kit (Cata-
logue number 5067-1504) were used to assess RNA library 
quality, according to the instruction manual. The libraries 
were normalized to 10 nM and subsequently paired- end 
sequenced with the NextSeq 550 instrument (Illumina) 
according to the manufacturer’s instructions. The average 
number of uniquely mapped reads per sequencing run was 
85 million reads per sample.

Data analysis

The entire design and workflow of the study is depicted 
in Fig. 1.

Data quality assessment and initial principal 
component analysis (PCA)

Quality scoring and base calling were performed on the 
Illumina NextSeq 550 sequencing instrument. The out-
put FastQ file was aligned with reference GENCODE 
Human Release 33 (Human Genome Assembly GRCh38.
p13) (https://​www.​ncbi.​nlm.​nih.​gov/​grc/​human/​data) by 
STAR (Version 2.7.3a) with 2-pass mapping and gene 
counts parameters in STAR (Dobin et al. 2013). After 
alignment, the read quality was controlled by multiQC 
(Ewels et al. 2016). The gene counts were analysed and 
log-normalized by DESeq2 (Love et al. 2014); genes with 
an average log2 expression less than 4 were filtered out 
prior to normalization. Seven remission samples were ran-
domly chosen for verification. Initial principal component 
analysis (PCA) was performed based on the top 15,000 
variable genes after normalization.

Processed RNA-Seq data have been deposited in 
NCBI’s Gene Expression Omnibus (GEO, https://​www.​
ncbi.​nlm.​nih.​gov/​geo/) and are accessible through GEO 
series accession numbers GSE128682 and GSE169360.

Cox survival analysis of remission samples

After PCA, the remission patient group was investigated 
with Cox survival analysis in R using plsRcox (Bastien 
et al. 2015). Using remission patient information (Table 1) 
indicating state (relapse or not) and duration (time to 
relapse), a Cox model was created. The Cox model was 
applied on the normalized gene count matrix from remis-
sion patients. The initial Cox model was significant with 
a p < 0.01 in the likelihood ratio test and p = 0.03 in the 
Wald test for all normalized genes in the remission group, 
thus, suggesting that there is enough information in the 
gene matrix to explain patient risk. To further identify 
which genes influence risk for relapse, the R package sur-
vival (coxph) was then applied on each individual gene 
(Therneau 2021). The second analysis revealed 287 genes 
that significantly contribute to risk with a p value< 0.01. 
Those 287 genes were used for PCA analysis and visuali-
zation. Hazard beta-coefficients were calculated for the 23 
selected genes.

Annotations

Genes were manually annotated using GeneCards (https://​
www.​genec​ards.​org/). EnrichGO of the clusterProfiler R 
package (Yu et al. 2012) was applied to the protein-coding 
genes. Only biological process GO terms for comparisons 
of patient groups with padj < 0.05 were kept.

RNA isola�on
RNA-seq

Normaliza�on
DESeq

COX survival model (plsRcox)  

Tissue samples

COX propor�onal hazard model (Coxph)

Annota�ons

Valida�ons

Fig. 1   Study design. The flow chart depicts the entire workflow of the study

https://www.ncbi.nlm.nih.gov/grc/human/data
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://www.genecards.org/
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Validations

Prior to analysis, seven remission samples were excluded 
from the remission patient cohort for validation. Gene counts 
from the four MTRNR2-like family genes (MTRNR2L6, 
MTRNR2L3, MTRNR2L12, and MTRNR2L8) from the 
validation samples were tested using the plsRcox package 
(Ginestet 2011). The statistics of all the Cox models are 
shown in Table S2.

Data visualization

Heatmaps were generated by ComplexHeatmap (Gu 
et al. 2016). Among 287 genes, protein coding genes and 
non-protein coding genes were ranked by means of each 
gene in the remission samples divided by the sum of means 
of each gene in each group, respectively. The rows were 
clustered for better visualization.

Results

Transcriptomic analysis discriminates different 
states of UC

The whole transcriptome representing treatment-naïve 
active UC (UC; n = 14), UC in remission (RR; n = 19), 
and normal control samples (NN; n =16) was established by 
RNA-seq. Pre-processing of the sequencing data revealed a 
total of 18,783 expressed genes. The normalization of the 
expression of gene matrices for all groups showed no batch 
effects (Table S1). The initial principal component analysis 
(PCA) with 15,000 most variable genes resulted in a clear 
distinction between normal (NN), ulcerative colitis (UC), 
and remission (RR) samples, along the first principal com-
ponent (PC1) with a 30.2% explained variance and an 11% 
explained variance along with the second component (PC2) 
(Fig. 2). Note, that prior to the initial PCA analysis, seven 
remission patient samples were randomly removed from the 
remission data set for validation of a Cox survival model 
(see below).

