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Abstract—A system of several wireless sensor nodes and one
unmanned aerial vehicle (UAV) is considered in this research. The
nodes are only floating and drifting with the sea stream. The UAV
will be operating as a data mule to gather sensing information
from wireless sensor nodes. Unlike prior studies, this paper
addressed a realistic ocean model for the nodes movements which
will be the references to the Kalman Filter (KF) in estimating
for the nodes’ positions. Simulation results are evaluated for an
optimal flight-able path for the UAV under several constraints
by particle swarm optimization (PSO). Specifically, the deviation
between the estimated positions and the referenced positions, total
energy consumption by the sensors network, data rates between
UAV and the nodes, flight time for the UAV, and frequency of
visiting the nodes by the UAV will be considered for optimization.
The systems performances will be evaluated based on these
scenarios: a) an ideal and unrealistic scenario where the UAV
follows the nodes continuously; b) a realistic case where the
UAV only flies periodically. Discussions and solutions were also
addressed for the situations when the deployed nodes are more
significantly separated than the cases simulated in the paper.
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I. INTRODUCTION

An increasing number of applications have used one single
unmanned aerial vehicle (UAV) or a swarm of collabora-
tive UAVs in collecting data from wireless sensor networks
(WSN). The noticeable benefits of using a UAV compared
with a conventional crewed aircraft (e.g., helicopters) are the
enhancements in cost, mobility, safety, and the easiness in
deployment and operation. In these system applications, UAVs
usually play the roles of either a data mule or a data relay
node. Some examples of UAVs acting as data mules include
ocean monitoring [1], detection and tracking of marine fauna
[2], real-time highway surveillance [3], disaster monitoring
and management [4],[5], wildfire management and agricultural
monitoring [6], and emergency response based on the images
taken by UAVs [7]. Examples of UAVs used as relay nodes
are for instance, as flyable base stations in the newly rolled
5G network for urban areas [8], as mobile base stations to
expand the coverage area of the 5G radio signal to the regions
not traversed for emergency services [9], or as mobile relaying
node for maritime radio communication system [10]-[12]. The
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UAV can also be used as a flyable base station in relaying mm-
Wave radio signal which plays a significant component of the
5G and its beyond cellular networks [13]. In many applica-
tions, the prevalent studies to consider include path planning
for the UAVs, energy efficiency for data communications, UAV
navigation, data links between UAVs and sensor network,
energy harvesting, network reliability and throughput, and
service availability in such mobile systems and networks.

This paper aims to optimize the flight path for the UAYV,
energy consumption by the sensors network, the freshness of
data collected from the nodes, and to minimize the error for
estimating the nodes’ positions when they are floating with
the sea currents with assistance of only one UAV such as a
fixed-wing drone.

II. RELATED WORK AND CONTRIBUTIONS

In the networks and systems mentioned above, the wireless
sensor nodes were usually considered static as in [14] or with
limited mobility as in [15]. It is also common to assume
that these wireless nodes will periodically send their position
information to a ground-based operation center and use them
for data processing and to plan an optimal trajectory for
the UAVs. This will not be possible if such data cannot be
transmitted and there is no data link between the nodes and
the operation center or between the nodes and the UAVs. It
might be too complicated or expensive to secure a reliable
connection between the UAVs and the wireless nodes, such as
satellite communications.

These assumptions were partly relaxed in [15] by using a
simple model for node motions which applies a constant ocean
surface velocity at the area of interest. There are several factors
considered when searching for an optimal trajectory, such as
the positions, the node’s energy, the priority for a specific type
of sensing data, and the elapsed time since the last visit by the
UAV. In addition, the UAV’s flight time and the total energy
consumption by the sensor nodes are also be the inputs to the
optimization algorithm. It was assumed that this information
is known precisely at the beginning of the mission and will be
updated when the UAV gets into communication range with
the nodes during the flight. For planning a new path, the last
known information about the nodes will be fed to a multi-
objective Particle Swarm Optimization (PSO) algorithm. PSO
is a stochastic biology-inspired optimization method proposed
in [16] and widely applied for instance in [17]-[19]. PSO is
also used for wireless sensor networks to effectively create
clusters of nodes where data collection, energy consumption
and network lifetime is optimized, see [19], [20], [14].