Cox survival analysis discriminates genes related 
to remission duration and state

PCA alone did not result in a separation of remission sam-
ples, although they differed in terms of remission duration 
and time of relapse. Therefore, an attempt was made to 
distinguish remission samples by using different Cox mod-
els. Using the remission patient characteristics depicted 
in Table 1, a Cox survival model based on partial least 
squares was established using remission duration as sur-
vival time and relapse as an event. The model returned 

a likelihood test and Wald test p < 0.05 (Table S2), thus 
suggesting that there is enough information in the gene 
matrix to explain patient risk.

Remission significant genes obtained by Cox 
analysis

The second Cox analysis for each individual gene of the 
remission gene matrix returned 287 significant genes p 
<0.01 related to risk (Tables S2 and S3). Of the 287 genes, 
188 represented protein-coding genes, 28 small RNAs, 25 
non-coding RNAs, 31 pseudogenes, and 15 miscellaneous 
RNAs, which are all listed in Table S3. Significant genes 
(n = 287) obtained by the remission Cox analysis were 
visualized by PCA with co-normalized normal control 
samples (NN) and UC samples (UC) included. The result 
of the PCA shows that the significant genes from of the 
Cox model can clearly separate the remission samples into 
two groups with 38.1% and 12.9% of explained variances 
for principal component 1 (PC1) and principal compo-
nent 2 (PC2) (Fig. 3). Both remission groups showed clear 
differences with respect to endoscopic, histological, and 
laboratory parameters and were then denominated accord-
ingly RM (remission without relapse) and RL (remission 
with relapse) (Fig. 3 and Table S4). The PCA biplot shows 
both PC scores of samples (dots) and loadings of variables 
(vectors). The further away these vectors are from a PC 
origin, the more influence they have on that PC. Notably, 
the RM samples grouped closer to the normal control sam-
ples, whereas RL samples clustered and in part overlapped 
with UC samples (Fig. 3).

Fig. 2   Principal component analysis (PCA) of remission, ulcerative 
colitis, and normal control patient samples. PCA of remission (RR), 
ulcerative colitis (UC), and normal control patient samples (NN) of 
the 15,000 most variable genes after normalization. Principal compo-
nent (PC1) explained 30.4% of the total variance, and principal com-
ponent 2 (PC2) explained 11% of the total variance
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Genes of the MTRNR2‑like family separate remission 
duration

Two biplots were constructed on the PCA, one includ-
ing all 188 protein-coding genes and one including 99 
non-coding genes indicating the effect of each individual 
gene on the principal components (Figs. S1 and S2). For 
illustrative purposes, twenty-three relevant protein-coding 
genes with high influence were chosen for construction of 
a biplot (Fig. 3). In addition, the expressions of relevant 
30 protein-coding genes and non-coding genes found for 
the different patient groups were visualized in a heatmap 
(Fig. 4).

Genes of the MTRNR2-like family influenced the 
remission samples separation. Solute carrier family 44 
member 5 (SLC44A5), glucagon like peptide 2 receptor 
(GLP2R), prominin 1 (PROM1), NEDD4 like E3 ubiq-
uitin protein ligase (NEDD4L), and methylmalonyl-CoA 
mutase (MMUT) are the main participants for components 
for separation towards the normal control group. Genes 
like interleukin enhancer binding factor 3 (ILF3), carba-
moyl-phosphate synthetase 2, aspartate transcarbamylase, 
and dihydroorotase (CAD), Mal, T cell differentiation pro-
tein (MAL), and granzyme M (GZMM) are influencing the 
separation of UC samples and RL samples.

Hazard values confirm separation and specificity 
of expressed genes

To confirm this finding, a PCA using the 287 genes from the 
remission gene count matrix only was performed (Fig. 5). 
The result confirmed the separation and specificity of the 
expressed genes with 59.1% and 9.8% of explained variances 
for PC1 and PC2 in the remission matrix PCA. Beta-coef-
ficients (hazard values) for selected 23 individual genes are 
shown in Fig. 6. Ten genes including ILF3, mitochondrial 
ATP-dependent protease Lon (LONP1), proteasome 20S 
subunit alpha 3 (PSMA3), and CAD were found to increase 
the chance of relapse which is reflected by negative coef-
ficients. Thirteen genes including MTRNR2 like family, 
PROM1, and NEDD4L decrease the probability of relapse 
which is reflected by positive coefficients. A complete beta 
value list of all genes (n = 287) can be found in Table S5.

Annotation reveals involvement of apoptotic 
and RNA processing pathways

Among the 287 genes, 188 were protein-coding genes. GO 
enrichment of these 188 protein-coding genes is shown 
in Fig. 7. Significantly enriched gene sets revealed bio-
logical processes like negative regulation of the execution 
phase of apoptosis with genes of the MTRNR2-like family 
(MTRNR2L6, MTRNR2L8, MTRNR2L3, MTRNR2L12), 
ribosome biogenesis, rRNA processing, RNA splicing, 
signal transduction by p53 class mediator, and ribonucleo-
protein complex biogenesis. The cellular component preri-
bosome and molecular functions including single-stranded 
RNA binding and receptor antagonist activity were enriched. 
The full enrichment list is shown in Table S6.

MTRNR2‑like genes are predictors for risk of relapse

Seven remission testing samples were used to validate the 
influence of the four MTRNR2-like genes (MTRNR2L6, 
MTRNR2L8, MTRNR2L3, and MTRNR2L12) using the 
Cox model. The correlation between predicted duration and 
actual duration R= 0.641 (Fig. 8). This indicates that the 
MTRNR2-like genes are good predictors for risk of relapse.

Discussion

Today, the recommendations regarding the withdrawal of 
therapy during UC are not clear. Therefore, the current 
study aimed to identify molecular signatures in a UC remis-
sion patient cohort with focus on remission duration after 
treatment and disease outcome. The analysis of transcrip-
tional expression data of UC remission samples obtained 
by RNA-Seq, Cox survival analysis, and downstream PCA 

Fig. 3   Principal component analysis of genes revealed by Cox analy-
sis. Genes revealed from the Cox regression analysis (n = 287) were 
used for principal component analysis (PCA) including remission 
(RR), ulcerative colitis (UC), and normal control patient samples 
(NN). Principal component 1 (PC1) explained 38.1% of the total vari-
ance, and principal component 2 (PC2) explained 12.9% of the total 
variance. The biplot depicts 23 protein-coding genes of 188 protein-
coding genes obtained by Cox analysis. The arrows indicate the genes 
as loading projectiles that differ the group from the direction. The 
length of each arrow represents the effect of genes on the compo-
nents. To improve the visibility, the loadings were multiplied by 25. 
Each arrow is labelled with a gene name as indicated. An entire list of 
genes can be found in Table S3. Figure S1 depicts a biplot including 
all protein-coding genes
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analysis of genes obtained by Cox survival analysis clearly 
revealed a relationship between remission event (duration 
of remission) and remission states (relapse or no relapse). 
Initial PCA analysis (Fig. 2) on the normalized expression 
matrix of all patient samples confirmed similar distribution 
patterns for remission samples found for two independent 
UC remission cohort studies studying the differential expres-
sion of genes, showing a clear distinction between UC in 
remission, normal controls, and active UC samples (Fenton 
et al. 2021; Planell et al. 2013). PCA analysis of the genes 
obtained by Cox analysis could clearly separate remission 
samples into two groups representing UC remission, one 
with relapse (RL) and one without relapse (RM) (Figs. 3 and 
5). The Cox analysis, using the remission gene matrix only, 
showed that the model was independent of the other sample 
groups, UC and NN (Fig. 5). Therefore, it is surprising that 

a clear relationship between selected genes and the UC and 
NN background samples could be observed (Fig. 3).

The obtained molecular signatures did show differ-
ent inflammatory states in the remission groups (Fig. 3, 
Tables S3 and S4). A quiescent inflammation is still pre-
sent in remission which is reflected by the expression of 
interleukin enhancer binding factor 3 (ILF3) which is 
involved in innate immune responses and myeloid den-
dritic cell maturation in IBD (Aitchison et al. 2021). The 
influence shown in the biplot (Figs. 3 and S1) on the first 
principal component and a high beta coefficient found 
for ILF3 confirms inflammatory signals in RL samples 
(Fig. 6 and Table S5). Likewise, increased expression of 
other inflammatory genes like CAD which is involved in 
the inhibition of NOD2 antibacterial function in intesti-
nal epithelial cells (Richmond et al. 2012) and PSMA3 