The research in [15] showed that the position estimation
error for the nodes would get significantly high (e.g., up to
10 km after a 1.5 hours flight) when the UAVs get updates
from the nodes only when they are communicable of each
other. Adoption of Kalman Filter (KF) improved the position
estimation during the periods the UAVs could not contact the
nodes. Inside this KF, a linear motion model was applied for
the nodes, and the filter would estimate the node position
based on any of measurements of the sea current and of the
nodes position. The KF will then predict the motion until
new measurement becomes available. The position errors were
improved significantly (e.g., it reduces from 10 to 1 km after a
1.5 hours flight). The error increased as increasing simulation
time if the KF does not get updates about ocean currents
sufficiently. However, there is a challenging to secure these
updates due to the locations where the sensor were deployed
for example in deep ocean or the areas where it lacks of public
internet connection.

Therefore, the research in this paper will one side make the
assumptions more realistic, and the other side validates the
system performance. Our contributions are stated as below:

1) A realistic ocean states measurement model: Instead of
a simple model with constant ocean current as in [15], an
accurate ocean model, the Norkyst-800, with high geographical
resolution and hourly updates, will be used.

2) Extensive simulations for practical scenarios: Simula-
tions and evaluations for realistic flight scenarios are the focus.
Therefore, the UAV is assumed to fly periodically and each
time it lasts for a limited time for example a couple of hours.
The requirement that the UAV needs to fly continuously to
visit the nodes is therefore removed.

3) Kalman Filter and Particle Swarm Optimization (PSO):
The linear model of the KF will be used for predicting the
positions of the nodes in the periods the UAV cannot establish
communications with the nodes or during the periods there was
no measurement on ocean current. PSO will be used to solve a
multiple-objective optimization for producing an optimal flight
path for the UAV.

III. MODELING
A. Positions prediction and state measurement models

Consider n wireless sensor nodes. Out of simplicity, we
will assume that the position vector x; € R? of node
1€ {1,2,...,n} can be modeled using the difference equation
i(tgr1) = wi(ty) + hai(tg, z;(tx)) + wi(tr), with initial
conditions x;(0) € R?, h € R the discretization interval,
a;(ty, w;(tr)) € R? is sea current velocity at the sea surface in
the East-North direction, respectively, at time ¢, and position
z;, and finally w; ~ N(0,Q;) is for some positive definite
Q; € R2. This vector can be achieved through extracting data
from Norkyst-800 model and the process will be explained in
IV-B.

A difference equation describing the motion of all the sensor
nodes can therefore be given by

.If(tk+1) = x(tk) + h’a(tkvx(tk)) + w(tk) 5 (1)

2
R*™,

where = = (2],29,...,2))7 € a =
(af,aq,...,a))T € R2" (where we have left out the

arguments of brevity), and w = (w{ ,wy ,...,w1)" € R?",

Assuming that a(t, ) is approximation of a(t, z), which is
achieved from Norkyst-800 model for instance in Norwegian
coastal region. The Norkyst-800 bathymetric grid consists
of 2600 x 900 grid cells where each cell have an area of
800m x 800m. A full description is presented in [21]. The
area chosen in this research is small as the movement of the
nodes in the simulation period (e.g., a week or a month) is not
significantly large. For more extended periods, the solution of
a movable updating windows can be applied.

As the actual position z;, of the nodes at time t; are
assumed unavailable, we will use the position estimate &,
as input to the approximation, which enable us to update the
prediction of node positions in the time ;. according to:

#(tryr) = £(te) + ha(te, £(tx)) 2)

where a(ty, 2(t;)) € R?" is the ocean surface current velocity.
As explained earlier, a(ty,Z¢,) will be derived from the
Norkyst-800 data files at the beginning of each hour. For the
period between two updates, the velocity vectors in each grid
cell will remain unchanged; hence, the node position can be
predicted by equation (2).

B. Node position update

We will assume that the position of a node can only be
measured when the UAV is within the communication distance
with the node. This was modelled in [15] as

yi(tk) = xi(tk) + Ui(tk) if Hp(tk) - xz(tk)H < Lnax (3)

where ¢, is a specific time instance, y; € R2 is a measurement
of the position of node i € {1,...,n} with some additive mul-
tivariate zero-mean normal distributed noise with covariance
R, € R?, that is v; ~ N(0, R;). Furthermore, p € R? is
the horizontal position of the UAV and Ly, is the maximal
communication distance between the UAV and the nodes. A
sensor normally listens to a broadcast signal from the UAV and
periodically transmits its position together with sensor data
only when the distance is not larger than L.. Therefore, it
is reasonable to assume that the wireless sensor nodes are all
equipped with a GNSS receiver, contain the same types of
sensors, and will transmit the same data amount each time.
Of course, it could be possible to develop a more complex
configuration for the nodes, including various sensors and

types.
C. Communications range for position update

The receiving radio signal strength can be described as
follows.
Prys = Pty + Gy — PLys 4

where PL, is propagation path loss between the UAV and a
sensor node; G, is the total gains of antennas on the UAV
and the node; Pty is transmitting power at the node. We have:

PLpax = Pty + Gus — Proin (5)



where Pry;, is the minimal power for receiving the signal.
In addition, the maximal path loss PL,,,, in the condition of
Line-of-sight (LOS) is given as follows:

PLpay = —147.55 4 201og f + 2010g Linax (6)

where f [Hz] is the radio frequency, Ly, [m] is the maximal
distance between the UAV and a sensor node. From the
equations (6) and (5), L. will be determined when P Ly,
is defined.

D. Node position estimation error

The position estimation error for a node ¢ € {1,2,...,n}
at a sample time ?; is defined as the deviation between its
referenced position z;(t;) € R? and the predicted position
#;(tx) € R2. If there are N discretization points along the
path of the UAV and n wireless sensor nodes, the average
position estimation error in the flight period will be:

N n
P= 305 flaatt) — )| )

k=11i=1
E. Fitness function in PSO algorithm

The outputs of the PSO algorithm in this research are the
optimal waypoints for the UAV to fly through and collect data
from the sensor nodes so that the obtained fitness is optimal.
The fitness function in this case can be defined as

f=agfe+apfp+arfr+arfr+apfp  (8)

where ag, ap, ar, ap, and ap are positive scalar weighting
constants for the functions fr, fp, fr, fr, and fp. They
stand for energy consumption by the nodes, total data collected
by the UAV during a flight path, flight time for the UAV to
complete the flight path, the average waiting time for the nodes
to be visited by the UAV, and the nodes’ position estimation
error, respectively. The weight constants will be chosen to
ensure a preferable order of priorities for the criterion. The
larger the product of a weight constant and its respective
function, the higher impact of the criteria on the final strategy
of how the way-points would be selected from the PSO
algorithm. For example, the priority orders are data freshness,
energy consumption and flight time, then the way-points will
constitute a flight path for the UAV that can visit the nodes
as often as it can regardless of energy consumed by the nodes
and the time for the flight. If the same data freshness was
gained for different set of way-points, the PSO algorithm will
start to optimize energy consumption and then flight time.

IV. SIMULATION AND RESULTS
A. Simulation Parameters

At the beginning of the mission, one can choose locations
for the four sensors and then export their coordinates to a KML
file format to retrieve velocities from Norkyst-800 data files on
MET Norway Thredds servers (https://thredds.met.no/thredds/
catalog/fou-hi/norkyst800m-1h/). The output will be a subset
of the Thredds database based on the input time range and
the positions. For PSO algorithm, which optimizes the paths

TABLE I

PARAMETERS FOR PSO, UAV AND DATA TRANSMISSION
Parameter Value Parameter Value
n 4 NWP 30
ha, 120 m Vy 10 m/s
Gj 10 dBi Gy 10 dBi
G; 10 dBi Packet 800 bytes
Proin -87 dBm Txint 10 s
Pty 200 mW f 5.8 GHz
B 5 MHz Pruin -90 dBm
Lony 8.68217° Laty 64.09803°
Lona 8.68206° Latg 64.09524°
Lons 8.67882° Lats 64.0966°
Lony 8.6855° Laty 64.09661°
Start 21/7/10 00 : 00 | End 28/7/17 00 : 00
Eo 1000 Joule N Terations 5000 times
ag 5 ap 107
ar 102 ap 1
ap 102 Noise -95 dBm
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Fig. 1. Nodes motions were extracted and interpolated from Norkyst-800

for the UAV, we deemed that 30 waypoints (N"F) would be
sufficient to find a trajectory for visiting those four sensor
nodes. The noise co-variances (); for the process model, and
R, for the measurement model are also mentioned in Table I.
I. Start and End stand for the starting, ending date and time
of the simulation period.