Fig. 4   Heatmap of selected 
genes of relevance for remission 
status. Heatmaps were gener-
ated by ComplexHeatmap as 
described in the “Materials and 
methods” section. Thirty protein 
coding genes and non-protein 
coding genes were ranked 
by means of each gene in the 
remission samples divided by 
the sum of means of each gene 
in each group, respectively. 
Long-term remission samples 
(RM), short-term remission 
samples (RL), treatment-naïve 
ulcerative colitis samples (UC), 
and normal control samples 
(NN) are depicted and normal-
ized expression levels of a genes 
are indicated
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which is involved in the proteasome-mediated NF-dB 
activation in UC (Goetzke et al. 2021) was observed. 
Recently, a relationship between UC and atherosclero-
sis has been implicated (Weissman et al. 2020; Roifman 
et al. 2009). The reported higher risk of cardiovascular 
events in UC patients may be pertinent in inflammation-
mediated atherosclerosis (Rungoe et al. 2013; Kristensen 
et al. 2013). The mitochondrial matrix protein LONP1 
has been shown to be involved in atherosclerosis mito-
chondrial protein quality control (Hansen et al. 2008; 
Onat et al. 2019) and is a strong risk factor of relapse 
(Fig. 6). All the above-mentioned genes are shown to 
have an influence pointing towards inflammation and 
increased risk of relapse especially for patients in the 
RL group (Figs. 3, 6, and S1).

It is well-known that mitochondrial function in the intes-
tinal epithelium plays a critical role in maintaining intes-
tinal health (Urbauer et al. 2021). A recent paediatric UC 
patient cohort study revealed suppressed expression of mito-
chondrial genes in active UC (Haberman et al. 2019). The 
here observed increased expression of MTRNR2-like genes 
might improve the remission state (Fig. 3, Table S3, Fig. S1). 
Mitochondrial dysfunction and dysbiosis of gut microbiota 
have been shown to be associated with IBD (Jackson and 
Theiss 2020). Therefore, a recovery of the gut-microbiota 
environment and restoring of rectal mitochondrial energy 
functions can be implied for remission without relapse (RM) 
where commensal bacterial-induced mitochondrial signal-
ling potentiates epithelial homeostasis. The specific expres-
sion of MTRNR2-like genes in RM might represent these 
genes as potential molecular markers for disease outcome 
(Figs. 3 and 4, and Table S3). The GO annotations con-
firmed enrichment of genes involved in the regulation of 
execution phase of apoptosis (Fig. 7).

It is interesting to note that MTRNR2 treatment may 
exert beneficial effects in UC by decreasing inflamma-
tory reactions and apoptosis (Gultekin et al. 2017). The 
mitochondrial metabolism in the intestinal stem cell niche 
plays also a pivotal role in regulating intestinal epithelial 
cell homeostasis, including self- renewal and differentia-
tion (Urbauer et al. 2021). The observed expression of stem 
cell marker prominin 1 (PROM1) (Karim et al. 2014) and 
NEDD4 like E3 ubiquitin protein ligase (NEDD4L) points 
to a maintenance of proliferation and differentiation of the 
colonic epithelium in RM (Kimura et al. 2011) (Figs. 3 and 
4). NEDDL4 strongly contributes to a lower risk of relapse 
(Fig. 6). In addition, increased expression of the vitamin 
B12 dependent, mitochondrial MMUT (Park et al. 2021) 
in RM points to a lower B12 deficiency reported for UC 
patients thereby lowering the risk of relapse (Fig. 6) (Battat 
et al. 2014; Mortimore and Florin 2010).

Fig. 5   Separation of UC remission samples by PCA. Separation 
of remission samples by principal component analysis (PCA) using 
287 genes obtained by Cox analysis. The samples separate into two 
groups dependent on remission duration, remission without relapsing 
(RM, blue), and remission with relapsing (RL, yellow). The size of 
the circles represents the duration of remission. Principal component 
1 (PC1) explained 59.1% of the total variance, and principal compo-
nent 2 (PC2) explained 9.8% of the total variance

Fig. 6   Beta-coefficients 
obtained by Cox proportional 
hazards regression analysis. 
Beta-coefficients indicate the 
contribution of each gene to 
the relative risk of relapse in 
the Cox survival analysis for 
23 UC-relevant genes shown 
in Fig. 2. The figure shows 
the beta-coefficient value on 
the X-axis for each gene. Zero 
is marked as a dashed line. 
A negative value indicates a 
protective effect of a gene with 
which it is associated, and vice 
versa
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Top genes with great influences towards normal control 
samples in the PCA are HMGSCS2, BAGALNTT2, and 
GLP2R (Figs. 3 and S1). HMGCS2 encodes a mitochon-
drial protein that belongs to the HMG-CoA synthase fam-
ily and catalyses the first reaction of ketogenesis. Elevated 
expression of HGMCS2 has been reported recently for 
long-duration ulcerative colitis (Low et al. 2019). Here, 
HMGCS2 showed increased expression in both remis-
sion groups when compared to UC and contributes to a 
lower risk of relapse (Table S3 and Fig. 6). However, a 
high expression of HMGCS2 has been associated with the 
development of colorectal cancer (CRC) which is contrary 

to these findings (Chen et al. 2017). Increased expres-
sion of glycosyltransferase B4GALNT2 in RM points to 
a maintenance of the intestinal mucus barrier function 
(Table S3) (Bergstrom et al. 2017). The increased expres-
sion of GLP2R involved in the stimulation of intestinal 
growth, increase of crypt cell proliferation and decrease of 
enterocyte apoptosis by glucagon-like peptides, prevents 
intestinal hypoplasia (Drucker 2003).

Interestingly, nearly all the non-coding genes shown 
in the biplot demonstrate an influence towards RM and 
normal controls in the PCA (Fig. S2). The expression of 
20 small nucleolar RNAs (snoRNAs) (Fig. 4, Table S3, 
and Fig. S2) may be involved in the mediation of cell–cell 
communication and improvement of cell survival in the 
face of stress and/or infection (Rimer et al. 2018), and long 
non-coding RNAs (lncRNAs) have been shown to have rel-
evance for ulcerative colitis pathogenesis (Ghafouri-Fard 
et al. 2020; Yarani et al. 2018; Ray et al. 2022). Functions 
of non-coding RNAs in ribosomal RNA (rRNA) regula-
tion have been recently reported where especially snoR-
NAs and long non-coding RNAs play important roles in 
pre-rRNA transcription, processing, and maturation (Li 
et al. 2013). These pathways are shown to be enriched in 
RM (Fig. 7).

However, the relevance of specific expression of non-cod-
ing RNAs for UC remission duration and outcome needs fur-
ther evaluation. In this context, it is interesting to note that 
synergistic gene regulation by pseudogenes and non-coding 
RNAs has been considered a novel regulatory mechanism 
which might have a role in UC pathogenesis (Li et al. 2013; 
Milligan et al. 2015).

This study is not without limitations and is limited by a 
restricted number of patient samples. Yet, a separation in 
the PCA after Cox analysis was clearly derived (Figs. 3 and 
5). Although several studies present gene expression data 
of UC patients in remission, separate patient samples with 
indicated time of relapse were not available for validation 
of the Cox model. Knowing that the sample number was 
low, the Cox survival model was then validated with 7 ran-
domly chosen remission patient samples and could confirm 
the model (Fig. 8) using four MTRNR2-like genes. In addi-
tion, a patient cohort with the possibility to investigate the 
remission state in the same patients consecutively was not 
available at the time of this study. Nevertheless, the different 
remission groups do not resemble a normal control pheno-
type. Patients in the RM group that have been previously 
treated with anti-TNF therapy (infliximab) until endoscopic 
remission and subsequently been treated with 5-aminosali-
cylic acid (5-ASA) only did not experience relapse (Johnsen 
et al. 2017). Patients in the RL remission group remained in 
remission for up to 8 months with additional immunosup-
pressive treatment but had a relapse at some point during 
the treatment period.
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Fig. 7   Functional annotations of genes revealed by Cox analysis. 
The protein-coding genes were annotated with gene ontology (GO). 
Enriched pathways and genes involved are indicated. The length of 
bars indicates the number of genes involved in the GO terms for bio-
logical process (BP), cellular component (CC), and molecular func-
tion (MF). A complete list of enriched GO pathways annotations can 
be found in Table S6

Fig. 8   Validation of the Cox survival model. The validation of the 
Cox model was tested with seven UC remission samples. The correla-
tion plot depicts the predicted remission time (years) on the X-axis 
and the actual remission time (years) on the Y-axis for a group of 
7 randomly picked patient samples using a gene set including 4 
MTRNR-like genes (MTRNR2L6, MTRNR2L3, MTRNR2L12, 
MTRNR2L8). The correlation between the two parameters is esti-
mated at R= 0.641
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Conclusions

The data clearly demonstrate that remission is an altered 
state of UC with quiescent microscopic disease activity 
still present. This disease activity is independent of remis-
sion duration and outcome. Transcription expression anal-
ysis and Cox survival analysis revealed potential markers 
genes that could be useful to predict disease outcome. 
These markers include mitochondrial MTRNR2-like genes 
and non-coding RNAs. Especially, the expression of anti-
apoptotic factors and snoRNAs may contribute to person-
alized medicine approaches in UC by improving patient 
stratification for different treatment regimens. The data 
presented might be of clinical utility in the future.
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