B. Simulation Results

Based on the locations and time range defined in Table I,
the velocities forecast from Norkyst-800 and the movements
of the nodes can be seen in Fig. 1. In further plotting
and processing, the coordinates of the nodes and UAV were
converted to local Cartesian coordinates North-East-Down
(NED) with referenced WGS-84 system. The origin of the
local NED system with geodetic coordinates specified by Lon;
and Lat; at ocean surface, will be chosen at the center of
the initial positions of the nodes. Two scenarios explained
in the following will be simulated and the results will be
explained and evaluated based on factors such as position
estimation error, energy consumption, obtained data rated for
communications etc.
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Fig. 3. Position estimation errors for the nodes in Scenario-1

1) Scenario-1: A continuous flight: In this situation, the
UAV flies and follows the nodes’ movements based on the
prediction by the KF process model. The results in Fig. 2
show that in most of the simulation time, the UAV was flying
over the nodes and established a constant connection with the
nodes. As a result, the KF could be updated often; the position
estimation error was therefore obtained at a rate of nearly /00
meters, see Fig. 3. The data rates are also reliable at around 0.8
Mbps, see Fig. 4. Still, the energy consumption will be an issue
to the battery-powered sensor nodes as the data transmission
between the nodes and the UAV is highly frequent.

2) Scenario-2: Periodic flights: In this scenario there are
periodic flights (e.g., in every second day), and each time the
UAV flies for a shorter period (e.g., can be up to few hours).
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Fig. 4. Data bit rates for UAV-nodes communications in Scenario-1

With the velocities updated hourly for the KF, the achieved
maximal error in positions estimation was varying between /
and 4 km in the entire simulation period (Figure 6). At the
beginning of each flight, the nodes’ position estimation error
was usually high because the path planning process referred
to the predicted positions for the nodes from the Kalman
filter. However, this error will gradually reduce after the UAV
starts its flight, due to some occasional communications with
the nodes. During the idle periods between the flights, the
KF will continuously predict the nodes’ movements with
hourly updated for the ocean velocity. Figure 5 shows the
movements of the sensor nodes and the UAV during the flights
in seven days. During each flight, the UAV usually gets good
connection with all of the nodes and none of them was lost.
The differences between the nodes’ trajectories (Figures 1,
2, and 5) are relatively small because they were close to
each other, at a mutual distance of around 300 meters, at the
beginning of the simulation.

The data rates for communications between the UAV and
the nodes can be seen in Fig. 7. Comparing to the first scenario
where the rates were almost constant at 0.8 Mbps, the rates
in the second scenario have more variations at the beginning
of a flight before obtaining a more constant rate of about
0.2 Mbps for the remaining time of the flight. A reason for
this lower data rate is that the error estimation for the nodes’
position was significantly high after a long idle period and the
path planning for the UAV was therefore not as optimal as in
the first case. Another reason is that we have prioritised the
position error, flight time, and energy consumption more than
the data rate in the PSO algorithm. The UAV will therefore
likely receive a flight path that first leads to a minimal error
in the nodes’ position estimation before trying to increase the
data throughput.

V. CONCLUSION

The research in this paper has addressed solutions to
minimize uncertainties in predicting the movements of small
floating wireless sensor nodes with the ocean stream by
Kalman Filter (KF) and an assistance from the UAV. At the
same time, the optimal flight path was derived from particle
swarm optimization algorithm under multiple constraints. The
Norkyst-800 model was used to provide a practical estimation
for the nodes’ position, which are the references to the
Kalman filter and to the nodes’ positions prediction. The
ocean velocities were assumed to be updated hourly which
is the same as the model update interval, but in practice, this
duration can be longer due to a lack of radio coverage, for
instance when the nodes are deployed in the deep ocean or
in a remote area. Based on this paper, an interesting research
will be dealing with the cases the sensor nodes become more
significantly separated (e.g., their mutual distances are large
than the communication range). In that condition, having only
one UAV will lead to a high position estimation error because
of less frequent updates and some of the nodes might be lost.
It will take a longer time for the UAV to fly to the predicted
positions of the nodes and due to the less accuracy, the UAV
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could be still far from the actual positions of the nodes though
it follows the plan. A solution is to establish a collaborative
swarm of UAVs where they could possibly maintain the mutual
distance for exchanging the flight path, data collection, the

nodes positions, and therefore increases the accuracy for the

nodes positions estimation.
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